APPENDIX TO "CYCLIC COVERING MORPHISMS ON $\overline{M}_{0,n}$ " BY MAKSYM FEDORCHUK

ANAND DEOPURKAR

APPENDIX A. CLASS OF THE HODGE EIGENBUNDLE USING ORBIFOLD RIEMANN-ROCH

In [2, Section 6], the class of the Hodge eigenbundle \mathbb{E}_j was computed indirectly by calculating it on the *F*-curves. We describe a more direct method using the Grothendieck–Riemann–Roch theorem for Deligne–Mumford stacks. Throughout, μ_r denotes the group of *r*th roots of unity and $\mathbf{C}(i)$ the line bundle on $B\mu_r$ associated to the character $\zeta \mapsto \zeta^i$.

A.1. Expressing \mathbb{E}_j as a pushforward. Let $p \geq 2$ be an integer and (d_1, \ldots, d_n) a sequence of nonnegative integers such that $\sum d_j = mp$ for some integer m. Consider the cyclic cover $\phi: C \to \mathbf{P}^1$ given by the regular projective model of

$$y^p = (x - x_1)^{d_1} \dots (x - x_n)^{d_n}.$$

In these coordinates, O_C is generated as an $O_{\mathbf{P}^1}$ module by the functions 1, $y/f_1, \ldots, y^{p-1}/f_{p-1}$ where $f_j = (x - x_1)^{\lfloor j d_1/p \rfloor} \ldots (x - x_n)^{\lfloor j d_n/p \rfloor}$. Note that these generators are μ_p eigenvectors. Letting D be the \mathbf{Q} divisor $D = \sum (d_i/p) x_i$, we thus have the μ_p -equivariant decomposition

$$\phi_* O_C = \bigoplus_{j=0}^{p-1} O_{\mathbf{P}^1}(-jm) \otimes O_{\mathbf{P}^1}(\lfloor jD \rfloor),$$

where the local generator of the *j*th summand is y^j/f_j . We then get the μ_p -eigenspace decomposition

$$H^{1}(C,O_{C}) = \bigoplus_{j=0}^{p-1} H^{1}\left(\mathbf{P}^{1},O_{\mathbf{P}^{1}}(-jm) \otimes O_{\mathbf{P}^{1}}(\lfloor jD \rfloor)\right)$$

The above analysis for an individual cover goes through over the moduli stack. Let \mathcal{M} be the stack of *p*-divisible *n*-pointed orbicurves with the universal curve $\pi : \mathcal{P} \to \mathcal{M}$ with *n* sections σ_i and let \mathcal{L} be a line bundle on \mathcal{P} with $\mathcal{L}^p = O_{\mathcal{P}}(\sum d_i \sigma_i)$. On \mathcal{M} lives the universal cyclic *p* cover $\phi : \mathcal{C} \to \mathcal{P}$ whose fibers are as above. Setting $D = \sum (d_i/p)\sigma_i$, we get the the μ_p -equivariant decomposition

$$\phi_* O_{\mathcal{C}} = \bigoplus_{j=0}^{p-1} \mathcal{L}^{-j} \otimes O_{\mathcal{P}}(\lfloor jD \rfloor).$$

Applying $R\pi_*$ gives the μ_p -eigenbundle decomposition

$$R^{1}\pi_{*}(O_{\mathcal{C}}) = \bigoplus_{j=0}^{p-1} R^{1}\pi_{*} \left(\mathcal{L}^{-j} \otimes O_{\mathcal{P}}(\lfloor jD \rfloor) \right).$$

Since the left hand side is the dual of the Hodge bundle, we get

(1)
$$\mathbb{E}_{j} = R^{1} \pi_{*} (\mathcal{L}^{-j} \otimes O_{\mathcal{P}}(\lfloor jD \rfloor))^{*}.$$

A.2. Applying Grothendieck–Riemann–Roch. Equation 1 reduces the computation of $c_1(\mathbb{E}_j)$ to the familiar problem of computing the Chern classes of a (derived) push-forward. Since the push forward is from a stack, we have to use a bit of technology. For less cluttered notation, we calculate in the following setting: Let B be a smooth projective curve, $\pi: \mathcal{P} \to B$ a generically smooth family of rational orbinodal curves with \mathcal{P} smooth, and \mathcal{F} a line bundle on \mathcal{P} . For an orbinode $x \in \mathcal{P}$ with stabilizer μ_{r_x} , let $\mathcal{F}|_x \cong \mathbf{C}(i_x)$, where $0 \leq i_x < r_x$. Denote by ω the class of the relative dualizing sheaf of $\mathcal{P} \to B$.

Proposition A.1. In the above setup, we have

$$c_1(R\pi_*\mathcal{F}) = \frac{c_1(\mathcal{F})^2}{2} - \frac{c_1(\mathcal{F}) \cdot \omega}{2} - \sum_{Orbi \ x \in \mathcal{P}} \frac{i_x(r_x - i_x)}{2r_x}$$

Proof. By the GRR for Deligne–Mumford stacks [1, Corollary 5.3], we have

(2)
$$\operatorname{ch} R\pi_* \mathcal{F} = \pi_* \left(\operatorname{ch} \left(t \left(\frac{f^* \mathcal{F}}{\lambda_{-1} N_f^*} \right) \right) \frac{\operatorname{td}(I\mathcal{P})}{\operatorname{td}(B)} \right),$$

where $f: I\mathcal{P} \to \mathcal{P}$ is the inertia, N_f^* is the conormal bundle of f, the operator λ_{-1} on $K(I\mathcal{P})$ is the alternating sum of wedge powers $1 - \Lambda^1 + \Lambda^2 + \ldots$ and the operator t on $K(I\mathcal{P}) \otimes \mathbb{C}$ is the 'twisting operator' $[1, \S 4]$. We evaluate these objects in our setup. First, note that the coarse space map $\mathcal{P} \to \mathcal{P}$ is an isomorphism except possibly at the singular points of $\mathcal{P} \to \mathcal{B}$, where the local picture is

(3)
$$[\operatorname{Spec} k[u,v]/(uv-t)/\mu_r] \to \operatorname{Spec} k[x,y]/(xy-t^r),$$

with μ_r acting by $u \mapsto \zeta u$ and $v \mapsto \zeta^{-1} v$. Since the orbistructure is at isolated points, the inertia stack is

$$I\mathcal{P} = \mathcal{P} \sqcup \bigsqcup_{\text{Orbi} \ x \in \mathcal{P}} (\mu_{r_x} \setminus \{\text{id}\}) \times B\mu_{r_x}.$$

The normal bundle N_f is trivial on the \mathcal{P} component and is $\mathbf{C}(1) \oplus \mathbf{C}(-1)$ on the $\{\zeta\} \times B\mu_{r_x}$ component. The twisting operator acts trivially on the \mathcal{P} component and sends $\mathbf{C}(i)$ to $\zeta^i \mathbf{C}(i)$ on the $\{\zeta\} \times B\mu_{r_x}$ component. Thus, Equation 2 becomes

$$\operatorname{ch} R\pi_* \mathcal{F} = \pi_* \left(1 + c_1(\mathcal{F}) + \frac{c_1^2(\mathcal{F})}{2} \right) \left(1 - \frac{c_1(\Omega_{\mathcal{P}/B})}{2} + \frac{c_1^2(\Omega_{\mathcal{P}/B}) + c_2(\Omega_{\mathcal{P}/B})}{12} \right) + \sum_{\substack{\operatorname{Orbi} x \\ 1 \neq \zeta \in \mu_{r_x}}} \frac{\zeta^{i_x}}{r_x(2 - \zeta - \zeta^{-1})}.$$

Let $\omega_{\mathcal{P}/B}$ be the relative dualizing sheaf. Let $\delta_{\mathcal{P}/B}$ the class of the support of $\operatorname{coker}(\Omega_{\mathcal{P}/B} \to \omega_{\mathcal{P}/B})$ (with multiplicities) so that $c_2(\Omega_{\mathcal{P}/B}) = \delta_{\mathcal{P}/B}$. Define $\omega_{P/B}$ and $\delta_{P/B}$ analogously. Identifying the rational Chow groups of \mathcal{P} and P, we have $c_1(\omega_{\mathcal{P}/B}) = c_1(\omega_{P/B}) = \omega$. The value of δ , however, is different for $\mathcal{P} \to B$ and $P \to B$: the numerical contribution of the orbinode in Equation 3 is 1/r whereas that of the node is r. With these simplifications, we get

(4)
$$c_1(R\pi_*\mathcal{F}) = \frac{c_1(\mathcal{F})^2}{2} - \frac{c_1(\mathcal{F}) \cdot \omega}{p} + \frac{\omega^2 + \delta_{P/B}}{12} + \sum_{\text{Orbi } x} \frac{1/r_x - r_x}{12} + \left(\sum_{1 \neq \zeta \in \mu_{r_x}} \frac{\zeta^{i_x}}{r_x(2 - \zeta - \zeta^{-1})}\right)$$

Since $P \to B$ is a family of rational curves, we have $\omega^2 + \delta_{P/B} = 0$. The following is a nice exercise

$$\sum_{1 \neq \zeta \in \mu_r} \frac{\zeta^i}{2 - \zeta - \zeta^{-1}} = \frac{i(i-r)}{2} + \frac{r^2 - 1}{12} \quad (\text{for } 0 \le i < r).$$

Substituting in Equation 4 gives the result.

Proposition A.2. The class of the Hodge eigenbundle is given by

$$c_1(\mathbb{E}_j) = \frac{1}{2p^2} \left(\sum_i \langle jd_i \rangle_p \langle p - jd_i \rangle_p \psi_i - \sum_{I,J} \langle jd(I) \rangle_p \langle jd(J) \rangle_p \Delta_{I,J} \right).$$

Proof. Take a smooth curve B and a map $B \to \mathcal{M}$ transverse to the boundary. Let $\pi: \mathcal{P} \to B$ and \mathcal{L} be pullbacks from \mathcal{M} . Set $\mathcal{F} = \mathcal{L}^{-j} \otimes O_{\mathcal{P}}(\lfloor jD \rfloor)$. Then $c_1(\mathcal{F}) = -\sum (\langle jd_i \rangle_p / p) \cdot \sigma_i$. Let $x \in \mathcal{P}$ be an orbinode corresponding to the boundary divisor $\Delta_{I,J}$. Set $d = \gcd(p, jd(I))$. Then the stabilizer at x has order r = p/d and $\mathcal{F}|_x \cong \mathbf{C}(i)$ for $i = \langle jd(I)/d \rangle_r$. Also, x contributes r towards $\Delta_{I,J}$. Using Equation 1 and

Proposition A.1, we conclude that

$$c_{1}(\mathbb{E}_{j}) = c_{1}(R\pi_{*}\mathcal{F}) = \frac{1}{2p^{2}} \left(\sum_{i} \langle jd_{i} \rangle_{p}^{2} \sigma_{i}^{2} + p \langle jd_{i} \rangle_{p} \sigma_{i} \cdot \omega - \sum_{\text{Orbi } x} \frac{p^{2} \langle jd(I)/d \rangle_{r} \langle jd(J)/d \rangle_{r}}{r} \right)$$
$$= \frac{1}{2p^{2}} \left(\sum_{i} \langle jd_{i} \rangle_{p} \langle p - jd_{i} \rangle_{p} \psi_{i} - \sum_{I,J} \langle jd(I) \rangle_{p} \langle jd(J) \rangle_{p} \Delta_{I,J} \right).$$

References

Dan Edidin, Riemann-Roch for Deligne-Mumford stacks, arXiv:1205.4742 [math.AG], November 2012.
Maksym Fedorchuk, Cyclic covering morphisms on M_{0,n}, arXiv:1105.0655 [math.AG], May 2011.