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Abstract. Let X be an analytic K3 surface with PicX = 0. We describe the closure of the Bridge-
land stability manifold of X obtained using the masses of semi-rigid objects.

1. Introduction

Associated to a triangulated category C is the complex manifold Stab(C) whose points are the
Bridgeland stability conditions on C [9]. Understanding the global geometry of Stab(C) is an important
question with far-reaching applications. For example, when C is the derived category of coherent
sheaves on a K3 surface, the simple connectedness of Stab(C) allows us to recover the group of auto-
equivalences of C [7]. When C is the 2-Calabi–Yau category associated to a quiver, the topology of
Stab(C) has implications for the word/conjugacy problems and theK(π, 1)-conjecture for the associated
Artin group [11,16].

To better understand the global geometry of a non-compact space like Stab(C), it is useful to
have a compactification. There have been several (partial) compactifications in the literature; see, for
example, [3,5,8,10]. The goal of this paper is to completely describe the compactification constructed
in [3] when C is the derived category of coherent sheaves on a generic analytic K3 surface.

The compactification in [3] is motivated by viewing a stability condition as a metric, and in particular
by Thurston’s compactification of the Teichmüller space of hyperbolic metrics on a surface. We recall
the main idea. Given a stability condition σ on C and an object x ∈ C, the mass of x with respect
to σ, denoted by mσ(x), is the sum mσ(x) =

∑
i |Zσ(xi)|, where the xi are the σ-Harder–Narasimhan

(HN) factors of x and Zσ is the central charge of σ. To construct the compactification, we fix a set of
objects S, and consider the map m : P Stab(C) = Stab(C)/C → PS given by σ 7→ [mσ]. The proposed
compactification is the closure of the image of m.

Theorem 1.1. Let X be an analytic K3 surface with Pic(X) = 0. Let S ⊂ Db Coh(X) be the set of
semi-rigid objects. The map m : P Stab(Db Coh(X)) → PS is a homeomorphism onto its image. The
image is a 2-dimensional open ball and its closure is a 2-dimensional closed ball.

See Figure 1 for an illustration of the compactified stability space. The boundary contains a dis-
tinguished point represented by the function hom(OX ,−) (red point in Figure 1). This is the mass
functions of a lax stability condition in the sense of [10]. The other vertices are mass functions of lax
pre-stability conditions. The other boundary points do not have such interpretation.

Figure 1. For an analytic K3 surface X with Pic(X) = 0, the compactified
P Stab(X) is a closed 2-ball, tiled by the translates of a triangle by the action of
the spherical twist in OX . A distinguished point (red) in the boundary corresponds
to the function hom(OX ,−).
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Theorem 1.1 is a combination of Theorem 4.6 and Theorem 4.7 in the main text. The discussion of
the points in the boundary is in Section 4.4.

For a positive real number q, the mass map has a natural q-analogue mq. The closure of the image
of the stability manifold under mq is also a closed disk. However, in its boundary, the red point in
Figure 1 is replaced by a closed interval (see Figure 2).

Figure 2. The closure of mq(P Stab(X)) is also a closed disk. The boundary has an
additional interval, whose blue end-point is the q-hom functional homq(OX ,−).

For q = 1, the distinguished red point in the boundary has two interpretations: one as the hom
function hom(OX ,−) and the second as the mass function of a lax stability condition σ in which OX

is massless. For q ̸= 1, the two interpretations diverge. The q-hom function homq(OX ,−) yields the
blue end-point in Figure 2 and the q-mass function mq(σ) yields the red end-point.

We can reconcile the two pictures (Figure 1 and Figure 2) by drawing them in the upper half plane
instead of the disk (see Figure 3). The q = 1 picture (Figure 1) corresponds to the union of the
translates of an ideal triangle by the transformation z 7→ z + 1. The only additional point in the
closure (in the closed disk) is the point at infinity. The q ̸= 1 picture (Figure 2) corresponds to the
union of the translates of an ideal triangle by the transformation z 7→ qz + 1. In this case, the closure
(in the closed disk) contains an additional interval. This q-deformation is a simpler version of the
q-deformed Farey tesselation observed in [2].

· · ·· · · · · ·· · ·

Figure 3. The tiling of the disk by triangles in the q = 1 case (left) versus the q ̸= 1
case (right).

In the course of the proof of the main theorem, we also characterise all semi-rigid objects of
Db Coh(X). Up to twists by OX and homological shifts, the only such objects are the skyscraper
sheaves kx (Proposition 3.1).

There are a few other cases where the Thurston compactification of the stability manifold has been
completely described. These include: the 2-Calabi–Yau categories associated to quivers of rank 2 [3]
and the derived categories of coherent sheaves on algebraic curves [14]. In [15] the authors prove that
for any (algebraic) K3 surface X, taking S to be the set of spherical objects gives an injective map
m : P Stab(X) → PS . Understanding its image and its closure is an important goal. The case of
non-algebraic K3s treated here is a step towards it.

1.1. Conventions. An analytic K3 surface is a connected, simply-connected, and compact complex
manifold X of dimension 2 with h1(OX) = 0. By Db(X) we mean the bounded derived category of
the abelian category Coh(X) of coherent sheaves on X, as studied in [12]. For a point x ∈ X, we
denote by kx the push-forward to X of the structure sheaf of x, and call it the skyscraper sheaf at
x. By Stab(X), we denote the set of (locally finite) Bridgeland stability conditions on Db(X) with
a numerical central charge; that is, where the central charge Z : K(Db(X)) → C factors through the
Chern character ch: K(Db(X)) → H∗(X,Q). We let PStab(X) be the quotient of Stab(X) by the
standard action of C, in which z = x + iπy acts by scaling the central charge by ez and shifting the
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slicing by y. Given a set S, we let RS be the space of functions S → R with the product topology
and PS the projective space

(
RS − {0}

)
/scaling.

1.2. Outline. In Section 2, we recall the description of stability conditions on an analytic K3 surface
X with PicX = 0. In Section 3, we identify the semi-rigid objects of Db(X). The bulk of the paper is
Section 4, in which we study the embedding of P Stab(X) given by the masses of semi-rigid objects. In
Section 5, we study the q-analogue of the mass embedding. We do not include the definitions and the
basic properties of stability conditions, and refer the reader to the original source [9] or exposition [6].

1.3. Acknowledgements. This work is a part of a larger project with Asilata Bapat and Anthony
Licata. I am deeply grateful to have them as collaborators. I thank Ziqi Liu, Emanuele Macri, Laura
Pertusi, and Paolo Stellari for discussions related to this project. I was supported by the Australian
Research Council award DP240101084.

2. Stability conditions on generic K3 surfaces

Throughout, fix an analytic K3 surface X with PicX = 0. Since X is a K3 surface, Db(X) is a
2-Calabi–Yau category. That is, for x, y ∈ Db(X), we have a natural isomorphism

Hom(x, y) ∼= Hom(y, x[2]).

2.1. The Mukai lattice. The Mukai lattice N (X) of X is given by

N (X) = (H0 ⊕H4)(X,Z).

Taking the class of X as a generator of the H0 summand and the class of a point x ∈ X as a generator
of the H4 summand, we get an identification

N (X) = Z⊕ Z.

The Mukai pairing is then given by

(α1, α2) · (β1, β2) = α1β2 + α2β1.

Given F ∈ Db(X), we let [F ] = (ch0 F, ch0 F − ch2 F ) ∈ N (X) be its Mukai vector. Then we have

[OX ] = (1, 1) and [kx] = (0, 1).

In particular, [OX ] and [kx] form a basis of N (X).

2.2. Standard stability conditions. We recall basic facts about stability conditions on X from [12,
§ 4]. Let F and T be the full-subcategories of Coh(X) consisting of torsion free and torsion sheaves,
respectively. Then (F , T ) forms a torsion pair. Let A be the tilt of Coh(X) in this torsion pair.
Explicitly,

A = {E ∈ Db(X) | H−1(E) ∈ F and H0(E) ∈ T and for all i ̸∈ {0, 1} : Hi(E) = 0}.
Then A is the heart of a bounded t-structure on Db(X).

Let H ⊂ C be the (open) upper half plane. As proved in [12, § 4.2], for every z ∈ H ∪ R<0, we
have a stability condition σz on Db(X) whose (0, 1] heart is A and whose central charge is given by

Z : [kx] 7→ −1 and Z : [OX ] 7→ −z.
For every w ∈ −H, we have a stability condition σw on Db(X) whose (0, 1] heart is Coh(X) and whose
central charge is given by

Z : [kx] 7→ −1 and Z : [OX ] 7→ −w.
See Figure 4 for a sketch of the two central charges.

Remark 2.1. The combined domain of the parameters z and w in [12, § 4.2] is C − R≥−1. For us,
it is C −R≥0. The difference is due to a slight change in parametrisation. The central charge of σz
in [12, § 4.2] sends kx to −1 (same as ours) and OX to −z−1 (we send it to −z). So our parametrisation
and the parametrisation in [12, § 4.2] are related by z 7→ z + 1.
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−1 = Z1(kx)
= Z2(kx)

−z = Z2(OX)

−w = Z1(OX)

z

w

Figure 4. For w ∈ −H (red), a central charge Z1 as above defines a stability condi-
tion with heart Coh(X). For z ∈ H (green) and z ∈ R<0 (blue), a central charge Z2

as above defines a stability condition whose heart is the tilt of Coh(X) with respect
to torsion and torsion-free sheaves.

We call the stability conditions σz for z ∈ H∪−H∪R<0 the standard stability conditions. We say
that the stability conditions σz for z ∈ R<0 are on the wall, and the rest are off the wall.

Let W+ (resp. W− and W0) be the union of the C-orbits of the stability conditions σz for z ∈ H
(resp. −H and R<0). By definition, the sets W+, W−, and W0 are invariant under the C-action. It is

easy to check that they are also invariant under the ĜL
+

2 (R)-action, and hence coincide with the sets
with the same name defined in the proof of [12, Theorem 4.8]. Set W =W+ ∪W− ∪W0.

2.3. All stability conditions. Recall that the only spherical objects in Db(X) are the shifts of OX

(see [12, Proposition 2.15]). Let T : Db(X) → Db(X) be the spherical twist in OX .

Proposition 2.2. The set W ⊂ Stab(X) is open and the union of its translates TnW , for n ∈ Z, is
Stab(X).

Proof. That W is open is proved in [12, Theorem 4.8]. That Stab(X) =
⋃
TnW is [12, Corollary 4.7].

□

The following proposition allows us to identify the stability conditions in W+, W−, and W0. Recall
that since, up to shifts, OX is the only spherical object, it must be stable in any stability condition [12,
Proposition 2.15].

Proposition 2.3. Let σ be a stability condition and let ϕ be the phase of OX . Then σ is in W if and
only if all the skyscraper sheaves kx are σ-stable of the same phase ψ. In this case, we have

(1) σ ∈W− if ψ ∈ (ϕ, ϕ+ 1),
(2) σ ∈W+ if ψ ∈ (ϕ+ 1, ϕ+ 2),
(3) σ ∈W0 if ψ = ϕ+ 1.

Proof. Since all skyscraper sheaves kx are σ-stable of the same phase for a standard stability condition,
the same is true for any σ ∈W . Conversely, suppose all kx are σ-stable of the same phase. Using the
C-action, assume that their phase ψ is 1 and their central charge is −1. By [12, Proposition 4.6], we
conclude that σ is standard.

Suppose σ = σz for z ∈ −H ∪ H ∪ R<0. Whether z ∈ −H or H or R<0 is distinguished by the
phase ϕ of OX . For z ∈ −H, we have ϕ ∈ (0, 1); for z ∈ H, we have ϕ ∈ (−1, 0); and for z ∈ R<0, we
have ϕ = 0. □

Proposition 2.4. We have TW+ =W− and T−1W− =W+.

Proof. We prove that for a standard σ ∈ W−, we have T (σ) ∈ W+, and for a standard σ ∈ W+, we
have T−1(σ) ∈W−. Then the proposition follows.

Take a standard σ ∈ W− and let us prove that T−1(σ) ∈ W+. Let ϕ ∈ (0, 1) be the phase of OX .
It is easy to check that the ideal sheaves Ix of points x ∈ X are σ-stable of the same phase ψ ∈ (0, ϕ).
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Let x ∈ X be any point. Since Hom∗(OX ,kx) = C, we have the exact triangle

OX
ev−→ kx → Tkx

+1−−→ .

Therefore, Tkx = Ix[1]. So Tkx is σ-stable of phase ψ+1. Therefore, T−1Ix[1] = kx is T−1(σ)-stable
of phase ψ + 1 ∈ (1, ϕ+ 1). On the other hand, T−1OX = OX [1] is T−1(σ)-stable of phase ϕ, so OX

is T−1(σ)-stable of phase ϕ− 1. We now apply Proposition 2.3.
Now take a standard σ ∈ W+ and let us prove that T (σ) ∈ W−. Let ϕ ∈ (−1, 0) be the phase of

OX . The objects T−1kx are σ-stable of phase ψ ∈ (ϕ+1, 1) (see [12, Remark 4.3 (i)]). Therefore, the
skyscraper sheaves kx are T (σ)-stable of phase ψ ∈ (ϕ + 1, 1). Since OX is σ-stable of phase ϕ, it is
T (σ)-stable of phase ϕ+ 1. We again apply Proposition 2.3. □

We now turn to the topology of the set of standard stability conditions and the stability conditios
in W . Let H ⊂ Stab(X) be the set of standard stability conditions. Let R = C \ R≥0. We have a
map R→ H given by z 7→ σz. We also have the projection map H → PW =W/C.

Proposition 2.5. The maps R→ H and H → PW are homeomorphisms.

Proof. By definition, the map R→ H is a bijection. By the proof of [12, Theorem 4.8] (part (ii)), the
map R→ H is continuous. Its inverse is given by σ 7→ −Zσ(OX), which is also continuous. So R→ H
is a homeomorphism.

By Proposition 2.3, the map H → PW is surjective. Owing to the normalisation of the phase and
mass of kx, it is also injective. It remains to prove that the inverse is continuous. We know that W is
an open subset of Stab(X). It is also C-invariant, so PW is an open subset of PStab(X). Thus, the
map PW → PHom(N (X),C) is a local homeomorphism. We have the commutative diagram

R H PW

R PHom(N (X),C),

∼

where the bottom map is given by Z 7→ Z(OX)/Z(kx). Since this map is continuous, it follows that
PW → H is continuous. □

3. Semi-rigid objects

Recall that an object F in Db(X) is semi-rigid if

homi(F, F ) =


1 if i = 0

2 if i = 1

1 if i = 2, and

0 otherwise.

For example, for x ∈ X, the skyscraper sheaf F = kx and the ideal sheaf F = Ix are semi-rigid. We
now characterise the semi-rigid objects of Db(X). Recall that T : Db(X) → Db(X) is the spherical
twist in OX .

Proposition 3.1. Let X be a K3 surface with PicX = 0. Let F ∈ Db(X) be semi-rigid. Then there
exists x ∈ X and integers m,n such that F ∼= Tnkx[m].

We split the proof in two lemmas.

Lemma 3.2. Fix a standard stability condition σ ∈ W−. Let F ∈ Db(X) be semi-rigid and σ-semi-
stable. Then there exists x ∈ X such that F or T−1F is a shift of kx.

Proof. Since F is semi-rigid, [F ] · [F ] = 0 in N (X). So [F ] is an integer multiple of (0, 1) or (1, 0).
Suppose [F ] is a multiple of (0, 1). Since [kx] = (0, 1), after applying a shift, we may assume that

F is σ-semi-stable of the same phase as kx, namely 1. It is easy to check that the abelian category of
σ-semi-stable objects of phase 1 is F , the category of torsion sheaves on X. It is a finite length category
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whose simple objects are the skyscraper sheaves kx. So F is an iterated extension of skyscraper sheaves.
Since hom1(F, F ) = 2, the Mukai lemma [12, Lemma 2.7] implies that F must simply be a skyscraper
sheaf.

Suppose [F ] is a multiple of (1, 0). Then [T−1F ] is a multiple of (0, 1) and T−1F is semi-stable with
respect to τ = T−1σ. By Proposition 2.4, we have τ ∈ W+. By applying a rotation, assume that τ is
standard. Then, after applying a shift, we may assume that T−1F is τ -semi-stable of the same phase
as kx, namely 1. Again, it is easy to check that the abelian category of τ -semi-stable objects of phase
1 is F . We now proceed as before. □

Given a stability condition σ, denote by ϕ+σ and ϕ−σ the highest and lowest phases of the factors in
the σ-HN filtration. If σ is clear from the context, we omit the subscript.

Lemma 3.3. Fix a standard stability condition σ ∈W−. Let F ∈ Db(X) be a semi-rigid object. There
exists a non-negative integer n such that TnF is σ-semi-stable.

Proof. Since F is semi-rigid, all stable factors of F are either spherical or semi-rigid, and only one
stable factor is semi-rigid [12, Proposition 2.9]. The only spherical object, up to shift, is OX . By
Lemma 3.2, the only semi-stable semi-rigid objects, up to shift, are kx and T−1kx. In particular, the
phases of the HN factors of F lie in the discrete subset of R given by

(ϕσ(OX) + Z) ∪ (ϕσ(kx) + Z) ∪
(
ϕσ(T

−1kx) + Z
)
.

Therefore, there exists a discrete Φ ⊂ R such that for every semi-rigid object F , we have

ϕ+(F )− ϕ−(F ) ∈ Φ.

If F itself is semi-stable, we simply take n = 0. Otherwise, up to shift, a stable HN factor of F of
highest or lowest phase must be OX . We apply [4, Theorem 3.5] with Y = F and X = OX . Then for
F ′ = TF or F ′ = T−1F , we have

ϕ+(F ′)− ϕ−(F ′) < ϕ+(F )− ϕ−1(F ).

By repeated applications of [4, Theorem 3.5] and using that ϕ+ − ϕ− lies in the discrete set Φ ⊂ R,
we conclude that there exists an integer n such that TnF is semi-stable. □

Having proved the two lemmas, we are ready to prove Proposition 3.1—the only semi-rigid objects
of Db(X), up to twisting by OX and shifting, are the skyscraper sheaves kx.

Proof of Proposition 3.1. Combine Lemma 3.2 and Lemma 3.3. □

4. The mass embedding

Recall that X is an analytic K3 surface with PicX = 0. Let S be the set of isomorphism classes of
semi-rigid objects of Db(X). In this section, we describe the mass embedding

m : P Stab(X) → PS

and the closure of its image.

4.1. HN filtration of semi-rigid objects. To understand the mass embedding, we must understand
the HN filtrations of the objects of S. By Proposition 3.1, the objects of S, up to shift, are Tnkx for
x ∈ X and n ∈ Z. For points x, y ∈ X, the behaviour of Tnkx and Tnky is entirely analogous to each
other. So we lose nothing by fixing a particular point x ∈ X and taking

S = {Tnkx | n ∈ Z}.
We may then write the points of PS as homogeneous vectors [xn | n ∈ Z] = [· · · : x−1 : x0 : x1 : · · · ].
In these coordinates, the spherical twist T acts as a shift.

We first treat HN filtrations with respect to off the wall stability conditions.

Proposition 4.1. Let σ ∈ W−. Then the σ-HN factors of F = Tnkx, in decreasing order of phase,
are as follows.
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(1) For n = 0 and 1, the object F is stable.
(2) For n ≥ 2, the semi-stable (= stable) factors of F are Tkx and OX [i] for 0 ≥ i ≥ −n+ 2.
(3) For n ≤ −1, the semi-stable (= stable) factors of F are OX [i] for −n ≥ i ≥ 1 and kx.

Proof. Recall that kx and Tkx = Ix[1] are stable for stability conditions in W−. So (1) follows.
Consider the triangle

(1) Hom∗(OX , T
n−1kx)⊗OX → Tn−1kx → Tnkx

+1−−→ .

We have

Hom∗(OX , T
n−1kx) = Hom∗(T−n+1OX ,kx)

= Hom∗(OX [n− 1],kx)

= C[−n+ 1].

By substituting in (1) and shifting, we get

(2) Tn−1kx → Tnkx → OX [−n+ 2]
+1−−→ .

Let us assume n ≥ 2, and induct on n. Assume we know that the HN factors of Tn−1kx (in
decreasing order of phase) are Tkx followed by OX [i] for 0 ≥ i ≥ −n + 3. Concatenating the HN
filtration of Tn−1kx and the map Tn−1kx → Tnkx, we obtain a filtration of Tnkx whose factors are
Tkx and OX [i] for 0 ≥ i ≥ −n + 2. Since these factors are stable and appear in decreasing order of
phase, this must be the HN filtration of Tnkx. The induction step is complete.

Now let us assume n ≤ −1, and induct on −n. Consider the triangle

(3) OX [−n] → Tnkx → Tn+1kx
+1−−→,

obtained by replacing n by n+1 in (2) and shifting. Assume we know that the HN factors of Tn+1kx

(in decreasing order of phase) are OX [i] for −n− 1 ≥ i ≥ 1 and kx. By augmenting the HN filtration
of Tn+1kx by the map OX [−n] → Tnkx, we obtain a filtration of Tnkx whose factors are OX [i] for
−n ≥ i ≥ 1 and kx. Since these factors are stable and appear in decreasing order of phase, this must
be the HN filtration of Tnkx. The induction step is complete. □

For stability conditions on the wall, the HN filtration degenerates as expected.

Proposition 4.2. Let σ ∈ W0. Then the σ-HN factors of F = Tnkx, in decreasing order of phase,
are as follows.

(1) For n = −1, 0 and 1, the object F is semi-stable.
(2) For n ≥ 2, the semi-stable factors of F are Tkx and OX [i] for 0 ≥ i ≥ −n+ 2.
(3) For n ≤ −2, the semi-stable factors of F are OX [i] for −n ≥ i ≥ 2 and T−1kx.

Proof. The proof is analogous to the proof of Proposition 4.1. □

4.2. The mass map. We now have the tools to describe the mass map

m : P Stab(X) → PS .

Proposition 4.3. Let σ ∈ PW−. Set a = |Zσ(kx)| and b = |Zσ(Tkx)| and c = |Zσ(OX)|.
(1) The numbers a, b, c are positive real numbers satisfying

b < a+ c, a < b+ c, c < a+ b.

(2) We have

mσ : T
nkx 7→

{
a− nc if n ≤ 0,

b+ (n− 1)c if n ≥ 1.
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(3) Let ∆0 ⊂ PS be the locally closed subset consisting of points of the form

[· · · : a+ 2c : a+ c : a : b : b+ c : b+ 2c : · · · ],
where a is at index 0 and b is at index 1, and where a, b, c are positive real numbers satisfying
the inequalities in (1). Then m : PW− → ∆0 is a homeomorphism.

Proof. Part (1) follows from the fact that the classes of OX , kx, and Tkx satisfy

[OX ] = [kx]− [Tkx].

Part (2) follows from Proposition 4.1.
For part (3), let ∆ ⊂ P2 be the set of points [a : b : c] that satisfy the conditions in (1). Then we

have a homeomorphism ∆ → ∆0 given by

[a : b : c] 7→ [· · · : a+ 2c : a+ c : a : b : b+ c : b+ 2c : · · · ].
We use [a : b : c] ∈ ∆ as coordinates on ∆0. By Proposition 2.5, the map w 7→ σw gives a homeomor-
phism −H → PW−. We use w ∈ −H as a coordinate on PW−. In these coordinates, writing down
the inverse map ω : ∆ → PW− amounts to re-constructing the central charge given a, b, c. This can
be done using the cosine rule (see Figure 5). Precisely, we have

(4) ω([a : b : c]) = −(b/a exp(iθ)− 1), where θ = arccos

(
a2 + b2 − c2

2ab

)
∈ (0, π),

which is continuous. □

a
Z(kx)

b

−Z(Tkx)

c

Z(OX)

θ

b
Z(kx)

c

−Z(OX)

a

Z(T−1kx)

θ

Figure 5. We can use the cosine rule to reconstruct the central charge of a standard
σ ∈ W− from the masses a, b, c of kx, Tkx,OX (left) and of σ ∈ W+ from the masses
a, b, c of T−1kx,kx,OX (right).

For n ∈ Z, let ∆n ⊂ PS be the locally closed subset consisting of points of the form

[· · · : a+ 2c : a+ c : a : b : b+ c : b+ 2c : · · · ],
where a is at index n, and where a, b, c are positive real numbers satisfying the (strict) triangle in-
equalities. Denote by T : PS → PS the map that shifts the homogeneous coordinates rightwards by 1,
so that ∆n = Tn∆0. Recall that we also denote by T : Stab(X) → Stab(X) the action of the spherical
twist by OX . We have

m(T (σ)) = T (m(σ)).

Proposition 4.3 implies that the mass map TnPW− → ∆n is a homeomorphism. In particular, the mass
map T−1PW− = PW+ → ∆−1 is a homeomorphism. It is useful to write the inverse ∆−1 → PW+

using coordinates [a : b : c] on ∆−1 as in the proof of Proposition 4.3 and the coordinate on W+

given by z ∈ H. Recall that the [a : b : c] coordinates represent a = m(T−1kx) and b = m(kx) and
c = m(OX). Then the map [a : b : c] 7→ z is (see Figure 5):

(5) [a : b : c] 7→ c/b exp(iθ), where θ = arccos

(
b2 + c2 − a2

2bc

)
∈ (0, π).

Let I0 ⊂ PS be the set of points of the form

[· · · : a+ 2c : a+ c : a : a+ c : a+ 2c : · · · ],
where a is at index 0 and a, c are positive real numbers.
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Figure 6. The mass map gives a homeomorphism from the set of standard stability
conditions parametrised by −H ∪H ∪R<0 and the union of two open triangles and
a segment that forms a wall between them.

Proposition 4.4. Let σ ∈ PW0. Set a = |Zσ(kx)| and c = |Zσ(OX)|. Then

mσ : T
nkx 7→ a+ |n|c.

Furthermore, the map m : PW0 → I0 is a homeomorphism.

Proof. The description of mσ follows from Proposition 4.2. The inverse of m : PW0 → I0 is given using
the central charge Z(kx) = −1 and Z(OX) = c/a. □

Proposition 4.5. The map m : PW → ∆0 ∪ I0 ∪∆−1 is a homeomorphism.

See Figure 6 for a sketch.

Proof. The set PW is the disjoint union of PW−, PW+, and PW0. The sets ∆0, I0, and ∆−1 are also
disjoint. Furthermore, the maps PW− → ∆0, PW+ → ∆−1, and PW0 → I0 are homeomorphisms. So
m : PW → ∆0 ∪ I0 ∪∆−1 is a continuous bijection.

We check that the inverse is continuous. Since −H∪H∪R<0 → PW is a homeomorphism, we use
the former as local coordinates for PW . Let ∆ ⊂ P2 be the set of points [a : b : c] where a, b, c are
positive real numbers satisfying the triangle inequalities

b ≤ a+ c, a < b+ c, c < a+ b.

It is easy to check that the map ∆ → ∆0 ∪ I0 given by

[a : b : c] 7→ [· · · : a+ c : a : b : b+ c : · · · ]
is a homeomorphism. So we may use a, b, c as local coordinates on ∆0 ∪ I0. Using (4), we see that the
inverse map ∆0 ∪ I0 → −H ∪R<0 is given in coordinates by

[a : b : c] 7→ −b/a exp(iθ) + 1, where θ = arccos

(
a2 + b2 − c2

2ab

)
∈ [0, π),

which is continuous.
Let ∆

′ ⊂ P2 be the set of points [a : b : c] where a, b, c are positive real numbers satisfying the
triangle inequalities

b < a+ c, a ≤ b+ c, c < a+ b.

Then the map ∆
′ → ∆−1 ∪ I0 given by

[a : b : c] 7→ [· · · : a+ c : a : b : b+ c : · · · ]
is a homeomorphism. So we may use a, b, c as local coordinates on ∆−1 ∪ I0. Using (5), we see that
the inverse map ∆−1 ∪ I0 → H ∪R<0 is given in coordinates by

[a : b : c] 7→ c/b exp(iθ), where θ = arccos

(
b2 + c2 − a2

2bc

)
∈ (0, π],

which is continuous.
Since the inverse is continuous on ∆0 ∪ I0 and ∆−1 ∪ I0, we conclude that it is continuous on

∆0 ∪∆−1 ∪ I0. □

Let D ⊂ PS be the union of the triangles ∆n for n ∈ Z and the intervals In for n ∈ Z.

Theorem 4.6. The mass map gives a homeomorphism m : P Stab(X) → D.
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Proof. By Proposition 2.2 and Proposition 2.4, we see that P Stab(X) is the union of TnPW− for
n ∈ Z and TnPW0 for n ∈ Z. From Proposition 2.3, it follows that this is a disjoint union. Likewise,
D is the disjoint union of ∆n for n ∈ Z and In for n ∈ Z. Since m : PW− → ∆0 and m : PW0 → I0
are bijections, we conclude that m : PStab(X) → D is a bijection. It is also continuous. It remains to
prove that the inverse is continuous.

Let U = ∆0 ∪ I0 ∪∆−1. Observe that

U = {[an] ∈ D | 2a0 < a1 + a−1}.

So U ⊂ D is open. From Proposition 4.5, we know that the inverse of m is continuous on U . But TnU
for n ∈ Z form an open cover of D. So the inverse of m is continuous on D. □

4.3. Identifying the image and its closure. Let D ⊂ PS be the closure of D. Our next goal is to
identify the homeomorphism classes of D and D. To do so, it will be useful to work with an auxiliary
space, which we now define.

Let I ⊂ P1 be the set of [v : w] where v, w are non-negative real numbers. Then I is homeomorphic
to a closed interval. Let R = R ∪ {±∞} be the two point compactification of R, also homeomorphic
to a closed interval. Our auxiliary space will be R× I.

Define the transformation T on R× I by

T : (u, [v, w]) 7→ (u+ 1, [v : w]).

Recall that we also denote by T the action of the spherical twist by OX on P Stab(X) and the rightward
shift by 1 on PS . (We intentionally use the same letter T to denote these maps, which are related.)
Our eventual goal is to understand D via a T -equivariant parametrisation

π : R× I → D.

For n ∈ Z, set

Pn = (· · · , 2, 1, 0, 1, 2, · · · ) ∈ RS ,

where the 0 is at index n. Note that Pn = TnP0. Set

Q = (· · · , 1, 1, 1, · · · ) ∈ RS .

Observe that P−1, P0, and Q are the three vertices of the closure ∆0 of the triangle ∆0 ⊂ PS , which is
the homeomorphic image of PW−. The three sides of ∆0 are the line segments P−1P0, P−1Q, and P0Q.
The open line segment P0Q is the homeomorphic image of PW0. The entire picture is T -invariant, so
the discussion above holds with −1, 0, 1 replaced by n− 1, n, n+ 1 for any n ∈ Z.

Consider the map π : [0, 1]× I → PS defined by

π(u, [v : w]) = (1− u)(wQ+ vP0) + u(wQ+ vP1).

Note that for u = 0 (resp. u = 1), the map π is a homeomorphism onto the closure of I0 (resp.
I1), which are the two sides P0Q and P1Q of the triangle ∆0. For 0 < u < 1, the map π linearly
interpolates between the two end-points π(0, [v : w]) and π(1, [v : w]), and hence its image is ∆0. In
fact, it is easy to check that the map

π : [0, 1]× (I − {[0 : 1]}) → ∆0 − {[· · · 1 : 1 : 1 : · · · ]}

is a homeomorphism, and π sends the entire segment [0, 1]× [0 : 1] to the point [· · · 1 : 1 : 1 : · · · ]. Note
that, with the T actions as before, we have

Tπ(0, [v : w]) = πT (0, [v : w]).

Thus, π extends to a unique T -equivariant continuous map

π : R× I → PS .

Explicitly, for x = n+ u, where n ∈ Z and u ∈ [0, 1), we have

π(x, [v : w]) = wQ+ (1− u)vPn + uvPn+1.
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Note that in RS we have

lim
n→±∞

1

n
Pn = (· · · , 1, 1, 1, · · · ).

Extend π to {±∞} × I by setting

π(±∞, [v : w]) = [· · · : 1 : 1 : 1 : · · · ].

Then, using the limit computation above, it is easy to check that πq is continuous.

Theorem 4.7. The map π : R× I → PS is continuous. It sends the set

C = {±∞} × I ∪R× {[0 : 1]}

to the point [· · · : 1 : 1 : 1 : · · · ]. Let R × [0, 1] → B be the contraction of C to a point. Then the

induced map π : B → PS is a homeomorphism onto D = m(P Stab(X)).

Note that B is homeomorphic to a closed disk. See Figure 7 for a sketch.

Proof. We have seen that π is continuous. It is easy to check that it is injective on the complement of
C, and its image on the complement of C does not include the point [· · · : 1 : 1 : 1 : · · · ]. It evidently
sends all points of C to [· · · : 1 : 1 : 1 : · · · ]. So it induces a continuous injective map π : B → PS . Since
B is compact and PS is Hausdorff, π maps B homeomorphically onto its image. By construction, π
maps the interior of R× I to D. So π(B) must be D. □

· · · · · ·

m(P Stab(X)) ⊂ PS

∼

Figure 7. The map π : R× [0, 1] → PS induces a homeomorphism from a closed disk
B onto the closure of the image of Stab(X). The disk B is obtained from the square
R× [0, 1] by collapsing three sides (red). The Z-indexed decomposition of the image
into triangles corresponds to the translates of a fundamental domain of P Stab(X) by
the spherical twist T .

4.4. Points of the boundary. Observe that D contains the point • = [· · · : 1 : 1 : 1 : · · · ]. This is the
common vertex (drawn in red in Figure 7) of all the triangles that tile D. It is the unique T -invariant
point of D. This point is precisely the projectivised hom function hom(OX ,−), whose value on Tnkx

for any n ∈ Z is

dimHom∗(OX , T
nkx) = 1.

The fact that • is in the boundary is a reflection of the following more general fact.

Theorem 4.8 ( [3, Corollary 4.13]). Let a be a spherical object of a triangulated category C, and
assume that it is a stable object of a stability condition σ. Let S be a set of objects of C such that no
object in S has an endomorphism of negative degree. For simplicity, also assume that no shift of a is
in S. Let T be the spherical twist in a. Then, in PS, we have the equality

lim
n→±∞

Tn[mσ] = [hom(a,−)].
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The point • also has an interpretation as the mass function of a lax stability condition in the sense of
Broomhead, Pauksztello, Ploog, and Woolf [10]. We quickly recall the main features of the definition.
A lax stability condition is a slicing P and a compatible central charge Z. The central charge is allowed
to vanish on the classes of non-zero semi-stable objects (such objects are called “massless”). The pair
(P,Z) must satisfy the following two finiteness conditions:

(1) The slicing P is locally finite.
(2) The central charge satisfies the support property. That is, for a choice of a norm ∥ − ∥ on

N (X), there exists a positive constant c such that for every massive stable object s, we have
|Z(s)|/∥s∥ > c.

A pair (P,Z) that satisfies the first condition is called a lax pre-stability condition.
Recall that A is the tilt of CohX in the torsion pair defined by torsion and torsion-free sheaves. We

let P to be the slicing defined by P (1) = A and P (ϕ) = 0 for ϕ ∈ (0, 1). The simple objects of P (1)
are the skyscraper sheaves kx and the objects E[1], where E is a vector bundle of rank on X with no
non-trivial sub-bundles (see [12, Remark 4.3 (iii)]). We let Z(OX) = 0 and Z(kx) = −1.

Proposition 4.9. The pair (P,Z) as above defines a lax stability condition σ that is a limit of standard
stability conditions. Furthermore, m(σ) = [· · · : 1 : 1 : 1 : · · · ].

Proof. It is easy to check that the abelian category A is of finite length (Noetherian and Artinian).
So the slicing is locally finite. Let E be a vector bundle with no non-trivial sub-bundles, and let
[E] = r[OX ]+m[kx]. Then r = rkE and Z(E) = −m. Assume that E is not isomorphic to OX . Then
Hom(OX , E) = Hom(E,OX) = 0. So

0 ≥ χ(OX , E) = 2r +m,

and hence m ≤ −2r. As a result, with the norm on N (X) in which [OX ] and [kx] form an orthonormal
basis, we see that

|Z(E)|/∥E∥ ≥ |m|√
r2 +m2

≥ 2√
5
.

So the support property holds.
Finally, note that σ is the limit of the stability conditions in PW0 as Z(OX)/Z(kx) approaches 0.

Since mσ(T
nkx) = 1, the last equality follows. □

Consider the points Pn of D. These are the vertices of the tiling triangles other than the vertex •.
They form a single T -orbit, so it suffices to focus on one of them, say P0 = [· · · : 2 : 1 : 0 : 1 : 2 : · · · ],
with the 0 at index 0. Note that this is the common vertex, other than •, of the triangles PW+

∼= ∆−1

and PW− = ∆0. This is the mass function of a lax pre-stability condition, which does not satisfy the
support property. Let P be the same slicing as before, and set Z(OX) = 1 and Z(kx) = 0.

Proposition 4.10. The pair (P,Z) as above defines a lax pre-stability condition τ that is a limit of
standard stability conditions and m(τ) = [· · · : 2 : 1 : 0 : 1 : 2 : · · · ]. However, τ does not satisfy the
support property.

Proof. Since A is of finite length, the slicing is locally finite. So τ is a lax pre-stability condition.
It is easy to check that mτ (T

nkx) = |n|. Note that τ is the limit of stability conditions in PW0 as
Z(OX)/Z(kx) approaches −∞.

To see that the support property fails for τ , recall that the simple objects of A are the skyscraper
sheaves kx and shifts by 1 of vector bundles with non-trivial sub-bundles. The skyscraper sheaves
are massless, and hence do not obstruct the support property. On the other hand, for a fixed integer
r ≥ 2 and sufficiently large c2 (depending on r), there exist vector bundles E of rank r on X with
no-nontrivial sub-bundles and c2(E) = c2 (see [1, Théoème 5.3]). For such a vector bundle E, we have
Zτ (E) = r but the norm of [E] = (r, r − c2) may be arbitrarily large. So |Z(E)|/∥E∥ is not bounded
below by any positive constant. □
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Finally, consider a point on the open line segment joining v0 and v1. This point is in the closure
of PW− = ∆0. We claim that it is not the mass function of a lax pre-stability condition arising as a
limit of stability conditions W−.

To see this, it is helpful to consider a handful of other semi-stable objects. Let n ≥ m be positive
integers. Let x1, . . . , xn ∈ X be distinct points, and set S = {x1, . . . , xn}. We say that a morphism
π : O⊕m

X → OS is generic if for every subset T ⊂ S, the induced map on global sections

H0(O⊕m
X ) → H0(OT )

has maximal rank, namely min(m, |T |).
For some w ∈ −H, let σ = σw be the corresponding standard stability condition. Let Im,n be the

kernel of a generic morphism from O⊕m
X to the structure sheaf of n-points. Then it is easy to check

that Im,n is σ-stable.

Fix a point p ∈ D on the line segment joining v0 and v1. Then, for some t > 0, we can write

p = [· · · : 2 + t : 1 : t : 1 + 2t : · · · ].
If we take a sequence of standard stability conditions in W− whose mass function approaches p, their
slicings do not converge. Therefore, there is no limiting lax pre-stability condition with the mass
function p. We now make this precise.

Recall that the topology on the space of slicings is induced by the metric d defined as follows. For
a slicing P and non-zero object c, let ϕ±P (c) denote the highest/lowest phase of the P -HN factors of c.
Then the distance d(P,Q) between two slicings P and Q is

d(P,Q) = supc̸=0

{
max(|ϕ+P (c)− ϕ+Q(c)|, |ϕ

−
P (c)− ϕ−Q(c)|)

}
.

Suppose σ is a lax stability condition that is a limit of a sequence of standard stability conditions σw
for w ∈ −H with m(σ) = p. Then, possibly after a rotation and scaling, the central charge of σ must
send kx to −1 and OX to −1− t. But then

Z(Im,n) = mZ(OX)− nZ(kx) = n−m(1 + t).

It follows that for for every (n,m) with n/m > (1 + t), the sheaf Im,n is σ-semi-stable of phase 0 and
for n/m < (1 + t), it is σ-semi-stable of phase 1. But this is absurd. Indeed, for a standard stability
condition σw, we have

inf
n/m>1+t

ϕσ(In,m) = sup
n/m<1+t

ϕσ(In,m),

so the same equality must hold in the limit.
In summary, we see three distinct kinds of limit points in the boundary from the point of view of

lax stability conditions:

(1) The object OX can become massless in a lax stability condition, leading to the limit mass
function Q.

(2) The objects kx and Ix = Tkx[−1] can become massless in a lax pre-stability condition, leading
to the limit mass functions P0 and P1.

(3) Other semi-stable sheaves (for example, Im,n) cannot become massless in lax pre-stability
conditions.

This trichotomy is consistent with the density of the phase diagram (see the discussion in [10, § 12]).
Let σ ∈ W− be a standard stability condition. It is easy to check that the classes r[OX ] + n[kx] that
support semi-stable sheaves are precisely r = 0 and n ≥ 1; or r ≥ 1 and n = 0; or r ≥ 1 and −n ≥ r
(see Figure 8). Consider the phase diagram—the possible phases of semi-stable objects plotted on
the unit circle. There, OX is an isolated point, kx is a right accumulation point, and Ix is a left
accumulation point. At all points on the arc from kx[−1] to Ix (and its negative), the phase diagram is
dense in the circle. As OX becomes massless, the stability conditions converge preserving the support
property. As kx or Ix become massless, the slicings converge, but the support property is lost. But
if the central charge vanishes on a point on the open arc from kx[−1] to Ix, even the slicings do not
converge.
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OX

kx

Ix

Figure 8. The central charges of semi-stable objects in a standard stability condition
with heart CohX are the lattice points in the shaded region. As a result, the phases
are dense in the blue region of the unit circle.

5. The q-mass embedding

Fix a positive real number q. Given a stability condition σ and an object x, recall that the q-mass
of x with respect to σ is defined by

mq,σ(x) =
∑

|Zσ(xi)|qϕ(xi),

where the sum is taken over the σ-HN factors xi of x, and ϕ(xi) is the phase of xi. We have the map

mq : P Stab(X) → PS

given by σ 7→ mq,σ. We describe the image of mq and its closure for q ̸= 1. Most of the arguments are
direct analogues of the arguments for q = 1, so we will be brief.

Let σ ∈ PW−. Set a = mq,σ(kx) and b = mq,σ(Tkx) and c = mq,σ(OX). Owing to the triangle

OX → kx → Tkx
+1−−→,

the positive real numbers a, b, c satisfy the q-triangle inequalities

(6) b < a+ qc, a < b+ c, c < a+ q−1b.

(See [13, Proposition 3.3] for a proof of the q-triangle inequalities). From the σ-HN filtration of Tnkx

from Proposition 4.1, we get

mq,σ : T
nkx 7→


a+ cq−n + · · ·+ cq2 for n ≤ −2,

a for n = 0,

b for n = 1,

b+ cq0 + · · ·+ cq−n+2 for n ≥ 2.

So, in homogeneous coordinates, the q-mass map is

mq : σ 7→ [· · · : a+ cq + cq2 : a+ cq : a : b : b+ c : b+ c+ cq−1 : · · · ]

Let ∆ ⊂ P2 be the set consisting of [a : b : c] where a, b, c are positive real numbers satisfying (6).
Then the map PW− → ∆ that takes σ to [mq,σ(kx) : mq,σ(Tkx) : mq,σ(OX)] is a homeomorphism.
The proof is analogous to the proof of Proposition 4.3 (3), but uses the q-analogue of the cosine
rule [2, Lemma 5.2].

Consider σ ∈ PW0. With a, b, c as before, we have b = a + qc. From the σ-HN filtration of Tnkx

from Proposition 4.1, we get

mq,σ : T
nkx 7→


a+ cq−n + · · ·+ cq2 for n ≤ −2,

a for n = 0,

a+ cq + · · ·+ cq−n+2 for n ≥ 1.
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So, in homogeneous coordinates, the q-mass map is

σ 7→ [· · · : a+ cq + cq2 : a+ cq : a : a+ cq : a+ cq + c : · · · ].

Set I0 = mq(PW0) and In = TnI0. Then mq : T
nPW0 → In is a homeomorphism.

Let Dq ∈ PS be the union of ∆n and In for n ∈ Z.

Theorem 5.1. The q-mass map

mq : P Stab(X) → Dq

is a homeomorphism.

The proof is analogous to the proof of Theorem 4.6.
We now identify the homeomorphism type of Dq and its closure Dq. The basic technique is as

before—by parametrising Dq by a compactified infinite strip of squares. But the resulting picture is
slightly different. Without loss of generality, assume q > 1.

Recall that I ⊂ P1 is the set of [v : w] where v, w are non-negative real numbers. Let R = R∪{±∞}
be the two point compactification of R. Define the transformation T on R× I by

T : (u, [v, w]) 7→ (u+ 1, [qv : w]).

Recall that we also denote by T the action of the spherical twist by OX on P Stab(X) and the rightward
shift by 1 on PS .

We define a T -equivariant parametrisation

πq : R× I → Dq,

which is a q-analogue of the parametrisation π from Theorem 4.7. For n ∈ Z, set

Pn = (· · · , 1 + q, 1, 0, 1, 1 + q−1, · · · ) ∈ RS ,

where the 0 is at index n. Note that Pn = TnP0. Set

Q = (· · · , 1, 1, 1, · · · ) ∈ RS .

Consider the map πq : [0, 1]× I → PS defined by

πq(u, [v : w]) = (1− u)(wQ+ vP0) + u(wQ+ q−1vP1).

Note that for u = 0 (resp. u = 1), the map πq is a homeomorphism onto the closure of I0 (resp. I1),
which are the two sides of the triangle ∆0. For 0 < u < 1, the map πq linearly interpolates between

the two end-points πq(0, [v : w]) and πq(1, [v : w]), and hence its image is ∆0. Also observe that
πq(u, [0 : w]) = Q. Furthermore, with the T actions as before, we have

Tπq(0, [v : w]) = πqT (0, [v : w]).

Thus, πq extends to a unique T -equivariant continuous map

πq : R× I → PS .

Explicitly, for x = n+ u, where n ∈ Z and u ∈ [0, 1), we have

πq(x, [v : w]) = wQ+ (1− u)q−nvPn + uq−n−1vPn+1.

Let δ = 1 + q−1 + q−2 + · · ·. Then, in RS we have

lim
n→−∞

Pn = (. . . , δ, δ, δ, . . . ) and lim
n→∞

q−nPn = (. . . , qδ, δ, q−1δ, . . . ).

(On the right hand side of the last equation, the δ is at index −1.) Extend πq to {±∞}× I by setting

πq(−∞, [v : w]) = [· · · : 1 : 1 : 1 : · · · ],

and

πq(+∞, [v : w]) = w[· · · : 1 : 1 : 1 : · · · ] + v[· · · : q : 1 : q−1 : · · · ].
Using the limit computation above, it follows that this extension is continuous.
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Theorem 5.2. The map πq : R× [0, 1] → PS is continuous. It sends the set

C = {−∞} × [0, 1] ∪R× {0}

to the point [· · · : 1 : 1 : 1 : · · · ]. Let R × [0, 1] → B be the contraction of C to a point. Then the

induced map πq : B → PS is a homeomorphism onto Dq = mq(P Stab(X)).

The proof is analogous to that of Theorem 4.7. See Figure 9 for a sketch.

· · · · · ·

mq(P Stab(X)) ⊂ PS

∼

Figure 9. The map πq : R × [0, 1] → PS induces a homeomorphism from a closed
disk B onto the closure of the image of Stab(X) under the q-mass map. The disk B
is obtained from the square R× [0, 1] by collapsing two sides (red).

Instead of a unique T -fixed point of Dq, as was the case for q = 1, for q ̸= 1 we have two such
points. These are the blue and red end-points of the blue interval in Figure 9. The blue end-point is
the point • = [· · · : q : 1 : q−1 : · · · :]. It is the q-hom function homq(OX ,−), whose value on Tnkx is

dimq Hom∗(OX , T
nkx) = q−n.

(By definition, dimq of the graded vector space C[m] is qm). Again, the fact that homq(OX ,−) appears
in the closure of the q-mass embedding of the stability manifold is a reflection of a general theorem—the
q-analogue of Theorem 4.8 (see [3, Corollary 4.13]).

Note that • is not in the closure of the standard stability conditions PW , nor is it in the closure of
TnPW for any fixed n. To reach •, we must traverse an infinite sequence of hearts. It is easy to see
that it is not the q-mass function of a lax stability condition.

The red end-point is the point • = [· · · : 1 : 1 : 1 : · · · ]. It is the q-mass function of the lax stability
condition σ from Proposition 4.9.

The other vertices of the triangles form one orbit, and are q-mass functions of lax pre-stability
conditions. For example, the vertex v0 = [· · · : 1 + q : 1 : 0 : 1 : 1 + q−1 : · · · ] is the q-mass function of
the lax pre-stability condition q−1 · τ where τ is as in Proposition 4.10.
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