
COMPACTIFICATIONS OF HURWITZ SPACES

ANAND DEOPURKAR

Abstract. We construct several modular compactifications of the Hurwitz space Hd
g/h

of genus g

curves expressed as d-sheeted, simply branched covers of genus h curves. These compactifications

are obtained by allowing the branch points of the covers to collide to a variable extent. They
are very well-behaved if d = 2, 3, or if relatively few collisions are allowed. We recover as special

cases the spaces of twisted admissible covers of Abramovich, Corti and Vistoli and the spaces of

hyperelliptic curves of Fedorchuk.

1. Introduction

A fascinating aspect of the study of moduli spaces is the exploration of their birational geometry.
By varying the moduli functor, one can construct a menagerie of birational models of a moduli space.
These models are not only interesting in themselves, but also provide an unprecedented opportunity
to explicitly study the Mori theory of some of the most interesting higher dimensional varieties.
Pioneered by Hassett and Keel, such a study for the moduli space of curves continues to be a topic
of intense current research [8].

We take up a similar study of a related moduli space, namely the Hurwitz space. The Hurwitz
space Hd

g is the moduli space of genus g curves expressed as d-sheeted, simply branched covers

of P1. These spaces have played a vital role in our understanding of the moduli of curves. They
parametrize some of the most interesting loci, especially for small d, such as the hyperelliptic locus
for d = 2 and the trigonal locus for d = 3. These loci in Mg are conjectured to play a crucial role
in the Hassett–Keel program. Furthermore, in many ways, the Hurwitz spaces are easier to handle
than Mg, and it is reasonable to aspire for a fruitful Hassett–Keel program in their context.

In this paper, we lay the groundwork for constructing a number of compactifications of Hd
g .

The standard compactification due to Harris and Mumford [10] (further refined by Abramovich,
Corti, and Vistoli [2]) parametrizes admissible covers, which are a particular kind of degenerations
of simply branched covers where the branch points are forced to remain distinct. Our main idea
is to explore compactifications where the branch points are allowed to coincide to a given extent.
Although covers of P1 are our primary interest, we treat the case of covers of curves of arbitrary
genus; this presents no additional difficulty.

We now describe our main results without diving into many technicalities. Fix a positive integer
d and non-negative integers g, h and b related by the Riemann–Hurwitz formula

2g − 2 = d(2h− 2) + b.

Let Hd
g/h be the space of smooth genus g curves expressed as d-sheeted, simply branched covers of

smooth genus h curves. In symbols, Hd
g/h = {(φ : C → P )}, where C and P are smooth curves of

genus g and h respectively, and φ is a simply branched cover of degree d. Let Mh;b be the space
of b distinct unordered points on smooth genus h curves. In symbols, Mh;b = {(P,Σ)}, where P
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is a smooth curve of genus h and Σ ⊂ P a reduced divisor of degree b. We have a morphism
br : Hd

g/h →Mh;b defined by

br : (φ : C → P ) 7→ (P,brφ).

Our first technical result is the construction of an unscrupulous enlargement H d
g/h of Hd

g/h over

a likewise unscrupulous enlargement of Mh;b of Mh;b; we now describe both. The non-separated
Artin stack Mh;b is the stack of (P,Σ), where P is an at worst nodal curve of arithmetic genus h
and Σ ⊂ P a divisor of degree b supported in the smooth locus. The precise definition of H d

g/h

is slightly technical, but roughly speaking, it is the stack of (φ : C → P ), where P is an orbinodal
curve of arithmetic genus h and φ a finite cover of degree d, étale over the nodes and the generic
points of the components of P . There is no restriction on the singularities of C. The orbinodes serve
to encode the admissibility criterion of Harris and Mumford [10], following the idea of Abramovich,
Corti, and Vistoli [2]. The reader unfamiliar with this construction may imagine P to be simply a
nodal curve and φ an admissible cover over the nodes of P . As said before, the stacks Mh;b and
H d
g/h are non-separated enlargements of Mh;b and Hd

g/h, respectively. They continue to be related

by the branch morphism br : H d
g/h →Mh;b given by

br : (φ : C → P ) 7→ (P,brφ).

Theorem A (Theorem 3.8). With the above notation, H d
g/h and Mh;b are algebraic stacks, locally

of finite type. The morphism br : H d
g/h →Mh;b is proper and of Deligne–Mumford type.

Theorem A gives a recipe to construct many compactifications of Hd
g/h. Indeed, let X ⊂Mh;b be

a Deligne–Mumford substack containing Mh;b. If X is proper (over the base), then X ×Mh;b
H d
g/h

is a Deligne–Mumford stack containing Hd
g/h that is also proper (over the base). In this sense, any

suitable compactification of the space of branch divisors yields a corresponding compactification of
the space of branched covers. Furthermore, we prove that if X has a projective coarse space, then
so does X ×Mh;b

H d
g/h (Theorem 6.1).

What makes the above recipe particularly fruitful is that we know several such X ’s, leading to
several compactifications of Hd

g/h. These X ’s are the spaces of weighted pointed curves of Hassett

[12], which we now recall. Let ε > 0 be a rational number satisfying b · ε + (2h − 2) > 0. A point
of Mh;b given by (P,Σ) is called ε-stable if ε · multp Σ ≤ 1 for all p ∈ P and ωP (εΣ) is ample.

Let Mh;b(ε) ⊂Mh;b be the open substack consisting of ε-stable marked curves. Then Mh;b(ε) is a
proper Deligne–Mumford stack that contains Mh;b and admits a projective coarse space. Set

Hdg/h(ε) =Mh;b(ε)×Mh;b
H d
g/h.

We call points of Hdg/h(ε) weighted admissible covers or ε-admissible covers. Roughly speaking,

these are admissible covers where b1/εc of the branch points can coincide.

Theorem B (Corollary 6.6). With the above notation, the stack Hdg/h(ε) of ε-admissible covers is

a proper Deligne–Mumford stack that contains Hd
g/h as an open substack. It admits a projective

coarse space H
d

g/h(ε) and a branch morphism to the stack Mh;b(ε) of ε-stable b-pointed genus h
curves.

Theorem B recovers some spaces that have already appeared in literature. Plainly, the space

Hdg/h(1) is the space of twisted admissible covers of Abramovich, Corti, and Vistoli [2]. In this
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space, the branch points are forced to remain distinct, and hence the only singularities of C are

its nodes over the nodes of P . As ε decreases, Hdg/h(ε) allows more and more branch points to
coincide, and thus allows C to have progressively nastier singularities. We highlight that these
singularities need not be Gorenstein (Example 6.9)! For d = 2 and h = 0, these spaces are the
spaces of hyperelliptic curves constructed by Fedorchuk [7].

In general, the local structure of H d
g/h is horrible. It may even have components other than

the closure of Hd
g/h (Example 6.11). For d = 2 and 3, however, H d

g/h is smooth and irreducible

(Theorem 5.5). The geometry of the resulting compactifications of the spaces of trigonal curves is
the topic of forthcoming work [5].

The morphism br : Hdg/h(ε)→Mh;b(ε) is finite for ε close to 1, but not in general (Example 6.10).
The fibers of br parametrize “crimps” of a fixed d-sheeted cover. We analyze these fibers in detail
(Section 7).

Having described the main results, let us now describe our technical motivation. Our approach
is inspired by Abramovich, Corti, and Vistoli [2]. We view a finite cover φ : C → P as a family
of length d schemes parametrized by P , or equivalently, as a map χ : P → Ad, where Ad is the
‘moduli stack of length d schemes.’ This reinterpretation allows us to use the techniques from
the well-studied topic of compactifications of spaces of maps into stacks. The stack H d

g/h is thus

constructed following Abramovich and Vistoli [1], which explains the central role played by orbinodal
curves. Note, however, that their results cannot be used directly since they deal with maps into
Deligne–Mumford stacks and Ad is not Deligne–Mumford. Nevertheless, the fact that Ad is the
quotient of an affine scheme by the general linear group allows us to extend the essential arguments
without much trouble.

We carry out our constructions in a slightly more general setting than that described above.
It is useful in applications to have the flexibility to fix the ramification type of some fibers of
the cover. Therefore, we work in the context of covers with arbitrary branching over a divisor
and prescribed branching over distinct marked points on the base. Furthermore, it is notationally
easier and conceptually no harder to refrain from fixing any numerical invariants as far as we can.
Therefore, instead of H d

g/h and Mh;b, we simply have H d and M .

The paper is organized as follows. In Section 2, we introduce Ad and recall the notion of pointed
orbinodal curves. In Section 3, we define H d and state the main theorem (Theorem 3.8), which
we prove in Section 4. In Section 5, we study the local structure of H d. In Section 6, we prove
projectivity and describe the weighted admissible cover compactifications. In Section 7, we analyze
the fibers of br : H d → M . Section 4 is by far the most technical. The crucial geometric steps,
namely the valuative criteria, are contained in Subsection 4.4.

Conventions. We work over a field K of characteristic zero. All schemes are understood to be
locally Noetherian schemes over K. We reserve the letter k for (variable) algebraically closed K-
fields. While working over an algebraically closed field k, “point” means “k-point,” unless specified
otherwise. An algebraic stack or an algebraic space is in the sense of Laumon and Moret-Bailly [16].

If X is an algebraic space, and x→ X a geometric point, then OX,x denotes the stalk of OX at
x in the étale topology and we set Xx = SpecOX,x. The analytically inclined reader may imagine
OX,x to be the ring of convergent power series around x and Xx to be a small simply-connected
analytic neighborhood of x in X. For a local ring R, the symbol Rsh denotes its strict henselization

and R̂ its completion.
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The projectivization of a vector bundle E is denoted by PE; this is the space of one-dimensional
quotients of E. A morphism X → Y is projective if it factors as a closed embedding X↪→PE
followed by PE → Y for some vector bundle E on Y .

A curve over a scheme S is a flat, proper morphism whose geometric fibers are purely one-
dimensional. The source of this morphism could be a scheme, an algebraic space or a Deligne–
Mumford stack; in the last case it is usually denoted by a curly letter. A curve over S is connected
if its geometric fibers are connected. Genus always means arithmetic genus. By the genus of a
stacky curve, we mean the genus of its coarse space. A cover is a representable, flat, surjective
morphism. The symbol µn denotes the group of nth roots of unity; its elements are usually denoted
by ζ.

2. Preliminaries

2.1. The classifying stack of length d schemes. Consider the category Ad fibered over Schemes
whose objects over a scheme S are (φ : X → S), where φ is a finite flat morphism of degree d. To
prove that Ad is indeed an algebraic stack, we consider a more rigidified version. Since our schemes
are assumed to be locally Noetherian, for a finite flat morphism φ : X → S, the sheaf φ∗OX is
a locally free OS module of rank d. Therefore, the data of φ is equivalent to the data of an OS
algebra which is locally free of rank d as an OS module. In the rigidified version of Ad, we con-
sider such algebras along with a marked OS basis. Namely, we consider the contravariant functor
Bd : Schemes→ Sets defined by

Bd : S 7→
{

Isomorphism classes of (A, τ), where A is an OS algebra and τ : A→
O⊕dS an isomorphism of OS modules.

}
.

Proposition 2.1. ([22, Proposition 1.1]) The functor Bd is representable by an affine scheme Bd
of finite type.

Proof. Let e1, . . . , ed be the standard basis of O⊕dS . Then the data (A, τ) is equivalent to an OS
algebra structure on O⊕dS . An OS algebra structure is specified by maps of OS modules

i : OS → O⊕dS , say 1 7→
∑

diei

and

m : O⊕dS ⊗S O
⊕d
S → O⊕dS , say ei ⊗ ej 7→

∑
ckijek.

These maps make O⊕dS an OS algebra with identity i(1) and multiplication m if and only if the ckij
and the di satisfy certain polynomial conditions. Thus Bd is representable by a closed subscheme

of Ad3+d = A〈ckij , di〉. �

The scheme Bd admits a natural GLd action, which is most easily described on the functor of
points. A matrix M ∈ GLd(S) acts on Bd(S) by

(2.1) M : (A, τ) 7→ (A,M ◦ τ).

Proposition 2.2. Ad is equivalent to the quotient [Bd/GLd].

Proof. The proof is straightforward. Consider an object φ : X → S in Ad(S). Let A = φ∗OX . Then

A is an OS algebra which is locally free of rank d as an OS module. Set P = IsomOS−mod(A,O⊕dS ).
Then π : P → S is a principal GLd bundle, and we have a tautological isomorphism

τ : π∗A
∼−→ O⊕dP .
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The data (π∗A, τ) gives a map P → Bd, which is visibly GLd equivariant. The assignment

(φ : X → S) 7→ (π : P → S, P → Bd)

defines a morphism Ad → [Bd/GLd] which is easily seen to be an isomorphism. �

We now recall the trace and discriminant of a finite cover. Let B be a ring and A a B algebra
which is free of rank d as a B module. The trace of a ∈ A is the trace of the B linear endomorphism
on A given by multiplication by a. For the discriminant, consider the map A⊗B A→ B obtained
by composing the multiplication A⊗B A→ A with the trace A→ B. Dualizing, we obtain a map
A→ A∨. Taking the determinant of this map and dualizing once more, we obtain the discriminant
δ : B → (detA)⊗(−2). Explicitly, if 〈e1, . . . , ed〉 is a B basis of A, then δ is given by the determinant
of the matrix of traces:

(2.2) δ = det[tr(eiej)]1≤i,j≤d.

The above construction globalizes: for a finite flat morphism φ : X → S, we get a trace tr : φ∗OX →
OS and discriminant δ : OS → (detφ∗OX)⊗(−2). Likewise, for the universal cover φ : Xd → Ad, we
get the universal trace

tr : φ∗OXd
→ OAd

,

and discriminant

δ : OAd
→ (detφ∗OXd

)
⊗(−2)

.

Let Ed ⊂ Ad be the maximal open substack over which φ is étale. The following are well-known:
(1) Ed ⊂ Ad is the locus where δ is invertible;
(2) Ed is equivalent to BSd, where Sd is the symmetric group on d letters.

We denote the zero locus of δ in Ad by Σd and call it the universal branch locus. For a map
χ : S → Ad, given by a cover φ : X → S, we set brφ := S ×χ Σd and call it the branch locus of φ.

2.2. Orbinodal curves. We recall the notion of an orbinodal curve as introduced by Abramovich
and Vistoli [1]. Our brief exposition is based on the work of Olsson [21]. Orbinodal curves are
called “balanced twisted curves” in [1] and “twisted curves” in [21]. In short, a ‘pointed orbinodal
curve’ is a stacky modification of a pointed nodal curve at the nodes and at the marked points.
Étale locally near a node, it has the form

[Spec k[u, v]/uv]/µn,

where µn acts by u 7→ ζu, v 7→ ζ−1v. Étale locally near a marked point, it has the form

[Spec k[u]/µn],

where µn acts by u 7→ ζu. The formal definition follows.

Definition 2.3. Let S be a scheme. We say that the data

(C → C → S; p1, . . . , pn : S → C)

is a pointed orbinodal curve if the following are satisfied.
(1) C → S is a nodal curve and pi : S → C pairwise disjoint sections.
(2) C → S is a Deligne–Mumford stack with coarse space C → C. The coarse space map C → C

is an isomorphism over the open set Cgen ⊂ C which is the complement of the images of pi
and the singular locus of C → S.
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(3) Let c → C be a geometric point lying over s → S. If c is a node of Cs, then there is an
étale neighborhood U → C of c, an open set T ⊂ S containing s, some t ∈ OT , and n ≥ 1
for which we have the following Cartesian diagram

C ×C U −−−−→ U

étale

y yétale[
SpecOT [u,v]

(uv−t) /µn

]
−−−−→ SpecOT [x,y]

(xy−tn)

,

Here µn acts by u 7→ ζu and v 7→ ζ−1v, and the map on the bottom is given by x 7→ un

and y 7→ vn.
(4) Let s → S be a geometric point and set c = pi(s). Then there is an étale neighborhood

U → C of c and n ≥ 1 for which we have the Cartesian diagram

C ×C U −−−−→ U

étale

y yétale

[SpecOS [u]/µn] −−−−→ SpecOS [x]

,

Here µn acts by u 7→ ζu, and the map on the bottom is given by x 7→ un.
We abbreviate (C → C → S; p1, . . . , pn : S → C) by (C → C; p). A morphism between two pointed
orbinodal curves (C1 → C1; p1j) and (C2 → C2; p2j) is a 1-morphism F : C1 → C2 such that the
induced map F : C1 → C2 takes p1j to p2j .

Although the structure of C is specified for some étale neighborhood, it holds for any sufficiently
small neighborhood. The precise statement from [21] follows.

Proposition 2.4. [21, Proposition 2.2, Definition 2.3] Let (C → C; p) be a pointed orbinodal curve
over S. For a geometric point c→ C, set

Csh = C ×C SpecOC,c.

Let s→ S be the image of c→ C.
(1) Suppose c is a node of Cs and t ∈ OS,s and x, y ∈ OC,c are such that OC,c is isomorphic to

the strict henselization of OS,s[x, y]/(xy− tn) at the origin. Then, for some n ≥ 1, we have

Csh ∼= [SpecOC,c[u, v]/(uv − t, un − x, vn − y)/µn],

where µn acts by u 7→ ζu, v 7→ ζ−1v.
(2) Suppose c = pi(s) and x ∈ OC,c is such that OC,c is isomorphic to the strict henselization

of OS,s[x] at the origin. Then, for some n ≥ 1, we have

Csh ∼= [SpecOC,c[u]/(un − x)/µn],

where µn acts by u 7→ ζu.

3. The Big Hurwitz Stack H d

Fix a positive integer d. The goal of this section is to define the big Hurwitz stack H d. We first
define the stack M of divisorially marked, pointed nodal curves.

Definition 3.1. Define the stack M of divisorially marked, pointed nodal curves as the category
fibered over Schemes whose objects over S are

M (S) = {(P → S; Σ;σ1, . . . , σn)},
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where
(1) P is an algebraic space and P → S a connected nodal curve;
(2) Σ ⊂ P is a Cartier divisor, flat over S, lying in the smooth locus of P → S;
(3) σj : S → P are pairwise disjoint sections lying in the smooth locus of P → S and away

from Σ.

Proposition 3.2. M is a smooth algebraic stack, locally of finite type.

Proof. Let M b,n ⊂ M be the subcategory where the degree of the marked divisor is b and the
number of marked points is n. It suffices to prove the proposition for M b,n. Set U = M 0,0. By
[, Theorem 1.1], U is an algebraic stack, locally of finite type. Since nodal curves have smooth
deformation spaces, U is also smooth. Finally, it is clear that the forgetful morphism M b,n → U
is representable by smooth algebraic spaces of finite type. �

We now define H d. Recall our notation from Subsection 2.1:

Ad is the classifying stack of schemes of length d;

Xd → Ad is the universal scheme of length d;

Σd ⊂ Ad is the universal branch locus;

Ed = Ad \ Σd is the locus of étale covers.

Definition 3.3. Define the big Hurwitz stack H d as the category fibered over Schemes whose
objects over S are

(3.1) H d(S) = {(P → P → S;σ1, . . . , σn;χ : P → Ad)},
where

(1) (P → P → S;σ1, . . . , σn) is a pointed orbinodal curve;
(2) χ : P → Ad is a representable morphism that maps the following to Ed: the generic points

of the components of Ps, the nodes of Ps, and the preimages of the marked points in Ps,
for every fiber Ps of P → S.

A morphism between (P1 → P1 → S1; {σ1j};χ1 : P1 → Ad) and (P2 → P2 → S2; {σ2j};χ2 : P2 →
Ad) over a morphism S1 → S2 consists of two pieces of data: (F, α), where

(1) F : P1 → P2 is a morphism of pointed orbinodal curves, and
(2) α : χ1 → χ2 ◦ F is a 2-morphism

such that (F, α) fits in a Cartesian diagram

(3.2) S1 S2

P1 P2

Ad

F

χ1

χ2

α

We abbreviate (P → P → S;σ1, . . . , σn;χ : P → Ad) by (P → P ;σ;χ).

Remark 3.4. The careful reader may wonder what happened to the 2-morphisms between the
1-morphisms from P1 to P2. After all, the objects of H d involve stacks, which makes it, a priori, a
2-category. However, by [1, Lemma 4.2.3], the 2-automorphism group of any 1-morphism P1 → P2

is trivial. Thus, H d is equivalent to a 1-category [1, Proposition 4.2.2]. What this means explicitly
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is that we treat two morphisms given by (F, α) and (F ′, α′) as the same if they are related by a
2-morphism between F and F ′.

Remark 3.5. Let us explain the condition of representability of χ (Definition 3.3 (2)). A morphism
between two Deligne–Mumford stacks f : X → Y is representable if and only if for every geometric
point x → X , the induced map of automorphism groups Autx(X ) → Autf(x)(Y ) is injective [1,
Lemma 4.4.3]. Thus the representability of χ means that the stack structure on P is the minimal
one that affords a morphism to Ad.

Remark 3.6. Let us explain the role played by the orbinodes. Consider an orbinodal curve near
a node, say U = [Spec (k[u, v]/uv) /µn], and an étale cover C → U . Observe that the induced map
on the coarse spaces C → U is precisely an admissible cover in the sense of Harris and Mumford
[10]. In this way, the orbinodes provide a way to deal with the admissibility condition.

Remark 3.7. Let us explain the role played by the marked points. Consider an orbinodal curve
near a marked point, say U = [Spec k[u]/µn] with coarse space U = Spec k[t]. The morphism χ
maps U to Ed ∼= BSd; this corresponds to an étale cover C → U . Note that in contrast to the
fundamental group of the schematic curve U , the fundamental group of the stacky curve U is not
trivial; it is precisely µn. Thus, C → U may be a non-trivial étale cover, specified by the monodromy

Aut0(U) = µn → Aut0(BSd) = Sd.

The condition of representability implies that this monodromy map is injective. On the level of
coarse spaces, we thus get a cover C → U with monodromy around 0 given by a permutation of
order n. By restricting to the open and closed substack where this permutation has a specific cycle
structure, we can fully prescribe the ramification type of C → U over 0. In this way, the marked
points provide a way to construct moduli spaces of covers with fibers of prescribed ramification.

It is useful to have a formulation of H d purely in terms of finite covers. Since a map to Ad

is nothing but a finite cover of degree d, we see that H d may be equivalently described as the
category whose objects over a scheme S are

(3.3) {(P → P → S;σ1, . . . , σn;φ : C → P)},

where
(1) (P → P → S;σ1, . . . , σn) is a pointed orbinodal curve;
(2) φ is a finite cover of degree d, étale over the following: the generic points of the components

of Ps, the nodes of Ps, and the preimages of the marked points in Ps, for every fiber Ps of
P → S;

(3) Furthermore, for the open substack U := P \ brφ, the morphism U → BSd corresponding
to the étale cover C|U → U is representable.

In this form, a morphism from (P1 → P1 → S1;σ1j ;φ1 : C1 → P1) to (P2 → P2 → S2;σ2j ;φ2 : C2 →
P2) is given by (F,G) where F : P1 → P2 is a morphism of pointed orbinodal curves and G : C1 → C2
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a morphism over F fitting in a Cartesian diagram

C1
G−−−−→ C2y y

P1
F−−−−→ P2y y

S1 −−−−→ S2

.

We abbreviate (P → P → S;σ1, . . . , σn;φ : C → P) by (P → P ;σ;φ). We use the formulation of
H d in terms of maps to Ad or in terms of finite covers depending on whichever is convenient.

The two stacks H d and M are related by the branch morphism, which we now define. Consider
an object (P → P → S;σ1, . . . , σn;φ : C → P) in H d(S). Identify brφ with its image in P (it
is anyway disjoint from the stacky points of P). Then brφ ⊂ P is an S-flat Cartier divisor. The
branch morphism br : H d →M is defined by

br : (P → P → S;σ1, . . . , σn;φ : C → P) 7→ (P → S; brφ;σ1, . . . , σn).

Theorem 3.8 (Main). H d is an algebraic stack, locally of finite type. The morphism

br : H d →M

is proper and representable by Deligne–Mumford stacks.

Although Theorem 3.8 is motivated by the main theorem in [1], its proof is less involved, thanks
to the advancement of technology related to stacks. There is a very general result for the existence
of Hom stacks due to Aoki [3], but it is not suitable for our purpose because it does not yield
the required finiteness properties. A generalization of Theorem 3.8 where Ad is replaced by a
suitable global quotient [U/G] seems plausible. This would also generalize the construction by
Ciocan-Fontanine, Kim, and Maulik [4]. However, this is beyond the scope of the present work.

4. Proof of the Main Theorem

This section is devoted to proving Theorem 3.8. The proof is broken down into parts.

4.1. That br : H d →M is an algebraic stack, locally of finite type. We factor br : H d →
M through a series of intermediate steps. The first step is the stack of pointed orbinodal curves.
Let M orb be the category over Schemes whose objects over S are pointed orbinodal curves (P →
P → S;σ). Denote by M orb≤N the subcategory of M orb where the order of the automorphism
groups at the points of the orbinodal curve is bounded above by N . Denote by M b,∗ (resp. M ∗,n,
M b,n) the open substack of M where the marked divisor has degree b (resp. there are n marked
points, degree b and n marked points). There is a morphism M orb →M 0,∗ given by

(P → P → S;σ)→ (P → S;σ).

We quote, without proof, a theorem of Olsson [21].

Theorem 4.1. [21, Theorem 1.9, Corollary 1.11] M orb and M orb≤N are smooth algebraic stacks,
locally of finite type. M orb≤N is an open substack of M orb. The morphism M orb≤N → M 0,∗ is
representable by Deligne–Mumford stacks of finite type.
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Define categories F inCovd and V ectd fibered over Schemes as follows

F inCovd(S) = {(P → P → S;σ;φ : C → P), where φ is finite, flat of degree d},

V ectd(S) = {(P → P → S;σ;F), where F is locally free of rank d on P}.
In both definitions, (P → P → S;σ) is a pointed orbinodal curve. We have morphisms

(4.1) H d → F inCovd → V ectd →M orb.

Indeed, the first is obvious; the second is given by

(P → P ;σ;φ : C → P) 7→ (P → P ;σ;φ∗OC);

and the last by
(P → P ;σ;F) 7→ (P → P ;σ).

We analyze each morphism in (4.1) one by one.
Before we proceed, we recall the notion of a generating sheaf on a Deligne–Mumford stack from

[15, § 5.2]. Let X be a Deligne–Mumford stack with coarse space ρ : X → X. A locally free sheaf
E on X is a generating sheaf if for every quasi coherent sheaf F , the morphism

ρ∗ρ∗(H omX (E ,F)⊗OX E)→ F
is surjective. Equivalently, E is a generating sheaf if and only if for every point x of X , the repre-
sentation of Autx(X ) on the fiber of E at x contains every irreducible representation of Autx(X ).

We quote without proof a lemma from [9] that we use many times in the sequel.

Lemma 4.2. [9, Proposition 2.1] Let P → S be a nodal curve, where P is an algebraic space and
S a scheme. Let s→ S be a geometric point. Then there is an étale neighborhood T → S of s such
that P ×S T → T is projective.

Proposition 4.3. Let S be a scheme and (P → P → S;σ) a pointed orbinodal curve. There is a
scheme T and a surjective étale morphism T → S such that

(1) PT := P ×S T admits a finite, flat morphism from a projective scheme Z;
(2) PT is the quotient of a quasi projective scheme by a linear algebraic group;
(3) PT admits a generating sheaf.

Proof. The first statement is due to Olsson [21, Theorem 1.13]. The existence of a finite flat cover
Z → PT implies that PT is the quotient of an algebraic space Y by the action of a linear algebraic
group by [6, Theorem 2.14]. We may assume that T is affine and, by Lemma 4.2, that PT is
projective over T . Then PT is quasi-projective. In this case, Y can be proved to be quasi-projective
[15, Remark 4.3]. Finally, since P is a quotient stack with a quasi projective coarse space, the third
statement follows directly from [15, Theorem 5.3]. �

Proposition 4.4. V ectd →M orb is an algebraic stack, locally of finite type.

Proof. Let S be a scheme and (P → P → S;σ) an object of M orb. We must prove that the category
of vector bundles of rank d on P is an algebraic stack, locally of finite type. It suffices to prove
this after passing to an étale cover of S. By Proposition 4.3, we can assume that P → S admits
a generating sheaf and by Lemma 4.2, that P → S is projective. Now it can be shown that the
stack C ohP/S of coherent sheaves on P, flat over S, is an algebraic stack, locally of finite type. A
smooth atlas is given by the Quot schemes of Olsson and Starr [20]. We omit the details; see the
pre-print by Nironi [19, § 2.1] for a complete proof. Clearly, the stack of vector bundles of rank d
on P is an open substack of C ohP/S . �
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Proposition 4.5. F inCovd → V ectd is representable by algebraic spaces of finite type.

For the proof, we need two easy lemmas.

Lemma 4.6. Let S be an affine scheme and X → S be a proper Deligne–Mumford stack with
coarse space ρ : X → X, where X is a scheme. Let F be a coherent sheaf on X , flat over S. Then,
there is a finite complex M• of locally free sheaves on S:

M0 →M1 → · · · →Mn

such that for every f : T → S, we have natural isomorphisms

Hi(f∗M•)
∼−→ Hi(XT ,FT );

Proof. Let F = ρ∗F . Then F is a coherent sheaf on X, flat over S. Since X is a proper scheme
over S, the standard theorem on cohomology and base change for schemes [18, §II.5], gives a finite
complex of locally free sheaves M• with natural isomorphisms

(4.2) Hi(f∗M•)
∼−→ Hi(XT , FT ).

Now, the map ρT : XT → XT is the map to the coarse space. Since maps to the coarse spaces are
cohomologically trivial for quasi-coherent sheaves, we have ρT ∗(FT ) = FT and a natural identifica-
tion

(4.3) Hi(XT , FT ) = Hi(XT ,FT ).

Combining (4.2) and (4.3), we obtain the result. �

Lemma 4.7. Let X → S and F be as in Lemma 4.6. Then the contravariant functor from
SchemesS to Sets defined by

(f : T → S) 7→ H0(XT ,FT )

is representable by an affine scheme SectF/S over S.

When no confusion is likely, we denote SectF/S by SectF .

Proof. Let M• be as in Lemma 4.6. Let Ti = SpecS(Sym∗(M∨i )) be the total spaces of the vector
bundles Mi (we only care about i = 0, 1). Then Ti are vector bundles over S and we have a
morphism T0 → T1. Let SectF ⊂ T0 be the scheme theoretic preimage of the zero section of T1.
From the natural isomorphism

H0(f∗M•)
∼−→ H0(XT ,FT ),

it is easy to see that SectF represents the desired functor. �

We now have the tools to prove Proposition 4.5.

Proof of Proposition 4.5. Let S be a scheme and let S → V ectd be given by the object (P → P →
S;σ;F) of V ectd(S). We must prove that F inCovd ×V ectd S is an algebraic space of finite type.
It suffices to prove this after passing to an étale cover of S. So, assume that S is affine and P is
projective over S. By an OP -algebra structure on F , we mean a pair (i,m), where i : OP → F and
m : F ⊗ F → F are morphisms of OP modules that make F a sheaf of OP -algebras. Let A lgF be
the stack of OP -algebra structures on F . The operation of taking the spectrum gives an equivalence

A lgF
∼−→ F inCovd ×V ectd S.
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Now, an algebra structure on F is determined by a global section (corresponding to i) of F and
one (corresponding to m) of H om(F ⊗ F ,F) subject to the conditions

m ◦ (i⊗ id) = m ◦ (id⊗1) = id (multiplicative identity)

m ◦ sw = m (symmetry)

m ◦ (id⊗m) = m ◦ (m⊗ id) (associativity),

where sw: F ⊗F → F ⊗F is the switch x⊗ y 7→ y⊗x. Each of these equations can be interpreted
as the vanishing (agreeing with the zero section) of a morphism from SectF ×S SectH om(F,F⊗F)

to a suitable Sect space. For example, the equality

m ◦ (id⊗1) = id

can be phrased as the vanishing of the morphism

SectF ×S SectH om(F,F⊗F) → SectH om(F,F)

defined by

(i,m) 7→ m ◦ (i⊗ id)− id .

Thus, A lgF is represented by the closed subscheme of SectF ×S SectH om(F,F⊗F) defined by van-
ishing of the equations given by the conditions above. �

We finish the final piece of (4.1).

Proposition 4.8. H d → F inCovd is an open immersion.

Proof. Let S be a scheme and S → F inCovd a morphism corresponding to (P → P → S;σ;φ : C →
P). Let π : P → S be the projection. Denote by Σ ⊂ P the image in P of the branch divisor of φ.
Clearly, the locus S1 ⊂ S over which Σ is disjoint from the singular locus of P → S and the sections
σi is an open subscheme. Over S1, the Cartier divisor Σ ⊂ P does not contain any components of
the fibers and hence it is S1-flat.

Let χ : P → Ad be the morphism corresponding to the degree d cover C → P. Let Iχ → P be
the inertia stack of χ. Then Iχ → P is a representable finite morphism. The set Z ⊂ P over which
Iχ has a fiber of cardinality higher than one is a closed subset and its complement is exactly the
locus where χ is representable. Let S2 = S1 ∩ (S \ π(Z)).

Then, by definition, H d ×F inCovd S = S2, which is an open subscheme of S. �

We have finished the first part of the proof of Theorem 3.8.

Proposition 4.9. The morphism br : H d →M is an algebraic stack, locally of finite type.

Proof. The forgetful morphism M → M 0,∗ is representable by algebraic spaces of finite type.
Hence, it suffices to show that H d → M 0,∗ is an algebraic stack, locally of finite type. We have
the sequence of morphisms

(4.4) H d → F inCovd → V ectd →M orb →M 0,∗.

Starting from the right, Theorem 4.1, Proposition 4.4, Proposition 4.5 and Proposition 4.8 imply
that each of the morphisms above is an algebraic stack, locally of finite type. Hence, so is their
composite. �
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4.2. That br : H d → M is of finite type. The strategy in this section is to study (4.4) more
carefully and trim down the intermediate stacks so that they are of finite type.

Proposition 4.10. The morphism H d → M orb factors through the open substack M orb≤N for
any N ≥ d!.

Proof. Take an object (P → P → S;σ;χ) of H d. Let p be a point of P which is either a node or
a marked point in its fiber. Then χ maps a neighborhood of p into Ed ∼= BSd. Since χ is required
to be representable, we have

Autp(P)↪→Autχ(p)(BSd) = Sd.

In particular, the size of Autp(P) is at most d!. �

Recall that M b,∗ ⊂M is the open and closed substack where the marked divisor has degree b.
Set

H d
b = M b,∗ ×M H d,

and denote by V ectdl,N the open substack of V ectd parametrizing vector bundles of fiberwise degree

l and h0 ≤ N .

Proposition 4.11. The morphism H d
b → V ectd factors through the open substack V ectdl,N for

l = −b/2 and any N ≥ d.

Proof. Consider a geometric point (P → P ;σ;φ : C → P) of H d
b . Then, the branch divisor of φ,

which is a section of detφ∗OC
⊗(−2), has degree b. Hence φ∗OC has degree l. Furthermore, since C is

a reduced curve which is a degree d cover of the connected curve P, we must have h0(φ∗OC) ≤ d. �

Proposition 4.12. The morphism V ectdl,N →M orb is of finite type.

For the proof, we need some results about the boundedness of families of sheaves on Deligne–
Mumford stacks. Let S be an affine scheme and X → S a Deligne–Mumford stack with coarse
space ρ : X → X, and a generating sheaf E . Let OX(1) be an S-relatively ample line bundle on X.
Let U be an S-scheme, not necessarily of finite type, and F a sheaf on XU . We say that the family
of sheaves (XU ,F) is bounded if there is an S-scheme T of finite type and a sheaf G on XT such
that every geometric fiber (Xu,Fu) appearing in (XU ,F) over U appears in (XT ,G) over T . In this
case, we say that (XT ,G) bounds (XU ,F).

Set
FE(−) = ρ∗H omX (E ,−).

Then FE takes exact sequences of quasi-coherent sheaves on X to exact sequences of quasi-coherent
sheaves on X, because ρ∗ is cohomologically trivial.

Lemma 4.13. In the above setup, if the family (XU , FE(F)) is bounded, then the family (XU ,F)
is also bounded.

Proof. Since FE(F) is bounded, we have a surjection

OX(−M)⊕N ⊗S OU � FE(F)

for large enough M and N . Since E is a generating sheaf, this gives a surjection

(4.5) E ⊗X OX(−M)⊕N ⊗S OU � F .
Let K be the kernel. Then, (XU , FE(K)) is also bounded, and by the same reasoning as above, we
have a surjection

(4.6) E ⊗X OX(−M ′)⊕N
′
⊗S OU � K
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for large enough M ′ and N ′. Combining (4.5) and (4.6), F can be expressed as the cokernel

E ⊗X OX(−M ′)⊕M
′
⊗S OU → E ⊗X OX(−M)⊕M ⊗S OU � F .

Set

H = H omX

(
E ⊗X OX(−M ′)⊕N

′
, E ⊗X OX(−M)⊕N

)
,

and T = SectH/S . By Lemma 4.7, T → S is of finite type. Letting G be the cokernel of the
universal homomorphism on XT , we see that (XT ,G) bounds (XU ,F). �

Remark 4.14. In the case of a curve X → S, the family (XU , FE(F)) is bounded if the degree,
rank and h0 of FE(F)u are bounded for u ∈ U .

We now have the tools to prove Proposition 4.12.

Proof of Proposition 4.12. Let S be a connected affine scheme and S → M orb a morphism given

by the pointed orbinodal curve (P ρ→ P → S;σ). We must prove that V ectdl,N ×Morb S → S is of
finite type. After passing to an étale cover of S if necessary, assume that

(1) P → S is projective with relatively ample line bundle OP (1) (this is possible by Lemma 4.2),
(2) We have a generating sheaf E on P (this is possible by Proposition 4.3).

Set E = ρ∗E . Since E ⊗ ρ∗OP (−1) is also a generating sheaf, by twisting E by ρ∗OP (−1) enough

times, assume that we have a surjection O⊕MP → E for some M .
Let U → V ectdl,N ×Morb S be a surjective map from a scheme (not necessarily of finite type),

given by the family (PU → PU → U ;σ;F). It suffices to prove that (PU ,F) is a bounded family of
sheaves.

Set

F = FE(F) = ρ∗H omP(E ,F).

By Remark 4.14, it suffices to show that the degree, rank and h0 of Fu are bounded. The rank of Fu
is constant; the degree of H om(E ,F)u is constant. It is easy to see that the degree of H om(E ,F)u
and the degree of Fu differ by a bounded amount, depending only on P → P and E . Hence the
degree of Fu is bounded. Likewise, it is easy to see that h0(Fu) and h0(H om(ρ∗E , ρ∗F)u) differ by
a bounded amount, depending only on P → P and E . On the other hand,

H0(H om(ρ∗E , ρ∗F)u) = Hom(Eu, ρ∗Fu)

⊂ Hom(O⊕MPu , ρ∗Fu)

= H0(Fu)⊕M .

By hypothesis, the final vector space has dimension at most MN . It follows that h0(Fu) is bounded.
We conclude that (PU ,F) is a bounded family of sheaves. �

We have now finished the second part of the proof of Theorem 3.8.

Proposition 4.15. br : H d →M is of finite type.
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Proof. Since the open substacks M b,∗ cover M , it suffices to show that br : H d
b = H d×M M b,∗ →

M b,∗ is of finite type. With l = −b/2, and N large enough, we have the following diagram,

H d
b F inCovd

V ectdl,N V ectd

M b,∗ M 0,∗ M orb≤N M orb

0

1

3

2

4

.

The thick arrows in the diagram are known to be of finite type: (0) is an open immersion, (1) is
of finite type by Proposition 4.5, (2) by Theorem 4.1, and (3) by Proposition 4.12. Recall that
for algebraic stacks X , Y, Z, all locally of finite type, and morphisms X → Y → Z, we have the
following:

(1) If X → Y and Y → Z are of finite type, then X → Z is also of finite type;
(2) If X → Z is of finite type, then X → Y is also of finite type.

Using the two repeatedly reveals that (4) is also of finite type. �

4.3. That br : H d →M is Deligne–Mumford.

Proposition 4.16. br : H d →M is representable by Deligne–Mumford stacks.

Proof. The proof is straightforward. By Theorem 4.1, it suffices to check that H d → M orb

is representable by Deligne–Mumford stacks. In other words, we want this morphism to have
unramified inertia. This can be checked on points. Let (P → P → Spec k;σ; C → P) be a geometric
point of H d. We must show that C has no infinitesimal automorphisms over the identity of P. As
C → P is a finite cover, these automorphisms are classified by HomC(ΩC/P , OC). Since C → P is
unramified on the generic points of the components, ΩC,P is supported on a zero dimensional locus.
Since C is reduced, it follows that HomC(ΩC/P , OC) = 0. �

4.4. That br : H d →M is proper. We use the valuative criterion. Two pieces of notation will
be helpful. If S is the spectrum of a local ring, denote by S◦ the punctured spectrum

S◦ = S \ {closed point of S}.

For a Deligne–Mumford stack X with coarse space X → X and a geometric point x→ X, set

Xx = X ×X SpecOX,x.

It will be convenient to work with the spectrum of a henselian DVR. The reader unfamiliar with
this notion should imagine it to be a small (in particular, simply-connected) complex disk.

We begin with a simple lemma about the following setup. Let r be a positive integer and G
a finite group. Let R be a henselian DVR with residue field k and uniformizer t. Let OS be the
henselization of R[x, y]/(xy − tr) at the point corresponding to (t, x, y). For a positive integer a
dividing r, define a finite extension Sa → S by

OSa = OS [u, v]/(ua − x, va − y, uv − tr/a).

We have an action of µa on Sa over the identity of S by u 7→ ζu and v 7→ ζ−1v.
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Lemma 4.17. Let χ : S◦ → BG be a morphism given by a G torsor E → S◦. Then χ extends to
a morphism [Sr/µr]→ BG. More generally, χ extends to a morphism [Sa/µa]→ BG if and only if
the pullback of E to Sa

◦ is trivial. Furthermore, in this case the extension of χ is representable if
and only if a is the smallest with the above property.

Proof. To extend χ, we may work étale locally on the source. We use the étale cover Sa → [Sa/µa].
Note that Sa is simply connected (it is henselian). Hence the pullback of E to Sa

◦ extends to
Sa if and only if this pullback is trivial. Being trivial over Sr

◦ is automatic, since Sr
◦ is simply

connected.
Note that Sr

◦ → S◦ is the universal covering space—it is a µr-torsor where the source Sr
◦ is

simply connected. The G torsor E → S◦ corresponds to a homomorphism µr → G. By the theory
of covering spaces, the pullback of E along Sa

◦ → S◦ is trivial if and only if µr → G factors as

(4.7) µr → µa → G,

where µr → µa is the map ζ 7→ ζr/a. As we saw, in this case, we get a morphism χ : [Sa/µa] →
BG. Let s → [Sa/µa] be the stacky point. Observe that the map on automorphism groups
Auts([Sa/µa])→ Auts(BG) is exactly the map µa → G in (4.7). Since χ is representable precisely
when Auts([Sa/µa])→ Auts(BG) is injective, the result follows. �

Proposition 4.18. br : H d →M is separated.

Proof. As br is of finite type, we may use the valuative criterion. Let R be a henselian DVR with
residue field k, fraction field K and uniformizer t. Set ∆ = SpecR. Denote the special, the general
and a geometric general point of ∆ by 0, η and η respectively. Let (Pi → Pi → ∆;σ;χi : Pi → Ad),
for i = 1, 2, be two objects of H d(∆) over an object (P ; Σ;σ) of M (∆). Let φi : Ci → Pi be the
corresponding degree d covers and let

ψ : (C1 → P1)|η → (C2 → P2)|η
be an isomorphism over the identity of P . We must show that ψ extends to an isomorphism of the
orbinodal curves P1 → P2 and the covers C1 → C2 over all of ∆. Recall that P gen is the complement
of the markings σj in the smooth locus of P → ∆.

Step 1: Extending ψ : C1 → C2 over P gen: Since Ci → P is étale over the generic points of
the components of P|0, the map ψ : C1 → C2 extends, except possibly at finitely many points on
the central fiber. As a result, on P gen we get an isomorphism of vector bundles

ψ# : φ2∗OC2 |P gen → φ1∗OC1 |P gen

away from a locus of codimension two. Since P gen is smooth, by Hartog’s theorem, this isomorphism
extends over all of P gen and respects the OP gen algebra structures by continuity.

Step 2: Extending ψ : P1 → P2 at the non-generic nodes: Let p → P |0 be a node not in
the closure of P |sing

η . It suffices to extend ψ étale locally around p. The local ring OP,p must be
the strict henselization of the ring R[x, y]/(xy − tr) at the point corresponding to (t, x, y) for some
positive integer r. Recall that the χi are required to map the nodes to the substack Ed ∼= BSd
corresponding to étale covers. By the first step, the two maps χi : SpecO◦P,p → BSd are isomorphic.

Since both χi are representable, the structure of orbinodal curves (Proposition 2.4) and Lemma 4.17
imply that

(P1)p ∼= (P2)p ∼= Spec[OP,p[u, v]/(ua − x, va − y, uv − tr/a)/µa],

for some divisor a of r. Thus, we can get an extension ψ : P1 → P2.
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Step 3: Extending ψ : P1 → P2 at the marked points: Let p → P |0 be one of the marked
points σj(0). Then OP,p is the henselization of R[x] at (t, x). Let σj be a geometric generic point
of P over σj : η → P |η. By the structure of orbinodal curves (Proposition 2.4) for p and σj , we
have the picture for i = 1, 2:

Pi,p −−−−→ SpecOP,p∥∥∥ ∥∥∥
[SpecR[v]

sh
/µri ] −−−−→ SpecR[x]

shx x
[SpecK[v]

sh
/µri ] −−−−→ SpecK[x]

sh∥∥∥ ∥∥∥
Pi,σj −−−−→ SpecOP,σj

,

where µri acts by v 7→ ζv. The isomorphism P1|η → P2|η gives an isomorphism P1,σj →
P2,σj . In particular, we get r1 = r2 = r. Furthermore, it is easy to see that an isomorphism

[SpecK[v]
sh
/µr] → [SpecK[v]

sh
/µr] over the identity of coarse spaces SpecK[x]

sh → SpecK[x]
sh

must be of the form v 7→ ζv for some rth root of unity ζ. Clearly, such an isomorphism can be

extended to an isomorphism [SpecR[v]
sh
/µr]→ [SpecR[v]

sh
/µr].

Step 4: Extending ψ : P1 → P2 at the generic nodes: This step mirrors the previous step,
with the appropriate change in the description of the orbinode. We give the details for completeness.

Let p → P |0 be a node in the closure of P |sing
η . Then OP,p is the henselization of R[x, y]/xy at

(t, x, y). Since ∆ is henselian, we have a section σ : ∆→ P sing with σ(0) = p. Let σ be a geometric
generic point of P |η over σ : η → P |η. By the structure of orbinodal curves (Proposition 2.4) for p
and σ, we have the picture for i = 1, 2:

Pi,p −−−−→ SpecOP,p∥∥∥ ∥∥∥[
SpecR[ui,vi]

sh

(uivi,ui−xri ,vi−yri )/µri

]
−−−−→ Spec (R[x, y]/xy)

shx x[
SpecK[ui,vi]

sh

(uivi,ui−xri ,vi−yri )/µri

]
−−−−→ Spec (K[x, y]/xy)

sh∥∥∥ ∥∥∥
Pi,σ −−−−→ SpecOP,σ

.

The isomorphism ψ : P1|η → P2|η gives an isomorphism P1,σ → P2,σ. In particular, we get r1 =
r2 = r. Furthermore, see that an isomorphism ψ : P1,σ → P2,σ over the identity of coarse spaces
P1,σ → P1,σ must be of the form u1 7→ ζ1u2 and v1 7→ ζ2v2 for some rth roots of unity ζ1 and ζ2.
Such an isomorphism can be extended to an isomorphism P1,p → P2,p.

Step 5: Extending ψ : C1 → C2: By Step 2, Step 3 and Step 4 , we have an isomorphism
ψ : P1 → P2. By Step 1, we also have an isomorphism ψ : C1 → C2 except over the node points and



18 ANAND DEOPURKAR

the marked points of Pi|0. However, Ci → Pi is étale over these points; hence ψ must extend to an
isomorphism ψ : C1 → C2.

�

Having proved separatedness, we turn to properness. The crucial ingredient is the following
theorem of Horrocks [13].

Proposition 4.19. [13, Corollary 4.1.1] Let S be the spectrum of a regular local ring. If dimS = 2,
then every vector bundle on the punctured spectrum S◦ is trivial.

Proof. We only describe the main idea. See [13] for the full details.
Denote by i : S◦ → S the inclusion map. Let E be a vector bundle on S◦. If dimS ≥ 2,

then i∗E can be shown to be a coherent sheaf on S with depth at least 2. If dimS = 2, by the
Auslander–Buchsbaum formula, we conclude that i∗E is projective, hence free. Therefore, E is
free. �

Proposition 4.20. br : H d →M is proper.

Proof. A large chunk of the proof is identical to the proof in the paper of Abramovich and Vistoli
[1, Proposition 6.0.4]. The final step is new; it uses Proposition 4.19 and the expression of Ad as
the quotient of an affine scheme by GLd.

As br is of finite type, we may use the valuative criterion. As before, let R be a henselian DVR
with residue field k, fraction field K and uniformizer t. Set ∆ = SpecR. Denote the special, the
general and a geometric general point of ∆ by 0, η and η respectively. Let (P → ∆; Σ;σ) be an
object of M (∆) and (P|η → P |η;σ;χ) an object of H d(η). We want to extend it to an object over
all of ∆, possibly after a base change.

Step 1. Extending χ at the generic points of the components: This step follows Step 2
in [1, Proposition 6.0.4]. We work étale locally. Let ζ be a geometric generic point of a component
of P |0. Then the local ring OP,ζ is also a DVR. Since the branch divisor Σ does not contain any
component of P |0, the morphism χ sends the punctured spectrum P ◦ζ to Ed. We must extend
it to a morphism χ : Pζ → Ed. Since Ed ∼= BSd is a proper Deligne–Mumford stack, such an

extension is possible after passing to a finite cover P̃ζ → Pζ . By Abhyankar’s Lemma [, Appendix

I, Proposition 5.5] there is an n such that P̃ζ → Pζ is isomorphic to Pζ ×SpecR SpecR[ n
√
t] → Pζ .

Thus, by passing to a sufficiently big cover SpecR[ N
√
t] → SpecR = ∆, we can extend χ along

the generic points of all the components of P |0. Henceforth, replace R by R[ N
√
t]. We thus have a

morphism χ : P → Ad defined away from finitely many points on P |0.
Step 2. Extending χ at the non-generic nodes: This step follows Step 3 in [1, Proposi-

tion 6.0.4]. Let p → P |0 be a node not in the closure of Pη|sing. We must describe an orbinodal
structure at p and a representable extension of χ. It suffices to do both things in the étale topology.

The stalk OP,p is isomorphic to R[x, y]
sh
/(xy− tr) for some r ≥ 1. Since Σ is supported away from

the nodes, the morphism χ sends the punctured spectrum P ◦p to Ed ∼= BSd. As in Lemma 4.17, let
a be the smallest integer dividing r such that χ extends to a morphism

χ : [SpecOP,p[u, v]/(ua − x, va − y, uv − tr/a)/µa]→ Ed ∼= BSd,

where µa, as usual, acts by u 7→ ζ and v 7→ ζ−1v. Construct P over P such that

Pp = [SpecOP,p[u, v]/(ua − x, va − y, uv − tr/a)/µa].

By Lemma 4.17, we have a representable extension χ : Pp → Ed ∼= BSd..
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Step 3: Extending χ at the generic nodes and marked points: This step follows Step 4
in [1, Proposition 6.0.4]. Let p → P |0 be in the closure of P |sing

η . First, we extend the orbinode
structure P|η over p. Note that OP,p is isomorphic to the henselization of R[x, y]/xy at (t, x, y).
Since ∆ is henselian, we have a section σ : ∆ → P sing with σ(0) = p. Letting σ be a geometric
generic point of this section, we get by Proposition 2.4

Pσ ∼= [SpecK[u, v]
sh
/(uv, ua − x, va − y)/µa],

for some positive integer a. We extend P over Pp by the same formula

Pp ∼= [SpecR[u, v]
sh
/(uv, ua − x, va − y)/µa].

Having defined the orbinodal structure, we extend χ. Again, note that χ sends a neighbor-
hood of p to the étale locus Ed ∼= BSd. We work étale locally on the source, on the étale
cover SpecOP,p[u, v]/(uv, ua − x, va − y) → Pp. We already have χ on the punctured spectrum
(SpecOP,p[u, v]/(uv, ua−x, va−y))◦. Since this punctured spectrum is simply connected, χ extends
to a map χ : OP,p[u, v]/(uv, ua − x, va − y)→ Ed.

The case of marked points p = σj(0) is entirely analogous, if not easier.
Step 4. Extending χ over all of P: By the previous steps, we have a pointed orbinodal struc-

ture P → P and an extension of χ on P away from finitely many smooth, non-stacky points of
P|0. Let p → P |0 be such a point. Recall that Ad

∼= [Bd/GLd], where Bd is an affine scheme
(Proposition 2.2). The morphism χ : P ◦p → Ad is equivalent to a GLd torsor E∗ → P ◦p and a GLd
equivariant morphism E∗ → Bd. However, by Proposition 4.19, there are no nontrivial GLd torsors
on P ◦p . In particular, E∗ extends to a GLd torsor E → Pp. Next, E∗ ⊂ E is the complement of
the codimension two locus E|p. Since E is smooth and Bd affine, we have an extension E → Bd
by Hartog’s theorem. The extension is GLd equivariant by continuity. Thus, we get an extension
χ : Pp → Ad.

Finally, note that the two divisors χ∗Σd and Σ are supported in the general locus P gen and are
equal, by construction, on the complement of a codimension two set. Hence, they must be equal.

�

Remark 4.21. It may be helpful to recast Step 4 in terms of finite covers. Let p → P |0 be a
smooth point. Assume that we have a finite cover φ : C → U \{p}, where U is a neighborhood of p.
We wish to extend it to a cover over all of U . By Proposition 4.19, the vector bundle φ∗OC extends
to a vector bundle over U . Next, we must extend the OP algebra structure of φ∗OC . The algebra
structure is specified by maps of vector bundles, which all extend over p by Hartog’s theorem. The
extensions continue to satisfy the identities to be an algebra by continuity. We thus get an extension
of φ over all of U .

The proof of the main theorem is now complete. We recall the statement and collect the pieces
of the proof.

Theorem (Theorem 3.8). H d is an algebraic stack, locally of finite type. The morphism

br : H d →M

is proper and representable by Deligne–Mumford stacks.

Proof. That br is an algebraic stack, locally of finite type is the content of Subsection 4.1, cul-
minating in Proposition 4.9. That br is of finite type is done in Subsection 4.2, culminating in
Proposition 4.15. That br is Deligne–Mumford is Proposition 4.16. Finally, the properness is
checked in Subsection 4.4 in Proposition 4.18 and Proposition 4.20. �
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5. The Local Structure of H d

In this section, we analyze the local structure of H d. The main consequence of our analysis is
that H d is smooth for d = 2 and 3 (Theorem 5.5). Throughout the section, we use the formulation
of H d in terms of finite covers instead of in terms of maps to Ad.

We recall the standard setup of deformation theory. Let k be an algebraically closed field over
K. Denote by Artk the category of local Artin rings with residue field k. For any object (A,m)
of Artk, denote by 0 the special point of SpecA. Let (A,m) and (A′,m′) be two objects of Artk
related by an exact sequence

0→ J → A′ → A→ 0.

Say that A′ is a small extension of A by J if m′ · J = 0. Denote by DefX the standard functor on
Artk classifying deformations of X, namely

DefX(A) = {(XA → SpecA, i)},

where XA → SpecA is a flat morphism and i : XA|0 → X an isomorphism. We shorten (XA →
SpecA, i) to just XA, and call it a deformation of X over A. Likewise, for a morphism φ : X → Y ,
denote by Defφ the functor classifying deformations of φ (allowing both X and Y to vary), namely

Defφ(A) = {(XA → SpecA, YA → SpecA, φA : XA → YA, iX , iY )},

where XA → SpecA and YA → SpecA are flat morphisms and iX : XA|0 → X and iY : YA|0 → Y
are isomorphisms making the obvious commutative diagram

(5.1)

XA|0
φA|0−−−−→ YA|0yiX yiY

X
φ−−−−→ Y.

We shorten the unwieldy (XA → SpecA, YA → SpecA, φA : XA → YA, iX , iY ) to just (φA : XA →
YA) and call it a deformation of φ over A.

Let ξ = (P → P ;σ1, . . . , σn;φ : C → P) be such that (P → P ;σ1, . . . , σn) is a (not necessarily
proper) pointed orbinodal curve over k and φ : C → P a finite cover, étale over the nodes and the
marked points of P . Denote by Defξ the functor classifying deformations of ξ:

Defξ(A) = {(PA → PA → SpecA;σi,A;φA : CA → PA, iC , iP )},

where (PA → PA → SpecA;σi,A) is a (not necessarily proper) pointed orbinodal curve, φ : CA → PA
a finite cover, and iP : PA|0 → P and iC : CA|0 → C isomorphisms commuting with φA and φ as in
(5.1). If ξ corresponds to a point of H d, then we have a formally smooth morphism Defξ →H d.
Our goal is to understand Defξ.

Following Fedorchuk [7, § 4.1], we first simplify the task of studying the deformations of ξ into
the study of its deformations on Zariski local pieces. Following his terminology [7, § 4.1], let {Ui}
be an adapted affine open cover of P . This means that each Ui contains exactly one from the
following: a node, a marked point or a point of supp(brφ). Set

Ui = Ui ×P P
Vi = C ×P Ui
φi = φ|Vi : Vi → Ui
ξi = (Ui → Ui;σi;φi : Vi → Ui).
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In the last equation, σi is ignored if Ui does not contain any marked point. Set Uij = Ui ∩ Uj ,
Vij = Vi ∩Vj , Uijk = Ui ∩Uj ∩Uk, and so on. Observe that Uij does not contain orbinodes, marked
points or branch points. To emphasize that these multiple intersections are schemes, we denote
them by roman letters Uij , Vij , Uijk, and so on.

We have restriction maps Defξ → Defξi .

Proposition 5.1. With the above notation, the map Defξ →
∏
i Defξi is formally smooth.

Proof. Let 0→ k → A′ → A→ 0 be a small extension. Assume that we are given a deformation ξA
of ξ on A. Denote the restriction of ξA to Ui by ξi,A; it is a deformation of ξi. Suppose, furthermore,
that we are given extensions ξi,A′ of ξi,A. We must prove that the ξi,A′ can be glued to get a global
extension ξA′ of ξA.

Note that, by construction, Uij is a nonsingular affine scheme. Therefore, its deformations are
trivial. Let pij : OUi,A′ |Uij → OUj,A′ |Uij be an isomorphism over the identity

OPA |Uij = OUi,A |Uij → OUj,A |Uij = OPA |Uij .
The choice of pij is given by an element of Hom(ΩUij , OUij ). The isomorphisms pij may not be

compatible on the triple overlaps Uijk. However, since H2(H om(ΩP , OP)) = 0, the two co-cycle
defined by pij + pjk − pik on Uijk is in fact a co-boundary. As a result, by changing the choice of
the pij , we can assure that they are compatible on triple overlaps. Thus, we obtain an orbinodal
curve (PA′ → PA′ ;σA′) over A′ extending (PA → PA;σA) over A. This takes care of one piece of
an extension ξA′ of ξA.

Having constructed PA′ , we construct CA′ similarly by choosing isomorphisms

cij : OVi,A′ |Vij → OVj,A′ |Vij .
Since φ : Vij → Uij is étale, we have an equality φ∗ΩUij = ΩVij . Observe that if we wish to
extend φA : CA → PA to φA′ : CA′ → PA′ , where PA′ is glued by the pij and CA′ by the cij ,
then cij ∈ Hom(ΩVij , OVij ) must be the pullback of pij ∈ Hom(ΩUij , OUij ). By choosing the cij
in this way, we get the desired extension CA′ of CA along with an extension φA′ : CA′ → PA′ of
φA : CA → PA, completing the second piece of the extension ξA′ of ξA. �

Next, we analyze Defξi . We use the forgetful morphisms Defξi → DefUi and Defξi → DefVi .

Proposition 5.2. Retain the notation of Proposition 5.1.
(1) If Ui does not contain a point of brφ, then Defξi is formally smooth.
(2) If Ui contains a point of brφ, then Defξi → DefVi is formally smooth.

Remark 5.3. In the second case, Ui does not contain any orbinode or marked point. Hence, it is
a nonsingular scheme and Defξi is simply Defφi .

Proof. In the first case, the map φi : Vi → Ui is étale. Therefore, the forgetful map Defξi →
Def(Ui;σi) is an isomorphism. We are thus reduced to showing that the deformations of the pointed
orbinodal curve (Ui;σi) are unobstructed. This is shown in [2, § 3]. We briefly recall the argument.

The obstructions to the deformations lie in E xt2(ΩUi , OUi). Étale locally, Ui is at worst a nodal
curve; hence E xt2(ΩUi , OUi) = 0.

In the second case, Ui = Ui is a nonsingular affine scheme; its deformations are trivial. For the
smoothness of Defφi → DefVi , take an extension A′ → A → 0 of rings in Artk, a deformation
φi,A : Vi,A → Ui×SpecA of φi over A and an extension Vi,A′ → SpecA′ of Vi,A. We must construct
an extension φi,A′ : Vi,A′ → Ui×SpecA′ of φi,A. By the infinitesimal lifting property for Ui, the map
Vi,A → Ui extends to a map Vi,A′ → Ui, yielding such an extension φi,A′ : Vi,A′ → Ui×SpecA′. �
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Recall that a scheme (stack) is smoothable if it is the flat limit of non-singular schemes (stacks).
Let Hd ⊂H d be the open locus consisting of

(P → P ;σ;φ : C → P),

where C and P are smooth and φ is simply branched.

Proposition 5.4. Retain the notation of Proposition 5.1. Let S be the set of indices i for which
Ui contains a point of brφ.

(1) Defξ is smooth if and only if DefVi is smooth for all i ∈ S.
(2) The point of H d given by ξ is in the closure of Hd if and only if Vi is smoothable for all

i ∈ S.

Proof. Proposition 5.1 and Proposition 5.2 together give a smooth morphism Defξ →
∏
i∈S DefVi ,

proving the first assertion. For the second, consider the smooth morphism

(5.2) Defξ →
∏
i6∈S

DefUi ×
∏
i∈S

DefVi .

For i 6∈ S, the Ui is either a smooth curve or an orbinodal curve. In either case, it is smoothable.
By the smoothness of (5.2), if all the Vi are smoothable for i ∈ S then ξ is in the closure of the
locus of

(P → P ;σ;φ : C → P),

with smooth C and P. It is not hard to see that this locus is in the closure of Hd, where the only
additional constraint is that φ be simply branched. �

We record two important special cases.

Theorem 5.5. For d = 2 and 3, the stack H d is smooth and contains Hd as a dense open substack.

Proof. We begin with a general observation. For a finite (flat) cover φ : X → Y of degree d, we
have an exact sequence

0→ OY → φ∗OX → F → 0,

split by 1/d times the trace map tr : φ∗OX → OY . Therefore, the vector bundle F admits a map
F → φ∗OX . Since φ∗OX is a sheaf of OY algebras, we get a map Sym∗(F ) → φ∗OX , which is
clearly surjective. In other words, φ : X → Y naturally factors as an embedding

(5.3) ι : X↪→SpecY Sym∗(F )

followed by the projection SpecY Sym∗(F )→ Y .
We now prove the theorem. By Proposition 5.4, it suffices to prove that DefVi is smooth and

Vi is smoothable for all i for which φi : Vi → Ui is ramified. In the case of d = 2, the embedding
ι in (5.3) exhibits Vi as a divisor in a nonsingular affine surface. It is now well-known that DefVi
is smooth and Vi is smoothable. In the case of d = 3, the embedding ι exhibits Vi as a subscheme
of a nonsingular affine threefold. Since Vi is a reduced curve, it is Cohen–Macaulay. Thus Vi
is a Cohen–Macaulay subscheme of codimension two in a nonsingular affine variety. This lets us
conclude that DefVi is smooth [11, § 2.8] and Vi is smoothable [23, Theorem 2]. �
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6. Projectivity

In this section, we prove that the branch morphism is projective on coarse spaces by showing
that the Hodge line bundle is relatively anti-ample. We begin by defining the Hodge bundle.

Let (P → P ;σ;φ : C → P) be the universal object over H d. Let πP : P →H d and πC : C →H d

be the projections. When no confusion is likely, we denote both by π. Define the Hodge bundle Λ
on H d by

Λ = (R1π∗OC)
∨.

Then Λ is a locally free sheaf on H d. Define the line bundle λ by

λ = det Λ.

We use additive notation for λ. So, −λ denotes the dual of λ.
Throughout, we use without explicit reference that separated Deligne–Mumford stacks have

coarse spaces [14, Corollary 1.3]. We also repeatedly use that Deligne–Mumford stacks admit a
finite surjective map from a scheme [26, Proposition 2.6]. This is typically used in the following
guise: if we have a map from X to the coarse space Y of a Deligne–Mumford stack Y, then there

is a scheme X̃ with a finite and surjective morphism X̃ → X such that X̃ → Y lifts to X̃ → Y.

Theorem 6.1. Let M be a Deligne–Mumford stack separated over K and let M → M be a
morphism. Set H =M×M H d. Denote by H and M the coarse spaces of H and M respectively.
Then the induced morphism

br : H →M

is projective. In particular, if M is projective, so is H.

The essential ingredient in the proof is the following lemma.

Lemma 6.2. Let s : Spec k → M be a geometric point, and X a scheme with a quasi-finite
morphism X → s×M H d. Then the pullback of −λ to X is ample.

Proof. Without loss of generality, X is reduced and connected. By replacing X by its normalization
Xν → X if necessary, assume further that X is normal. Let (P ; Σ;σ) be the marked nodal curve
over k corresponding to the point s and (P → P ×X;σ ×X;φ : C → P) the family over X giving

the map to s×M H d. Construct C̃ → C by normalizing C over Psm. Explicitly, C̃ is such that we
have

C̃ ×P (P \ Σ) = C ×P (P \ Σ), and

C̃ ×P Psm = (C ×P Psm)ν .

It is easy to see using the result of Teissier [24, Theorem 1] that the fibers of C̃ ×P P sm → X are
the normalizations of the corresponding fibers of C ×P P sm → X.

Consider the family of finite covers φ̃ : C̃ → P over X. Let t → X be a k-point. Then C̃t is

smooth except over the nodes of Pt and C̃t → Pt is étale over the nodes of Pt. This implies that

there are only finitely many isomorphism types for the cover C̃t → Pt. Since X is connected, the

fibers over X of φ̃ : C̃ → P must all be isomorphic as finite covers. By replacing X by a finite cover

if necessary, we can make φ̃ : C̃ → P a constant family. In other words, we get φ̃0 : C0 → P0 over k
such that

C̃ = C̃0 ×X, P = P0 ×X, and φ̃ = φ̃0 ×X.
In the rest of the proof, we treat OC and OC̃ as bundles on P, omitting φ∗ and φ̃∗ to lighten

notation. Denote by IΣ the ideal of Σ in P. The inclusion OC ⊂ OC̃ is an isomorphism except over
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Σ ×X. Hence, the quotient OC̃/OC is annihilated by INΣ0×X for N large enough. In other words,
for every point t of X, we have

(6.1) INΣ ·OC̃t ⊂ OCt .

As a result, OCt is determined by the subspace H0(OCt/I
N
Σ ·OC̃t) of H0(OC̃t/I

N
Σ ·OC̃t).

Consider the following sequence on P:

0→ OC/(I
N
Σ×X ·OC̃)→ OC̃/(I

N
Σ×X ·OC̃)→ OC̃/OC → 0.

Applying π∗, we obtain a sequence of vector bundles on X:

(6.2) 0→ π∗
(
OC/(I

N
Σ×X ·OC̃)

)
→ π∗

(
OC̃/(I

N
Σ×X ·OC̃)

)
→ π∗

(
OC̃/OC

)
→ 0.

Since C̃ = C̃0 ×X, the middle vector bundle is in fact trivial:

π∗
(
OC̃/(I

N
Σ0×X ·OC̃)

)
= V ⊗OX , where V = H0

(
OC̃0/(I

N
Σ0
·OC̃0)

)
.

The sequence (6.2) gives us a morphism µ : X → G, where G is the Grassmannian of quotients of
V of the appropriate dimension. Moreover, by our discussion above, for every point t of X, the
fiber φt : Ct → Pt is determined by µ(t). Since X → s ×M H d is quasi-finite, µ must also be
quasi-finite. We conclude that the pullback to X of the Plücker line bundle on G is ample. By
(6.2), this pullback is simply detπ∗

(
OC̃/OC

)
. On the other hand, applying π∗ to the exact sequence

0→ OC → OC̃ → OC̃/OC → 0,

and keeping in mind that C̃ = C̃0 ×X is a constant family, we get

detπ∗
(
OC̃/OC

) ∼= detR1π∗OC .

We deduce that the right hand side, which is the pullback of −λ to X, is ample. �

Proof of Theorem 6.1. We want to show that br : H → M is projective. Denote also by λ the
pullback to H of λ on H d. Since Pic(H)⊗Q = Pic(H)⊗Q, we may treat λ as a Q line bundle on
H. We claim that −λ is br-ample. It suffices to check this on the fibers of br : H →M . Let s→M
be a k-point and set Hs = br−1(s). Choose a lift s→M of s→M . Then Hs is the coarse space of
s×M H. There is a scheme X and a finite surjective map X → s×M H. Lemma 6.2 implies that
−λ is ample on X. Since X → Hs is finite and surjective, we deduce that −λ is ample on Hs. �

6.1. Spaces of weighted admissible covers. The proper morphism H →M lets us construct
several compactifications of different variants of the Hurwitz spaces. Some of these have appeared
in literature in different guises. Fix non-negative integers g, h, and b related by

2g − 2 = d(2h− 2) + b.

Let Mh;b ⊂M be the open and closed substack whose k points correspond to (P ; Σ), where P is
a connected curve of arithmetic genus h and Σ ⊂ P a divisor of degree b. Let Mh;b ⊂Mh;b be the
open substack where P is smooth and Σ is reduced. Then Mh;b is a smooth stack and it contains
Mh;b as a dense open substack.

Let H d
g/h ⊂Mh;b ×M H d be the open and closed substack whose k points are (P → P ;φ : C →

P), where C is connected. By the Riemann–Hurwitz formula, C has (arithmetic) genus g. Note that
the classical Hurwitz space Hd

g/h mentioned in Section 1 is the coarse space of the open substack

Hdg/h of H d
g/h defined by

Hdg/h =Mh;b ×Mh;b
H d
g/h.
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It parametrizes (φ : C → P ) where P and C are smooth and φ is simply branched. The stack Hdg/h
is often called the small Hurwitz stack.

We recall a sequence of open substacks of Mh;b that contain Mh;b and are proper over the base
field. These are the spaces of weighted pointed stable curves constructed by Hassett [12].

Definition 6.3. Let ε be a rational number. Let P be a nodal curve over k and Σ ⊂ P a divisor
supported in the smooth locus. We say that (P,Σ) is ε-stable if

(1) for every point p of P , we have

ε ·multp(Σ) ≤ 1;

(2) the Q line bundle ωP ⊗OP (εΣ) is ample, where ωP is the dualizing line bundle of P .
Denote by Mh;b(ε) ⊂Mh;b the open substack parametrizing ε-stable marked curves.

Recall the main theorem from [12].

Theorem 6.4. [12, Theorem 2.1, Variation 2.1.3] Mh;b(ε) is a Deligne–Mumford stack, proper

over K. It admits a projective coarse space Mh;b(ε).

If deg(ωP (εΣ)) = ε · b + 2h − 2 ≤ 0, then Mh;b(ε) is empty. Otherwise, it contains Mh;b as a
dense open substack.

Definition 6.5. Define the stack Hdg/h(ε) of ε-admissible covers by the formula

Hdg/h(ε) =Mh;b(ε)×Mh;b
H d
g/h.

We sometimes call ε-admissible covers weighted admissible covers.

Corollary 6.6. Hdg/h(ε) is a Deligne–Mumford stack, proper over K. It admits a projective coarse

space H
d

g/h(ε) and a morphism

br : Hdg/h(ε)→Mh;b(ε).

Proof. Follows directly from Theorem 3.8 and Theorem 6.1. �

As before, if ε · b + 2h − 2 ≤ 0, then Hdg/h(ε) is empty. Otherwise, it contains Hdg/h as an open

substack (but it may not be dense; see Example 6.11).

6.2. Examples. We describe the geometry of the spaces of weighted admissible covers by some
illustrative examples.

These spaces generalize some known compactifications of Hurwitz spaces, mentioned in the fol-
lowing two examples.

Example 6.7 (Twisted admissible covers). Consider the case ε = 1 and the resulting stack of

1-admissible covers Hdg/h(1). It parametrizes (P → P ;φ : C → P), where brφ ⊂ P is étale over the
base. The induced morphism on coarse spaces C → P is an admissible cover in the sense of Harris
and Mumford [10] (but with unordered branch points).

By Proposition 5.4, the stack Hdg/h(1) is smooth and contains the small Hurwitz stack Hg/h
as a dense open substack. In fact, Hdg/h(1) is essentially the stack of twisted admissible covers of

Abramovich, Corti, and Vistoli [2]; the only difference is that in [2], the branch points are ordered,

whereas in Hdg/h(1), they are unordered.
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(a) Node (b) Triple ramification (c) Stacked simple ramification

Figure 1. Possible local pictures of φ for 1/3 < ε ≤ 1/2

(a) Cusp (b) Ramified node

Figure 2. Some of the possible local pictures of φ for 1/4 < ε ≤ 1/3

Example 6.8 (Spaces of hyperelliptic curves). Consider the case h = 0 and d = 2, and the resulting

stacks H2

g(ε) of ε-admissible covers. Consider a k-point of H2

g(ε), given by a cover (P → P ;φ : C →
P). Say b1/εc = n. Away from over the nodes of P, the singularities of C are (étale) locally of the
form

y2 − xm,
for m ≤ n. Thus, the spaces H

2

g(ε) are just the spaces of hyperelliptic curves with An−1 singularities
constructed by Fedorchuk [7].

The singularities of C get much more interesting for higher degrees, as illustrated in the next
example.

Example 6.9 (Singularities of C). Let (P → P ;φ : C → P) be a k-point of Hdg/h(ε). Notice that
we do not explicitly restrict the singularities of C; the restrictions are imposed indirectly by the
allowed multiplicity of the branch divisor. We list some examples of the singularities that appear
on C for small values of 1/ε and d ≥ 3.

(1) 1/2 < ε ≤ 1
In this case, C is smooth (except, of course, over the nodes of P) and simply branched

over P.
(2) 1/3 < ε ≤ 1/2

In this case, C can have only nodal singularities. Also, the branches of the nodes must
be individually unramified over P as in Figure 1(a). This case also allows certain kinds of
multiple ramification in φ: it can be triply ramified as in Figure 1(b) or it can have two
simple ramification points lying over the same point of P as in Figure 1(c).

(3) 1/4 < ε ≤ 1/3
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Figure 3. Planar triple points are allowed for ε ≤ 1/6

In this case, C can have nodal and cuspidal (formally kJx, yK/(y2 − x3)) singularities as
in Figure 2(a). This case also allows even more multiple ramification in φ; for example,
it is possible to have ramification types (4), or (3, 2) or (2, 2, 2) in a fiber of φ. Another
interesting possibility is a ramified node (Figure 2(b)). It is a combination of multiple
ramification and the development of a singularity. This is a node on C, one of whose
branches is simply ramified over P, formally expressed by

kJtK→ kJt, xK/x(x2 − t).

(4) ε ≤ 1/4
In this case, C can have non-Gorenstein singularities. Indeed, the spatial triple point

(formally the union of the coordinate axes in A3) is a branched cover of a line with branch
divisor of multiplicity four. Since multiplicity four is allowed in the branch divisor for
ε ≤ 1/4, the cover C → P can have formal local picture of a spatial triple point:

kJtK→ kJt, x, yK/(xy, y(x− t), x(y − t)).

In the case of admissible covers (ε = 1) and in the case of hyperelliptic curves (d = 2), the branch
morphism is finite. This is no longer the case if d ≥ 3 and ε is sufficiently small. In fact, as soon as
ε ≤ 1/6, we have positive dimensional fibers, as illustrated in the next example.

Example 6.10 (Non-finiteness of the branch morphism). For every c ∈ k, consider the the planar
triple point expressed as a triple cover of a smooth curve (Figure 3) by the formal description:

(6.3) kJtK→ kJt, xK/x(x− t)(x− ct).

Although the rings kJt, xK/x(x − t)(x − ct) are isomorphic for different choices of c, they are not
necessarily isomorphic as kJtK algebras. Said differently, although the singularities Spec kJt, xK/x(x−
t)(x−ct) are abstractly isomorphic, they are not necessarily isomorphic as triple covers of Spec kJtK.
One way to see this is the following. Consider the tangent space to Spec kJt, xK/x(x− t)(x− ct) at
(0, 0). In this two dimensional vector space, there are four distinguished one dimensional subspaces:
the three tangent spaces of the branches and the kernel of the projection to the tangent space of
Spec kJtK. The moduli of the configuration of these four subspaces depends on c. Up to a finite
ambiguity, different choices of c give non-isomorphic triple covers.

Using the basis 〈1, x, x2〉 of kJt, xK/x(x − t)(x − ct) as a kJtK module, and recalling from (2.2)
that the discriminant δ is the determinant of the 3 × 3 matrix tr(xi · xj), we get 〈δ〉 = 〈t6〉. That
is, planar triple points appear in our moduli spaces if six or more branch points are allowed to
coincide.

For d ≥ 3, ε ≤ 1/6 and h, b large enough to allow ε · b + 2h − 2 ≥ 0, the formal descriptions in
(6.3) are realizable in covers of a fixed genus h curve with a fixed branch divisor. In that case, we

get infinitely many points in a fiber of br : Hdg/h(ε)→Mh;b(ε).
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In the case of admissible covers (ε = 1), the small Hurwitz stack Hdg/h is dense in Hdg/h(ε). By

Theorem 5.5, this remains the case for arbitrary ε if d ≤ 3. However, this is not true in general, as
illustrated by the following example.

Example 6.11 (Extraneous components in Hdg;h(ε)). For a sufficiently large d and a sufficiently

small ε, we exhibit a point in Hdg/h(ε) that is not in the closure of Hdg/h. For simplicity, take h = 0;

the phenomenon is local, so the case of h = 0 can be used to construct examples for any h.
Let C be a reduced, connected curve that is not a flat limit of smooth curves (see the article

by Mumford [17] for the existence of such curves). For sufficiently large d, we have a finite map
φ : C → P1 of degree d. Let ε be so small that ε ·multp(brφ) ≤ 1 for all p ∈ P1. Then (P1;φ : C →
P1) is a point in Hdg(ε) which, by construction, is not in the closure of Hdg . Thanks to Theorem 5.5,
there are no extraneous components for d = 2 or 3. By Proposition 5.4, unsmoothable singularities
are the only reason for extraneous components.

We end the section with a question prompted by Example 6.11.

Question 6.12. For which d, g and h is H d
g/h irreducible? More generally, for which d, g, h and ε

is Hdg/h(ε) irreducible?

7. Moduli of d-gonal Singularities and Crimping

The goal of this section is to understand the fibers of br : H d → M . Consider a point
s : Spec k → M . For simplicity, assume that it corresponds to a smooth curve P with a marked
divisor Σ. The fiber of br over s consists precisely of degree d covers φ : C → P with brφ = Σ.

Let C̃ → C be the normalization. Since C̃ is smooth, the cover C̃ → P is determined by its

restriction C̃|P\Σ → P \Σ, which is étale. Since there are only finitely many étale covers of degree

d of a smooth curve, there are only finitely many possibilities for φ̃ : C̃ → P . The fiber of br over
s thus decomposes into finitely many (open and closed) components corresponding to the choice

of φ̃ : C̃ → P . Within each component, C → P is obtained by crimping a fixed C̃ → P over the
points of Σ. The crimping can be described formally locally around the points of Σ in P . In this
way, the description of the fibers of br includes the discrete global data of the normalization and
the continuous local data of the crimping.

Moduli of singular curves and the phenomenon of crimping have been studied extensively by
van der Wyck [25]. Our study of crimping in the context of finite covers, however, is much more
elementary.

7.1. The space of crimps of a finite cover. Let Y be a reduced, purely one dimensional Deligne–

Mumford stack over k and Σ ⊂ Y a Cartier divisor. Let φ̃ : X̃ → Y a finite cover of degree d, étale
over Y \Σ. In all the cases we consider, Y is either a (pointed) orbinodal curve or the spectrum of

a DVR. Define the functor Crimpφ̃,Σ : Schemesk → Sets of crimps of φ̃ over Σ by

Crimpφ̃,Σ(T ) = {(X̃ × T → X φ→ Y × T )}/Isomorphism,

where φ : X → Y × T is a finite cover of degree d with br(φ) = Σ× T . Two such crimps X̃ × T →
Xi → Y × T , for i = 1, 2, are isomorphic if there is an isomorphism X1 → X2 that commutes with
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the relevant maps

X̃ × T −−−−→ X1 −−−−→ Y × T∥∥∥ y ∥∥∥
X̃ × T −−−−→ X2 −−−−→ Y × T

.

We sometimes write Crimp(φ̃,Σ) instead of Crimpφ̃,Σ for better readability.

If Z → Y is a morphism such that ΣZ ⊂ Z is also a divisor, then we have a natural transformation

Crimp(φ̃,Σ)→ Crimp(φ̃Z ,ΣZ)

defined by

(X̃ × T → X φ→ Y × T ) 7→ (X̃Z × T → XZ
φZ→ Z × T ).

Let G = Aut(φ̃) be the group of automorphisms of X̃ over the identity of Y. This is a finite

group, which acts on Crimp(φ̃,Σ) as follows:

G 3 α : (X̃ × T ν−→ X φ→ Y × T ) 7→ (X̃ × T ν◦α−1

−→ X φ→ Y × T ).

Remark 7.1. A crimp may be equivalently thought of as a suitable subalgebra φ∗OX of the algebra

φ̃∗OX̃×T on Y×T . Then isomorphism of crimps simply becomes equality of subalgebras. The action

of G is induced by the action of G on φ̃∗OX̃ .

Throughout, we view OX̃×T and OX as sheaves of algebras on Y × T , omitting φ̃∗ and φ∗ to

lighten notation. Observe that the quotient OX̃×T /OX is an OY×T module supported entirely on

Σ× T . In other words, X̃ × T → X is an isomorphism away from Σ× T .

Having defined Crimp(φ̃,Σ) in wide generality, we turn to the case of interest. Let (P →
P ;σ1, . . . , σn) be a pointed orbinodal curve and Σ ⊂ P a divisor supported in the general locus

P gen = Psm \ σ1, . . . , σn. Let φ̃ : C̃ → P be a finite cover, étale over P \ Σ. We begin by making
precise our remark that crimps can be described formally locally around the points of Σ.

Proposition 7.2. Let φ̃ : C̃ → P and Σ be as above.

(1) Let U ⊂ P be an open set containing Σ. Then the transformation

Crimp(φ̃,Σ)→ Crimp(φ̃U ,Σ)

is an isomorphism.
(2) The transformation

Crimp(φ̃,Σ)→
∏

s∈supp(Σ)

Crimp(φ̃×P SpecOP,s,Σ×P SpecOP,s)

is an isomorphism.
(3) The transformation

Crimp(φ̃,Σ)→
∏

s∈supp(Σ)

Crimp(φ̃×P Spec ÔP,s,Σ×P Spec ÔP,s)

is an isomorphism.



30 ANAND DEOPURKAR

Proof. The last assertion is the strongest, so we prove it. Following Remark 7.1, we treat crimps
as subalgebras. For brevity, we set

P̂s = Spec ÔP,s, Σs = Σ×P P̂s, and C̃s = C̃ ×P P̂s,

Given crimps C̃s × T → Cs → P̂s × T for s ∈ supp(Σ), construct a subalgebra OC of OC̃×T as the
fiber product of algebras

OC −−−−→ OC̃×Ty y∏
sOCs −−−−→

∏
sOC̃s×T

.

We thus get a natural transformation∏
s∈supp(Σ)

Crimp(φ̃×P Spec ÔP,s,Σ×P Spec ÔP,s)→ Crimp(φ̃,Σ).

It is easy to check that it is inverse to the transformation in (3). �

7.2. Crimps over a disk. Thanks to Proposition 7.2, we now focus on the crimps of covers of the
formal disk. Set R = kJtK and ∆ = SpecR. Let ∆◦ be the punctured disk ∆ \ {0}. Fix a finite

cover φ̃ : C̃ → ∆ of degree d, étale over ∆◦, with br(φ̃) given by 〈ta〉. Fix a divisor Σ ⊂ ∆ given by
〈tb〉 and set δ = (b− a)/2.

Proposition 7.3. Let C̃ × T → C
φ→ ∆× T be a crimp with br(φ) = Σ× T . Set Q = OC̃×T /OC .

Then Q is a T -flat sheaf on ∆×T annihilated by tb. The restriction of Q to the fibers of ∆×T → T
has length δ.

Proof. In the proof, all the linear-algebraic operations are over O∆×T . First, Q is T -flat simply
because the inclusion i : OC ↪→OC̃×T remains an inclusion when restricted to the fibers of ∆×T → T .
For the rest, consider the diagram

0 −−−−→ O∆×T
δ̃−−−−→ (detO∨

C̃×T
)⊗2 −−−−→ B̃ −−−−→ 0∥∥∥ ydet(i∨)2

y
0 −−−−→ O∆×T

δ−−−−→ (detO∨C)⊗2 −−−−→ B −−−−→ 0

.

The horizontal maps δ̃ and δ define the respective branch divisors as in Subsection 2.1. In particular,
B is annihilated by 〈tb〉. The snake lemma yields the sequence

(7.1) 0→ B̃ → B → coker(det(i∨)2)→ 0.

Since tb annihilates B, it annihilates coker(det(i∨)2), hence coker(det(i∨)), hence coker(i∨) and
hence coker i = Q.

To compute the length of Q on the fibers, replace T by a field. By (7.1), we get

2 lengthQ = length(coker(det(i∨)2))

= lengthB − length B̃

= b− a = 2δ.

�
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Remark 7.4. Recall that for a curve singularity C with normalization Cν , the δ-invariant is the

length of OCν/OC . In Proposition 7.3, if C̃ is smooth, then δ is indeed the δ invariant of C. In this
case, we get the relationship 2δ = b− a between the delta invariant δ, and the multiplicities b and
a of the branch divisors of the cover and its normalization, respectively.

We now exhibit the space of crimps over a disk explicitly as a projective scheme. Set F =
OC̃/t

bOC̃ and denote by Quot = Quot(F, δ) the Quot scheme of length δ quotients of the ∆ module
F . Since suppF is projective (it is finite!), Quot is a projective scheme. The idea is to identify
quotients which arise as OC̃/OC . For this to be true, the quotient must satisfy the following two
properties:

(1) The kernel must be closed under multiplication, to get a subalgebra OC of OC̃ ;
(2) The resulting C → ∆ must have the right branch divisor.

We now formalize both conditions. Let π : ∆×Quot→ ∆ be the projection. On ∆×Quot we have
the universal sequence

0→ S → F ⊗k OQuot → Q→ 0.

The multiplication F ⊗∆ F → F induces maps

S ⊗∆×Quot S → (F ⊗∆ F )⊗k OQuot → F ⊗k OQuot → Q.

Define the closed subscheme X ⊂ Quot as the annihilator of the composite map π∗(S⊗∆×QuotS)→
π∗Q on Quot. This takes care of (1).

On ∆×X, the sheaf S inherits the structure of an O∆×X algebra. Form the subalgebra OC of
OC̃×X as the fiber product

OC −−−−→ OC̃×Xy y
S −−−−→ F ⊗k OX

,

and set C = SpecOC .

Claim. In the above setup, C → ∆×X is flat.

Proof. By the definition of OC , we have the sequence

0→ OC → OC̃×X → Q→ 0.

Since Q is X-flat, we conclude that OC is X-flat and OC → OC̃×X remains an inclusion when
restricted to the fibers of ∆×X → X. For every point x ∈ X, the sheaf OCx is a subsheaf of the
free sheaf OC̃ and hence is free. It follows that OC is a locally free ∆×X module. �

We currently have C̃ ×X → C
φ→ ∆ × X, where C̃ → C is an isomorphism over ∆◦ ×X and

C → ∆×X is finite and flat. We now enforce (2). Define B by

0→ O∆×X
δ→ (detO∨C)⊗2 → B → 0,

where the linear algebraic operations are over O∆×X , and δ is the usual discriminant as in Subsec-
tion 2.1. Observe that δ remains an injection when restricted to the fibers of π : ∆×X → X, and
hence B is X-flat. See that B has fiberwise length b. Define the closed subscheme Y ⊂ X as the
annihilator of

π∗B
tb−→ π∗B.

This condition would be superfluous if X were reduced. However, it appropriately restricts the
non-reduced structure on X, taking care of (2).
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By construction, we have a crimp C̃ × Y → C
φ→ ∆ × Y with brφ = Σ × Y . We thus get a

morphism

(7.2) Y → Crimp(φ̃,Σ).

Proposition 7.5. The morphism Y → Crimp(φ̃,Σ) in (7.2) is an isomorphism. In particular,

Crimp(φ̃,Σ) is a projective scheme.

Proof. We construct the inverse Crimp(φ̃,Σ)→ Y to (7.2). Let T be a scheme and C̃ × T → C
φ→

∆×T a crimp with branch divisor Σ×T . Define the quotient Q = OC̃×T /OC . By Proposition 7.3,

Q is a T -flat quotient of OC̃×T /t
bOC̃×T = F ⊗k OT , fiberwise of length δ. This gives a map T →

Quot(F, δ). Since the kernel of F ⊗k OT → Q is the image of OC , it is closed under multiplication.
Hence T → Quot factors through T → X. Since br(φ) = Σ× T , the cokernel of

O∆×T
δ→ (detO∨C)⊗2

is annihilated by tb. Therefore, the map T → X factors through T → Y . In this way, we get a

morphism Crimp(φ̃,Σ)→ Y , which is clearly inverse to (7.2). �

Corollary 7.6. Let C̃ → P be a finite cover of an orbinodal curve and Σ ⊂ P gen a divisor. Then

the functor Crimp(C̃ → P,Σ) is representable by a projective scheme.

Proof. Follows immediately from Proposition 7.2 and Proposition 7.5. �

Finally, we relate the spaces of crimps with the fibers of br : H d → M . Let p : Spec k → M
be a point corresponding to a divisorially marked, pointed curve (P ; Σ;σ1, . . . , σn). As usual, we

abbreviate σ1, . . . , σn by σ. Let Γ be the set of (P → P ;σ; φ̃ : C̃ → P), where (P → P ;σ) is a

pointed orbinodal curve and φ̃ a finite cover of degree d such that

(1) C̃ ×P Psm is smooth;

(2) φ̃ is étale over P \ Σ; and

(3) φ̃ corresponds to a representable classifying map P → Ad.
Assume that no two elements of Γ are isomorphic over the identity of P . Then Γ is a finite set. We
have a morphism

(7.3)
⊔
Γ

Crimp(φ̃,Σ)→ p×M H d.

given by

(C̃ × T → C φ→ P × T ) 7→ (P × T → P × T ;σ × T ; C φ→ P × T ).

Recall that we have an action of Aut(φ̃) on Crimp(φ̃,Σ). The morphism above clearly descends to
a morphism

(7.4)
⊔
Γ

[Crimp(φ̃,Σ)/Aut(φ̃)]→ p×M H d.

Proposition 7.7. The morphism in (7.3) is finite and surjective. The morphism in (7.4) is repre-
sentable and a bijection on k-points.

Proof. The statement is true almost by design. Nevertheless, here are the details. Let s : Spec k →
p ×M H d be a point given by (P ′ → P ;σ; C → P ′). We first check that the fiber of (7.3) over s
is nonempty and forms one orbit under the group action. Let C′ → C be the partial normalization
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obtained by normalizing C away from its nodes over the nodes of P ′. Then (P ′ → P ;σ; C′ → P ′) is

isomorphic to some (P → P ;σ; C̃ → P) in Γ. Identify P ′ and P via an isomorphism P ∼−→ P ′ over
the identity of P .

For every choice of isomorphism C̃ → C′ over P, we have a point C̃ → C → P of Crimp(C̃ → P,Σ)
lying over s. Conversely, it is clear these are exactly the points in the fiber of (7.3) over s. We
conclude that (7.3) is finite, surjective and (7.4) is a bijection on k points.

Finally, suppose we have a non-trivial automorphism φ̃ : C̃ → C̃ over the identity of P that induces
an automorphism φ : C → C. Then, clearly, φ is non-trivial. Hence (7.4) is representable. �

Proposition 7.7 is as close as we can come to explicitly identifying the fibers of br : H d →M .
This is good enough for determining many crude properties like dimension.
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[16] G. Laumon and L. Moret-Bailly. Champs algébriques, volume 39 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in
Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
Springer-Verlag, Berlin, 2000. ISBN 3-540-65761-4.

[17] D. Mumford. Pathologies IV. 97(3):pp. 847–849, 1975. ISSN 00029327.
[18] D. Mumford. Abelian varieties, volume 5 of Tata Institute of Fundamental Research Studies in

Mathematics. Published for the Tata Institute of Fundamental Research, Bombay, 2008. ISBN
978-81-85931-86-9; 81-85931-86-0. With appendices by C. P. Ramanujam and Yuri Manin,
Corrected reprint of the second (1974) edition.

[19] F. Nironi. Moduli spaces of semistable sheaves on projective Deligne–Mumford stacks.
arXiv:0811.1949, [math.AG], Nov. 2008.

[20] M. Olsson and J. Starr. Quot functors for Deligne–Mumford stacks. Comm. Algebra, 31(8):
4069–4096, 2003. ISSN 0092-7872. doi: 10.1081/AGB-120022454. Special issue in honor of
Steven L. Kleiman.

[21] M. C. Olsson. (Log) twisted curves. Compos. Math., 143(2):476–494, 2007. ISSN 0010-437X.
[22] B. Poonen. The moduli space of commutative algebras of finite rank. J. Eur. Math. Soc.

(JEMS), 10(3):817–836, 2008. ISSN 1435-9855. doi: 10.4171/JEMS/131.
[23] M. Schaps. Deformations of Cohen-Macaulay schemes of codimension 2 and non-singular

deformations of space curves. Amer. J. Math., 99(4):pp. 669–685, 1977. ISSN 00029327.
[24] B. Teissier. Résolution simultanée, I. In Séminaire sur les Singularités des Surfaces, volume
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