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1. Introduction

The classical fact that 𝑑 + 3 general points in 𝑑-dimensional projective space P𝑑 determine

a unique rational normal curve can be seen in many ways:

• By explicit algebraic construction.

• By Steiner’s geometric construction.

• By an elementary degeneration argument.

• By an application of Goppa’s lemma from the theory of association or Gale duality.

By a 𝑑-uple Veronese 𝑛-fold we mean any variety in P(𝑛+𝑑𝑛 )−1 projectively equivalent to

the standard 𝑑-uple Veronese image of P𝑛. A parameter count uncovers an infinite array of

enumerative problems, with the rational normal curves occupying only the first column:

Problem 1.1. Determine the number of 𝑑-uple Veronese 𝑛-folds passing through
(
𝑛+𝑑
𝑑

)
+𝑛+1

general points.

These numbers will be denoted 𝜈𝑑,𝑛. Theorem 1.1 has seen virtually no advancement

beyond the case of rational normal curves. Arthur Coble, about a century ago, used his new

theory of association to find that 9 general points in P5 determine precisely 4 2-uple Veronese

surfaces [Cob22, Theorem 19]. The configuration of these four surfaces is as special as Coble’s

argument showing 𝜈2,2 = 4. He discovered, using what is now called Goppa’s lemma, that a

unique elliptic normal sextic curve 𝐸 ⊂ P5 interpolates through the 9 points. This implies that

the 2-uple Veronese surfaces containing all 9 points must entirely contain 𝐸, an exceptional

circumstance. This means that each surface corresponds to choosing a square root of the

degree 6 line bundle O𝐸 (1). And so, Coble established a correspondence{
2-uple Veronese surfaces

containing the 9 points

}
←→

{
Line bundles 𝐿 on 𝐸

satisfying 𝐿2 ≃ O𝐸 (1)

}
, (1)

from which he deduced 𝜈2,2 = 4. There is currently no explanation for the number 4 without

the curve 𝐸. Specifically, no approach parallel to those available for the 𝑛 = 1 case is known.

Our work in this paper solves the next case of Theorem 1.1.

Theorem 1.2. Thirteen general points in P9 determine 4246 3-uple Veronese surfaces, i.e.

𝜈3,2 = 4246.

A caricature of the proof best serves to explain the contents of the paper. The first step

is to use a correspondence like (1), though more intricate. It is the content of Theorem 2.3

in §2. This correspondence trades the counting of 3-uple Veronese surfaces for the counting
1
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of certain triples of points in the plane called singular triads 𝑇 ∈ Hilb3 P2. It first appeared

in the work of the second author and A. Landesman [LP19] on interpolation 1. We give a

thorough account to keep things self-contained.

In order to count singular triads we need access to a vector bundle which to a point 𝑇 ∈
Hilb3 P2 assigns the vector space 𝐻0(P2, I2𝑇 (5)) of quintic forms singular at 𝑇 . Unfortunately

this vector bundle doesn’t exist because of a familiar failure of flatness: the scheme obtained

by squaring the ideal of a length 3 scheme is not always a length 9 scheme. And so the second

step is to deal with this non-vector-bundle. We swap out the Hilbert scheme for a birational

modification we call the space of complete triangles CT. The name is chosen because of many

similarities it shares with the space of complete conics. We study the geometry of CT in

§3. While it can be shown that CT is the quotient of the space of ordered triangles studied

by S. Keel in [Kee93] by the natural symmetric group action, our construction of CT is of

independent interest as it does not require first ordering triangles. The vector bundle we

sought in the previous paragraph exists over CT, and we gain an enumerative understanding

of it using Atiyah-Bott localization. At least at first glance, the set of singular triads is the

degeneracy scheme in CT of a vector bundle map involving our newfound bundle. Porteous’

formula, implemented using sage, then suggests that the number we seek is 57728.

All is not well, however, because there is still a gnarly excess in the Porteous setup. Our

third step is to circumvent this new complication by further linearizing the problem, switching

to a 26-dimensional Grassmannian bundle over CT which we call the space of singular quintic

pencils SQP. Only in SQP do we finally find an excess-free vantage point. Proving the lack

of excess is painful, requiring a combination of dimension counting and limit linear series

arguments. This verification is the subject of §4, and is the content behind Theorem 4.2

which expresses 𝜈3,2 as an integral:

𝜈3,2 =

∫
SQP
[Dom(𝑝)]13 . (2)

The details are not so important right now, but Dom(𝑝) is a relevant codimension 2 subvariety

of SQP. In §5 we compute the integral (2) using Atiyah-Bott localization, performed with

the help of sage. Finally, in §6 we discuss some of the many questions emerging from our

investigation. We’ve included the sage code we used for the calculations in §7.

1.1. Relation to other work. Apart from the obvious connection to Coble’s work, the

present paper is related to some other work which deserves mentioning. Despite much of

the progress on curve counting, there aren’t many examples of counts of higher dimensional

varieties. The closest work in this sense is due to Coskun in [Cos06b, Cos06a]. While

our construction of the space of (unordered) complete triangles is novel, it has an ordered

antecedent in the work of Collino and Fulton in [CF+89] and in the work of Keel in [Kee93].

1It is quite plausible that Coble, the foremost expert on relationships between association and Cremona

transformations, knew about the correspondence in Theorem 2.3. One hypothesis as to why he didn’t write

about this particular correspondence might be that the resulting problem of counting singular triads posed

too many complications given the technology available at the time.
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1.2. Notation and conventions. Our ground field 𝓀 is algebraically closed and of charac-

teristic 0. All schemes considered in the paper are separated and of finite-type over 𝓀. If 𝐴

is a 𝓀-vector space, and if 𝑋 is a scheme then 𝐴 will denote the constant vector bundle on

𝑋 whose fibers are 𝐴. If 𝑍 is a closed subscheme of a scheme 𝑋 then I𝑍 will denote its ideal

sheaf.

If 𝑉 is a vector bundle, then P𝑉 denotes its projectivization which represents lines in 𝑉 . In

particular, 𝐻0(P𝑉 ,OP𝑉 (1)) = 𝑉 ∗ canonically. Similarly Gr(𝑘,𝑉 ) denotes the Grassmannians

representing 𝑘-dimensional subspaces.

2. The correspondence

The fundamental trick for computing 𝜈3,2 is to switch to the task of counting correspond-

ing triples of non-collinear points {𝑎,𝑏, 𝑐} ⊂ P2 satisfying certain conditions relative to 13

prescribed, general points Γ13 ⊂ P2. It is the content of Theorem 2.3 in this section. Whether

similar useful correspondences are available for determining other 𝜈𝑑,𝑛’s remains an intriguing

question.

The correspondence critically uses Coble’s theory of association, and we begin by reviewing

this theory following the incisive account in [EP00].

2.1. Association. We let 𝑅 be a Gorenstein 0-dimensional 𝓀-algebra of length 𝑑, and we let

Γ = Spec𝑅, and write

𝜋 : Γ → Spec𝓀

for the structural morphism. The Gorenstein condition says that the dualizing sheaf 𝜔𝜋 ,

associated to the 𝑅-module

Hom𝓀(𝑅,𝓀),
is invertible and in fact generated by the trace functional. The evaluation map

𝑒𝑣 : 𝜋∗𝜔𝜋 → 𝓀

sends a functional 𝑓 ∈ Hom𝓀(𝑅,𝓀) to 𝑓 (1).
Given a line bundle 𝐿 on Γ (equivalently a rank 1 free 𝑅-module), one obtains a natural

pairing

⟨, ⟩ : 𝜋∗𝐿 × 𝜋∗
(
𝐿−1 ⊗OΓ 𝜔𝜋

)
→ 𝓀

which is a perfect pairing between two 𝑑-dimensional 𝓀-vector spaces, thanks to the Goren-

stein property. So, if 𝑉 ⊂ 𝐻0(𝐿) = 𝜋∗𝐿 is any 𝑟 + 1-dimensional vector subspace, then we can

define its associated subspace

𝑉⊥ ⊂ 𝐻0(𝐿−1 ⊗ 𝜔𝜋 )
to be 𝑉 ’s orthogonal complement with respect to ⟨, ⟩.

Remark 2.1. The passage from 𝑉 to 𝑉⊥ can also be done in a relative setting: If 𝜋 : G → 𝑆

is a finite, degree 𝑑 Gorenstein morphism of schemes, and if L is a line bundle on G, then a

rank 𝑟 + 1 sub-bundle

V ⊂ 𝜋∗L
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(with locally free quotient) has an associated rank 𝑑 − 𝑟 − 1 sub-bundle

V⊥ ⊂ 𝜋∗
(
L−1 ⊗ 𝜔G/𝑆

)
with locally free quotient.

How does one identify 𝑉⊥ in practice? Goppa’s theorem provides an answer in a common

geometric situation:

Lemma 2.2 (Goppa). Let 𝐶 be smooth projective curve, 𝐿 a non-special line-bundle on 𝐶,

and Γ ⊂ 𝐶 a finite subscheme such that the restriction map 𝐻0(𝐶, 𝐿) → 𝐻0(Γ, 𝐿Γ) is injective.

Then the image of the vector space 𝐻0(𝐶,𝜔𝐶 (Γ) ⊗ 𝐿−1) in 𝐻0(Γ, 𝜔Γ ⊗ 𝐿−1) induced by the

adjunction isomorphism 𝜔𝐶 (Γ) |Γ ⊗ 𝐿−1 → 𝜔Γ ⊗ 𝐿−1 is the associated space to 𝐻0(𝐶, 𝐿).

Armed with Goppa’s theorem, we’re now ready to switch problems.

2.2. The correspondence. LetH denote the variety parametrizing 3-uple Veronese surfaces

in P9, and let

X ⊂ H × (P9)13

denote the irreducible, closed subvariety parametrizing tuples ( [𝑉 ], 𝑞1, . . . , 𝑞13) satisfying 𝑞𝑖 ∈
𝑉 for all 𝑖. We let X◦ ⊂ X denote the open subset parametrizing tuples

( [𝑉 ], 𝑞1, . . . , 𝑞13)

which satisfy the following conditions:

(1) The points 𝑞𝑖 should be distinct;

(2) When we think of 𝑉 as a projective plane P2, the points 𝑞𝑖 should define a pencil of

plane quartic curves whose base scheme consists of {𝑞1, . . . , 𝑞13} together with three

distinct non-collinear points 𝑅 ⊂ P2. Furthermore, the triangle spanned by 𝑅 should

not contain any of the points 𝑞𝑖 .

We let

𝜋 : X→ (P9)13

denote the map sending ( [𝑉 ], 𝑞1, . . . , 𝑞13) to (𝑞1, . . . , 𝑞13), and we note that

𝜈3,2 =#𝜋−1({(𝑞1, . . . , 𝑞13)})

for general choices of points 𝑞𝑖 .

Next, we let Hilb3 P2 denote the Hilbert scheme parametrizing length 3 subschemes of P2,
and we define

Y ⊂ Hilb3 P2 × (P2)13

to be the locally closed subvariety parametrizing tuples ( [𝑇 ], 𝑝1, . . . , 𝑝13) satisfying the follow-

ing conditions:

(1) The length 3 subscheme 𝑇 ⊂ P3 is reduced, and is not contained in any line.

(2) The triangle spanned by 𝑇 does not contain any of the points 𝑝𝑖 .

(3) The points 𝑝𝑖 are distinct.
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(4) There exist two reduced, irreducible degree 5 curves containing all points 𝑝𝑖 and

singular at the three points of 𝑇 .

If ( [𝑇 ], 𝑝1, . . . , 𝑝13) is an element of Y, we say 𝑇 is a singular triad for 𝑝1, . . . , 𝑝13. We

write

𝜂 : Y→ (P2)13

for the map sending ( [𝑇 ], 𝑝1, . . . , 𝑝13) to (𝑝1, . . . , 𝑝13). Observe that the groups PGL(10) and
PGL(3) act on P9 and P2, respectively, and furthermore induce natural actions on X,X◦ and

Y.

Theorem 2.3. Let (𝑞1, . . . , 𝑞13) ∈ (P9)13 be a general tuple with associated tuple (𝑝1, . . . , 𝑝13) ∈
(P2)13. There exists a bijective correspondence

3-uple Veronese

surfaces 𝑉 ⊂ P9

containing 𝑞1, . . . , 𝑞13

 ←→


Singular triads

𝑇 ⊂ P2

for 𝑝1, . . . , 𝑝13

 .

Proof. 𝐴 and 𝐵 will denote the sets 𝜋−1({(𝑞1, . . . , 𝑞13)}) and 𝜂−1({(𝑝1, . . . , 𝑝13)}), respectively
– the objective is to show 𝐴 and 𝐵 are in bijection. A simple dimension count, which we omit,

shows that 𝐴 and 𝐵 are finite sets. As X and (P9)13 are both irreducible and 117-dimensional,

and because (𝑞1, . . . , 𝑞13) ∈ (P9)13 is general, it follows that 𝐴 ⊂ X◦.

First we describe a function

Φ : 𝐴→ 𝐵.

Choose any ( [𝑉 ], 𝑞1, . . . , 𝑞13) ∈ 𝐴 to begin with. When we interpret 𝑉 as a projective plane,

the thirteen points 𝑞𝑖 ∈ 𝑉 determine a general pencil of quartic plane curves 𝐶𝑡 ⊂ 𝑉 , 𝑡 ∈ P1.
Let 𝑅 ⊂ 𝑉 denote the three points residual to {𝑞1, . . . , 𝑞13} in the base locus of the pencil 𝐶𝑡 .

Since 𝐴 ⊂ X◦, when we view 𝑉 as a plane, the triangle in 𝑉 spanned by 𝑅 does not contain

any of the points 𝑞𝑖 , and the general member of 𝐶𝑡 is a smooth quartic curve.

Now let

𝜇 : 𝑉 d P2

denote the quadratic Cremona transformation with indeterminacy set 𝑅, well-defined up to

post-composition with elements of PGL(3). By applying Goppa’s theorem to the divisor 𝑞1+
· · ·+𝑞13 on any smooth member of the pencil 𝐶𝑡 , we conclude that the tuple (𝜇 (𝑞1), . . . , 𝜇 (𝑞13))
is associated to (𝑞1, . . . , 𝑞13). Let 𝑅′ ⊂ P2 denote the three points which are the images of the

three lines contracted under 𝜇. Since (𝑝1, . . . , 𝑝13) is associated to (𝑞1, . . . , 𝑞13) by assumption,

and since the latter tuple is general, it follows that there is a unique element 𝑔 ∈ PGL(3)
which takes (𝜇 (𝑞1), . . . , 𝜇 (𝑞13)) to (𝑝1, . . . , 𝑝13).

Set 𝑇 := 𝑔(𝑅′). We will verify the membership

( [𝑇 ], 𝑝1, . . . , 𝑝13) ∈ 𝐵,

and then declare

Φ( [𝑉 ], 𝑞1, . . . , 𝑞13) := ( [𝑇 ], 𝑝1, . . . , 𝑝13).
To that end, we must show ( [𝑇 ], 𝑝1, . . . , 𝑝13) satisfies the requirements for membership in

Y. First, 𝑇 is a reduced, non-collinear set of three points because the same was true for 𝑅.
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Second, if some point 𝑝𝑖 was contained in the triangle spanned by 𝑇 , then by applying an

appropriate reverse Cremona transformation, it would follow that the corresponding point 𝑞𝑖
was contained in the triangle spanned by 𝑅, contrary to assumption. Third, the points 𝑝𝑖 are

distinct because no two 𝑞 𝑗 ’s are contained in a line spanned by two of the points of 𝑅. Fourth

and finally, by considering the curves 𝜇 (𝐶𝑡 ) for 𝑡 ∈ P1 general, we find at least two irreducible

quintic curves singular at 𝑇 and passing through (𝑝1, . . . , 𝑝13).
The function Φ : 𝐴 → 𝐵 having been defined, we now define a mapping Ψ : 𝐵 → 𝐴 which

is readily seen to be its inverse. To start, choose ( [𝑇 ], 𝑝1, . . . , 𝑝13) ∈ 𝐵. Let P̃2 → P2 denote

the blow-up of P2 at the three points of 𝑇 . On P̃2, let 𝐿 and 𝐸 denote the divisor classes of a

general line in P2 (pulled back to the blow-up) and the sum of the three exceptional curves,

respectively, and let 𝑄,𝑄 ′ ∈ |5𝐿 − 2𝐸 | be the strict transforms of two of the quintic curves

mentioned in the membership requirements for Y. Observe that 𝑄 ∩ 𝑄 ′ = {𝑝1, . . . , 𝑝13}. By

applying Goppa’s theorem to the divisor 𝑝1 + · · · + 𝑝13 on 𝑄, it follows that the map

𝛾 : P̃2 → P9

given by the complete linear series |6𝐿 − 3𝐸 | is such that the tuple (𝛾 (𝑝1), . . . , 𝛾 (𝑝13)) ∈ (P9)13
is associated to (𝑝1, . . . , 𝑝13) ∈ (P2)13. Much as before, there is a unique element ℎ ∈ PGL(10)
which sends (𝛾 (𝑝1), . . . , 𝛾 (𝑝13)) to (𝑞1, . . . , 𝑞13). The map

ℎ ◦ 𝛾 : P̃2 → P9

has as image a 3-uple Veronese surface 𝑉 containing the points 𝑞𝑖 for all 𝑖. Define Ψ by

Ψ( [𝑇 ], 𝑝1, . . . , 𝑝13) := ( [𝑉 ], 𝑞1, . . . , 𝑞13). Φ and Ψ are inverses, proving the theorem. □

2.3. Returning to the original objective. The stated objective in this paper is to deter-

mine #𝜋−1({(𝑞1, . . . , 𝑞13)}) for general points 𝑞𝑖 ∈ P9. Using Theorem 2.3, we instead will try

to compute

#𝜂−1({𝑝1, . . . , 𝑝13})

for general points 𝑝𝑖 ∈ P2. We will still face several obstacles.

The first obstacle arises when we want to refer to the rank 9 “vector bundle” 𝐸 on Hilb3 P2

whose fiber over a point [𝑇 ] is the vector space

𝐻0
(
P2,

(
OP2/I2𝑇

)
⊗ OP2 (5)

)
.

With such a bundle we can apply the Porteous formula to access the locus where the natural

morphism

𝐻0
(
P2, I{𝑝1,...,𝑝13} (5)

)
→ 𝐸

has at least a 2-dimensional kernel – the key membership condition defining the set 𝜂−1({(𝑝1, . . . , 𝑝13)}).
Unfortunately, 𝐸 is not actually a vector bundle because its rank jumps from 9 to 10 over

the locus parametrizing fat schemes. And so our attention turns to replacing Hilb3 P2 with

a better parameter space, the space of complete triangles CT, which resolves this jumping

wrinkle. We do all this and more in the next section, which is dedicated to the geometry and

construction of CT.
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3. The space of complete triangles

Let Hilb3 P2 and Hilb3 P̌2 denote the Hilbert schemes of 0-dimensional, length 3 subschemes

of a projective plane and its dual plane, respectively. Upon choosing coordinates [𝑋 : 𝑌 : 𝑍 ]
for P2 and [𝑋 : 𝑌 : 𝑍 ] for P̌2, the group PGL(3) acts on both Hilbert schemes naturally.

Under this action, Hilb3 P2 decomposes into 7 orbits – (A) three non-collinear points, (B)

three collinear points, (C) a length two point and a reduced point, noncollinear, (D) a length

two point and a collinear point, (E) A length 3 nonreduced subscheme of a conic, (F) a length

3 nonreduced subscheme of a line, (G) a fat point, given by the square of a maximal ideal.

Of these, (F) and (G) are closed. Our objective in this section is to construct and analyze

a PGL(3)-equivariant modification of Hilb3 P2 which we call the space of complete triangles,

and which we denote by CT.

3.1. Nets of conics, Jacobian spaces, and constructing CT.

Definition 3.1. (1) Let 𝑇 ∈ Hilb3 P2 be a length three scheme. 𝑇 ’s net of conics is the

vector space Λ𝑇 := 𝐻0(I𝑇 (2)) ⊂ 𝐻0(OP2 (2)).
(2) The Jacobian matrix of three homogeneous quadratic forms 𝑄1, 𝑄2, 𝑄3 in the vari-

ables 𝑋,𝑌, 𝑍 is: 
𝜕𝑄1

𝜕𝑋

𝜕𝑄1

𝜕𝑌

𝜕𝑄1

𝜕𝑍
𝜕𝑄2

𝜕𝑋

𝜕𝑄2

𝜕𝑌

𝜕𝑄2

𝜕𝑍
𝜕𝑄3

𝜕𝑋

𝜕𝑄3

𝜕𝑌

𝜕𝑄3

𝜕𝑍

 (3)

(3) The Jacobian space of 𝑉 ⊂ 𝐻0(P2,O(2)) is the vector space spanned by all 2 × 2

minors of the Jacobian matrix of any basis ⟨𝑄1, 𝑄2, 𝑄3⟩ of 𝑉 .

(4) If 𝑉 ⊂ 𝐻0(P2,OP2 (2)) is 3-dimensional, we let 𝑉 ∗ ⊂ 𝐻0(P̌2,OP̌2 (2)) denote its apolar

3-dimensional space.

(5) A scheme 𝑇 ⊂ P2 is fat if it is isomorphic to Spec 𝑘 [𝑥,𝑦]/(𝑥2, 𝑥𝑦,𝑦2). A scheme

𝑇 ⊂ P2 is thin if it is contained in a line. We define Fat,Thin ⊂ Hilb3 P2 to be the

closed loci of fat and thin schemes, respectively.

(6) A subscheme 𝑇 ⊂ P2 (or P̌2) consisting of three distinct non-collinear points is called

an honest triangle

Remark 3.2. (1) Λ𝑇 is a three dimensional vector space, no matter the scheme 𝑇 , as is

easily checked for each of the 7 PGL(3) orbits separately.
(2) Apolarity is the natural pairing between 𝐻0(P2,OP2 (2)) and 𝐻0(P̌2,OP̌2 (2)), where

the latter space is viewed as homogeneous second order differential operators on the

former space. So, for instance, the pairing outputs 2 for the pair 𝑋 2, 𝑋 2.

Proposition 3.3. Let 𝑇 ⊂ P2 be any length three scheme, Λ𝑇 its net of conics. Then the

space Jac(Λ∗
𝑇
) is 3-dimensional.

Proof. By projective equivariance of the assignment 𝑇 ↦→ Jac(Λ∗
𝑇
), it suffices to check the

proposition on seven representatives of the PGL(3)-orbits, which we omit. □

Definition 3.4. Let 𝑇 ⊂ P2 be a length 3 scheme. We set Λ†
𝑇
:= Jac(Λ∗

𝑇
).
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3.2. Examples. Let us give some calculations related to some of the things we’ve introduced.

As a reminder, [𝑋 : 𝑌 : 𝑍 ] are homogeneous coordinates in P2, and [𝑋 : 𝑌 : 𝑍 ] are dual

coordinates. Thus, the point [𝑋 : 𝑌 : 𝑍 ] represents the line in P2 defined by the equation

𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍 = 0. Brackets ⟨⟩ will denote “𝓀-linear span”.

Example 3.5. Let 𝑇 ⊂ P2 be the three coordinate points (orbit (A)), so that Λ𝑇 = ⟨𝑋𝑌,𝑌𝑍,𝑋𝑍 ⟩.
Then Λ∗

𝑇
= ⟨𝑋 2, 𝑌 2, 𝑍2⟩, whose Jacobian space is ⟨𝑋𝑌,𝑌𝑍,𝑋𝑍 ⟩. Therefore,

Λ†
𝑇
= ⟨𝑋𝑌,𝑌𝑍,𝑋𝑍 ⟩,

which is the net of conics for the coordinate points in P̌2.

Example 3.6. Let 𝑇 be a length three non-reduced subscheme of a conic – orbit (E). 𝑇 is

given by the vanishing scheme of the net Λ𝑇 = ⟨𝑋𝑌,𝑋 2, 𝑌𝑍 ⟩. Therefore, Λ∗
𝑇
= ⟨𝑌 2, 𝑍2, 𝑋𝑍 ⟩.

Computing the Jacobian space, we get

Λ†
𝑇
= ⟨𝑌𝑍,𝑌𝑋, 𝑍2⟩

which is the net of conics of a length three subscheme of a smooth conic in P̌2.

Example 3.7. Now suppose 𝑇 is a length three scheme contained in the line 𝐿 given by 𝑍 = 0

(orbit (F)). Then Λ𝑇 = ⟨𝑋𝑍,𝑌𝑍, 𝑍2⟩. Note that this net depends only on 𝐿, regardless of the

particular scheme 𝑇 ⊂ 𝐿.

The dual space Λ∗
𝑇

is ⟨𝑋 2, 𝑋𝑌,𝑌 2⟩, which is also easily checked to be its own Jacobian.

Therefore,

Λ†
𝑇
= ⟨𝑋 2, 𝑋𝑌,𝑌 2⟩.

Example 3.8. Let 𝑇 be the fat point supported at [0 : 0 : 1] (orbit (G)). Its net of conics is

Λ𝑇 = ⟨𝑋 2, 𝑋𝑌,𝑌 2⟩. The dual space Λ∗
𝑇
is ⟨𝑋𝑍,𝑌𝑍, 𝑍2⟩. This latter space is its own Jacobian.

Therefore

Λ†
𝑇
= ⟨𝑋𝑍,𝑌𝑍, 𝑍2⟩.

Proposition 3.9. Let 𝑇 ∈ Hilb3 P2 be arbitrary. Then Λ†
𝑇
is the net of conics for some (not

necessarily unique) 𝑇 ∗ ∈ Hilb3 P̌2.

Proof. One checks this orbit by orbit – we have done the most interesting examples above. □

We can now state our main definition:

Definition 3.10. The moduli space of complete triangles is the closed subscheme

CT ⊂ Hilb3 P2 ×Hilb3 P̌2

parametrizing pairs (𝑇,𝑇 ∗) satisfying
Λ†
𝑇
= Λ𝑇 ∗ .

Remark 3.11. The scheme structure on CT is induced by the condition Λ†
𝑇
= Λ𝑇 ∗ . Indeed,

by Theorem 3.3 and Theorem 3.2, the assignments (𝑇,𝑇 ∗) ↦→ Λ†
𝑇

and (𝑇,𝑇 ∗) ↦→ Λ𝑇 ∗ yield

two vector subbundles of the trivial bundle 𝐻0(P̌2,OP̌2 (2)) over Hilb3 P2×Hilb3 P̌2. Requiring
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these two subbundles to be equal yields the scheme structure on CT. CT’s functor of points

is inherent in this description.

The diagonal action of PGL(3) on P2× P̌2 induces an action on CT thanks to the projective

equivariance of the assignment

Λ𝑇 ↦→ Λ†
𝑇
.

From these calculations and projective equivariance of the construction Λ𝑇 ↦→ Λ†
𝑇
, we

conclude:

Proposition 3.12. Suppose (𝑇,𝑇 ∗) ∈ CT. Then:

(1) 𝑇 is an honest triangle if and only if 𝑇 ∗ is an honest triangle. In this case, the points

of 𝑇 ∗ correspond to the lines of the triangle spanned by pairs of points of 𝑇 .

(2) If 𝑇 is a nonreduced scheme which is neither fat nor thin, then 𝑇 ∗ is unique, and vice

versa.

(3) 𝑇 is a fat scheme if and only if 𝑇 ∗ is a thin scheme, and 𝑇 ∗ is contained in the line

dual to the support of 𝑇 . The same statement holds with 𝑇 and 𝑇 ∗ interchanged.

(4) 𝑇 ∗ is uniquely determined by 𝑇 if and only 𝑇 is not fat.

Proof. Follows from calculations similar to those in Theorem 3.5, Theorem 3.8 and Theo-

rem 3.7 – we leave the details to the reader. □

Remark 3.13. From Theorem 3.7, notice that if 𝑇 is thin and (𝑇,𝑇 ∗) ∈ CT, then 𝑇 ∗ is the fat

scheme supported on the point dual to the line containing 𝑇 .

Proposition 3.14. The reduction CTred is 6-dimensional and irreducible.

Proof. From Theorem 3.12, it suffices to show: Given a pair (𝑇,𝑇 ∗) ∈ CT with 𝑇 fat, there

exists an irreducible pointed curve (𝐵, 0) and a map 𝑓 : 𝐵 → CT such that 𝑓 (0) = (𝑇,𝑇 ∗) and
for all 𝑏 ∈ 𝐵 \ {0}, 𝑓 (𝑏) is an honest triangle. This is sufficient because the open locus of

honest triangles is clearly 6-dimensional and irreducible. Note that by symmetry, we need

not consider the case where 𝑇 is thin.

Since 𝑇 is fat, Theorem 3.12 says 𝑇 ∗ is thin. In any case, since the open subset of Hilb3(P̌2)
parametrizing triples of three distinct, non-collinear points is Zariski dense, there exists a

pointed curve (𝐵, 0) and a map

𝑓 : 𝐵 → Hilb3 P̌2

with 𝑓 (0) = 𝑇 ∗, and 𝑓 (𝑏) a triple of three non-collinear points, for all 𝑏 ≠ 0. For all points

𝑏 ∈ 𝐵, the space Λ†
𝑓 (𝑏 ) determines a unique length three scheme 𝑇𝑏 ∈ Hilb3(P2) such that

Λ†
𝑓 (𝑏 ) = Λ𝑇𝑏 . Therefore, the map 𝑓 lifts to a map 𝑓 : 𝐵 → CT, and this lift has the desired

properties, namely that 𝑓 (0) = (𝑇,𝑇 ∗) and 𝑓 (𝑏) is an honest triangle for 𝑏 ≠ 0. □

3.3. Smoothness. Our next major objective is to show that CT is smooth. We do so by

establishing smoothness at a particular point (𝑇,𝑇 ∗) ∈ CT, and then concluding by exploiting

the PGL(3) action, upper semi-continuity and Theorem 3.14.
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Proposition 3.15. Let (𝑇,𝑇 ∗) ∈ CT be the complete triangle with 𝑇 given by the homogeneous

ideal (𝑋 2, 𝑋𝑌,𝑌 2), and 𝑇 ∗ given by the ideal (𝑍,𝑋 3). The scheme CT is smooth at (𝑇,𝑇 ∗).

Proof. We will calculate the space of first order deformations of (𝑇,𝑇 ∗) ∈ CT, and demonstrate

that it is 6 dimensional. This is enough by Theorem 3.14.

Let us pass to affine coordinates; we let 𝑥 = 𝑋/𝑍,𝑦 = 𝑌/𝑍, 𝑎 = 𝑋/𝑌, 𝑐 = 𝑍/𝑌 . The general

first order deformation of the ideal 𝐼 = (𝑥2, 𝑥𝑦,𝑦2) is given by

𝐼𝜀 := (𝑥2 + 𝜀 (𝛼1𝑥 + 𝛽1𝑦), 𝑥𝑦 + 𝜀 (𝛼2𝑥 + 𝛽2𝑦), 𝑦2 + 𝜀 (𝛼3𝑥 + 𝛽3𝑦)), (4)

for free choices of constants 𝛼𝑖 , 𝛽 𝑗 ∈ 𝓀, while the general first order deformation of 𝐽 = (𝑎3, 𝑐)
is

𝐽𝜀 = (𝑎3 + 𝜀 (𝛾1𝑎2 + 𝛾2𝑎 + 𝛾3), 𝑐 + 𝜀 (𝛿1𝑎2 + 𝛿2𝑎 + 𝛿3)) (5)

where 𝛾𝑖 and 𝛿𝑖 vary freely in 𝓀.

From (4), the corresponding first order deformation of the induced net of conics Λ𝑇 =

⟨𝑋 2, 𝑋𝑌,𝑌 2⟩ is given by

Λ𝑇 (𝜀) := ⟨𝑋 2 + 𝜀 (𝛼1𝑋𝑍 + 𝛽1𝑌𝑍 ), 𝑋𝑌 + 𝜀 (𝛼2𝑋𝑍 + 𝛽2𝑌𝑍 ), 𝑌 2 + 𝜀 (𝛼3𝑋𝑍 + 𝛽3𝑌𝑍 )⟩. (6)

Next, we must identify the first order deformation of the net of conics Λ𝑇 ∗ = ⟨𝑋𝑍,𝑌𝑍, 𝑍2⟩
induced by the deformation (5). First, note that 𝑐2 ∈ 𝐽𝜀 . Therefore, we must determine how

the conics 𝑋𝑍 and 𝑌𝑍 must be deformed. By homogenizing the element 𝑐+𝜀 (𝛿1𝑎2+𝛿2𝑎+𝛿3) ∈
𝐽𝜀 , we get the deformation:

𝑌𝑍 + 𝜀 (𝛿1𝑋 2 + 𝛿2𝑋𝑌 + 𝛿3𝑌 2).

Finally, by multiplying 𝑐 + 𝜀 (𝛿1𝑎2 + 𝛿2𝑎 + 𝛿3) by 𝑎, subtracting 𝜀𝛿1𝑎
3, then homogenizing we

deduce the following deformation:

𝑋𝑍 + 𝜀 (𝛿2𝑋 2 + 𝛿3𝑋𝑌 )

Altogether, the corresponding first order deformation of the net Λ𝑇 ∗ is given by

Λ𝑇 ∗ (𝜀) := ⟨𝑋𝑍 + 𝜀 (𝛿2𝑋 2 + 𝛿3𝑋𝑌 ), 𝑌𝑍 + 𝜀 (𝛿1𝑋 2 + 𝛿2𝑋𝑌 + 𝛿3𝑌 2), 𝑍2⟩ (7)

Now, we must impose the condition that the pair of deformations (𝐼𝜀, 𝐽𝜀) belong in CT. By

definition, this is the condition

Λ𝑇 (𝜀)† = Λ𝑇 ∗ (8)

The left hand side of (8) is simple to calculate. First, the deformation Λ𝑇 (𝜀)∗ is given by:

Λ𝑇 (𝜀)∗ = ⟨𝑋𝑍 + 𝜀 (−
𝛼1

2
𝑋 2 − 𝛼2𝑋𝑌 −

𝛼3

2
𝑌 2), 𝑌𝑍 + 𝜀 (−𝛽1

2
𝑋 2 − 𝛽2𝑋𝑌 −

𝛽3

2
𝑌 2), 𝑍2⟩

and so applying the Jacobian we get

Λ𝑇 (𝜀)† = ⟨𝑋𝑍 + 𝜀 (𝛽2𝑋 2 + (𝛼2 − 𝛽3)𝑋𝑌 + 𝛼3𝑌 2), 𝑌𝑍 + 𝜀 (𝛽1𝑋 2 + (𝛽2 − 𝛼1)𝑋𝑌 − 𝛼2𝑌 2), 𝑍2⟩
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Equating term by term with (7) we get the following system of equations:

𝛿2 = 𝛽2

𝛿3 = 𝛼2 − 𝛽3
0 = 𝛼3

𝛿1 = 𝛽1

𝛿2 = 𝛽2 − 𝛼1
𝛿3 = −𝛼2

We note that this system of equations clearly cuts out a 6-dimensional space of solutions

in the vector space 𝓀⟨𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛼3, 𝛽3, 𝛾1, 𝛾2, 𝛾3, 𝛿1, 𝛿2, 𝛿3⟩ – indeed, we may freely choose

𝛾1, 𝛾2, 𝛾3, 𝛿1, 𝛿2, 𝛿3, after which the 𝛼 and 𝛽 variables are uniquely determined, concluding the

proof. □

Remark 3.16. In the setting of the proof of Theorem 3.15, we note that the extra single

condition 𝛿1 = 0 is equivalent to the condition that the 1’st order deformation of the ideal 𝐽𝜀
continues to contain a linear element. But then the allowable parameters 𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛼3, 𝛽3
determine a deformation of the ideal 𝐼 of the form ((𝑥 − 𝜀𝛼)2, (𝑥 − 𝜀𝛼) (𝑦 − 𝜀𝛽), (𝑦 − 𝜀𝛽)2). This
is evidently the tangent space to Fat at the point 𝑇 .

Furthermore, a deformation of 𝐽 with 𝛿1 ≠ 0 induces a non-zero tangent vector of 𝑇 which

is a nonzero normal vector to Fat at 𝑇 .

Theorem 3.17. The scheme CT is smooth.

Proof. We use upper semi-continuity, Theorem 3.15, and Theorem 3.14. The group PGL(3)
acts on the scheme CT. Under this action, it is easy to check that either the point (𝑇,𝑇 ∗) from
Theorem 3.15 or its symmetric flip (where we interchange 𝑋,𝑌, 𝑍 with 𝑋,𝑌, 𝑍 everywhere) is

contained in the closure of every orbit. We conclude that the tangent space is 6-dimensional

at every point in CT by semi-continuity, and conclude by Theorem 3.14. □

Corollary 3.18. The space of complete triangles CT is the closure (with reduced, induced

scheme structure) of the graph of the triangle map

𝜏 : Hilb3 P2 d Hilb3 P̌2

which assigns to a set of three distinct, non-collinear points 𝑇 ⊂ P2, the set of lines spanned

by pairs in 𝑇 .

Proof. This follows from part (1) of Theorem 3.12, Theorem 3.14, and Theorem 3.17. (The

latter is needed to show that CT is reduced.) □

Let 𝜙1 : CT→ Hilb3 P2 and 𝜙2 : CT→ Hilb3 P̌2 denote the forgetful maps.
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Corollary 3.19. The space CT is isomorphic to the blow up BlFatHilb3 P2 and to the blow

up BlFatHilb3 P̌2. Under these isomorphisms, the forgetful maps 𝜙𝑖 are the respective blow

down maps.

Proof. We prove that CT ≃ BlFatHilb3 P2 – the argument for BlFatHilb3 P̌2 is the same.

The projection 𝜙1 : CT → Hilb3 P2 is such that 𝜙−1(Fat) has codimension 1 in CT, from

the set-theoretic statement (3) in Theorem 3.12. This preimage is also smooth, thanks to the

observation in Theorem 3.16, combining the PGL(3) action with upper-semicontinuity.

The universal property of blow ups gives us an induced morphism 𝜄 : CT→ BlFatHilb3 P2

factoring 𝜙1. We conclude by applying Zariski’s Main Theorem to the morphism 𝜄. □

3.4. Resolving powers. Let 𝑛 ≥ 2 be an integer, and let

𝜇𝑛 : Hilb3 P2 d Hilb3(𝑛+12 ) P
2

denote the rational map defined by sending an ideal sheaf I to the ideal sheaf I𝑛. The maps

𝜇𝑛 fail to be defined along Fat ⊂ Hilb3 P2, since the colength of I𝑛 is
(2𝑛+1

2

)
rather than 3

(
𝑛+1
2

)
when I = 𝔪2

𝑝 . Here 𝔪𝑝 ⊂ OP2 denotes the ideal sheaf of the point 𝑝 ∈ P2. The excess in

colength is
(
𝑛
2

)
. Conveniently, 𝜇𝑛 extends to a morphism on CT for all 𝑛, as we now explain.

Let

𝛾 : Hilb3 P̌2 → P𝐻0(P2,O(3))
denote the composition of the Hilbert-Chow morphism Hilb3 P̌2 → Sym3 P̌2 with the natural

“multiplication” morphism

𝑚 : Sym3 P̌2 → P𝐻0(P2,O(3))

induced by the 𝑆3-equivariant “multiplication of linear forms” map

P̌2 × P̌2 × P̌2 → P𝐻0(P2,O(3)).

We view points of P𝐻0(P2,O(3)) as cubic curves in P2.
Thus we see that every complete triangle (𝑇,𝑇 ∗) ∈ CT comes naturally equipped with a

cubic curve 𝛾 (𝑇 ∗) ⊂ P2 which is a union of lines, possibly with multiplicities. If (𝑇,𝑇 ∗) is an
honest triangle, then 𝛾 (𝑇 ∗) is simply the triangle spanned by 𝑇 – in particular, 𝛾 (𝑇 ∗) gives
a global section of I2Γ (3). If (𝑇,𝑇 ∗) ∈ CT is such that 𝑇 is a fat scheme, then 𝛾 (𝑇 ∗) is an

“asterisk” consisting of three lines passing through the support point of 𝑇 .

Theorem 3.20. The rational map 𝜇𝑛 extends to a morphism on CT for all 𝑛.

Proof. For simplicity of notation, we let 𝛾 denote the ideal sheaf generated by the cubic 𝛾 (𝑇 ∗).
Consider the assignment

(𝑇,𝑇 ∗) ↦→ I𝑛𝑇 +𝛾 I
𝑛−2
𝑇 +𝛾2 I𝑛−4𝑇 +... (9)

where the sum ends at 𝛾𝑛/2 or 𝛾 (𝑛−1)/2 I𝑇 depending on the parity of 𝑛. We leave it to the

reader to check that the ideal on the right side of Equation (9) has the correct colength 3
(
𝑛+1
2

)
,

even if 𝑇 is a fat scheme. Hence, this assignment induces a morphism CT→ Hilb3(𝑛+12 ) P
2.

Finally, if (𝑇,𝑇 ∗) is an honest triangle, then 𝛾 is already contained in I2𝑇 and therefore the

above assignment reduces to I𝑇 ↦→ I𝑛𝑇 , the 𝑛th power map, concluding the proof. □
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Corollary 3.21. Let 𝑆 be any smooth surface. Then the 𝑛th power map

𝜇𝑛 : Hilb3 𝑆 d Hilb3(𝑛+12 ) 𝑆

extends to a regular map on BlFatHilb3 𝑆.

Proof. It suffices to prove the statement étale locally on 𝑆. However, étale locally 𝑆 is iso-

morphic to P2. The result follows from Theorem 3.19 and Theorem 3.20. □

Returning to the overarching narrative, in order to count the number of points in

𝜂−1({𝑝1, . . . , 𝑝13}) ⊂ Hilb3 P2

we will use the squaring map 𝜇2 to produce a map between two vector bundles on CT.

An appropriate degeneracy scheme of this map will include 𝜂−1({𝑝1, . . . , 𝑝13}) along with

undesirable excess. We will remove the excess in Section 4 – for now, we content ourselves

with identifying the relevant vector bundles.

3.5. Some vector bundles on CT. We simplify notation and let

sq : CT→ Hilb9 P2

denote the squaring map 𝜇2 from the previous section. We let

Z ⊂ CT×P2

denote the universal length 9 subscheme induced by sq, and write 𝑝1, 𝑝2 for the projections

of CT×P2 to first and second factors, respectively. Finally, we denote by V𝑛 the sheaf

𝑝1∗
(
IZ ⊗ 𝑝∗2O(𝑛)

)
. (10)

Proposition 3.22. V𝑛 is a vector bundle on CT of rank
(
𝑛+2
2

)
− 9 for all 𝑛 ≥ 5.

Proof. The claim being made is that every length 9 scheme of the form sq(𝑇,𝑇 ∗) imposes

independent conditions on degree 𝑛 ≥ 5 homogeneous forms. This can either be checked on a

case-by-case basis, or can be checked for example on the special complete triangle (𝑇,𝑇 ∗) in
Theorem 3.15, as well as its dual. Then an appeal to semi-continuity gives the conclusion for

any complete triangle (𝑇,𝑇 ∗) where 𝑇 is not contained in a line. For those complete triangles

(𝑇,𝑇 ∗) with 𝑇 contained in a line, the claim can be checked directly. □

Lemma 3.23. Let (𝑇,𝑇 ∗) ∈ CT be any point such that 𝑇 ∉ Thin. Then the sheaf Isq(𝑇,𝑇 ∗ ) (𝑛)
is generated by global sections for 𝑛 ≥ 4, i.e. the scheme defined by the common vanishing of

all forms in 𝐻0(P2, Isq(𝑇,𝑇 ∗ ) (𝑛)) is precisely sq(𝑇,𝑇 ∗) when 𝑛 ≥ 4.

Proof. By combining an isotrivial specialization using the PGL(3) action with semi-continuity,

we need only verify this for the pair (𝑇,𝑇 ∗) where, in affine coordinates (𝑥,𝑦), 𝑇 is given by

𝑉 (𝑥2, 𝑥𝑦,𝑦2) and 𝑇 ∗ defines the “three” concurrent lines consisting of 𝑉 (𝑥) reckoned 3 times.

Here, the ideal of sq(𝑇,𝑇 ∗) is
(𝑥4, 𝑥3𝑦, 𝑥2𝑦2, 𝑥𝑦3, 𝑦4, 𝑥3),

which is clearly generated by polynomials of degree ≤ 𝑛 once 𝑛 ≥ 4, proving the result. □
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3.6. A Chern class calculation using localization on CT. Maintain the notation in

Section 3.5 and define

𝐸 = 𝑝1∗
(
OZ ⊗ 𝑝∗2O(5)

)
.

Then 𝐸 is a vector bundle of rank 9 on CT – indeed, the whole point of introducing CT in

the first place was to be able to invoke the bundle 𝐸.

The objective of this section is to evaluate the integer

𝑐23 (𝐸) − 𝑐2(𝐸)𝑐4(𝐸) ∈ 𝐻6(CT,Z) = Z

using the technique of localization.

We recall the localization formula in the context of enumerative geometry from [ES96].

Let 𝑋 be a smooth projective variety of dimension 𝑛 with a Gm action. Let 𝐹 ⊂ 𝑋 be the

set of fixed points, and assume that 𝐹 is finite. Let 𝐸 be an equivariant vector bundle on

𝑋 . Let 𝑝 (𝑐1, 𝑐2, . . . ) be a polynomial in formal variables 𝑐1, 𝑐2, . . . . Assume that 𝑝 is weighted

homogeneous of degree 𝑛 when the variable 𝑐𝑖 is given weight 𝑖. The goal generally is to

compute

𝑝 (𝑐1(𝐸), 𝑐2(𝐸), . . . ) ∈ 𝐻2𝑛 (𝑋,Z) = Z .

For 𝑥 ∈ 𝐹 , let 𝜎𝑖 (𝐸, 𝑥) be the value of the 𝑖th elementary symmetric polynomial in the weights

of the Gm acting on 𝐸 |𝑥 . Set 𝑓 (𝐸, 𝑥) = 𝑝 (𝜎1(𝐸, 𝑥), 𝜎2(𝐸, 𝑥), . . . ).

Theorem 3.24 (Bott’s localization formula [ES96, Theorem 2.2]). We have the equality

𝑝 (𝑐1(𝐸), 𝑐2(𝐸), . . . ) =
∑︁
𝑥∈𝐹

𝑓 (𝐸, 𝑥)
𝜎𝑛 (𝑇𝑋 , 𝑥)

.

We now compute the ingredients of the right hand side in Theorem 3.24 for 𝑋 = CT. Put

homogeneous coordinates [𝑋 : 𝑌 : 𝑍 ] on P2. Consider the Gm action on the three dimensional

vector space ⟨𝑋,𝑌, 𝑍 ⟩ by
𝑡 · (𝑋,𝑌, 𝑍 ) = (𝑡𝑎𝑋, 𝑡𝑏𝑌, 𝑡𝑐𝑍 ),

where (𝑎, 𝑏, 𝑐) ∈ Z3 are distinct, general integers. This action of Gm on P2 induces compatible

actions on P̌2, OP2 (𝑛), Hilb3 P2, CT, and 𝐸. Observe that 𝑆3 acts on (𝑋,𝑌, 𝑍 ) by permutations,

and accordingly on 𝑎,𝑏, 𝑐.

3.7. The 31 fixed points of the Gm action on CT. We now list the 𝑆3-orbits of the

31 fixed points of the Gm action on CT. The format is (𝐼 ; 𝐽 ), where 𝐼 ⊂ 𝑘 [𝑋,𝑌, 𝑍 ] is the

homogeneous ideal of a length 3 scheme and 𝐽 ⊂ 𝑘 [𝑋,𝑌, 𝑍 ] is a an ideal describing a length

3 subscheme of P̌2.

(1) (𝑋𝑌,𝑌𝑍,𝑋𝑍 ;𝑋𝑌,𝑋𝑍,𝑌𝑍 ) — the unique 1+1+1 configuration,

(2) (𝑋𝑌,𝑋𝑍,𝑌 2;𝑋𝑌,𝑋𝑍, 𝑍2) and its 6 permutations – non-linear 1+2 configuration,

(3) (𝑋,𝑌 2𝑍 ;𝑌 2, 𝑌𝑍, 𝑍2) and its 6 permutations – linear 1+2 configuration,

(4) (𝑋,𝑌 3;𝑌 2, 𝑌𝑍, 𝑍2) and its 6 permutations – linear 3 configuration,

(5) (𝑋 2, 𝑋𝑌,𝑌 2;𝑍,𝑌 3) and its 6 permutations – fat point (non-linear 3 configuration),

(6) (𝑋 2, 𝑋𝑌,𝑌 2;𝑍,𝑌 2𝑋 ) and its 6 permutations – fat point (non-linear 3 configuration).

This (1)-(6) ordering of 𝑆3 orbit representatives will be systematically adhered to for all

the following weight computations, including throughout the sage code in §7.
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Proposition 3.25. The weights of the Gm action on 𝐸 at the fixed points of type (1)-(6) are:

(1) (5𝑎, 5𝑏, 5𝑐, 4𝑎 + 𝑏, 4𝑎 + 𝑐, 4𝑏 + 𝑎, 4𝑏 + 𝑐, 4𝑐 + 𝑎, 4𝑐 + 𝑏),
(2) (5𝑎, 4𝑎 + 𝑏, 4𝑎 + 𝑐, 5𝑐, 4𝑐 + 𝑎, 4𝑐 + 𝑏, 3𝑐 + 𝑎 + 𝑏, 3𝑐 + 2𝑏, 2𝑐 + 3𝑏) and its 6 permutations,

(3) (5𝑏, 4𝑏 + 𝑎, 4𝑏 + 𝑐, 5𝑐, 4𝑐 + 𝑎, 4𝑐 + 𝑏, 3𝑐 + 𝑎 + 𝑏, 3𝑐 + 2𝑏, 2𝑐 + 3𝑏) and its 6 permutations,

(4) (5𝑐, 4𝑐 +𝑏, 3𝑐 + 2𝑏, 2𝑐 + 3𝑏, 𝑐 + 4𝑏, 5𝑏, 4𝑐 +𝑎, 3𝑐 +𝑎 +𝑏, 2𝑐 +𝑎 + 2𝑏) and its 6 permutations,

(5) (5𝑐, 4𝑐 + 𝑎, 3𝑐 + 2𝑎, 4𝑐 + 𝑏, 3𝑐 + 𝑎 + 𝑏, 2𝑐 + 2𝑎 + 𝑏, 3𝑐 + 2𝑏, 2𝑐 + 2𝑏 + 𝑎, 2𝑐 + 3𝑏) and its 6

permutations,

(6) (5𝑐, 4𝑐+𝑎, 3𝑐+2𝑎, 2𝑐+3𝑎, 4𝑐+𝑏, 3𝑐+𝑎+𝑏, 3𝑐+2𝑏, 2𝑐+2𝑏+𝑎, 2𝑐+3𝑏) and its 6 permutations.

Proof. In order to indicate how to perform these computations, we will do the case (2) as

an example – the reader can then check that no new complications arise in the general

calculation.

Note that in the case (2), the image in Hilb9 P2 is cut out simply by the square of the ideal;

the cubic 𝑋𝑌 2 is redundant information. The length 3 scheme 𝑇 cut out by ⟨𝑋𝑌,𝑋𝑍,𝑌 2⟩ is
supported at [1 : 0 : 0] and [0 : 0 : 1]. Near [1 : 0 : 0], we can use affine coordinates 𝑦 = 𝑌/𝑋
and 𝑧 = 𝑍/𝑋 . In these coordinates, the ideal is (𝑦, 𝑧), and its square is (𝑦2, 𝑦𝑧, 𝑧2). The section
𝑋 5 of OP2 (5) is Gm equivariant and non-vanishing at [1 : 0 : 0]. We thus get a Gm equivariant

basis of 𝐻0(𝑇 ∩ {𝑋 ≠ 0},Osq(𝑇,𝑇 ∗ ) (5)) given by

𝑋 5⟨1, 𝑦, 𝑧⟩.

The corresponding weights are 5𝑎, 4𝑎+𝑏, 4𝑎+𝑐. Near [0 : 0 : 1], we can use affine coordinates

𝑥 = 𝑋/𝑍 and 𝑦 = 𝑌/𝑍 . In these coordinates, the ideal is (𝑥,𝑦2), and its square is (𝑥2, 𝑥𝑦2, 𝑦4).
The section 𝑍5 of OP2 (5) is Gm equivariant section and non-vanishing at [0 : 0 : 1]. We thus

get a Gm equivariant basis of 𝐻0(𝑇 ∩ {𝑍 ≠ 0},Osq(𝑇,𝑇 ∗ ) (5)) given by

𝑍5 · ⟨1, 𝑥,𝑦, 𝑥𝑦,𝑦2, 𝑦3⟩.

The corresponding weights are 5𝑐, 4𝑐 + 𝑎, 4𝑐 + 𝑏, 3𝑐 + 𝑎 + 𝑏, 3𝑐 + 2𝑏, 2𝑐 + 3𝑏. Combining the

contributions from [1 : 0 : 0] and [0 : 0 : 1], we get the full set of weights. □

Proposition 3.26. The weights of the Gm action on the tangent bundle at the fixed points

of type (1) - (6) are:

(1) (𝑐 − 𝑎, 𝑐 − 𝑏,𝑏 − 𝑐, 𝑏 − 𝑎, 𝑎 − 𝑏, 𝑎 − 𝑐),
(2) (𝑎 − 𝑐, 𝑎 − 𝑏, 𝑐 − 𝑎, 2𝑐 − 2𝑏,𝑏 − 𝑎, 𝑐 − 𝑏), and its six permutations,

(3) (𝑐 − 𝑎, 2𝑐 − 2𝑏,𝑏 − 𝑎, 𝑐 − 𝑏, 𝑏 − 𝑐, 𝑏 − 𝑎), and its six permutations,

(4) (𝑐 − 𝑎, 3𝑐 − 3𝑏,𝑏 − 𝑎, 2𝑐 − 2𝑏, 2𝑏 − 𝑐 − 𝑎, 𝑐 − 𝑏), and its six permutations,

(5) (3𝑏 − 3𝑎, 2𝑏 − 2𝑎, 𝑏 − 𝑎, 𝑐 − 𝑎, 𝑐 − 𝑏, 𝑎 − 2𝑏 + 𝑐), and its six permutations,

(6) (𝑎 − 𝑏, 𝑐 − 𝑏, 𝑐 − 𝑎, 2𝑏 − 2𝑎, 𝑐 − 𝑏, 𝑏 − 𝑎), and its six permutations.

Proof. To see how these are calculated, we consider two representative examples: (3) and (6).

At a complete triangle of type (3), the map 𝜑1 : CT → Hilb3 P2 is a local isomorphism.

Therefore, we have

𝑇𝑝 CT � 𝑇𝑝 Hilb3 P2 � HomP2 (𝐼 ,OP2/𝐼 ).
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At [1 : 0 : 0], we have 𝐼 = (𝑦, 𝑧) where 𝑦 = 𝑌/𝑋 and 𝑧 = 𝑍/𝑋 . So we get Hom(𝐼 ,O/𝐼 ) = 𝓀⟨𝑦, 𝑧̂⟩
where 𝑦 and 𝑧̂ are the dual variables to 𝑦 and 𝑧; their weights are 𝑎−𝑏 and 𝑎−𝑐, respectively.
At [0 : 0 : 1], we have 𝐼 = (𝑥,𝑦2) where 𝑥 = 𝑋/𝑍 and 𝑦 = 𝑌/𝑍 . So we get

Hom(𝐼 ,O/𝐼 ) = Hom𝑘 (⟨𝑥,𝑦2⟩, ⟨1, 𝑦⟩) = 𝓀⟨𝑥 ⊗ 1, 𝑥 ⊗ 𝑦,𝑦2 ⊗ 1, 𝑦2 ⊗ 𝑦⟩.

The weights of these elements are 𝑐 −𝑎,𝑏 −𝑎, 2𝑐 − 2𝑏, 𝑐 −𝑏. Combining the contributions from

[1 : 0 : 0] and [0 : 0 : 1], we get the full set of weights.

Now we shift focus to a fixed point of type (6). At this point, the map CT → Hilb3 P̌2 is

a local isomorphism. Denote by 𝑋 , 𝑌 , and 𝑍 the variables dual to 𝑋 , 𝑌 , and 𝑍 . Then the

corresponding point in Hilb3 P̌2 is the point

⟨𝑍,𝑌 2𝑋 ⟩.

As in the third case, we get the weights (𝑐 − 𝑎, 2𝑏 − 2𝑎, 𝑐 − 𝑏, 𝑏 − 𝑎, 𝑎 − 𝑏, 𝑐 − 𝑏).
□

We can now compute top degree Chern expressions of the vector bundle 𝐸. In particular,

using Theorem 3.24, we get

𝑐3(𝐸)2 − 𝑐2(𝐸)𝑐4(𝐸) = 27 × 11 × 41 = 57728. (11)

The computation is carried out in sage (see localization.sage).

Before continuing with our story, we take a moment to collect other weight calculations

which will be needed in the last section. We maintain the 1-6 ordering of the 𝑆3 orbits of

fixed points throughout.

Proposition 3.27. Let O[3],O(1) [3], and O(2) [3] denote the tautological rank 3 bundles pulled

back to CT, and let O(𝐻 ) denote the line bundle on CT corresponding to the divisor of those

(𝑇,𝑇 ∗) such that 𝑇 meets a fixed line. The torus weights of these bundles at the fixed points

in CT are listed below. (One then applies the action of 𝑆3 on the letters {𝑎, 𝑏, 𝑐}.)
O[3] : (1) (0, 0, 0)

(2) (0, 𝑏 − 𝑐, 0),
(3) (0, 𝑏 − 𝑐, 0),
(4) (0, 𝑏 − 𝑐, 2𝑏 − 2𝑐),
(5) (0, 𝑎 − 𝑐, 𝑏 − 𝑐),
(6) (0, 𝑎 − 𝑐, 𝑏 − 𝑐).

O(1) [3] : (1) (𝑎,𝑏, 𝑐),
(2) (𝑎,𝑏, 𝑐),
(3) (𝑏, 𝑏, 𝑐),
(4) (𝑐, 𝑏, 2𝑏 − 𝑐),
(5) (𝑎,𝑏, 𝑐),
(6) (𝑎,𝑏, 𝑐).

O(2) [3] : (1) (2𝑎, 2𝑏, 2𝑐),
(2) (2𝑎,𝑏 + 𝑐, 2𝑐),
(3) (2𝑏, 𝑏 + 𝑐, 2𝑐),
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(4) (2𝑏, 𝑏 + 𝑐, 2𝑐),
(5) (𝑎 + 𝑐, 𝑏 + 𝑐, 2𝑐),
(6) (𝑎 + 𝑐, 𝑏 + 𝑐, 2𝑐).

O(3) [3] : (1) (3𝑎, 3𝑏, 3𝑐),
(2) (3𝑎,𝑏 + 2𝑐, 3𝑐),
(3) (3𝑏, 𝑏 + 2𝑐, 3𝑐),
(4) (𝑏 + 2𝑐, 2𝑏 + 𝑐, 3𝑐),
(5) (𝑎 + 2𝑐, 𝑏 + 2𝑐, 3𝑐),
(6) (𝑎 + 2𝑐, 𝑏 + 2𝑐, 3𝑐).

O(𝐻 ): (1) (𝑎 + 𝑏 + 𝑐),
(2) (𝑎 + 2𝑐),
(3) (𝑏 + 2𝑐),
(4) (3𝑐),
(5) (3𝑐),
(6) (3𝑐).

4. Circumventing excess

4.1. Why 57728 is wrong. The calculation (11) done in the previous section is unfortu-

nately not the number 𝜈3,2. The problem is that the evaluation map

𝐻0(P2, IΓ13 (5)) → 𝐸, (12)

where Γ13 ⊂ P2 is a general set of 13 points (see Section 2.3), has 2-dimensional kernel over

certain points (𝑇,𝑇 ∗) ∈ CT which should not be counted for our enumerative problem – there

is excess in the degeneracy scheme. For a simple example, observe that if 𝑇 consists of three

of the points of Γ13, then the evaluation mapping over (𝑇,𝑇 ∗) automatically has at least a

2-dimensional kernel. There are more complicated contributions to the excess. (Ultimately

this is explained by Theorem 4.10 below.) To dodge the excess, we change our viewpoint

and work in a Grassmannian bundle over CT which we denote by SQP and call the space of

singular quintic pencils. Recall that the vector bundle V5 (see Theorem 3.22) is related to 𝐸

by an exact sequence

0→ V5 → 𝐻0(P2,O(5)) → 𝐸 → 0

over CT.

Definition 4.1. The space of singular quintic pencils, denoted SQP, is the smooth

variety Gr(2,V5) representing 2-dimensional subspaces in the fibers of V5.

A point of SQP corresponds to a triple (𝑇,𝑇 ∗,Λ) where (𝑇,𝑇 ∗) ∈ CT is a complete triangle

and Λ is a pencil of quintic curves, all containing the length 9 scheme sq(𝑇,𝑇 ∗). We let

𝜑 : SQP→ CT

denote the map sending (𝑇,𝑇 ∗,Λ) to (𝑇,𝑇 ∗); 𝜑 is a Gr(2, 12)-bundle. The variety SQP also

affords a natural map

𝜂 : SQP→ Gr
(
2, 𝐻0(P2,O(5))

)
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with formula 𝜂 (𝑇,𝑇 ∗,Λ) = Λ.

Let us state the main objective of this section from the outset, to better orient the reader:

Theorem 4.2. Let 𝑝 ∈ P2 be a point, and let Dom(𝑝) ⊂ SQP be as in Theorem 4.8 below.

Then

𝜈3,2 =

∫
SQP
[Dom(𝑝)]13 .

We begin by establishing some definitions.

4.2. First definitions.

Definition 4.3. Let 𝑊 ⊂ 𝐻0(P2,O(𝑛)) be a subspace. The base-scheme of 𝑊 , denoted

Base(𝑊 ) is the subscheme of P2 which is the common vanishing scheme of all elements of𝑊 .

Definition 4.4. We let

Inf ⊂ SQP

denote the closed subset consisting of triples (𝑇,𝑇 ∗,Λ) such that Base(Λ) is infinite. We let

Fin ⊂ SQP

denote the open complement of Inf.

4.3. Point conditions on singular quintic pencils. Fix a point 𝑝 ∈ P2. The point 𝑝

determines the hyperplane

𝐻𝑝 ⊂ 𝐻0(P2,O(5))
consisting of quintic forms vanishing at 𝑝, and therefore also determines a codimension 2

sub-Grassmannian

Gr
(
2, 𝐻𝑝

)
⊂ Gr

(
2, 𝐻0

(
P2,O(5)

))
.

Definition 4.5. Maintain the setting immediately prior. We define

Bpt(𝑝) ⊂ SQP

to be the subscheme 𝜂−1
(
Gr(2, 𝐻𝑝)

)
.

As a set, Bpt(𝑝) consists of those triples (𝑇,𝑇 ∗,Λ) ∈ SQP having the property that 𝑝 ∈
Base(Λ).

Proposition 4.6. Bpt(𝑝) is a codimension 2 local complete intersection subscheme of SQP.

Proof. Since Gr(2, 𝐻𝑝) is smooth and is a codimension 2 subvariety of Gr
(
2, 𝐻0(P2,O(5))

)
,

and since SQP is also smooth, it follows that codimBpt(𝑝) ≤ 2, and it suffices to show

codimBpt(𝑝) = 2. It is clear that Bpt(𝑝) ≠ SQP, so let us assume for sake of contradiction

that 𝐶 ⊂ Bpt(𝑝) is an irreducible component which is a divisor in SQP.

Dimension constraints yield two possibilities. The first possibility is 𝜑 (𝐶) = CT, and the

second possibility is that 𝜑 (𝐶) ⊂ CT is a divisor. Before continuing the proof, we prove a

general claim:
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Lemma 4.7. Let (𝑇,𝑇 ∗) ∈ CT be arbitrary, and let 𝑊 = 𝐻0(P2, Isq(𝑇,𝑇 ∗ ) (5)). Then

SuppBase(𝑊 ) = Supp𝑇

if and only if 𝑇 ∉ Thin and otherwise SuppBase(𝑊 ) is the line ⟨𝑇 ⟩.

Proof of 4.7. The claim rests on the observation that Supp𝑇 = SuppBase(Λ𝑇 ) if and only

if 𝑇 is not contained in a line. Here Λ𝑇 is the net of conics (Theorem 3.1) containing 𝑇 . If

𝑇 ∈ Thin, then the quintic curves in 𝑊 are those which contain the line spanned by 𝑇 as a

component, and whose residual quartic curve contains 𝑇 . From this description it is clear

that SuppBase(𝑊 ) = ⟨𝑇 ⟩ as claimed.

So we can and will assume 𝑇 ∉ Thin. Then the inclusion

SuppBase(𝐻0(I2𝑇 (4))) ⊂ Supp𝑇

is seen by considering the pairwise products of three quadratic polynomials spanning Λ𝑇 .

Therefore, SuppBase(𝐻0(I2𝑇 (5))) ⊂ Supp𝑇 as well. Since Base(𝑊 ) ⊂ Base(𝐻0(I2𝑇 (5))), we
conclude that SuppBase(𝑊 ) ⊂ Supp𝑇 . The opposite inclusion is trivial, concluding the

proof. □

Returning to the proof of Theorem 4.6, we consider the case 𝜑 (𝐶) = CT. Choose a general

honest triangle (𝑇,𝑇 ∗) – in particular, 𝑝 ∉ 𝑇 . Then, from Theorem 4.7 we know that 𝑇 =

SuppBase(𝑊 ). Thus, the point 𝑝 imposes a non-trivial condition on the elements of 𝑊 , i.e.

the vector space 𝑉 ⊂ 𝑊 consisting of those 𝑤 ∈ 𝑊 satisfying 𝑤 (𝑝) = 0 has codimension 1.

Therefore 𝜑−1({(𝑇,𝑇 ∗)}) ∩ 𝐶 ⊂ Gr(2,𝑉 ) has codimension at least 2 in 𝜑−1({(𝑇,𝑇 ∗)}), and
hence 𝐶 cannot be a divisor in SQP, our desired contradiction.

It remains to deal with the possibility that 𝜑 (𝐶) is a (irreducible) divisor in CT. Let

(𝑇,𝑇 ∗) be a general element of 𝜑 (𝐶), assuming it is a divisor. In particular, 𝑝 ∉ 𝑇 and if

(𝑇,𝑇 ∗) ∈ Thin then 𝑝 ∉ ⟨𝑇 ⟩, as otherwise 𝜑 (𝐶) would have codimension strictly larger than 1.

By Theorem 4.7, it follows that the space of sections of𝑊 vanishing at 𝑝 is a proper subspace

𝑉 ⊂ 𝑊 . Since 𝜑−1({(𝑇,𝑇 ∗)}) ∩𝐶 ⊂ Gr(2,𝑉 ), and Gr(2,𝑉 ) has codimension 2 in Gr(2,𝑊 ), it
follows that 𝐶 has codimension at least 3 in SQP, a contradiction. The proposition is now

proved. □

The proof of Theorem 4.6 justifies the following definition.

Definition 4.8. (1) We define

Dom(𝑝) ⊂ Bpt(𝑝)

to be the unique irreducible component (with reduced, induced scheme structure) whose

general point (𝑇,𝑇 ∗,Λ) satisfies
(a) (𝑇,𝑇 ∗) is an honest triangle, and

(b) 𝑝 ∉ 𝑇 .

(2) We define

Inc(𝑝) ⊂ Bpt(𝑝)
to be the irreducible component (with reduced, induced scheme structure) consisting

of triples (𝑇,𝑇 ∗,Λ) such that 𝑝 ∈ 𝑇 .
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(3) We define

Lin(𝑝) ⊂ Bpt(𝑝)

to be the irreducible component (with reduced, induced scheme structure) whose general

point corresponds to a triple (𝑇,𝑇 ∗,Λ) satisfying
(a) 𝑇 ∈ Thin
(b) 𝑝 ∉ 𝑇 , and

(c) 𝑇 and 𝑝 are collinear.

Remark 4.9. Observe that if (𝑇,𝑇 ∗) is such that 𝑝 ∉ 𝑇 and if sq(𝑇,𝑇 ∗) ∪ {𝑝} imposes ten

independent conditions on quintic forms, then Dom(𝑝) is the unique irreducible component

of Bpt(𝑝) lying over a sufficiently small neighborhood of (𝑇,𝑇 ∗). Indeed, over a neighborhood

of (𝑇,𝑇 ∗) ∈ CT the map 𝜂 |Bpt(𝑝 ) : Bpt(𝑝) → CT is then a Gr(2, 11)-bundle.

Lemma 4.10. Dom(𝑝), Inc(𝑝), and Lin(𝑝) are the irreducible components of Bpt(𝑝).

Proof. Let 𝑍 ⊂ Bpt(𝑝) be an irreducible component, and let (𝑇,𝑇 ∗,Λ) be a general element

of 𝑍 . We must show 𝑍 is one of the three listed sets.

If 𝑝 ∈ 𝑇 , then 𝑍 = Inc(𝑝) (for dimension reasons) and we are done. So we may and will

assume 𝑝 ∉ 𝑇 from here.

If 𝑇 ∈ Thin, then Λ must be a pencil of quintics which has the line ⟨𝑇 ⟩ in its base scheme.

If 𝑝 ∈ ⟨𝑇 ⟩ then again by counting dimensions we conclude 𝑍 = Lin(𝑝). If 𝑝 ∉ ⟨𝑇 ⟩ on the other

hand, then the set of all such (𝑇,𝑇 ∗,Λ) does not have large enough dimension to contribute

an irreducible component of Bpt(𝑝).
If (𝑇,𝑇 ∗) is such that 𝑇 ∉ Thin then by Theorem 3.23 the twisted ideal sheaf Isq(𝑇,𝑇 ∗ ) (5)

is globally generated, and therefore sq(𝑇,𝑇 ∗) ∪ {𝑝} imposes ten independent conditions on

quintic forms. Therefore, 𝑍 = Dom(𝑝) by Theorem 4.9, finishing the proof. □

Our next objective is to determine the multiplicities of Bpt(𝑝) along its three irreducible

components Dom(𝑝), Inc(𝑝), and Lin(𝑝) (Theorem 4.10). We need a bit of preparation before

continuing. If we let 𝑆 → SQP denote the universal rank 2 vector bundle, then we can let

𝑆† ⊂ 𝑆 ×SQP 𝑆 (13)

denote the bundle of frames for 𝑆/SQP. A point of 𝑆† is a tuple (𝐹,𝐺,𝑇 ,𝑇 ∗) where 𝐹 and

𝐺 are linearly independent quintic forms which are both elements of 𝐻0
(
P2, Isq(𝑇,𝑇 ∗ ) (5)

)
.

The natural morphism 𝑆† → SQP is smooth and faithfully flat (it is a GL2-torsor), and

therefore, if we use the † superscript in the obvious way, it suffices to study the multiplicities

of Dom(𝑝)†, Inc(𝑝)†, and Lin(𝑝)† as irreducible components of Bpt(𝑝)†.
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The reason for passing to 𝑆† is that Bpt(𝑝)† is a global complete intersection of two divisors:

If we define

𝐻1(𝑝) :=

{
(𝐹,𝐺,𝑇 ,𝑇 ∗) ∈ 𝑆† such

that 𝐹 (𝑝) = 0.

}
and

𝐻2(𝑝) :=

{
(𝐹,𝐺,𝑇 ,𝑇 ∗) ∈ 𝑆† such

that 𝐺 (𝑝) = 0.

}
,

then Bpt(𝑝)† = 𝐻1(𝑝) ∩ 𝐻2(𝑝) as schemes. For transversality arguments, it behooves us to

better illuminate the three tangent spaces of 𝑆†, 𝐻1(𝑝), and 𝐻2(𝑝) at a point (𝐹,𝐺,𝑇 ,𝑇 ∗).
We will only need to analyze the situation where 𝑇 ⊂ P2 consists of three distinct points

{𝑎, 𝑏, 𝑐}, and where 𝐹 and 𝐺 possess only ordinary nodes at 𝑎, 𝑏, 𝑐. We will use the language

of deformation theory, working over the dual numbers 𝓀[𝜀]/(𝜀2).
A first order deformation of 𝐹 (resp. 𝐺) is given by 𝐹 + 𝜀𝐹 ′ (resp. 𝐺 + 𝜀𝐺 ′) where 𝐹 ′ (resp.

𝐺 ′) is a quintic form. A first order deformation of 𝐹 (resp. 𝐺) which continues to have three

nodes and which allows their locations 𝑎, 𝑏 and 𝑐 to deform is of the form 𝐹 + 𝜀𝐹 ′ where

𝐹 ′(𝑎) = 𝐹 ′(𝑏) = 𝐹 ′(𝑐) = 0. Therefore, the tangent space 𝑇(𝐹,𝐺,𝑇 ,𝑇 ∗ )𝑆
† is a linear subspace of the

product vector space 𝐻0
(
P2, I𝑇 (5)

)
× 𝐻0

(
P2, I𝑇 (5)

)
, one which we identify next.

The essential question we must answer is: Given a form 𝐹 ′ vanishing at 𝑎, 𝑏, and 𝑐, how

do we determine the deformation of the nodes 𝑎, 𝑏, 𝑐 induced by 𝐹 + 𝜀𝐹 ′? A local calculation

reveals a clean answer. We will focus on just the point 𝑎. 𝐹 is a global section of the sheaf

𝔪2
𝑎 (5), and therefore induces an element

H𝐹 ∈
(
𝔪2

𝑎/𝔪3
𝑎

)
⊗ O(5).

By the natural isomorphism

𝔪2
𝑎/𝔪3

𝑎 ≃ Sym2(𝔪𝑎/𝔪2
𝑎),

and in light of the inclusion (char. 𝓀 ≠ 2)

Sym2(𝔪𝑎/𝔪2
𝑎) ⊂ Hom𝓀

((
𝔪𝑎/𝔪2

𝑎

)∨
,𝔪𝑎/𝔪2

𝑎

)
,

we may view H𝐹 as an element of

Hom

((
𝔪𝑎/𝔪2

𝑎

)∨
,

(
𝔪𝑎/𝔪2

𝑎

)
⊗ O(5)

)
.

The notation is chosen because in local coordinates if 𝑓 (𝑥,𝑦) is an affine quintic obtained by

dehomogenizing 𝐹 then H𝐹 is represented by the 2 × 2 Hessian matrix[
𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑥𝑦 𝑓𝑦𝑦

]
.

As a consequence of 𝐹 having an ordinary node at 𝑎, we see that H𝐹 is invertible.

Now, suppose 𝐹 + 𝜀𝐹 ′ is a deformation satisfying 𝐹 ′(𝑎) = 0. Then 𝐹 ′ determines its differ-

ential

𝑑𝐹 ′𝑎 ∈
(
𝔪𝑎/𝔪2

𝑎

)
⊗ O(5),
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and therefore

𝜏𝐹,𝑎 (𝐹 ′) := H−1𝐹 (𝑑𝐹 ′𝑎)
is a well-defined element of the tangent space(

𝔪𝑎/𝔪2
𝑎

)∨
=𝑇𝑎P2.

This vector is the deformation of the node at 𝑎 induced by the deformation 𝐹 + 𝜀𝐹 ′, as

can easily be checked in local coordinates. We are prepared to express the tangent space

𝑇(𝐹,𝐺,𝑇 ,𝑇 ∗ )𝑆
†:

𝑇(𝐹,𝐺,𝑇 ,𝑇 ∗ )𝑆
† =


Pairs of quintics (𝐹 ′,𝐺 ′) vanishing
at 𝑇 satisfying 𝜏𝐹,𝑡 (𝐹 ′) = 𝜏𝐺,𝑡 (𝐺 ′) for

all three points 𝑡 ∈ 𝑇

 . (14)

Lemma 4.11. The divisors 𝐻1(𝑝) and 𝐻2(𝑝) intersect transversely at a general point of

Lin(𝑝)†.

Proof. We will exhibit a single point

(𝐹,𝐺,𝑇 ,𝑇 ∗) ∈ Lin(𝑝)†

where the two tangent spaces 𝑇(𝐹,𝐺,𝑇 ,𝑇 ∗ )𝐻1(𝑝) and 𝑇(𝐹,𝐺,𝑇 ,𝑇 ∗ )𝐻2(𝑝) are distinct, codimension 1

spaces of the ambient tangent space 𝑇(𝐹,𝐺,𝑇 ,𝑇 ∗ )𝑆
†.

Consider then, the following tuple (𝐹,𝐺,𝑇 ,𝑇 ∗) and point 𝑝:

𝐹 = 𝑋𝑌 (𝑌 − 𝑍 ) (𝑌 − 𝜆𝑍 )𝑍,
𝐺 = 𝑋𝑌 (𝑌 − 𝑍 ) (𝑌 − 𝜇𝑍 )𝑍,
𝑇 = {𝑎 = [0 : 0 : 1], 𝑏 = [0 : 1 : 1], 𝑐 = [0 : 1 : 0]} ,
𝑝 = [0 : 𝜆 : 1],

where 𝜆, 𝜇 ∈ 𝓀 are to be chosen generally. (𝐹,𝐺,𝑇 ,𝑇 ∗) is evidently contained in Lin(𝑝)†: all

points 𝑎, 𝑏, 𝑐, 𝑝 lie on the line 𝑋 = 0. Additionally, 𝐹 and 𝐺 have only simple nodes at the

points 𝑎, 𝑏, 𝑐, and so the description in (14) of 𝑇(𝐹,𝐺,𝑇 ,𝑇 ∗ )𝑆
† as a vector space of certain pairs

(𝐹 ′,𝐺 ′) applies. And so, consider the pair

𝐹 ′ = 𝑌 (𝑌 − 𝑍 ) (𝑌 − 𝜆𝑍 )𝑍2,

𝐺 ′ = 𝑌 (𝑌 − 𝑍 ) (𝑌 − 𝜇𝑍 )𝑍2.

A local calculation (omitted) then shows that the three membership conditions of (14),

namely

𝜏𝐹,𝑡 (𝐹 ′) = 𝜏𝐺,𝑡 (𝐺 ′), ∀𝑡 ∈ 𝑇,
are met. Furthermore, (𝐹 ′,𝐺 ′) is evidently contained in 𝑇(𝐹,𝐺,𝑇 ,𝑇 ∗ )𝐻1(𝑝) (because 𝐹 ′(𝑝) = 0)

and is not contained in 𝑇(𝐹,𝐺,𝑇 ,𝑇 ∗ )𝐻2(𝑝) (because 𝐺 ′(𝑝) ≠ 0). The lemma follows. □

Theorem 4.12. As codimension 2 cycles in SQP,

[Bpt(𝑝)] = [Dom(𝑝)] + 4 [Inc(𝑝)] + [Lin(𝑝)] . (15)
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Proof. We must explain the multiplicities. Since the natural map 𝑆† → SQP is smooth and

surjective, it suffices to prove[
Bpt(𝑝)†

]
=
[
Dom(𝑝)†

]
+ 4

[
Inc(𝑝)†

]
+
[
Lin(𝑝)†

]
(16)

as codimension 2 cycles in the frame bundle 𝑆†. The coefficient of Lin(𝑝)† is explained by

Theorem 4.11. We will only focus on the coefficient 4 of Inc(𝑝)†, as the ideas apply equally

well (and with fewer complications) to the coefficient of Dom(𝑝)†.
We will choose a sufficiently general 2-dimensional étale-local slice of 𝑆† at a general point

(𝐹,𝐺,𝑇 ,𝑇 ∗) ∈ Inc(𝑝)†. So, let (𝑈 ,𝑞) ⊂ 𝑆† be a smooth pointed surface with étale-local co-

ordinates 𝑠, 𝑡 at 𝑞, and suppose 𝑞 = (𝐹,𝐺,𝑇 ,𝑇 ∗) is a general point of Inc(𝑝)†. Observe that

𝑇 = {𝑝, 𝑡2, 𝑡3} is an honest triangle, so there is an étale neighborhood 𝑉 of (𝑇,𝑇 ∗) ∈ CT which

is isomorphic to an étale neighborhood the point (𝑝, 𝑡2, 𝑡3) ∈ (P2)3. Let 𝛼1 : 𝑉 → P2 denote

projection onto the first factor. Finally, as part of the generic hypotheses on 𝑈 , after possibly

shrinking 𝑈 , suppose the composite 𝑈 → 𝑉 → P2 is unramified at 𝑞.

Having made the choice of the general slice 𝑈 , our objective is to understand the two

curves 𝐻𝑖 (𝑝) ∩𝑈 , 𝑖 = 1, 2 locally near 𝑞. Dehomogenizing the family of forms parametrized by

𝑈 , and letting 𝑝 = (0, 0) ∈ A2, we obtain a pair of varying polynomials dependent on (𝑠, 𝑡):

𝑓(𝑠,𝑡 ) (𝑥,𝑦) = 𝑐11(𝑥 − 𝑢)2 + 𝑐12(𝑥 − 𝑢) (𝑦 − 𝑣) + 𝑐22(𝑦 − 𝑣)2 + . . .

𝑔(𝑠,𝑡 ) (𝑥,𝑦) = 𝑑11(𝑥 − 𝑢)2 + 𝑑12(𝑥 − 𝑢) (𝑦 − 𝑣) + 𝑑22(𝑦 − 𝑣)2 + . . . ,

where 𝑢 = 𝑢 (𝑠, 𝑡) and 𝑣 = 𝑣 (𝑠, 𝑡) are the coordinates of the particular node which coincides

with the point 𝑝 at 𝑠 = 𝑡 = 0. The coefficients 𝑐𝑖 𝑗 , 𝑑𝑖 𝑗 are also functions of (𝑠, 𝑡), and when

𝑠 = 𝑡 = 0 we may assume that 𝑓(0,0) and 𝑔(0,0) are tri-nodal quintics whose tangent cones at

𝑝 = (0, 0) do not share a line.

Now, by introducing the condition “𝐻1(𝑝)” we are simply plugging in 𝑥 = 𝑦 = 0 into 𝑓(𝑠,𝑡 )
and requesting vanishing. This gives the equation

𝑐11𝑢
2 + 𝑐12𝑢𝑣 + 𝑐22𝑣2 + · · · = 0,

where the excluded terms lie in (𝑠, 𝑡)3. We obtain a similar local equation for 𝐻2(𝑝) ∩𝑈 with

𝑐𝑖 𝑗 ’s replaced with 𝑑𝑖 𝑗 ’s. The two functions 𝑢, 𝑣 can be taken to be local coordinates at 𝑞 –

this is due to the genericity assumptions on the slice 𝑈 . It follows that the local equations

𝐻𝑖 (𝑝) ∩ 𝑈 inherit the property of having ordinary nodes at 𝑞 from the fact that 𝑓(0,0) and

𝑔(0,0) both had ordinary nodes. Thus, 𝐻1(𝑝) ∩ 𝑈 and 𝐻2(𝑝) ∩ 𝑈 are two curves nodal at 𝑞.

The tangent cones of 𝐻1 ∩𝑈 and 𝐻2 ∩𝑈 at 𝑞 do not share a line because the same was true

for the curves 𝑓(0,0) and 𝑔(0,0) . Thus, the multiplicity 4 occurring in (16) is explained. □

4.4. Thirteen point conditions. From here on, let Γ13 = {𝑝1, . . . , 𝑝13} be 13 general points

in P2, and set

Θ :=
⋂

𝑖=1,...,13

Dom(𝑝𝑖). (17)

Our next major objective is Theorem 4.25, which states that Θ is indeed the set we must

enumerate. The strategy is of course to argue that certain possible and undesirable types

of points do not occur in the intersection. We first deal with possibilities inside the open
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set Fin using dimension counts in Theorem 4.13, and Theorem 4.14. Then we deal with

undesirable possibilities inside Inf – this is more difficult, occupying Theorem 4.16, Theo-

rem 4.17, Theorem 4.18, and Theorem 4.19. Theorem 4.19 in particular uses a limit-linear

series argument.

4.4.1. Finite base schemes.

Lemma 4.13. Every point (𝑇,𝑇 ∗,Λ) ∈ Θ ∩ Fin satisfies: (𝑇,𝑇 ∗,Λ) ∉ Inc(𝑝𝑖) and (𝑇,𝑇 ∗,Λ) ∉
Lin(𝑝𝑖) for all 𝑝𝑖 ∈ Γ13.

Proof. This follows from combining a dimension count with the condition that Γ13 is a general

set. We only prove the Inc statement – the other case proceeds mutatis mutandis.

Without losing generality, we need only prove the statement (𝑇,𝑇 ∗,Λ) ∉ Inc(𝑝1). As

Dom(𝑝1) is irreducible and 24-dimensional,

dimDom(𝑝1) ∩ Inc(𝑝1) ≤ 23.

And so, the locally closed set 𝑈 := Dom(𝑝1) ∩ Inc(𝑝1) ∩ Fin is at most 23-dimensional.

Every (𝑇,𝑇 ∗,Λ) ∈ 𝑈 determines the 0-dimensional, length 25 scheme Base(Λ) ⊂ P2. Let

𝑈 ′ ⊂ 𝑈 × (P2)12

denote the set parametrizing quadruples (𝑇,𝑇 ∗,Λ,𝑊 ) where (𝑇,𝑇 ∗,Λ) ∈ 𝑈 and where 𝑊 =

(𝑤1, . . . ,𝑤12) is a 12-tuple of points in P2 satisfying 𝑤𝑖 ∈ Base(Λ) for all 𝑖. Then the forgetful

map 𝑈 ′ → 𝑈 is quasi-finite, and hence

dim𝑈 ′ ≤ 23.

The map 𝑈 ′ → (P2)12 defined by (𝑇,𝑇 ∗,Λ,𝑊 ) ↦→𝑊 therefore cannot dominate (P2)12, and
hence the set of 13 general points {𝑝1, . . . , 𝑝13} cannot be contained in Base(Λ) for (𝑇,𝑇 ∗,Λ) ∈⋂13

𝑖=1Dom(𝑝𝑖) ∩ Inc(𝑝1) ∩ Fin, implying the lemma. □

Lemma 4.14. Let (𝑇,𝑇 ∗,Λ) ∈ Θ ∩ Fin. Then 𝑇 is an honest triangle, and 𝑇 ∩ Γ13 = ∅.

Proof. The statement “𝑇∩Γ13 = ∅” follows immediately from Theorem 4.13, so we will assume

it and show that 𝑇 is an honest triangle.

Pick (𝑇,𝑇 ∗,Λ) ∈ Θ∩Fin. As Base(Λ) is finite, it follows that 𝑇 ∉ Thin (as otherwise Base(Λ)
contains the line spanned by 𝑇 ). Therefore, we need only show that 𝑇 is reduced.

As in the proof of Theorem 4.13, we perform a dimension count. The locus 𝑉 ⊂ Fin

consisting of triples (𝑇,𝑇 ∗,Λ) where 𝑇 is non-reduced is a Cartier divisor. And so, dim𝑉 = 25.

Let

𝑉 ′ ⊂ 𝑉 × (P2)13

denote the scheme parametrizing quadruples (𝑇,𝑇 ∗,Λ,𝑊 ), where (𝑇,𝑇 ∗,Λ) ∈ 𝑉 and 𝑊 =

(𝑤1, . . . ,𝑤13) is a 13-tuple of points satisfying 𝑤𝑖 ∈ Base(Λ) for all 𝑖. Since the forgetful map

𝑉 ′ → 𝑉 is quasi-finite, it follows that dim𝑉 ′ = 25. Therefore the second projection 𝑉 ′ →
(P2)13 cannot be dominant, and in particular cannot contain the general tuple (𝑝1, . . . , 𝑝13)
in its image, implying the lemma. □
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4.4.2. Dealing with infinite base schemes. We now take on the challenge of showing emptiness

of Θ ∩ Inf.

Definition 4.15. (1) If Λ ⊂ 𝐻0(P2,O(𝑑)) is a pencil of degree 𝑑 curves, with base scheme

Base(Λ), we define the fixed curve of Base(Λ) to be the Cartier divisor on P2 defined

by the greatest common factor of any two general elements of Λ.

(2) If the fixed curve of Λ has degree 𝑒, we define the moving part of Λ, denoted Λ′, to

be the pencil of degree 𝑑 − 𝑒 curves obtained by dividing the equations of the members

of Λ by the equation of the fixed curve.

(3) If Λ is a pencil of curves with fixed curve 𝐶, then a fixed point of Λ will mean a

point in 𝐶 \ Base(Λ′).
(4) If Λ is a pencil of curves with fixed curve 𝐶, then an isolated point of Λ will mean

a point in Base(Λ′) \𝐶.
(5) If Λ is a pencil of curves with fixed curve 𝐶, then an embedded point of Λ will

mean a point in 𝐶 ∩ Base(Λ′).

Lemma 4.16. Suppose Λ is a pencil of quintic curves whose fixed curve is a quartic 𝑄.

Suppose furthermore that Λ satisfies one of the following:

(a) Base(Λ) has no embedded points and Sing𝑄 consists of at most two points, each a

node,

(b) Base(Λ) has no embedded points and Sing𝑄 consists of a single ordinary cusp,

(c) Base(Λ) has one embedded point at a smooth point of 𝑄 while Sing𝑄 has at most one

singular point which is a node,

(d) Sing𝑄 consists of a single node and this node is the embedded point of Base(Λ).
Then Base(Λ) does not contain any subscheme of the form sq(𝑇,𝑇 ∗) for any (𝑇,𝑇 ∗) ∈ CT.

Proof. The moving part Λ′ of Λ is a pencil of lines; we let 𝑏 ∈ P2 denote the base point

Λ′. Then, Base(Λ) contains an embedded point if and only if 𝑏 ∈ 𝑄, in which case 𝑏 is

the sole embedded point. Before taking each case up in turn, observe that as sq(𝑇,𝑇 ∗) has
2-dimensional Zariski tangent space at each of its points, if sq(𝑇,𝑇 ∗) ⊂ Base(Λ) then 𝑇 must

be supported on the singular points of 𝑄 or on the embedded point of Base(Λ), if it exists

(or both).

(a) In this scenario, one of the two nodes, call it 𝑛 ∈ 𝑄, must support a length ≥ 2

connected component 𝑇𝑛 ⊂ 𝑇 of 𝑇 .

If 𝑇𝑛 has length 2, then in affine coordinates (𝑥,𝑦) around 𝑛 the ideal I𝑇𝑛 is (𝑦, 𝑥2)
and so the ideal Isq(𝑇,𝑇 ∗ ) is given by (𝑦2, 𝑦𝑥2, 𝑥4). The ideal Isq(𝑇,𝑇 ∗ ) does not contain

an element with non-degenerate quadratic part, and so 𝑄’s local equation cannot be

contained it, eliminating this case.

If 𝑇𝑛 has length 3 and is curvilinear, then in suitable analytic local coordinates

(𝑢, 𝑣) around 𝑛, the ideal I𝑇𝑛 can be taken to be (𝑢, 𝑣3), and so Isq(𝑇,𝑇 ∗ ) = (𝑢2, 𝑢𝑣3, 𝑣6).
Once again, an analytic local equation for 𝑄 cannot be contained in Isq(𝑇,𝑇 ∗ ) because

it would have a non-degenerate quadratic term.



26 ANAND DEOPURKAR & ANAND PATEL

Finally, if 𝑇𝑛 is a fat point, then sq(𝑇,𝑇 ∗) (for any 𝑇 ∗) is contained in the cube of

the maximal ideal 𝔪 ⊂ OP2,𝑛, while 𝑄’s local equation lies in 𝔪2 \𝔪3. And so in all

possible scenarios, 𝑄’s local equation cannot be contained in Isq(𝑇,𝑇 ∗ ) , which is what

we needed to show.

(b) Let 𝑐 ∈ 𝑄 denote the cusp. If sq(𝑇,𝑇 ∗) ⊂ Base(Λ) then 𝑇 is entirely supported on 𝑐,

and hence 𝑇 is either fat or curvilinear.

If 𝑇 is a fat point, then Isq(𝑇,𝑇 ∗ ) is contained in the cube of the maximal ideal

𝔪 ⊂ OP2,𝑐 , yet 𝑄’s local equation is contained in 𝔪2 \𝔪3 (a cusp is a double point) –

so the fat possibility is eliminated.

If 𝑇 is curvilinear, then in suitable analytic local coordinates (𝑢, 𝑣) around 𝑐, we

have I𝑇 = (𝑢, 𝑣3) and so Isq(𝑇,𝑇 ∗ ) = (𝑢2, 𝑢𝑣3, 𝑣6). Suppose 𝑔(𝑢, 𝑣) is an analytic local

equation for 𝑄. If 𝑔 ∈ Isq(𝑇,𝑇 ∗ ) then, because a cusp is a double point, after scaling by

an element in 𝓀
× we must have

𝑔 = 𝑢2 + ℎ1(𝑢, 𝑣) · 𝑢2 + ℎ2(𝑢, 𝑣) · 𝑢𝑣3 + ℎ3(𝑢, 𝑣) · 𝑣6,

where the ℎ𝑖 are power series and where ℎ1 has no constant term. Now observe that

there are no power series

𝑢 (𝑡), 𝑣 (𝑡) ∈ 𝓀⟦𝑡⟧
with vanishing constant terms such that

ord𝑔(𝑢 (𝑡), 𝑣 (𝑡)) = 3,

a necessary condition for the germ 𝑔 to define a cusp. (Here the order ord of a power

series with variable 𝑡 is the degree of the first non-zero term.) Thus the germ of a

defining equation of 𝑄 at 𝑐 cannot be contained in Isq(𝑇,𝑇 ∗ ) , eliminating this curvilinear

possibility.

(c) Hypothetically, if sq(𝑇,𝑇 ∗) ⊂ Base(Λ) then our first claim is that 𝑇 must be entirely

supported on the embedded point 𝑏 ∈ 𝑄: Let 𝑛 ∈ 𝑄 be the node of 𝑄 if it exists. By

what is written immediately prior to the proof of part (a), 𝑇 is supported somewhere

in the set {𝑏, 𝑛}. Let 𝑇𝑏,𝑇𝑛 denote the connected components of 𝑇 supported on the

respective points. If length𝑇𝑛 ≥ 2, we argue as in part (a) to conclude that Isq(𝑇,𝑇 ∗ )
cannot contain a defining equation for 𝑄. If length𝑇𝑏 = 2, then in local coordinates

(𝑥,𝑦) near 𝑏 the ideal Isq(𝑇,𝑇 ∗ ) is (𝑥2, 𝑥𝑦2, 𝑦4). If 𝑓 is a local defining equation of 𝑄

near 𝑏, then the local ideal of Base(Λ) is given by

J := (𝑥 𝑓 ,𝑦𝑓 ).

This ideal J has two linearly independent quadratic elements, modulo (𝑥,𝑦)3, while
Isq(𝑇,𝑇 ∗ ) does not. Thus sq(𝑇,𝑇 ∗) ⊄ Base(Λ) in this case.

Therefore, we may assume that 𝑇 is entirely supported at the point 𝑏. There are

now two cases to investigate: either 𝑇 is a fat point, or 𝑇 is curvilinear.

In the fat case, Isq(𝑇,𝑇 ∗ ) is contained in the cube of the maximal ideal 𝔪 = (𝑥,𝑦) ⊂
OP2,𝑏 , while the two generators of J are not (𝑄 is smooth at 𝑏). So sq(𝑇,𝑇 ∗) ⊄ Base(Λ)
in this case.
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On the other hand, if 𝑇 is curvilinear a calculation as in the proof of part (b) implies

that, modulo 𝔪3, Isq(𝑇,𝑇 ∗ ) ∩𝔪2 consists of a single quadratic form on (𝔪/𝔪2)∨ up to

scaling. However, J ∩𝔪2 has two linearly independent quadratic forms modulo 𝔪3,

and thus again sq(𝑇,𝑇 ∗) ⊄ Base(Λ). So our hypothetical situation is impossible, as

we needed to show.

(d) Let 𝑛 ∈ 𝑄 denote the node, let 𝑥,𝑦 ∈ OP2,𝑛 be local affine coordinates of P2 near

𝑛, and let 𝑓 (𝑥,𝑦) ∈ OP2,𝑛 denote a local defining equation of 𝑄. If, hypothetically,

sq(𝑇,𝑇 ∗) ⊂ Base(Λ), then 𝑇 must be entirely supported at 𝑛. As in the proof of

part (c), we consider the two possibilities: 𝑇 is either a fat point or is curvilinear

with length 3. If 𝑇 is fat, then Isq(𝑇,𝑇 ∗ ) is contained in 𝔪3, where 𝔪 = (𝑥,𝑦) is the

maximal ideal. Furthermore, Isq(𝑇,𝑇 ∗ ) contains exactly one element (up to scale) in

𝔪3, modulo 𝔪4. However, the ideal J := (𝑥 𝑓 ,𝑦𝑓 ) contains two 𝓀-linearly independent

such elements. Thus, 𝑇 cannot be fat.

If 𝑇 is curvilinear we observe that, modulo 𝔪4, the elements of Isq(𝑇,𝑇 ∗ ) ∩𝔪3 are

binary cubic forms (on (𝔪/𝔪2)∨) all sharing a common factor which is a perfect

square. This can be checked after passing to (any) analytic local coordinates (𝑢, 𝑣) –
we can choose convenient coordinates where I𝑇 = (𝑢, 𝑣3) and so Isq(𝑇,𝑇 ∗ ) = (𝑢2, 𝑢𝑣3, 𝑣6).
Indeed, modulo (𝑢, 𝑣)4 all elements in Isq(𝑡,𝑇 ∗ ) ∩(𝑢, 𝑣)3 are multiples of 𝑢2. This prop-

erty of having a perfect square common factor is not shared by the ideal J, and hence

sq(𝑇,𝑇 ∗) ⊄ Base(Λ), eliminating this curvilinear possibility.

□

Proposition 4.17. If (𝑇,𝑇 ∗,Λ) is an element of Θ ∩ Inf then the fixed curve of Base(Λ)
consists of a reduced line.

Proof. We proceed by considering one by one the possible degrees of the fixed curve 𝐶 ⊂
Base(Λ). Each case is resolved by the tension between generality of Γ13 = {𝑝1, . . . , 𝑝13} (which
by assumption is contained in Base(Λ)) on the one hand, and the number of points in the

intersection Γ13 ∩𝐶 on the other. For ease of reading, let Γ𝐶 := Γ13 ∩𝐶.
(1) Assuming deg(𝐶) = 4, the moving part of Λ is a pencil of lines. Furthermore, 𝐶

must be reduced, as at most 5 of the points of Γ13 can lie on a conic. There are

two possibilities for the number #Γ𝐶 : either 12 or 13, depending on whether the

basepoint of Λ′ is in Γ13 or not. Suppose first that #Γ𝐶 = 13. The unique, general,

pencil of quartics determined by Γ𝐶 has finitely many singular members, each with a

single node located away from Γ𝐶 = Γ13. However, this prevents any length 9 scheme

of the form sq(𝑇,𝑇 ∗) from being contained in Base(Λ), by parts (a), (c) and (d) of

Theorem 4.16.

If #Γ𝐶 = 12, the argument is similar: the net of quartics determined by Γ𝐶 has

singular members of only three types: (1) a nodal curve with a unique node, (2) a

curve with exactly two nodes for singularities, and (3) a curve with a unique ordinary

cusp. Accordingly, 𝐶 is either smooth or has qualities (1), (2), or (3) just listed.

The thirteenth point not contained in𝐶 must be the unique basepoint of the moving

part of Λ. So, by virtue of tangent space considerations, the only way for the length
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9 scheme sq(𝑇,𝑇 ∗) to be contained in Base(Λ) is if sq(𝑇,𝑇 ∗) ⊂ 𝐶. However, this is

precluded by parts (a) and (b) of Theorem 4.16.

(2) Assuming deg(𝐶) = 3, the moving part Λ′ of Λ is a pencil of conics. As before, 𝐶

must be reduced, as Λ′ has at most 4 of the points of Γ13 in its base scheme, and

so the remaining points of Γ13 cannot be contained in a line. In fact, this type of

reasoning shows there is only one a priori possibility: #Γ𝐶 = 9 and 𝐶 is the unique

(smooth) cubic curve determined by Γ𝐶 . The moving part Λ′ of Λ is then a pencil

of conics with base-scheme consisting of the four points Γ13 \ Γ𝐶 . The pencil Λ does

not contain a subscheme of the form sq(𝑇,𝑇 ∗) in its base scheme Base(Λ) again by

tangent space considerations, because Base(Λ) is the union of the smooth curve 𝐶 and

the four reduced points Γ13 \ Γ𝐶 .
(3) Assuming deg(𝐶) = 2, then once again 𝐶 must be reduced as is seen by an argument

similar to that found in the previous paragraph. There are only two a priori possi-

bilities for #Γ𝐶 : #Γ𝐶 = 4 or 5. Now, #Γ𝐶 cannot be 4, because then the moving part

of Λ, a pencil of cubics, must contain all 9 of the points Γ13 \ Γ𝐶 in its base scheme,

contrary to the general nature of Γ13. Thus #Γ𝐶 = 5 and 𝐶 is the unique smooth conic

determined by Γ𝐶 . The remaining 8 points of Γ13 \ Γ𝐶 define a general pencil of cubics,

and this pencil of cubics is then the moving part Λ′ of Λ. Λ′ has a 9-th basepoint not

contained in 𝐶 (again because Γ13 is general). Thus Base(Λ) is the smooth scheme

consisting of the smooth conic 𝐶 and 9 reduced points not contained in 𝐶. This base

scheme evidently does not contain any subscheme of the form sq(𝑇,𝑇 ∗), again by

tangent space considerations.

We’ve finished the analysis of all cases, and the proposition follows. □

Proposition 4.18. Suppose (𝑇,𝑇 ∗,Λ) ∈ Θ ∩ Inf. Then the moving part Λ′ of Λ is a pencil of

quartics whose general member is a smooth quartic curve.

Proof. We argue by counting dimensions, keeping in mind that Γ13 = (𝑝1, . . . , 𝑝13) is a general

tuple. Λ′ must necessarily be a pencil of quartics thanks to Theorem 4.17.

Let 𝑊 denote the quasi-projective variety parametrizing pairs (𝐿,Π) where 𝐿 is a line in

P2 and Π is a pencil of quartics all sharing a singular point, and such that Base(Π) is finite.
Such Π’s vary in a 22-dimensional family, while a choice of 𝐿 provides 2 more dimensions,

and so dim𝑊 = 24.

For contradiction’s sake, suppose (𝑇,𝑇 ∗,Λ) ∈ Θ ∩ Inf is such that Base(Λ) has a line 𝐿 as

fixed part and such that Π := Λ′, the moving part of Λ, satisfies (𝐿,Π) ∈𝑊 . By assumption,

Γ13 is contained in Base(Λ), and at most 2 of the points of Γ13 may lie on 𝐿 by generality of Γ13.

On the other hand, at most 11 of the points of Γ13 may lie in the (finite) set Base(Π) because
Π varies in a 22-dimensional family. Therefore, exactly 2 points of Γ13 must lie on 𝐿 and the

remaining 11 points of Γ13 must lie inside Base(Π). Furthermore, dimension considerations

force (𝐿,Π) to be a general point of𝑊 .

The contradiction will come from the fact that the base scheme Base(Λ) is the disjoint

union of 𝐿 (without embedded points) and Base(Π). This is true because (𝐿,Π) ∈ 𝑊 is

general, and so Base(Π) consists of one point of multiplicity 4 along with 12 other reduced
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points, none lying on 𝐿. It is impossible for any scheme of the form sq(𝑇,𝑇 ∗) (which is

everywhere non-reduced, has 2-dimensional tangent space at all points, and has total length

9) to be contained in Base(Λ) = 𝐿 ∪ Base(Π), providing our contradiction. □

The next proposition is needed to remove an a priori possible situation in Θ ∩ Inf.

Proposition 4.19. Suppose (𝑇,𝑇 ∗,Λ) is an element of Dom(𝑝) ∩ Lin(𝑝) satisfying:
(1) The fixed part of Λ is the line 𝐿 spanned by 𝑇 , and

(2) 𝑝 ∉ 𝑇 .

Then the moving part Λ′ of Λ satisfies

length (Base(Λ′) ∩ 𝐿) = 4.

Proof. The proof uses a limit linear series style argument. First observe that since the fixed

part of Λ is the reduced line 𝐿, the moving part Λ′ is a pencil of quartics and the length

of Base(Λ′) ∩ 𝐿 cannot exceed 4. We will approach the point (𝑇,𝑇 ∗,Λ) along a general 1-

parameter family contained in Dom(𝑝).
So, let (𝐵, 0) be a smooth, irreducible pointed affine curve, and let 𝜋 : P2

𝐵
→ 𝐵 denote the

natural projection. Suppose 𝑡1, 𝑡2, 𝑡3 are sections of 𝜋 satisfying:

(a) For 𝑏 ≠ 0, the three points 𝑡𝑖 (𝑏) form an honest triangle, denoted T𝑏 ⊂ P2
𝑏
.

(b) The 𝑏 → 0 flat limit of T𝑏 , denoted T0, is thin. We let 𝐿 ⊂ P2
𝑏=0

denote the line con-

taining T0. (T0 is simply 𝑇 from the statement of the lemma, but we use calligraphic

font for consistency in the following paragraphs.)

(c) T0 does not contain the point 𝑝. (This is the second assumption in the proposition.)

(d) The line 𝐿 contains 𝑝.

(e) For 𝑏 ≠ 0, the four points 𝑡1(𝑏), 𝑡2(𝑏), 𝑡3(𝑏), and 𝑝 are in linear general position.

If 𝑏 ≠ 0, then the vector space

𝑉𝑏 := 𝐻0
(
P2
𝑏
, I2T𝑏 I𝑝 (5)

)
is 11-dimensional because T𝑏 and 𝑝 are in linear general position. Yet, when 𝑏 = 0, the vector

space 𝑉0 has dimension 12. Indeed, a quintic curve in P20 passing through 𝑝 and singular along

T0 necessarily contains the line 𝐿 as an irreducible component and secondly its residual quartic

curve 𝑄 must contain T0. The equations of such quartic curves form a 12-dimensional vector

space. Still, as 𝐵 is a smooth curve, the 𝑏 → 0 limit of 𝑉𝑏 is a well-defined 11-dimensional

vector space inside 𝑉0 – the following claim is equivalent to the conclusion of the proposition:

Claim 4.20. There exists a point 𝑞 ∈ 𝐿 such that

lim
𝑏→0

𝑉𝑏 =


Quintic forms which are a product

𝐿 ·𝑄 where 𝑄 is a quartic

containing the divisor T0 + 𝑞 on 𝐿

 .

Going forward we focus on Theorem 4.20. We blow up P2
𝐵
along the line 𝐿 ⊂ P2

𝑏=0
. Let

P̃2
𝐵
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denote the blow up Bl𝐿 P2𝐵, and denote by

𝛽 : P̃2
𝐵
→ P2𝐵

the blowdown map. The structural morphism 𝜋 : P̃2
𝐵
→ 𝐵 has fiber over 𝑏 ≠ 0 simply equal to

P2
𝑏
, while the fiber 𝜋−1({0}) is the transverse union of two smooth surfaces: the exceptional

divisor of 𝛽, denoted 𝐸, and the proper transform of P20 ⊂ P2
𝐵
in the blow up, denoted 𝑃 . 𝑃

maps isomorphically onto P20 under 𝛽.

The current geometric circumstance has certain features we want to emphasize:

• 𝛽 expresses 𝐸 as a P1-bundle over 𝐿. As such, 𝐸 is isomorphic to the Hirzebruch

surface F1, with the intersection 𝐸 ∩ 𝑃 being the directrix curve which we denote by

𝐷 ⊂ 𝐸. We let 𝐹 denote the divisor class of a fiber of the bundle 𝛽 |𝐸 : 𝐸 → 𝐿.

• Since 𝐿∩T = T0 = T∩P20 is a Cartier divisor on T, it follows that T lifts isomorphically

to P̃2
𝐵
. Let T̃ ⊂ P̃2

𝐵
denote this lift, which is unique. (We’ve used here the assumption

that T0 is thin.)

• 𝐸 ∩ T̃ = T̃0. Furthermore, T̃ ∩ 𝑃 = ∅ because the sections 𝑡𝑖 comprising T, by virtue of

being sections, are not tangent to P20 from the start.

• Under 𝛽, the proper transform of the constant section {𝑝} ×𝐵 ⊂ P2
𝐵
becomes a section

of 𝜋 which intersects 𝐸 at a point 𝑝 ∈ 𝐸 not on the directrix 𝐷 ⊂ 𝐸.

• Clearly 𝛽 (𝑝) ∉ T0 because 𝑝 ∉ T0. And therefore 𝑝 ∉ T̃0.

• Define L to be the invertible sheaf 𝛽∗O(5) (−𝐸) on P̃2
𝐵
. Then L|𝑃 ≃ O𝑃 (4) and L|𝐸 ≃

O𝐸 (𝐷 + 5𝐹 ).
Now we consider the finite, length 4 subscheme 𝑍 := 𝑝 ∪ T̃0 ⊂ 𝐸. On 𝐸, the term line refers

to any irreducible curve in the linear series |𝐷 + 𝐹 | on 𝐸. In particular, lines do not intersect

the directrix 𝐷.

Lemma 4.21. Maintain the setting immediately prior. Then

ℎ0(𝐸, I𝑍 (𝐷 + 2𝐹 )) ≥ 1

and ℎ0(𝐸, I𝑍 (𝐷 + 2𝐹 )) > 1 if and only if 𝑍 is contained in a line, in which case ℎ0(𝐸, I𝑍 (𝐷 +
2𝐹 )) = 2.

Proof of Theorem 4.21. This follows easily after translating the statement into a claim about

length 5 subschemes in the plane imposing independent conditions on conics. To get to this

translation, simply blow down the Hirzebruch surface 𝐸 to a plane, contracting 𝐷. We omit

the details. □

At this point, for clarity of exposition, we make the following simplifying assumption:

Assumption 4.22. Assume that 𝑍 ⊂ 𝐸 is not contained in a line.

Operating under this assumption, we can finish the argument. On the reducible surface

𝑃 ∪ 𝐸, the global sections of

I2
T̃0

I𝑝 ⊗L|𝑃∪𝐸
consist of the data of
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• A global section 𝑄 of O𝑃 (4), and
• a global section of O𝐸 (𝐷 + 5𝐹 ) which, if nonzero, defines a reducible divisor of the

form

𝛽−1(T0) ∪𝐶

where 𝐶 is the unique curve in the linear series | I𝑍 (𝐷 + 2𝐹 ) | (Theorem 4.21)

satisfying the compatibility condition that both sections agree on the curve 𝐷 = 𝐸 ∩ 𝑃 . Now
we observe that under our simplifying Theorem 4.22, the curve 𝐶 is irreducible and meets 𝐷

at a single point 𝑞. Therefore, on 𝐷 we obtain a particular degree 4 divisor, namely T0 + 𝑞,
which the quartic 𝑄 is forced to contain in its zero scheme if 𝑄 is to contribute to a global

section of

I2
T̃0

I𝑝 ⊗L|𝑃∪𝐸 .

Unwinding what this means before blowing up, we arrive at the conclusion of the theorem.

Finally, we will explain how to finish the proof of Theorem 4.19 in the case where Theo-

rem 4.22 does not hold. Suppose 𝑍 ⊂ 𝐸 is contained in a line, and call the line 𝐿1 ⊂ 𝐸. We

then blow up the threefold P̃2
𝐵
along 𝐿1. Once again, T̃ will lift to the new blow up, as will the

section which for general 𝑏 ∈ 𝐵 selects the point 𝑝. Blowing up more and more in a similar

fashion if necessary, after finitely many blow ups the strict transform of T and {𝑝} ×𝐵 are no

longer collinear over 𝑏 = 0. Then, we proceed as we did under the simplifying assumption,

except now the special fiber is a chain of surfaces 𝐸0 ∪ 𝐸1 ∪ · · · ∪ 𝑃 , the 𝐸𝑖 ’s being F1’s, glued
one to the next along directrices on one side and lines on the other. Then the line bundle

𝛽∗O(5) (−𝐸0 − 𝐸1 − . . . 𝐸𝑘 ) serves the same role as L did in the simplified situation, and the

argument runs parallel to the simple case. □

Remark 4.23. The conclusion of Theorem 4.19 implies in particular that the pencil Λ contains

an element which is the union of the doubled line 2𝐿 with a cubic curve.

Proposition 4.24. Recall the set Θ from Equation (17). Then Θ ∩ Inf = ∅.

Proof. Suppose for contradiction’s sake that (𝑇,𝑇 ∗,Λ) ∈ Θ ∩ Inf. By Theorem 4.18, Λ is a

pencil of the form {𝐿 ·𝑄𝑡 } , 𝑡 ∈ P1, where 𝐿 is a linear form (defining a line of the same name)

and where 𝑄𝑡 is a pencil of quartics with smooth general member. Considering tangent space

dimensions, the condition sq(𝑇,𝑇 ∗) ⊂ Base(Λ) implies that 𝑇 is supported entirely on the set

of embedded points 𝐿 ∩ Base{𝑄𝑡 }.
The first claim we make is that 𝑇 must in fact be a subscheme of 𝐿. This is seen by

checking all alternative possibilities – we will investigate the most challenging case, and leave

the rest to the reader. Let 𝑥,𝑦 denote affine coordinates, and consider the situation where

𝑇 =𝑉 (𝑥 −𝑦2, 𝑦3) and 𝐿 =𝑉 (𝑥). We claim that if 𝑥 ·𝑞(𝑥,𝑦) ∈ (𝑥 −𝑦2, 𝑦3)2 then the constant and

linear terms of 𝑞(𝑥,𝑦) must both vanish. It is clear that 𝑞 cannot have a constant term. To

prove that 𝑞 has no linear term, it suffices to prove the same after applying the automorphism

𝑥 ↦→ 𝑥 + 𝑦2, 𝑦 ↦→ 𝑦. Thus, we must show that if

(𝑥 + 𝑦2) · ℎ(𝑥,𝑦) ∈ (𝑥2, 𝑥𝑦3, 𝑦6)
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then ℎ has no linear term. Let ℎ1, ℎ2, . . . be the linear, quadratic, etc... terms of ℎ, so that

ℎ = ℎ1+ℎ2+ . . . First, by noting that the 𝑦3-term of (𝑥 +𝑦2) ·ℎ must vanish, we conclude that

ℎ1 must be a multiple of 𝑥 . Write ℎ1 = 𝜆𝑥 for some 𝜆 ∈ 𝓀. Next, looking at the 𝑥𝑦2-term we

see that the 𝑦2-term of ℎ2 must be −𝜆𝑦2. Finally, by considering the 𝑦4-term we also conclude

that the 𝑦2-term of ℎ2 must be 0. Thus 𝜆 = 0 and, as claimed, ℎ1 = 0. The conclusion is that

such a 𝑇 is eliminated from consideration from the case-by-case analysis because it would

contradict the requirement that the general element of the pencil 𝑄𝑡 is a smooth quartic. The

remaining cases proceed in a similar fashion.

We therefore assume 𝑇 ⊂ 𝐿. From the containment sq(𝑇,𝑇 ∗) ⊂ Base{𝐿 ·𝑄𝑡 }, it follows that

𝑇 ⊂ Base{𝑄𝑡 }.

Now we bring in the assumption that the 13 general points 𝑝1, . . . , 𝑝13 are contained in BaseΛ.

Not all 𝑝𝑖 can be contained in Base{𝑄𝑡 }. Indeed, 𝑄𝑡 would then be uniquely determined and

a general pencil. But it is not general: {𝑄𝑡 } contains a thin length 3 scheme (namely 𝑇 )

in its base scheme. It follows that at least one point, say 𝑝13 is contained in 𝐿 \ Base{𝑄𝑡 }.
Therefore, (𝑇,𝑇 ∗,Λ) ∈ Dom(𝑝13) ∩ Lin(𝑝13), and Theorem 4.19 applies. Theorem 4.23 then

says there is an element of the pencil {𝑄𝑡 } of the form 𝐿 ·𝐶 where 𝐶 is a cubic form. However,

then at least 11 of the remaining 12 points 𝑝1, . . . , 𝑝12 are contained in the cubic defined by

𝐶, contradicting generality of {𝑝1, . . . , 𝑝13}. The proposition follows. □

Theorem 4.25. Let 𝑝1, . . . , 𝑝13 be 13 general points in P2, and let Θ be as in Equation (17).

Then

Θ =


(𝑇,𝑇 ∗) ∈ CT such that

𝑇 is a singular triad

for 𝑝1, . . . , 𝑝13

 .

Proof. It is clear that the mentioned set of singular triads is contained in Θ – the content of

the theorem lies in the reverse inclusion. Theorem 4.24 gives the inclusion Θ ⊂ Fin. Then

the theorem immediately follows from Theorem 4.14 and Bézout’s theorem. □

5. Intersections in SQP

Let 𝑝 ∈ P2 be a point and let ℓ ⊂ P2 be a line. In this section we let

inc(𝑝), lin(𝑝)

be the cycles on CT consisting of points (𝑇,𝑇 ∗) in CT where 𝑇 contains the point 𝑝 or where

𝑇 is collinear with 𝑝, respectively. Observe that both cycles are pulled back from Hilb3 P2

under the blowdown map CT → Hilb3 P2. For brevity, we will write O(𝑑) [3] for the same-

named tautological bundle on Hilb3 P2, but pulled back to CT. Finally we let 𝐻 ⊂ CT denote

the divisor class of the locus of complete triangles (𝑇,𝑇 ∗) such that 𝑇 intersects the line ℓ

non-trivially - 𝐻 is also evidently pulled back from Hilb3 P2.
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Definition 5.1. Define 𝑐𝑖 ( 𝑗) ∈ CH𝑖 CT to be the Chern class 𝑐𝑖
(
O( 𝑗) [3]

)
. Define 𝑒𝑘 ∈ CH𝑘 CT

to be the Chern class 𝑐𝑘 (𝐸), where 𝐸 is the rank 9 vector bundle from Section 3.6. Set

Δ0 := 𝑒23 − 𝑒2𝑒4, (18)

Δ2 := 𝑒22 − 𝑒1𝑒3 (19)

Δ4 := 𝑒21 − 𝑒2, (20)

Δ6 := [CT] . (21)

Lemma 5.2. For each 𝑖 = 0, 1, 2, 3 we have

Δ2𝑖 = 𝜑∗
(
[Bpt]13−𝑖

)
.

Proof. Let 𝑖 = 0, 1, 2, or 3. Fix 13 − 𝑖 general points on P2 and let 𝑉 denote the vector space

of quintic forms vanishing at those 13− 𝑖 points. Then the class [Bpt]13−𝑖 ∈ CH26−2𝑖 SQP can

be represented by the cycle which parametrizes triples (𝑇,𝑇 ∗,Λ) where the Λ ⊂ 𝑉 .

Pushing this cycle down to CT via 𝜑, we get the degeneracy scheme of the natural evaluation

map of vector bundles

𝑒𝑣 : 𝑉 → 𝐸

consisting of points in CT where 𝑒𝑣 has at least a 2-dimensional kernel. The lemma follows

from applying Porteous’s formula to 𝑒𝑣 . □

Recall the action of Gm on CT from Section 3.6. In order to use localization, we need to

express the classes [lin(𝑝)] and [inc(𝑝)] as combinations of Chern classes of Gm-equivariant

bundles:

Lemma 5.3. In the Chow ring CH• CT, we have

[lin(𝑝)] = 𝑐2(1), (22)

[inc(𝑝)] = 𝐻2 − 𝑐2(1) + 2𝑐2(2) − 𝑐2(3) (23)

Proof. The first equation follows from the definition of the the second Chern class – the sub-

schemes lying in some member of the pencil of lines through 𝑝 are precisely those comprising

the cycle lin(𝑝). The second equation is a consequence of general formulas for 𝑐2(𝑑) for all

𝑑 found on page 93 of [ELB06]. In loc. cit. the authors refer to 𝑐2(𝑑) by the symbol P𝑑 .

We get the expression for inc(𝑝) by combining the 𝑑 = 2 and 𝑑 = 3 cases of the formulas in

[ELB06]. (Observe that, although [ELB06] concerns cycles on the Hilbert scheme Hilb3 P2,
we may pull them back to CT via the forgetful map CT→ Hilb3 P2.) □

Proof of Theorem 1.2. By Theorem 4.25 our task is to compute∫
SQP
[Dom(𝑝)]13.

We will do so by instead computing∫
CT

𝜑∗
(
[Dom(𝑝)]13

)
,
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which by Theorem 4.12 equals∫
CT

𝜑∗
(
( [Bpt(𝑝)] − 4[Inc(𝑝)] − [Lin(𝑝)])13

)
.

Using the push-pull formula for 𝜑 and Theorem 5.2, we must then compute:∫
CT

3∑︁
𝑖=0

(−1)𝑖
(
13

𝑖

)
· Δ2𝑖 · (4[inc(𝑝)] + [lin(𝑝)])𝑖 . (24)

By expressing all terms of (24) in terms of the Chern classes 𝑒𝑘 of 𝐸 and using Theorem 5.3,

we then use the fixed-point analysis for 𝐸 in §3.6 and the calculations in Theorem 3.27 and

evaluate the Atiyah-Bott localization expression. We perform this computation in sage in

the file localization.

□

6. Lingering questions

Countless questions remain unanswered – we highlight some below.

Question 6.1. Association’s presence in all known cases of the Veronese counting problem

is hard to ignore – what is its role in the general problem?

In fact, a closer look shows an intriguing possibility, which we now explain. In all known

instances, it appears as though association is a composite of a Cremona transformation

followed by a Veronese embedding. Specifically, let 𝑚 =
(
𝑛+𝑑
𝑑

)
+ 𝑛 + 1, and consider a general

tuple of points (𝑝1, . . . , 𝑝𝑚) ∈ (P𝑛)𝑚. Let (𝑞1, . . . , 𝑞𝑚) ∈ (P𝑁 )𝑚 be associated to (𝑝1, . . . , 𝑝𝑚),
where 𝑁 =

(
𝑛+𝑑
𝑑

)
− 1. Finally let ver𝑑 : P𝑛 → P𝑁 denote the standard 𝑑-uple Veronese

embedding (after choosing coordinates).

In every understood case of the general Veronese counting problem, there exists a Cremona

transformation 𝛾 : P𝑛 d P𝑛 and an automorphism 𝑔 : P𝑁 → P𝑁 such that the composite

𝑔 ◦ ver𝑑 ◦𝛾 sends each point 𝑝𝑖 to its corresponding point 𝑞𝑖 . The Cremona transformation 𝛾

need not be unique, but the fact that it exists in the first place is not obvious to us. And so

a follow-up to Theorem 6.1 would be to determine whether a “𝑔 ◦ ver𝑑 ◦𝛾” mapping always

exists which outputs an associated set for 𝑝1, . . . , 𝑝𝑚 in every instance of the enumerative

problem.

Remark 6.2. In this direction, a dimension count suggests that for a fixed set of 14 general

points 𝑎1, . . . , 𝑎14 in P3, there should exist finitely many quadro-quartic Cremona transforma-

tions 𝛾 : P3 d P3 such that the composition of 𝛾 with a 2-uple Veronese embedding sends the

tuple (𝑎1, . . . , 𝑎14) to an associated tuple (𝑏1, . . . , 𝑏14) ∈ (P9)14. This may hint at an approach,

admittedly ambitious, to finding the number 𝜈2,3 of 2-Veronese 3-folds through 14 general

points.

Question 6.3. Is it possible to confirm Coble’s example using homotopycontinuation.jl?

Question 6.4. It can be shown that the monodromy group of Coble’s enumerative problem

𝜈2,2 = 4 is the full symmetric group 𝑆4. Is the monodromy group for 𝜈3,2 also the full symmetric

group?
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Question 6.5. Is there a straightforward degeneration argument reproving 𝜈2,2 = 4?

Question 6.6. Association is a characteristic independent theory. By following Coble’s

reasoning in characteristic 𝑝, we find that when 𝑝 = 2 and only when 𝑝 = 2, the number 𝜈2,2
drops – it changes from 4 to 2 because the 2-torsion of a general elliptic curve in characteristic

2 consists of only 2 points. Modulo which primes 𝑝 (if any) does our 𝜈3,2 = 4246 calculation

change?

Question 6.7. Are there other integral expressions of the form

𝜈𝑑,𝑛 =

∫
𝑋

𝛼𝑚

where 𝑋 is a relatively tractable smooth projective variety and 𝛼 is some cycle on 𝑋?

7. Sage code

We provide the sage code we used to compute the number 𝜈3,2, as well as several checks we

performed to acquire confidence that there are no mistakes in the computation of weights of

relevant bundles at fixed points. One thing to note is that we plug in specific values for 𝑎,𝑏, 𝑐

into the equivariant expressions arising in the Atiyah-Bott localization formula. These are

secretly constant, so the reader can verify that by changing the inputs of 𝑎,𝑏, 𝑐, the various

calculations below do not change. This is a further check on the integrity of the calculations.

var(’a’,’b’,’c’)

def symmetrize(p):

return p(a=a,b=b,c=c) + p(a=a,b=c,c=b) + p(a=b,b=a,c=c) + p(a=b,b=c,c=a) + p(a=c,b=a,c=b) + p(a=c,b=b,c=a)

# The ith elementary symmetric polynomial

def sigma(i, L):

ind = Set(range(0,len(L)))

return sum([ prod([L[x] for x in S]) for S in ind.subsets(i) ])

# BUNDLE WEIGHTS AT FIXED POINTS:

# The first entry corresponds to an honest triangle, which is unchanged under the action of S_3 permuting

homogeneous coordinates, and the rest have orbits of size 6.

# Weight data for the bundle E on CT.

E = [

(5*a, 5*b, 5*c, 4*a+b, 4*a+c, 4*b+c, 4*b+a, 4*c+a, 4*c+b),

(5*a, 4*a+b, 4*a+c, 5*c, 4*c+a, 4*c+b, 3*c+a+b, 3*c+2*b, 2*c+3*b),

(5*b, 4*b+a, 4*b+c, 5*c, 4*c+a, 4*c+b, 3*c+a+b, 3*c+2*b, 2*c+3*b),

(5*c, 4*c+b, 3*c+2*b, 2*c+3*b, c+4*b, 5*b, 4*c+a, 3*c+a+b, 2*c+a+2*b),

(5*c, 4*c+a, 3*c+2*a, 4*c+b, 3*c+a+b, 2*c+2*a+b, 3*c+2*b, 2*c+2*b+a, 2*c+3*b),

(5*c, 4*c+a, 3*c+2*a, 2*c+3*a, 4*c+b, 3*c+a+b, 3*c+2*b, 2*c+2*b+a, 2*c+3*b)

]

# Weight data for the tangent bundle T of CT

T = [

(c-a, c-b, b-c, b-a, a-b, a-c),

(a-c, a-b, c-a, 2*c-2*b, b-a, c-b),

(c-a, 2*c-2*b, b-a, c-b, b-c, b-a),

(c-a, 3*c-3*b, b-a, 2*c-2*b, 2*b-c-a, c-b),

(3*b-3*a, 2*b-2*a, b-a, c-a, c-b, a-2*b+c),
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(a-b, c-b, c-a, 2*b-2*a, c-b, b-a)

]

# Some Chern class expressions of E at the six representative fixed points.

c1E = [ expand(sigma(1, x)) for x in E ]

c2E = [ expand(sigma(2, x)) for x in E ]

c3E = [ expand(sigma(3, x)) for x in E ]

c4E = [ expand(sigma(4, x)) for x in E ]

c6T = [ expand(sigma(6, x)) for x in T ]

# This is the Atiyah-Bott localization formula for computing -c2(E) * c4(E) + c3(E)^2. It is the wrong answer, due

to excess.

Wrong = expand(-c2E[0]*c4E[0] + c3E[0]^2)/expand(c6T[0]) + sum([symmetrize(expand(-c2E[i]*c4E[i] + c3E[i]^2)/expand(

c6T[i])) for i in range(1,6)])

# O’s tautological rank three bundle’s weights at the six fixed representative fixed points

OOO = [

(0, 0, 0),

(0, b-c, 0),

(0, b-c, 0),

(0, b-c, 2*b-2*c),

(0, a-c, b-c),

(0, a-c, b-c)

]

c1OOO = [ expand(sigma(1, x)) for x in OOO ]

c2OOO = [ expand(sigma(2, x)) for x in OOO ]

c3OOO = [ expand(sigma(3, x)) for x in OOO ]

# O(1)’s tautological rank 3 bundle’s weights at the 6 representative fixed points, followed by its Chern classes at

those points.

Oone = [

(a, b, c),

(a, b, c),

(b, b, c),

(c, b, 2*b-c),

(a, b, c),

(a, b, c)

]

c1Oone = [ expand(sigma(1, x)) for x in Oone ]

c2Oone = [ expand(sigma(2, x)) for x in Oone ]

c3Oone = [ expand(sigma(3, x)) for x in Oone ]

# O(2)’s tautological rank 3 bundle’s weights at the six representative fixed points, followed by its Chern classes

at those points.

Otwo = [

(2*a, 2*b, 2*c),

(2*a, b+c, 2*c),

(2*b, b+c, 2*c),

(2*b, b+c, 2*c),

(a+c, b+c, 2*c),

(a+c, b+c, 2*c)

]

c1Otwo = [ expand(sigma(1, x)) for x in Otwo ]

c2Otwo = [ expand(sigma(2, x)) for x in Otwo ]

c3Otwo = [ expand(sigma(3, x)) for x in Otwo ]
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# O(3)’s tautological bundles weights at the six representative fixed points, followed by its Chern classes at those

points.

Othree = [

(3*a, 3*b, 3*c),

(3*a, b+2*c, 3*c),

(3*b, b+2*c, 3*c),

(b+2*c, 2*b+c, 3*c),

(a+2*c, b+2*c, 3*c),

(a+2*c, b+2*c, 3*c)

]

c1Othree = [ expand(sigma(1, x)) for x in Othree ]

c2Othree = [ expand(sigma(2, x)) for x in Othree ]

c3Othree = [ expand(sigma(3, x)) for x in Othree ]

# The line bundle H’s weights at the six representative fixed points

H = [

a+b+c,

a+2*c,

b+2*c,

3*c,

3*c,

3*c

]

# We will just use the symbol H for its first Chern class c1H

# Delta_0’s expression at the six representative fixed points

Delta0 = [ c3E[i]^2-c2E[i]*c4E[i] for i in range(0,6)]

# Delta_2’s expression at the six representative fixed points

Delta2 = [ c2E[i]^2-c1E[i]*c3E[i] for i in range (0,6)]

# Delta_4’s expression at the six representative fixed points

Delta4 = [ c1E[i]^2-c2E[i] for i in range(0,6)]

# THE CLASSES INC, LIN, ETC:

# The class Inc to be used in localization formula (tuple of 6 degree two expressions in abc)

Inc = [H[i]^2 - c2Oone[i] + 2*c2Otwo[i] - c2Othree[i] for i in range(0,6)]

# the class of Lin to be used in localization formula (tuple of 6 degre two expressions in abc)

Lin = [c2Oone[i] for i in range(0,6)]

# The class 4Inc + Lin. This is relevant because of the relation BP(p) = Dom(p) + 4Inc(p) + Lin(p).

FourIncPlusLin = [4*Inc[i] + Lin[i] for i in range(0,6)]

# The expression we wish to integrate, an expression in a,b,c at each of the six representative fixed points.

INTEGRAND = [Delta0[i] - 13*Delta2[i]*FourIncPlusLin[i] + 78*Delta4[i]*FourIncPlusLin[i]^2 - 286*FourIncPlusLin[i]^3

for i in range(0,6)]

# Application of Atiyah-Bott to integrate INTEGRAND, summing over all 31 fixed points, remembering that the honest

triangle is its own S3 orbit, so we do not symmetrize it.
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Answer = expand(INTEGRAND[0])/expand(c6T[0]) + sum([symmetrize(expand(INTEGRAND[i])/expand(c6T[i])) for i in range

(1,6)])

# TESTS:

# Let’s compute H^6. This should be 15.

Hsixth = expand(H[0]^6)/expand(c6T[0]) + sum([symmetrize(expand(H[i]^6)/expand(c6T[i])) for i in range(1,6)])

#print(Hsixth(a=2, b=5, c=-9)) This indeed yields 15.

# Let’s compute H^4*Inc. This should be 3.

HfourthInc = expand(Inc[0]*H[0]^4)/expand(c6T[0]) + sum([symmetrize(expand(Inc[i]*H[i]^4)/expand(c6T[i])) for i in

range(1,6)])

# print(HfourthInc(a=2,b=3,c=-2)) #This indeed gives 3.

# Let’s compute c_{3}(2)^2, which should be (4 choose 3) = 4.

Otwocheck = expand(c3Otwo[0]^2)/expand(c6T[0]) + sum([symmetrize(expand(c3Otwo[i]^2)/expand(c6T[i])) for i in range

(1,6)])

# print(Otwocheck(a=5,b=2,c=7)) #Indeed this gives 4.

# Let’s compute c_3(3)^{2}, which should be (9 choose 3).

Othreecheck = expand(c3Othree[0]^2)/expand(c6T[0]) + sum([symmetrize(expand(c3Othree[i]^2)/expand(c6T[i])) for i in

range(1,6)])

# print(Othreecheck(a=-3, b=5, c=4)) #This indeed gives (9 choose 3) = 84.

# Let’s compute c_3(2)*c_3(3), which should be (6 choose 3) = 20.

Otwothreecheck = expand(c3Othree[0]*c3Otwo[0])/expand(c6T[0]) + sum([symmetrize(expand(c3Othree[i]*c3Otwo[i])/expand

(c6T[i])) for i in range(1,6)])

# print(Otwothreecheck(a=3,b=2,c=-5)) #Indeed this gives 20.

Lincubed = expand(Lin[0]^3)/expand(c6T[0]) + sum([symmetrize(expand(Lin[i]^3)/expand(c6T[i])) for i in range(1,6)])

# print(Lincubed(a=-2,b=13,c=4)) yields 0 as is should because Lin cubed is indeed 0

IncsquaredLin = expand(Inc[0]^2 * Lin[0])/expand(c6T[0]) + sum([symmetrize(expand(Inc[i]^2 * Lin[i])/expand(c6T[i]))

for i in range(1,6)])

# print(IncsquaredLin(a=-1,b=12,c=13)) yields 0, which it should.

Inccubed = expand(Inc[0]^3)/expand(c6T[0]) + sum([symmetrize(expand(Inc[i]^3)/expand(c6T[i])) for i in range(1,6)])

# print(Inccubed(a=12,b=-3,c=5)) yields 1, as it should because Inc^3 = 1 for simple geometric reasons.

#FINAL COMPUTATIONS:

print(Wrong(a=45,b=3,c=10)) # This is the wrong answer 57728, where we apply the Porteous formula to the bundle E.

print(Answer(a=-20,b=9,c=7)) #This gives 4246.
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