THE SYZYGY STABILITY OF CURVES OF GENUS 7

ANAND DEOPURKAR

We show the following about the syzygy points of genus 7 curves. (See [DFS14] for the definition of syzygy points.)

- (1) A general curve of genus 7 has a stable first syzygy point.
- (2) A general tetragonal curve of genus 7 has (at least) a semistable first syzygy point.
- (3) A Casnati–Ekedahl special tetragonal curve of genus 7 has a strictly semistable first syzygy point. The syzygy points of all such curves coincide and this syzygy point is the syzygy point of the anti-canonically embedded del Pezzo surface of degree 6.

1. Generic stability

Proposition 1. A general curve of genus 7 has a stable first syzygy point.

Proof. It suffices to exhibit one canonical curve with stable first syzygy point. Let C be the *Fricke–Macbeath curve* of genus 7 [Mac65]. It has automorphism group $PSL_8(\mathbf{F}_2)$ (whose order realizes the Hurwitz bound 84(g-1) for the maximal number of automorphisms). The Aut(C) representation $H^0(C,\omega_C)$ must be irreducible (simply because PSL(2,8) does not have any non-trivial irreducible representation of smaller dimension). By Kempf's criterion [Kem78, § 5], the syzygy point of C is stable.

2. Syzygies of tetragonal curves

Let E be the vector bundle $O(3) \oplus O(3) \oplus O(4)$ on \mathbf{P}^1 . Let ζ on \mathbf{P}^E be the class of $O_{\mathbf{P}E}(1)$. A general tetragonal curve of genus 7 is embedded naturally in $\mathbf{P}E$ via the relative canonical bundle ω_{C/\mathbf{P}^1} . Its image in $\mathbf{P}E$ is a complete intersection of two surfaces. For a general tetragonal curve, the two surfaces have class $2\zeta - 5f$. There is codimension one sub-locus of the space of tetragonal curves where the two surfaces have classes $2\zeta - 4f$ and $2\zeta - 6f$, respectively. We call the tetragonal curves of the later kind *Casnati–Ekedahl special* and call their locus the *Casnati–Ekedahl* locus.

2.1. **Generators and relations for the ideal of P***E***.** We first describe the generators and relations for the ideal of $C \subset \mathbf{P}^6$ coming from the scroll **P***E***.** Observe that

$$\omega_C = (\zeta - 2f)|_C$$
.

Set $\omega = O(\zeta - 2f)$. We have

$$H^0(\mathbf{P}E, \omega) = H^0(\mathbf{P}^1, O(1) \oplus O(1) \oplus O(2)) = \langle U_1, U_2, V_1, V_2, W_1, W_2, W_3 \rangle.$$

The line bundle ω embeds **P***E* as a quartic scroll in **P**⁶. The ideal of **P***E* \subset **P**⁶ is generated by the six 2×2 minors of the matrix

$$\begin{pmatrix} U_1 & V_1 & W_1 & W_2 \\ U_2 & V_2 & W_2 & W_3 \end{pmatrix}.$$

Denote by $Q_{i,j}$ the determinant of the minor formed by columns i and j. There are eight syzygies among these quadrics. These are obtained by choosing three of the four columns, one of the two rows,

1

and using that the 3×3 matrix formed by the three chosen columns with the chosen row repeated has zero determinant. For example, choosing the first three columns and repeating the first row gives the relation

$$U_1 \cdot Q_{2,3} - V_1 \cdot Q_{1,3} + W_1 \cdot Q_{1,2} = 0.$$

There are no further relations among the $Q_{i,j}$. Thus, the scroll **P***E* accounts for six quadric generators out of ten, and eight syzygies out of sixteen of the canonically embedded curve $C \subset \mathbf{P}^6$.

2.2. **Generators and relations for the ideal of** C. We now describe the remaining quadrics and relations for the ideal of C. We must make two cases: one for a general tetragonal curve, and another for a Casnati–Ekedahl special curve. First assume that C is general. Then $I_{C/PE}$ is generated by two sections, say α and β , of $O(2\zeta - 5f)$. Observe that

$$O(2\zeta - 5f) = \omega^{\otimes 2} \otimes O(-f).$$

Let $\langle s, t \rangle = H^0(\mathbf{P}E, O(f)) = H^0(\mathbf{P}^1, O(1))$. Then $s\alpha$, $s\beta$, $t\alpha$, and $t\beta$ are the remaining four quadric generators of the canonical ideal of C. In other words,

$$I_{C/\mathbf{P}^6}(2) = \langle Q_{i,j}, s\alpha, s\beta, t\alpha, t\beta \rangle.$$

In addition to the eight syzygies described above, there must be eight additional syzygies among these quadrics. To describe them, let ξ be an element of $H^0(\mathbf{P}E, \omega \otimes O(-f)) = H^0(\mathbf{P}^1, O \oplus O \oplus O(1))$. Each such ξ gives two relations

$$s\xi \otimes t\alpha - t\xi \otimes s\alpha$$
, $s\xi \otimes t\beta - t\xi \otimes s\beta$.

Since ξ is chosen from a four dimensional space, we get eight additional syzygies, as required. In summary, the quadrics and syzygies of a general tetragonal curve are given by

Quadrics
$$Q_{i,j}$$
 of $PE \subset \mathbf{P}^6 \rightarrow \langle s\alpha, s\beta, t\alpha, t\beta \rangle$.

(1) Syzygies =
$$\langle \text{Syzygies among } Q_{i,j} \rangle \oplus \langle s\xi \otimes t\alpha - t\xi \otimes s\alpha, s\xi \otimes t\beta - t\xi \otimes s\beta \rangle$$
, where $\xi \in H^0(\mathbf{P}E, O(\zeta - 3f))$.

Next, assume that C is Casnati–Ekedahl special. In this case I_{CPE} is generated by a section, say α , of $O(2\zeta-4f)$, and a section β of $O(2\zeta-6f)$. Since $O(2\zeta-4f)=\omega^{\otimes 2}$ and $O(2\zeta-6f)=\omega^{\otimes 2}\otimes O(-2f)$, the four quadrics in **P**E that we get from α and β are

$$\alpha$$
, $s^2\beta$, $st\beta$, and $t^2\beta$.

As before, let ξ be an element of $H^0(\mathbf{P}E,\omega(-f))$. Each such ξ gives two relations

$$s\xi \otimes s^2\beta - t\xi \otimes st\beta, s\xi \otimes t^2\beta - t\xi \otimes st\beta.$$

Again, with ξ coming from a four dimensional space, we recover the remaining eight syzygies. In summary, the quadrics and syzygies of a Casnati–Ekedahl special tetragonal curve are

Quadrics =
$$\langle \text{Quadrics } Q_{i,j} \text{ of } \mathbf{P}E \subset \mathbf{P}^6 \rangle \oplus \langle \alpha, s^2\beta, st\beta, t^2\beta \rangle$$
.

(2) Syzygies =
$$\langle \text{Syzygies among } Q_{i,j} \rangle \oplus \langle s\xi \otimes s^2\beta - t\xi \otimes st\beta, s\xi \otimes t^2\beta - t\xi \otimes st\beta \rangle$$
, where $\xi \in H^0(\mathbf{P}E, O(\zeta - 3f))$.

Observe that the syzygies only depend on **P***E* and β .

Keep the above setup of a Casnati–Ekedahl special C. Let $X \subset \mathbf{P}E$ be the vanishing locus of β . Recall that $\omega = O_{\mathbf{P}E}(\zeta - 2f)$.

Proposition 2. The surface X is a del Pezzo surface of degree 6. The line bundle ω restricts to the anticanonical line bundle of X. The ideal of $X \subset \mathbf{P}^6$ is generated by 9 quadrics and the module of syzygies is generated by 16 linear syzygies. In particular, the linear syzygies among the generators of I_{X/\mathbf{P}^6} coincide with the linear syzygies among the generators of I_{C/\mathbf{P}^6} .

Proof. Let $\pi: \mathbf{P}E \to \mathbf{P}^1$ be the projection. The relative Euler sequence

$$0 \to \Omega_{\mathbf{p}_E/\mathbf{p}^1} \to \pi^* E \otimes O_{\mathbf{p}_E}(-1) \to O_{\mathbf{p}_E} \to 0$$

gives

$$K_{\mathbf{P}E} = O_{\mathbf{P}E}(-3) \otimes \pi^* \det E \otimes \pi^* K_{\mathbf{P}^1} = O_{\mathbf{P}E}(-3\zeta + 8f).$$

Since $O_{PE}(X) = O(2\zeta - 6f)$, by adujaction we get

$$K_X = K_{PE} \otimes O_{PE}(X) = O(-\zeta + 2f)|_X = \omega^{-1}|_X.$$

Note that $\omega = \zeta - 2f$ is ample on **P***E*. Therefore, *X* is a surface with ample anti-canonical divisor $\omega|_X$. Using $\zeta^3 = 10\zeta^2$, we compute the degree

$$\omega|_{X}^{2} = (\zeta - 2f)^{2}(2\zeta - 6f) = 6.$$

It is easy to verify that the anti-canonical image of $X \subset \mathbf{P}^6$ is cut out by 9 quadrics with 16 linear syzygies. It follows that these must be the 9 quadrics and 16 syzygies in (2) (excluding the quadric α). In particular, the linear syzygies among the generators of the ideal of X are the same as those of C. \square

3. Semistability

Proposition 3. The del Pezzo surface of degree six has a semi-stable first syzygy point in the anti-canonical embedding.

Proof. Let X be the del Pezzo surface. Note that the torus \mathbf{G}_m^2 acts on X. The action makes $H^0(X, -K_X)$ a \mathbf{G}_m^2 representation. It is easy to check that this representation is multiplicity free. Concretely, we think of X as the blow up of $\mathbf{P}^2 = \operatorname{Proj} k[X, Y, Z]$ at the three torus fixed points. Then $H^0(X, -K_X)$ is identified with the cubics passing through these three points, that is, with the vector space

$$\langle X^2Y, XY^2, X^2Z, XZ^2, Y^2Z, YZ^2, XYZ \rangle$$
.

Let the torus act by

$$(s,t)\cdot [X:Y:Z]\mapsto [sX:tY:Z].$$

Then the characters of the sections are given in order by

$$(1,0),(0,1),(1,-1),(0,-1),(-1,1),(-1,0),(0,0).$$

By the Kempf-Morisson theorem, the syzygy point of X is SL_6 semi-stable if and only if it is T semi-stable, where $T \subset SL_6$ is the maximal torus that acts diagonally on the basis vectors of $H^0(X, -K_X)$ listed above. This torus stability can be checked explicitly by a computer. See delpezzo.m2 and mcsyzygy.m2 for the Macaulay2 code that does this computation.

Corollary 1. A Casnati–Ekedahl special tetragonal curve of genus 7 has a semi-stable first syzygy point in the canonical embedding.

Proof. The first syzygy point of such curve coincides with the first syzygy point of the del Pezzo surface of degree six. \Box

Corollary 2. A general tetragonal curve of genus 7 has a semi-stable first syzygy point in the canonical embedding.

4 ANAND DEOPURKAR

Proof. Since semi-stability is an open condition, the assertion follows from the semi-stability of the first syzygy point of a Casnati–Ekedahl special curve. \Box

REFERENCES

- [DFS14] Anand Deopurkar, Maksym Fedorchuk, and David Swinarski, Toward GIT stability of syzygies of canonical curves, arXiv:1401.6101 [math.AG] (2014).
- [Kem78] George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316. MR 506989 (80c:20057)
- [Mac65] A. M. Macbeath, On a curve of genus 7, Proc. London Math. Soc. (3) 15 (1965), 527–542. MR 0177342 (31 #1605)