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Abstract

We construct a sequence of modular compactifications of the space of marked trigonal
curves by allowing the branch points to coincide to a given extent. Beginning with
the standard admissible cover compactification, the sequence first proceeds through
contractions of the boundary divisors and then through flips of the so-called Maroni
strata, culminating in a Fano model for even genera and a Fano fibration for odd genera.
While the sequence of divisorial contractions arises from a more general construction,
the sequence of flips uses the particular geometry of triple covers. We explicitly describe
the Mori chamber decomposition given by this sequence of flips.

1. Introduction

Moduli spaces of geometrically interesting objects are usually not compact. They need to be
compactified by adding to them a carefully chosen class of degenerate objects. Often, this can
be done in several ways, leading to birationally equivalent models exhibiting highly interesting
instances of the Minimal Model Program (MMP). Such a program has been the topic of intense
current research most importantly for the moduli space of curves but also for related moduli
spaces such as the spaces of pointed curves [Has03, Smy11a, Smy11b], the Kontsevich spaces
[Che08], the space of hyperelliptic curves [Fed10], and so on. In [Deo12], we took up such a study
of the Hurwitz spaces of branched covers by constructing compactifications where the branch
points are allowed to coincide to various extents. In this paper, we describe a beautiful picture
that emerges from this theme for the space of marked triple covers. The picture consists of two
parts. The first is a sequence of contractions of the boundary divisors obtained using the results
of [Deo12]. The second is a continuation of the first sequence by flips of the Maroni strata and
uses the particular geometry of triple covers. The second sequence culminates in a model of the
kind predicted by the MMP: a Fano variety for even genera and a Fano fibration over P1 for odd
genera.

Denote by Tg;1 the moduli space of simply branched trigonal curves of genus g along with a
marked unramified fiber of the trigonal map. In symbols, Tg;1 = {(φ : C → P ;σ)}, where P is a
copy of P1, C a smooth curve of genus g, φ a simply branched triple cover and σ ∈ P a point
away from brφ. The space Tg;1 is a quasi-projective, irreducible variety of dimension 2g + 2.

How can we compactify Tg;1? A reasonable approach is to compactify the space of branch
divisors and then use it to compactify the space of branched covers. In this case, the relevant
space is M0;b,1, the moduli space of (P ; Σ;σ), where P is a copy of P1, Σ ⊂ P a reduced divisor of
degree b = 2g+4 and σ ∈ P a point away from Σ. We have a branch morphism br : Tg;1 →M0;b,1
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given by

br : (φ : C → P ;σ) 7→ (P ; brφ;σ).

By the main result of [Deo12], every suitable compactification of M0;b,1 yields a corresponding
compactification of Tg;1. Our first sequence of compactifications of Tg;1 is obtained in this way
using the compactifications of M0;b,1 by weighted pointed stable curves of [Has03]. Let ε be such
that 1/b < ε 6 1 and let M0;b,1(ε) be the space of (ε; 1)-stable marked curves as in [Has03].
Roughly speaking, it is the compactification of M0;b,1 in which b1/εc of the b points of Σ are
allowed to collide.

Theorem A. Let T g;1(ε) be the moduli stack of (φ : C → P ;σ), where φ is an ε-admissible triple
cover and σ ∈ P a point away from brφ. Then T g;1(ε) is a smooth proper Deligne–Mumford
stack with a projective coarse space containing Tg;1 as a dense open subspace and admitting an
extension of the branch morphism br : T g;1(ε)→M0;b,1(ε).

Proof. See [Theorem 2.5] in the main text.

The reader may think of an ε-admissible cover φ : C → P to be a generically étale cover,
admissible over the nodes of P , in which at most b1/εc of the branch points are allowed to
coincide; the precise definition of T g;1(ε) is in Section 2. Clearly, we may restrict the values of ε
to reciprocals of integers. We thus arrive at the sequence

T g;1(1) 99K · · · 99K T g;1(1/j) 99K T g;1(1/(j + 1)) 99K · · · 99K T g;1(1/(b− 1)). (1.1)

What is the nature of these modifications? For ε > ε′, the birational map T g;1(ε) 99K T g;1(ε′),
lying over the divisorial contraction M0;b,1(ε) → M0;b,1(ε′), is regular in codimension one, but
not regular in general. It contracts the boundary divisors in T g;1(ε) lying over the contracted
boundary divisors of M0;b,1(ε). In the final model, (b − 1) of the b branch points are allowed to
coincide.

To what extent does the sequence (1.1) realize the MMP for T g;1(1)? This sequence is incom-
plete in two ways. Firstly, the maps T g;1(1/j) 99K T g;1(1/(j + 1)) are not everywhere regular.
Secondly, the final model T g;1(1/(b− 1)) is not what is expected to be an ultimate model. It is
easy to see that Tg;1 is unirational (in particular, uniruled). In this case, the MMP is expected
to end with a Fano fibration. The final model of (1.1) is not of this form.

How can we extend (1.1) to reach a Fano fibration? The bulk of this paper is devoted to
answering this question. In the final model of (1.1), (b−1) of the b branch points were allowed to
coincide. We could now allow all b to coincide. Note, however, that there is no compactification of
M0;b,1 that allows all b points of Σ to coincide. Therefore, such a compactification of Tg;1 (if one
exists) must be constructed ‘by hand’; we cannot rely on the machinery of [Deo12]. Consider for
a moment a marked cover (φ : C → P1;σ) with concentrated branching; say its branch divisor is
concentrated at a point p ∈ P1. The moduli of such a cover is completely captured by the moduli
of the cover around p, in other words, by the moduli of the ‘trigonal singularity.’ Which trigonal
singularities should we allow in our moduli problem? Correspondingly, which triple covers must
we disallow? It turns out that there is not one, but many ways of arranging this trade-off,
leading to a sequence of models of Tg;1 in which covers with concentrated branching are allowed.
As expected, the trade-off involves a local and a global restriction.

The global restriction is in terms of the classical Maroni invariant of a trigonal curve. Let C
be a reduced, connected curve of genus g and φ : C → P1 a triple cover. We have

φ∗OC/OP1
∼= OP1(−m)⊕OP1(−n),
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(as OP1-modules) for some positive integers m, n with m + n = g + 2. The Maroni invariant
M(φ) is defined to be the difference |n−m|.

The local restriction is in terms of a similarly defined ‘µ-invariant’ of a trigonal singularity. Let
C be the germ of a reduced, connected curve singularity expressed as a triple cover φ : C → ∆,
where ∆ is the germ of a smooth curve. Let C̃ → C be the normalization, and assume that
C̃ → ∆ is étale. We have

O
C̃
/OC ∼= k[t]/tm ⊕ k[t]/tn,

(as O∆-modules) for some positive integers m, n with m+ n = δ, the delta invariant of C. The
µ-invariant µ(φ) is defined to be the difference |n −m|. Note that if C is an open subset of a
projective curve (smooth away from C) of arithmetic genus g, then δ = g + 2.

The local-global trade-off is encoded in the notion of an ‘l-balanced triple cover.’

Definition 1.1. Let C be a reduced, connected curve and φ : C → P1 a triple cover. We say
that φ is l-balanced if

(i) the Maroni invariant of φ is at most l;
(ii) if brφ is concentrated at one point, then the µ-invariant of φ is greater than l.

Theorem B. Let T lg;1 be the moduli stack of (φ : C → P ;σ), where P is a copy of P1, C a

curve of genus g, φ an l-balanced triple cover, and σ ∈ P a point away from brφ. Then T lg;1 is

a smooth proper Deligne–Mumford stack admitting a projective coarse space T
l
g;1 birational to

Tg;1.

Proof. See Theorem 3.1 and Theorem 8.12 in the main text.

Since both the Maroni invariant and the µ-invariant lie between 0 and g and are congruent
to g modulo 2, we may assume that l is also of this form. We thus get a sequence of yet more
compactifications

T
g
g;1 99K · · · 99K T

l
g;1 99K T

l−2
g;1 99K · · · 99K T

0 or 1
g;1 . (1.2)

It is immediate that for l = g, the space T
l
g;1 is nothing but T g;1(1/(b− 1)). As l decreases, the

loci of Maroni unbalanced curves are replaced one-by-one by loci of covers with concentrated
branching, culminating in a space where only the most balanced covers are kept.

We must again ask the same questions as before: what is the nature of the modifications in
the sequence (1.2), and does it reach the model predicted by the MMP? The answers are a part
of the following theorem that offers a detailed analysis of these transformations.

Theorem C. Denote by βl the rational map T
l
g;1 99K T

l−2
g;1 .

(i) The map βg extends to a morphism that contracts the hyperelliptic divisor to a point. For
even g, the map β2 extends to a morphism that contracts the Maroni divisor to a P1. All
the other βl are flips.

(ii) For even g, the final space T
0
g;1 is Fano of Picard rank one. It is the quotient of a weighted

projective space by S3. For odd g, the final space T
1
g;1 admits a morphism to P1 whose

fibers are Fano of Picard rank one.
(iii) For 0 < l < g, the Picard group of T

l
g;1 has rank two. For g 6= 3, it is generated by the

Hodge class λ and the class of the boundary divisor δ. The canonical divisor is given by

K =
2

(g + 2)(g − 3)

(
3(2g + 3)(g − 1)λ− (g2 − 3)δ

)
.
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The nef cone of T
l
g;1 in the 〈λ, δ〉 plane is spanned by Dl and Dl+2, where(

g − 3

2

)
Dl = {(7g + 6)λ− gδ}+

l2

g + 2
· {9λ− δ} .

(Figure 1 depicts this Mori chamber decomposition.)

Proof. See Theorem 5.2, Theorem 6.3, Theorem 9.2, Theorem 9.4, and Theorem 9.5 in the main
text.

−δ

λ

7 +
6
g
∼ 〈D

0〉

8
+

4
g
+
1
∼
〈D
g
+
2
〉

6 ≈ 〈K〉

Dl−2

Dl

Dl+2

Dl+4

T
l
g;1

T
l+2
g;1

T
l−2
g;1

Figure 1. The Mori chamber decomposition of PicQ given by the models T
l
g;1 and an approxi-

mate location of the ray spanned by the canonical class K.

Finally, let us highlight a few key points. Firstly, the singularities that appear on the curves
parametrized by our compactifications of Tg;1 are different from the usually considered candidates
for alternate compactifications of Mg or other related moduli spaces of curves. In particular, our
singularities are not even necessarily Gorenstein! Secondly, our approach is purely functorial—
there is no GIT. We first construct the moduli stack, use the Keel–Mori theorem to get a coarse
algebraic space and prove projectivity by exhibiting ample line bundles.

Organization In Section 2, we recall the results of [Deo12]. They not only yield Theorem A
at once, but also form the technical basis of all further constructions. In Section 3, we show

that the stack T lg;1 of marked l-balanced covers is a proper smooth Deligne–Mumford stack,
yielding Theorem B except for the projectivity of the coarse spaces. In Section 4, we take up the

study of the coarse spaces T
l
g;1, starting with general results about triple covers and triple point

singularities. In Section 5 and Section 6, we treat the hyperelliptic and the Maroni contractions,
respectively. The next major goal is to obtain ample line bundles and the Mori chamber decom-
position. To that end, we study the Picard group in Section 7 and compute the ample cones in
Section 8. We describe the final models in Section 9.

So far, the marked fiber has been unramified, that is, of type (1, 1, 1). The entire picture can
be carried over to the space of trigonal curves marked with a fiber of any given ramification type:
(1, 1, 1), (1, 2) or (3). This generalization is the content of the final section, Section 10.

Conventions We work over an algebraically closed field k of characteristic zero. All schemes
are understood to be locally Noetherian schemes over k. Unless specified otherwise, “point”
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means “k-point.” An algebraic stack or an algebraic space is in the sense of [LMB00].

The projectivization of a vector bundle E is denoted by PE; this is the space of one-
dimensional quotients of E. The space of one-dimensional sub-bundles of E is denoted by PsubE.
A morphism X → Y is projective if it factors as a closed embedding X↪→PE followed by PE → Y
for some vector bundle E on Y .

A curve over a scheme S is a flat, proper morphism whose geometric fibers are connected,
reduced and purely one-dimensional. The source of this morphism could be a scheme, an algebraic
space or a Deligne–Mumford stack; in the last case it is usually denoted by a curly letter. Genus
always means arithmetic genus. By the genus of a stacky curve, we mean the genus of its coarse
space. A cover is a representable, flat, surjective morphism. The symbol µn denotes the group
of nth roots of unity; its elements are usually denoted by ζ.

2. The big Hurwitz stack and the spaces of weighted admissible covers

We recall the big Hurwitz stack H d from [Deo12], beginning with the notion of pointed orbinodal
curves. Let S be a scheme. A pointed orbinodal curve over S is the data (P → P → S;σ1, . . . , σn),
where P → S is a proper Deligne–Mumford stack which is an at worst nodal curve, P → P the
coarse space and σ1, . . . , σn : S → P sections such that

− étale locally near a node, P → P has the form

[SpecOS [u, v]/(uv − t)/µr]→ Spec k[x, y]/(xy − tr),

for some t ∈ OS with µr acting by u 7→ ζu, v 7→ ζ−1v;

− étale locally near a section, P → P has the form

[SpecOS [u]/µr]→ SpecOS [x],

with µr acting by u 7→ ζu.

The big Hurwitz stack H d is defined by

H d(S) = {(φ : C → P;P → P → S;σ1, . . . , σn)},

where (P → P → S;σ1, . . . , σn) is a pointed orbinodal curve and φ a degree d cover such that
for every geometric point s→ S, the following are satisfied:

− φ is étale over the generic points of the components, the nodes, and the marked points of
Ps;

− the stack structure is minimal in the following sense: the classifying map Ps \ brφ → BSd
corresponding to the étale cover obtained by restricting φ is representable.

Remark 2.1. What is the purpose of the orbi-structure? The orbi-structure on the nodes and
on the marked points serve two different purposes. The orbi-structure on the nodes of P implies
that the induced cover of the coarse spaces C → P is an admissible cover over the nodes of P
in the sense of [HM82]. Thus, the orbi-structure on the nodes serves to impose the admissibility
condition. On the other hand, an orbi-structure along σi with automorphism group µr implies
that the monodromy of the coarse space cover C → P around σi is a permutation of order r in
Sd. Thus, the orbi-structure along the marked points serves to (partially) encode the ramification
type of C → P over those points.

The stack H d should be seen as the stack of ‘all branched covers of curves.’ It admits a
branch morphism to a stack M , which should be seen as the stack of ‘all branching data.’ The
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stack M is defined by

M (S) = {(P → S; Σ;σ1, . . . , σn)},
where P → S is an at worst nodal curve, Σ ⊂ P an S-flat Cartier divisor supported in the
smooth locus of P → S and σ1, . . . , σn : S → P disjoint sections lying in the smooth locus of
P → S and away from Σ. The branch morphism br : H d →M is simply

br : (φ : C → P;P → P → S;σ1, . . . , σn) 7→ (P → S; brφ;σ1, . . . , σn).

Here the branch divisor brφ is defined by the discriminant ideal (see [Deo12, Subsection 2.1]).

Theorem 2.2. H d and M are algebraic stacks, locally of finite type. The branch morphism
br : H d →M is proper and of Deligne–Mumford type.

We refer the reader to [Deo12, Section 4] for the proof. We mention a key ingredient—an
extension lemma which is used again in the proof of Theorem 3.1.

Lemma 2.3. Let S be a smooth surface and s ∈ S a point. Set S◦ = S \{s} and let φ◦ : T ◦ → S◦

be a finite flat morphism. Then φ◦ extends to a finite flat morphism φ : T → S.

Proof. Consider the vector bundle φ◦∗OT ◦ on S◦. By a theorem of Horrocks [Hor64, Corol-
lary 4.1.1], it extends to a vector bundle on S. Next, the OT -algebra structure on this vector
bundle is specified by a structure map from OT and a multiplication map. These maps of vector
bundles are already specified on S◦; they extend to S by Hartog’s theorem.

Denote by M0;b,1 ⊂M the open and closed substack where the genus of the curve is 0, the
degree of the marked divisor is b and the number of marked points is 1. Let M0;b,1 ⊂ M0;b,1

be the open substack parametrizing (P ; Σ;σ) with P smooth and Σ reduced. Denote by Tg;1 ⊂
H 3 ×M M0;b,1 the open and closed substack parametrizing (φ : C → P;P → P ;σ) where C is
connected and Autσ P = {1}; that is, the stack structure of P over σ is trivial. Let Tg;1 ⊂ Tg;1

be the preimage in Tg;1 of M0;b,1.

Proposition 2.4. M0;b,1 and Tg;1 are smooth and irreducible of dimension 2g + 2.

Proof. The statement is clear for M0;b,1. For Tg;1, we appeal to [Deo12, Theorem 5.5], which
implies that it is smooth and contains Tg;1 as a dense open subset. In turn, it is clear that Tg;1
is irreducible of dimension 2g + 2.

For the convenience of the reader, we recall the main idea behind the proof of [Deo12, The-
orem 5.5]. The deformation space of a point ξ = (φ : C → P;P → P ;σ) on Tg;1 is the product
of the deformation spaces of the singularities on C, up to smooth parameters. Since C → P is a
triple cover étale over the nodes of P, the singularities of P have embedding dimension at most
three. Since spatial singularities are smoothable and have smooth deformation spaces, Tg;1 is
smooth and contains Tg;1 as a dense open.

We now have the tools to obtain the compactifications of Tg;1 described in Theorem A. Let
ε > 1/b be a rational number. Denote by M0;b,1(ε) the open substack of M0;b,1 consisting of
(P ; Σ;σ) that are (ε; 1) stable in the sense of [Has03]; that is, they satisfy

(i) σ 6∈ Σ and ε ·multp(Σ) 6 1 for all p ∈ P ;
(ii) ωP (εΣ + σ) is ample.

Then M0;b,1(ε) is a smooth, proper, Deligne–Mumford stack with a projective coarse space
M0;b,1(ε). Set

T g;1(ε) = Tg;1 ×M0;b,1
M0;b,1(ε).
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Theorem 2.5. T g;1(ε) is a Deligne–Mumford stack, smooth and proper over k, and irreducible
of dimension 2g + 2. It contains Tg;1 as a dense open substack, admits a branch morphism
br : T g;1(ε)→M0;b,1(ε) and has a projective coarse space T g;1(ε).

Proof. All the statement except the projectivity of T g;1(ε) follow from Theorem 2.2, Proposi-
tion 2.4 and the properness of M0;b,1(ε). For the projectivity, we cite [Deo12, Theorem 6.1],
which proves that the Hodge class λ is relatively anti-ample along br : T g;1(ε)→M0;b,1(ε).

3. The moduli of l-balanced covers

Retain the notation introduced just before Proposition 2.4. Also recall the Maroni invariant,
the µ invariant and the notion of l-balanced covers from Definition 1.1. It is easy to check that
the Maroni invariant is upper semi-continuous and the µ invariant is lower semi-continuous in

families. Let T lg;1 ⊂ Tg;1 be the open substack consisting of (φ : C → P;P → P ;σ) where P is
smooth and φ an l-balanced triple cover. Since P is smooth and the orbi-structure of P along σ
is trivial, the orbi-structure of P is in fact trivial; that is, P → P is an isomorphism. Hence, C
is also simply a schematic curve. Therefore, we write just (φ : C → P ;σ) for the objects of T lg;1.

Theorem 3.1. T lg;1 is a Deligne–Mumford stack, smooth and proper over k, and irreducible of
dimension 2g + 2.

Remark 3.2. In Theorem 3.1, the only interesting values of l are the ones lying between 0 and
g. For l > g, we have an equality as substacks of Tg;1:

T g;1(1/(b− 1)) = T lg;1.

Indeed, since the Maroni and the µ invariants lie between 0 and g, both sides are the open
substack of Tg;1 parametrizing (φ : C → P ;σ) where P is smooth and brφ is not concentrated
at one point.

By the Keel–Mori theorem [KM97], we conclude the following.

Corollary 3.3. T lg;1 admits a coarse space T
l
g;1 proper over k. It is an irreducible algebraic

space of dimension 2g + 2 with at worst quotient singularities. In particular, it is normal and
Q-factorial.

We now turn to the proof of Theorem 3.1. The main ingredient is the behavior of vector
bundles under pull back and push forward along blow ups of smooth surfaces.

Lemma 3.4. Let X be a smooth surface, s ∈ X a point, β : BlsX → X the blowup, and
E ⊂ BlsX the exceptional divisor. Let V be a locally free sheaf on BlsX. Denote by e the
natural map

e : β∗β∗V → V.

Then,

(i) β∗V is torsion free; that is, Hom(Os, β∗V ) = 0.
(ii) If H0(V |E ⊗OE(−1)) = 0, then β∗V is locally free and e is injective.
(iii) If V |E is globally generated, then Riβ∗V = 0 for all i > 0, and e is surjective.
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(iv) More generally, if l > 0 is such that V |E ⊗ OE(l) is globally generated, then coker(e) is
annihilated by I lE , where IE ⊂ OBlsX is the ideal sheaf of E.

Proof. Without loss of generality, take X to be affine.

(i) We have Hom(Os, β∗V ) = Hom(β∗Os, V ) = 0, since V is locally free.
(ii) Set X◦ = X \ {s} = BlsX \E and let i : X◦↪→X be the open inclusion. We have a natural

map

β∗V → i∗i
∗β∗V, (3.1)

which is injective by (i). The target i∗i
∗β∗V is locally free—it is the unique locally free exten-

sion to X of i∗β∗V = V |X◦ on X◦. We prove that the map (3.1) is surjective. Equivalently,
we want to prove that every element of H0(X◦, V ) extends to an element of H0(BlsX,V ).
Take f ∈ H0(X◦, V ). Let n > 0 be the smallest integer such that f extends to a section
f̃ in H0(BlsX,V (nE)). The minimality of n means that the restriction of f̃ to E is not
identically zero. If n = 0, we are done. If n > 1, then the hypothesis H0(V |E⊗OE(−1)) = 0
implies that f̃ restricted to E is identically zero, contradicting the minimality of n. Finally,
since β∗V is locally free, so is β∗β∗V . The map β∗β∗V → V is injective away from E, and
hence injective.

(iii) Let V |E be globally generated. By the theorem on formal functions, we have

̂(Riβ∗V )s = lim←−
m

H i(V |mE).

To get a handle on V |mE , we use the exact sequence

0→ V |E ⊗ Im−1
E → V |mE → V |(m−1)E → 0.

Since V |E is globally generated, so is V |E ⊗ Im−1
E = V |E ⊗ OE(m − 1), for all m > 1. It

follows by induction on m that H i(V |mE) = 0 for all m > 1 and i > 0. Thus Riβ∗V = 0.
We now prove that e is surjective. It is an isomorphism away from E. We need to prove
that it is surjective along E. Since V |E is globally generated, it suffices to prove that
β∗V → β∗ (V |E) is surjective. From the exact sequence

0→ IE ⊗ V → V → V |E → 0,

we get the exact sequence

β∗V → β∗ (V |E)→ R1β∗(IE ⊗ V ).

Since (IE ⊗ V )|E = V |E ⊗ OE(1) is globally generated, R1β∗(IE ⊗ V ) vanishes and we
conclude that β∗V → β∗(V |E) is surjective.

(iv) Consider the diagram

β∗β∗(I
l
E ⊗ V ) −−−−→ I lE ⊗ V −−−−→ 0y y y

β∗β∗V −−−−→ V −−−−→ Q −−−−→ 0

.

The first row is exact by (3), as (I lE⊗V )|E = V |E⊗OE(l) is globally generated. It follows that
the multiplication map I lE ⊗ V → Q is zero. Since V → Q is surjective, the multiplication
I lE ⊗Q→ Q is zero as well.

8



Modular compactifications of the space of marked trigonal curves

Lemma 3.4 allows us to analyze the “blowing down” of trigonal curves. This analysis is the
content of the following lemma. Roughly, it says that blowing down a trigonal curve of Maroni
invariant M results in a singularity of µ invariant at most M .

Lemma 3.5. Let X, s, β : BlsX → X, E and X◦ be as in Lemma 3.4. Let F ⊂ X be a smooth
curve passing through s and F̃ ⊂ BlsX its proper transform. Let f̃ : C̃ → BlsX be a triple
cover, étale over F̃ . Assume that C̃|E is a reduced curve of genus g and φ̃ : C̃|E → E has Maroni
invariant M . Denote by φ : C → X the unique extension to X of φ̃ : C̃|X◦ → X◦ (Lemma 2.3).
Then φ : C|F → F is étale except over s, and has a singularity of µ-invariant at most M over s:

µ(φ|F ) 6M(φ̃|E).

The setup is partially described in Figure 2. In this setup, we say that C → X is obtained

C̃

F̃

E

s̃

BlsX

C

F

s

X

β

Figure 2. The setup of Lemma 3.5.

by blowing down C̃ → BlsX along E.

Proof. To simplify notation, we drop the φ̃∗ (resp. φ∗) and simply write O
C̃

(resp. OC), considered
as a sheaf of algebras on BlsX (resp. X).

We apply Lemma 3.4 to the vector bundle O
C̃

on BlsX. The condition (2) in Lemma 3.4 is
clearly satisfied; therefore β∗OC̃ is a locally free sheaf of rank 3. Note that β∗OC̃ is naturally an
OX algebra which agrees with OC on X◦. It follows that

OC = β∗OC̃ .

Since C̃|
F̃
→ F̃ is étale, C|F → F is étale except possibly over s. Next, set s̃ = F̃ ∩ E.

Consider the map of OBlsX algebras

ν : β∗β∗OC̃ = β∗OC → O
C̃
.

This is an isomorphism away from E, and hence, when restricted to F̃ , we have a sequence

0→ (β∗OC)|
F̃

ν|F−→ O
C̃
|
F̃
→ Q→ 0, (3.2)

where Q is supported at s̃.

The sequence (3.2) exhibits O
C̃
|
F̃

as the normalization of β∗OC |F̃ . Moreover, since β : F̃ → F

is an isomorphism, the algebra β∗OC |F̃ on F̃ can be identified with the algebra OC |F on F via
β. Hence, the splitting type of the singularity of C → F over s is simply the splitting type of the
module Q.

9
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Let x be a uniformizer of F̃ near s̃. Suppose

Q ∼= k[x]/xm ⊕ k[x]/xn,

and

O
C̃|E/OE

∼= OE(−m′)⊕OE(−n′),

for some positive integers m, n, m′ and n′ with m + n = m′ + n′ = g + 2. By Lemma 3.4

(iv), the ideal I
max{m′,n′}
E annihilates the cokernel of ν. Restricting to F̃ , we see that xmax{m′,n′}

annihilates Q. In other words,

max{m,n} 6 max{m′, n′}.

Since m+ n = m′ + n′, it follows that

µ(φ|F ) = |m− n| 6 |m′ − n′| = M(φ̃|E).

Next, we prove a precise result about the behavior of rank two bundles under elementary
transformations, especially about their splitting type. Let R be a DVR with uniformizer t, residue
field k, and fraction field K. Set ∆ = SpecR. Consider P = ProjR[X,Y ] = P1

∆ with the two
disjoint sections s0 ≡ [0 : 1] and s∞ ≡ [1 : 0]. Denote by F the central fiber of P → ∆, and by 0
(resp. ∞) the point F ∩ s0 (resp. F ∩ s∞). Consider the map

β : P \ {∞} → P, [X : Y ] 7→ [tX : Y ].

Then β has a resolution (see Figure 3)

P̃

P P

β1 β2

β

.

Here β1 : P̃ → P is the blow up at ∞ and β2 : P̃ → P is the blow up at 0. The central fiber of
P̃ → ∆ is F1 ∪F2, where Fi is the exceptional divisor of βi. The Fi meet transversely at a point,
say s.

s∞

s0

∞

0

P

F

s∞

s0

∞

0

P

F

F1

F2

s

P̃

β1

∞←
[ F1

β2
F2 7→ 0

β

Figure 3. Resolution of β : [X : Y ] 7→ [tX : Y ].
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Lemma 3.6. Let n > m be non-negative integers, and O(1) the dual of the ideal sheaf of s0.
Identify

Ext1(O(−m), O(−n)) = R〈Xn−m−2, . . . , XiY n−m−2−i, . . . , Y n−m−2〉.
Let V be a vector bundle of rank two on P given as an extension

0→ O(−n)→ V → O(−m)→ 0, (3.3)

corresponding to the class e(X,Y ) ∈ Ext1(O(−m), O(−n)). Denote by W the unique vector
bundle on P obtained by extending β∗(V ). Assume that the class tm−n+1e(tX, Y ), lying a priori
in K ⊗R Ext1(O(−m), O(−n)), lies in Ext1(O(−m), O(−n)). Then W can be expressed as an
extension

0→ O(−n)→W → O(−m)→ 0,

with class tm−n+1e(tX, Y ). Moreover, in this case, we have an exact sequence

0→ (β∗1W )|F2 → (β∗2V )|F2 → k[u]/um ⊕ k[u]/un → 0, (3.4)

where u is a uniformizer of F2 at s.

We say that a class inK⊗RExt1(O(−m), O(−n)) is integral if it belongs to Ext1(O(−m), O(−n)).
The class tm−ne(tX, Y ) is integral if e(X,Y ) is sufficiently divisible by t.

Proof. The proof is by a straightforward local computation. Write P = SpecR[x] ∪ SpecR[y],
where x = X/Y and y = Y/X. To ease notation, write e(x) for e(x, 1). Note that

β−1 SpecR[x] = SpecR[x]; β−1 SpecR[y] = SpecK[y].

The union β−1 SpecR[x] ∪ β−1 SpecK[y] is P \ {∞}, as expected.

We can choose local trivializations 〈v1
x, v

2
x〉 and 〈v1

y , v
2
y〉 for V on SpecR[x] and SpecR[y]

respectively, such that they are related on the intersection by(
v1
y

v2
y

)
=

(
x−n 0

x−n+1e(x) x−m

)(
v1
x

v2
x

)
. (3.5)

The bundle β∗V is trivialized by 〈β∗v1
x, β
∗v2
x〉 on β−1 SpecR[x] and 〈β∗v1

y , β
∗v2
y〉 on β−1 SpecR[y].

The transition matrix on the intersection is simply the pullback of the matrix in (3.5):(
β∗v1

y

β∗v2
y

)
=

(
t−nx−n 0

t−n+1x−n+1e(tx) t−mx−m

)(
β∗v1

x

β∗v2
x

)
. (3.6)

Construct W by gluing trivializations 〈w1
x, w

2
x〉 on SpecR[x] and 〈w1

y, w
2
y〉 on SpecR[y] by(

w1
y

w2
y

)
=

(
x−n 0

tm−n+1x−n+1e(tx) x−m

)(
w1
x

w2
x

)
. (3.7)

Construct an explicit isomorphism ψ : β∗V
∼→W on P \ {∞}, as follows:

ψ :

(
β∗v1

x

β∗v2
x

)
7→
(
w1
x

w2
x

)
on β−1 SpecR[x] = SpecR[x],

ψ :

(
β∗v1

y

β∗v2
y

)
7→
(
t−nw1

y

t−mw2
y

)
on β−1 SpecR[y] = SpecK[y].

(3.8)

From the transition matrices (3.6) and (3.7), it is easy to check that this defines a map ψ : β∗V →
W on P \ {∞}, which is clearly an isomorphism. From (3.7), we see that W is an extension of
O(−m) by O(−n) corresponding to the class tm−n+1e(tX, Y ).

11
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Finally, we establish the exact sequence (3.4). By Lemma 3.4, β1∗β
∗
2V is a vector bundle

which is identical to β∗V on P \ {∞}. Therefore, we must have

W ∼= β1∗β
∗
2V.

The map β∗1W → β∗2V in (3.4) is simply the natural map

β∗1W = β∗1β1∗(β
∗
2V )

ev−→ β∗2V. (3.9)

To obtain the cokernel, we express ev in local coordinates around s. Set u = β∗1y; this is a function

on a neighborhood of s in P̃ . A basis for β∗2V around s is given by 〈β∗2v1
x, β
∗
2v

2
x〉. A basis for β∗1W

around s is given by 〈β∗1w1
y, β
∗
1w

2
y〉. From the description of ψ in (3.8), it follows that ev is given

by

ev :

(
β∗1w

1
y

β∗1w
2
y

)
7→
(

un 0
tm−n+1un−1e(t/u) um

)(
β∗2v

1
x

β∗2v
2
x

)
.

Note that tm−n+1un−1e(t/u) lies in R〈um+1, . . . , un−1〉. Hence, we get

coker(ev|F2) ∼= k[u]/um ⊕ k[u]/un.

Since u|F2 is a uniformizer for F2 around s, the sequence (3.4) is established.

Lastly, we need a simple inequality between the Maroni and the µ invariants.

Lemma 3.7. Let C be a curve of genus g and φ : C → P1 a triple cover with concentrated
branching. Then

M(φ) 6 µ(φ).

Proof. Let br(φ) = b · p for some p ∈ P1, where b = 2g + 4. Let the splitting type of the
singularity over p be (m,n), where n > m and n + m = g + 2. Set F = φ∗OC/OP1 . Then
F ∼= OP1(−m′)⊕OP1(−n′) for some n′ > m′ with m′ + n′ = g + 2.

Let C̃ → C be the normalization. We have the sequence

0→ F → φ̃∗OC̃/OP1 → k[x]/xm ⊕ k[x]/xn → 0. (3.10)

Since C̃ ∼= P1 tP1 tP1, the middle term above is simply O⊕2
P1 . It is easy to see that we have a

surjection

H0(O⊕2
P1 (n− 1))� H0(k[x]/xm ⊕ k[x]/xn).

Using the sequence on cohomology induced by (3.10) twisted by OP1(n − 1), we conclude that
H1(F (n− 1)) = 0, or equivalently, that n′ 6 n. It follows that

M(φ) = n′ −m′ = 2n′ − (g + 2) 6 2n− (g + 2) = n−m = µ(φ).

We now have the tools to prove Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality, assume that l satisfies 0 6 l 6 g and l ≡ g
(mod 2). We divide the proof into steps.

That T lg;1 is smooth, of finite type, and irreducible of dimension 2g + 2: T lg;1 is an

open substack of Tg;1. Since Tg;1 is smooth and irreducible of dimension 2g + 2, so is T lg;1.
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To see that it is of finite type, denote by M s
0;b,1 ⊂ M0;b,1 the open substack parametrizing

(P ; Σ;σ) with P smooth. It is easy to see that M s
0;b,1 is of finite type over k. By the definition

of T lg;1, the open immersion T lg;1↪→Tg;1 factors as

T lg;1↪→M s
0;b,1 ×M0;b,1

Tg;1 ⊂ Tg;1.

Since Tg;1 → M0;b,1 is of finite type, we conclude that M s
0;b,1 ×M0;b,1

Tg;1 and hence T lg;1 is of
finite type over k.

That T lg;1 is separated: We use the valuative criterion. Let ∆ = SpecR be a the spectrum
of a DVR, with special point 0, generic point η and residue field k. Consider two morphisms

∆ → T lg;1 corresponding to (Pi → ∆;σi;φi : Ci → Pi) for i = 1, 2. Let ψη be an isomorphism

of this data over η, namely isomorphisms ψPη : P1|η → P2|η and ψCη : C1|η → C2|η over η that
commute with φi and σi. We must show that ψη extends to an isomorphism over all of ∆. Suppose
that ψPη extends to a morphism ψP : P1 → P2 over ∆. Then ψP must be an isomorphism, because

the Pi → ∆ are P1 bundles and ψPη is an isomorphism. It also follows that ψP must be an
isomorphism of marked curves

ψP : (P1; brφ1;σ1)
∼−→ (P1; brφ2;σ2).

By the separatedness of Tg;1 → M0;b,1, we conclude that we have an extension ψC : C1 → C2

over ψP . Therefore, it suffices to show that ψPη extends. Denote by ψP the maximal extension of

ψPη . Since Pi → ∆ are P1 bundles, the rational map ψP has a resolution of the form

P̃

P1 P2
ψP

, (3.11)

where P̃ is smooth and its (scheme theoretic) central fiber is a chain of smooth rational curves
E0 ∪ · · · ∪En; the map P̃ → P1 blows down En, . . . , E1 successively to a point p1 ∈ P1|0; and the
map P̃ → P2 blows down E0, . . . , En−1 successively to a point p2 ∈ P2|0 (see Figure 4). If n = 0,
then ψP is already a morphism, and we are done. Otherwise, we look for a contradiction.

En

E0

P̃

P2

p2

P1

p1

En
∼−→ P2|0

E0, . . . , En−1 7→ p2E0
∼−→ P1|0

En, . . . , E1 7→ p1

Figure 4. The resolution of ψP : P1 → P2

Since ψPη takes σ1(η) to σ2(η), either p1 = σ1(0) or p2 = σ2(0). By switching 1 and 2 if necessary,

say p1 = σ1(0). Let C̃ → P̃ be the pullback of C1 → P1. Since C1 → P1 is étale over σ1(0),
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the cover C̃ → P̃ is étale over E1, . . . , En. Then C2 → P2 is obtained by blowing down C̃ → P̃
successively along E0, . . . , En−1. Thus, C2|0 → P2|0 is has concentrated branching at p2; let µ
be its µ invariant. On the other hand, C̃|E0 → E0 is isomorphic to C1|0 → P1|0; let M be its
Maroni invariant. Since both (Ci → Pi)0 are l-balanced, we have

µ > l >M.

However, by repeated application of Lemma 3.5 and Lemma 3.7, we get

µ 6M.

We have reached a contradiction.

That T lg;1 is Deligne–Mumford: Since we are in characteristic zero, it suffices to prove

that a k-point (φ : C
φ→ P1;σ) of T lg;1 has finitely many automorphisms. We have a morphism

of algebraic groups

τ : Aut(φ : C → P1, σ)→ Aut(P1).

The kernel of τ consists of automorphisms of φ over the identity of P1. Such an automorphism

is determined by its action on a generic fiber of φ. Hence ker τ is finite. Since T lg;1 is separated,
Aut(φ : C → P1, σ) is proper. On the other hand, Aut(P1) is affine. It follows that im τ is finite.
We conclude that Aut(φ : C → P1, σ) is finite.

That T lg;1 is proper: Let ∆ = SpecR be as in the proof of separatedness. Denote by η

a geometric generic point. Let (φ : Cη
φ→ Pη;σ) be an object of T lg;1 over η. We need to show

that, possibly after a finite base change, it extends to an object of T lg;1 over ∆. Without loss

of generality, we may assume that the object over η lies in a dense open substack of T lg;1.
Therefore, we may take φ : Cη → Pη to not have concentrated branching. Extend (P ; brφ;σ) to
an object (P ; Σ;σ) of M0;b,1(∆). Since T l

g;1 →M0;b,1 is proper, we get an extension (C → P ;σ) of
(C → P ;σ)η over (P ; Σ;σ), possibly after a finite base change. Assume that C|0 → P |0 satisfies
the second condition of Definition 1.1. This can be achieved, for instance, by having Σ|0 not
supported at a point.

If the Maroni invariant of C|0 → P |0 is at most l, we are done. Otherwise, we must modify
C → P along the central fiber to make it more balanced. Fix an isomorphism of P → ∆ with
ProjR[X,Y ]→ ∆ such that the section σ : ∆→ P is the zero section [0 : 1]. Set V = φ∗OC/OP ;
it is a vector bundle of rank 2 on P . Let

V |P0
∼= OP1(−m)⊕OP1(−n),

where m < n are positive integers with m + n = g + 2 and n −m > l. Then we can express V
as an extension

0→ OP (−n)→ V → OP (−m)→ 0. (3.12)

Denote the extension class by

e(X,Y ) ∈ Ext1(OP (−m), OP (−n)) = R〈Xn−m−2, . . . , Y n−m−2〉.

Since Cη → Pη is l-balanced but n − m > l, the class e(X,Y ) is nonzero. However, as the

restriction of (3.12) to P0 is split, t divides e(X,Y ). By passing to a finite cover ∆̃→ ∆, ensure
that a sufficiently high power of t divides e(X,Y ), so that tm−n+1e(tX, Y ) is integral. Consider
the rational map β : P 99K P , sending [X : Y ] to [tX : Y ]. Then β is defined away from [1 : 0]
on the central fiber. Let φ′ : C ′ → P be the unique extension of β∗C → P (Lemma 2.3). Then
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C ′ → P is isomorphic to C → P on the generic fiber, whereas the central fiber C ′|0 → P |0 is
unramified except at [1 : 0]. The section σ = [0 : 1] of P → ∆ serves as the required marking.

The cover C ′ → P may be thought of in terms of the resolution of β (as in Figure 3)

P̃

P P

β1 β2
β

.

Here β1 is the blowup at [1 : 0] and β2 at [0 : 1] on the central fiber, with exceptional divisors
F1 and F2 respectively. Set C̃ = β∗2C. Then C ′ → P is the blowdown of C̃ → P̃ along β1. Set

Ṽ = φ̃∗OC̃/OP̃ and V ′ = φ′∗OC′/OP . Then Ṽ = β∗2V , and V ′ = β1∗Ṽ .
Claim.

(i) V ′ is an extension of OP (−m) by OP (−n) given by e′(X,Y ) = tm−n+1e(tX, Y ).
(ii) The splitting type of the singularity of C ′|0 → P |0 over [1 : 0] is (m,n).

Proof. The first claim is directly from Lemma 3.6. For the second, consider the natural map

β∗1OC′ = β∗1β1∗OC̃ → O
C̃
.

Its restriction β∗1OC′ |F2 → O
C̃
|F2 expresses O

C̃
|F2 as the normalization of β∗1OC′ |F2 . On the other

hand, β1 gives an isomorphism between β∗1OC′ |F2 and OC′ |P0 . Hence, the splitting type of the
singularity of C ′|0 over [1 : 0] is the splitting type of the cokernel of β∗1OC′ |F2 → O

C̃
|F2 . We can

factor out the O
P̃
|F2 summands, by considering the diagram

β∗1OP |F2 O
P̃
|F2

0 β∗1OC′ |F2 O
C̃
|F2 Q 0

0 β∗1V
′|F2 Ṽ |F2 = β∗2V |F2 Q 0

Thus, the second claim follows from the last exact sequence in Lemma 3.6.

Returning to the main proof, we consider the operation e(X,Y ) 7→ tm−n+1e(tX, Y ), which ex-
plicitly looks as follows

XiY n−m−2−i 7→ tm−n+1+iXiY n−m−2−i, for i = 0, . . . , n−m− 2.

This operation acts by purely “negative weights” tm−n+1+i. It follows that after a base change

∆̃
tN 7→t−→ ∆ for a sufficiently divisible N and a sequence of transformations [X : Y ] 7→ [tX : Y ] as

above, we can arrange:

(I) The extension class e′(X,Y ) ∈ Ext1(OP (−n), OP (−m)) of V ′ is nonzero modulo t.
(II) The splitting type of the singularity of C ′|0 → P |0 over [1 : 0] is (m,n).

By (I), the new central fiber φ′0 : C ′|0 → P |0 is more balanced than the original C|0 → P |0. Since
l < n−m, the new central fiber also has µ invariant greater than l. If M(φ′0) 6 l, then the new
central fiber is l-balanced, and we are done. Otherwise, we repeat the entire procedure. After
finitely many such iterations, we arrive at a central fiber of Maroni invariant at most l and µ
invariant greater than l. The proof of properness is thus complete.
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4. The geometry of T
l
g;1: Preliminaries

We collect results about triple covers and triple point singularities needed to analyze T
l
g;1.

4.1 The structure of triple covers

Let Y be a scheme and φ : X → Y a triple cover. Assume that the fibers of φ are Gorenstein.
Define E by

0→ OY → φ∗OX → E∨ → 0. (4.1)

Then E is a vector bundle of rank two on Y . By dualizing, we get a morphism E → φ∗ωφ,
where ωφ is the dualizing line bundle of φ. Equivalently, we have a map φ∗E → ωφ. By explicit
verification on the geometric fibers of φ, it is easy to check that this map is surjective and
gives an embedding X↪→PE over Y . The ideal sheaf of X in PE is canonically isomorphic to
OPE(−3)⊗ π∗ detE.

Using the embedding above, one can deduce an explicit structure theorem for triple covers.
This result is originally due to Miranda [Mir85]. Our exposition is based on the letters of Deligne
[Del00, Del06] in response to the work of Gan, Gross and Savin [GGS02]. Roughly speaking, it
says that the data of a triple cover X → Y is equivalent to the data of a vector bundle E of rank
two on Y along with a section of Sym3(E)⊗ detE∨. We begin by making this precise.

Let B be the stack over Schemes given by B(S) = {(E, p)}, where E is a vector bundle
of rank two on S and p a global section of Sym3(E) ⊗ detE∨. Then B is an irreducible stack,
smooth and of finite type.

Let A3 be the stack over Schemes given by A3(S) = {(φ : T → S)}, where φ is a triple
cover. This is an algebraic stack of finite type over k (see [Deo12, Subsection 2.1]). We define
a morphism B → A3. Let (E , p) be the universal pair over B. Set P = PE and let π : P → B
be the projection. The section p gives i : OP(−3) ⊗ π∗ det E → OP. Let W ⊂ B be the locus
over which this map is not identically zero. It is easy to see that the complement of W ⊂ B has
codimension four. In particular, i is injective because B is smooth and i is generically injective.
Define Q as the quotient

0→ OP(−3)⊗ π∗ det E → OP → Q→ 0.

Applying π∗, we get

0→ OB → π∗Q → E∨ → 0.

Hence, π∗Q is an OB algebra which is locally free of rank three. We thus get a morphism

f : B → A3. (4.2)

Theorem 4.1. ([Mir85, Theorem 3.6], [Del00]) With notation as above, the morphism B → A3

in (4.2) is an isomorphism.

We follow Deligne’s proof, which is based on the following observation.

Proposition 4.2. [Poo08, Proposition 5.1] The stack A3 is smooth. The complement of the
Gorenstein locus U has codimension four.
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Proof. We have a smooth and surjective morphism Hilb3 A2 → A3, where Hilb3 A2 is the Hilbert
scheme of length three subschemes of A2. Since the Hilbert scheme of points on a smooth surface
is smooth, we conclude that A3 is smooth.

The only non-Gorenstein subschemes of A2
k of length three are Spec k[x, y]/m2, where m ⊂

k[x, y] is a maximal ideal. The locus of such has dimension two in the six dimensional space
Hilb3 A2. It follows that the complement of U ⊂ A 3 has codimension four.

Proof of Theorem 4.1. We construct an inverse g : A3 → B. Let φ : X → A3 be the universal
triple cover. Define E by

0→ OA → φ∗OX → E∨ → 0.

Then E is a vector bundle of rank two on A3. Over the Gorenstein locus U , we have an embedding
X ↪→P = PE giving the sequence

0→ OP(−3)⊗ detE → OP → OX → 0.

The map OP(−3)⊗detE → OP gives a section of Sym3E⊗detE∨ over U . Since the complement
of U ⊂ A3 has codimension at least two and A3 is smooth, this section extends to a section p of
Sym3E ⊗ detE∨ over all of A3. The pair (E, p) gives a morphism g : A3 → B.

We must prove that f : B → A3 and g : A3 → B are inverses. Consider the composite
f ◦ g : A3 → A3. It corresponds to a triple cover of A3. To check that f ◦ g is equivalent to
the identity, we must check that this triple cover is isomorphic to the universal triple cover. By
construction, such an isomorphism exists over the Gorenstein locus U . Since the complement of
U has codimension higher than two and A3 is smooth, the isomorphism extends.

For the other direction, consider the composite g◦f : B → B. It corresponds to a pair (E ′, p′)
on B, where E ′ is a vector bundle of rank two and p′ a section of Sym3(E ′) ⊗ det E ′∨. To check
that g ◦f is equivalent to the identity, we must check that this pair is isomorphic to the universal
pair (E , p). By construction, such an isomorphism exists over W . Since the complement of W
has codimension higher than two and B is smooth, the isomorphism extends.

4.2 Spaces of triple point singularities

An essential tool in our analysis of T
l
g;1 is an understanding of the stratification of the space

of triple point singularities given by the µ invariant. We begin by recalling and generalizing the
definition of the µ invariant.

Let ∆ be the spectrum of a DVR and φ : C → ∆ a triple cover. Let C̃ → C be the normal-
ization. Recall the case where C̃ → ∆ is étale. In this case, we look at the ∆-module

Q = O
C̃
/OC = (O

C̃
/O∆)/(OC/O∆),

which must be isomorphic to k[t]/tm ⊕ k[t]/tn for some m, n. We set µ(φ) = |n−m|.
If C̃ → ∆ is not étale, then consider a finite base change ∆′ → ∆, where ∆′ is the spectrum

of a DVR. Set C ′ = C ×∆ ∆′ and φ′ = φ×∆ ∆′. Let C̃ ′ → C ′ be the normalization. Assume that
∆′ → ∆ is such that C̃ ′ → ∆′ is étale. Define the µ invariant of φ as

µ(φ) = µ(φ′)/ deg(∆′ → ∆).

It is easy to see that we can choose ∆′ → ∆ so that C̃ ′ → ∆′ is étale and this choice does not
affect µ(φ).

Having defined the µ invariant for all triple point singularities, we analyze the loci of singular-
ities of a fixed µ invariant. We treat ‘the space of triple point singularities’ using the formalism of
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crimps of finite covers introduced in [Deo12, Section 7], which we first recall. Let P be a smooth
curve and φ̃ : C̃ → P a generically étale finite cover. In applications, C̃ is typically smooth. A
crimp of φ̃ is the data (C, ν, φ) forming

(C̃
ν→ C

φ→ P ),

where φ is a finite cover and ν an isomorphism generically over P . A convenient way to think of
a crimp is as an OP -subalgebra of φ̃∗OC̃ , generically isomorphic to φ̃∗OC̃ .

Proposition 4.3. [Deo12, Corollary 7.6] Let Σ ⊂ P be a divisor. There exists a projective

scheme Crimp(φ̃,Σ) parametrizing crimps (C̃
ν→ C

φ→ P ) with brφ = Σ.

Take P = ∆ and Σ = b · 0. Then Crimp(φ̃,Σ) depends only on a formal neighborhood of 0 in
∆ ([Deo12, Proposition 7.2]), and hence we may take ∆ = SpecR with R = kJtK without loss of
generality.

Proposition 4.4. Let C̃ → C → ∆ be a crimp with branch divisor b · 0 and C̃ → ∆ étale. Let
δ = length(O

C̃
/OC) be the δ-invariant of C. Then 2δ = b.

Proof. This is a simple verification. See [Deo12, Proposition 7.3] for a detailed argument in a
more general case.

We analyze Crimp(φ̃,Σ) where φ̃ has degree three and C̃ is smooth. Although tedious, this
analysis is fairly straightforward. Observe that there are three possibilities for φ̃:

(i) étale: C̃ = ∆ t∆ t∆→ ∆,

(ii) totally ramified: C̃ = SpecR[x]/(x3 − t)→ ∆.

(iii) simply ramified: C̃ = ∆ t SpecR[x]/(x2 − t)→ ∆,

We are interested mainly in the stratification of Crimp(φ̃,Σ) given by the µ invariant. Denote
by Crimp(φ̃,Σ, l) the locally closed subset (with the reduced scheme structure) of Crimp(φ̃,Σ)
parametrizing crimps with µ invariant l.

4.2.1 Crimp(φ̃,Σ, l) for φ̃ étale Fix φ̃ : C̃ = Spec S̃ → ∆, a triple cover with φ̃ étale. Fix an
isomorphism of R-algebras

S̃ ∼= R⊕R⊕R.
The space Crimp(φ̃,Σ, l) may be thought of as the parameter space of suitable R-subalgebras S
of S̃. The next result characterizes the R-submodules of S that are also R-subalgebras. We often
identify R with its diagonal embedding in S.

Proposition 4.5. Let S ⊂ S̃ be an R-module such that

R ⊂ S and S̃/S ∼= k[t]/tm ⊕ k[t]/tn, (4.3)

with m 6 n. Then

(i) S contains tnS̃.
(ii) The quotient S/〈R, tnS̃〉 is an R-submodule of S̃/〈R, tnS̃〉 generated by the image of one

element tmf , for some f ∈ S̃ nonzero modulo 〈R, t〉.
(iii) S is an R-subalgebra if and only if t2mf2 ∈ S.

In particular, if 2m > n, then every R-submodule S of S̃ satisfying (4.3) is an R-subalgebra.

18



Modular compactifications of the space of marked trigonal curves

Proof. From (4.3), it follows that S is generated as an R-module by 1, tmf and tng for some
f and g in S̃ such that 1, f and g are linearly independent modulo t. The first two assertions
follow from this observation. For the third, see that S is closed under multiplication if and only if
the pairwise products of the generators lie in S. By (i), this is automatic for all products except
t2mf2. Finally, if 2m > n then the condition (iii) is vacuous by (i).

We can now describe Crimp(φ̃,Σ, l).

Proposition 4.6. Retain the setup introduced at the beginning of Subsection 4.2.1. Let m, n
be such that

n+m = b/2 and n−m = l.

First, Crimp(φ̃,Σ, l) is non-empty only if m and n are non-negative integers. If this numerical
condition is satisfied, then we have the following two cases:

(i) If 2m > n, then Crimp(φ̃,Σ, l) is irreducible of dimension l. Its points correspond to R-
subalgebras of S̃ generated as an R-module by 1, tnS̃ and tmf for some f ∈ S̃ nonzero
modulo 〈R, t〉.

(ii) If n > 2m, then Crimp(φ̃,Σ, l) is a disjoint union of three irreducible components of dimen-
sion m, conjugate under the Aut(φ̃) = S3 action. Its points correspond to R-subalgebras of
S̃ generated as an R-module by 1, tnS̃ and tmf , where f has the form

f = (1, h,−h) or (h, 1,−h) or (h,−h, 1),

with h ≡ 0 (mod tn−2m).

Proof. Let C̃ → C = SpecS → ∆ be a crimp with µ invariant l and branch divisor Σ. By
Proposition 4.4, we have

S̃/S ∼= k[t]/tm ⊕ k[t]/tn.

In particular, m and n must be integers.

The space Crimp(φ̃,Σ, l) may be identified with the space of R-modules S satisfying

R ⊂ S ⊂ S̃ and S̃/S ∼= k[t]/tm ⊕ k[t]/tn, (4.4)

satisfying the additional condition that S be closed under multiplication. Set F = S̃/R. By
Proposition 4.5 (ii), the space of S as in (4.4) is simply the space of submodules of the (R/tn−mR)-
module tmF/tnF generated by one element tmf , where f is nonzero modulo t. To specify such
a submodule, it suffices to specify the image f of f in F/tn−mF , such that it is nonzero modulo
t. Two such f define the same submodule if and only if they are related by multiplication by a
unit of R/tn−mR.

In the case 2m > n, the condition of being closed under multiplication is superfluous. Thus,
Crimp(φ̃,Σ, l) may be identified with the quotient

(F/tn−mF )∗/(R/tn−mR)∗ ∼= ((k[t]/tn−m)⊕2)∗/(k[t]/tn−m)∗,

where the superscript ∗ denotes elements nonzero modulo t. This quotient is simply the jet-
scheme of order (n−m−1) jets of P1 = Psub(F/tF ). In particular, it is irreducible of dimension
(n−m) = l.

In the case n > 2m, we must check when S is closed under multiplication. It is not too
hard to check that after multiplying by a unit of R/tn−mR, the element f in F/tn−mF can be
represented as the image in F/tn−mF of

(1, h,−h) or (h, 1,−h), or (h,−h, 1), for some h ∈ R/tn−mR. (4.5)
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It is easy to check that t2mf2 lies in the R-submodule S of S̃ generated by 1, tnS̃ and tmf if

and only if the element t2mf
2 ∈ tmF/tnF lies in R〈tmf〉, or equivalently, h ≡ 0 (mod tn−2m).

Hence, the choice of f that gives an R-subalgebra S is equivalent to the choice of h from
tn−2mR/tn−mR ∼= km. Also, see that different choices of h give different S. Hence, Crimp(φ̃,Σ, l)
is the disjoint union of three irreducible components of dimension m corresponding to the three
possibilities in (4.5). Since the group S3 acts by permuting the three entries, these three compo-
nents are conjugate.

4.2.2 Crimp(φ̃,Σ, l) for φ̃ totally ramified Fix φ̃ : C̃ = Spec S̃ → ∆, a triple cover with C̃
smooth and φ̃ totally ramified. Let ∆′ → ∆ be the triple cover given by R→ R′ = R[s]/(s3− t).
Let S̃′ be the normalization of S̃ ⊗R R′ and set C̃ ′ = Spec S̃′. Fix an isomorphism of R algebras

S̃ ∼= R[x]/(x3 − t),

and an isomorphism of R′ algebras

S̃′ ∼= R′ ⊕R′ ⊕R′,

such that the normalization map S̃ ⊗R R′ → S̃′ is given by

x 7→ (s, ζs, ζ2s),

where ζ is a third root of unity. Identify R with its image in S̃ and R′ with its image in S̃′.

Proposition 4.7. Let M ⊂ S̃ be an R-submodule of rank three.

(i) M is spanned by three elements fi(x) ∈ S̃, for i = 1, 2, 3, having x-valuations vi that are
distinct modulo 3.

(ii) Set M ′ = M ⊗R R′ and identify it with its image in S̃′. Then

S̃′/M ′ ∼= k[s]/sv1 ⊕ k[s]/sv2 ⊕ k[s]/sv3 .

(iii) M contains R and is closed under the multiplication map induced from S̃ if and only if M ′

contains R′ and is closed under the multiplication map induced from S̃′.

Proof. Take an R-basis 〈fi〉 of M with fi(x) = xvigi(x), where gi(0) 6= 0 and the vi are distinct.
Then M ′ ⊂ S̃′ is spanned by the elements

svi(gi(s), ζ
vigi(ζs), ζ

2vigi(ζ
2s)).

Since the vi are distinct and the three elements above are R′-linearly independent, the three
vectors (gi(0), ζvigi(0), ζ2vigi(0)) must be k-linearly independent. It follows that the vi are distinct
modulo 3 and

S̃′/M ′ ∼= k[s]/sv1 ⊕ k[s]/sv2 ⊕ k[s]/sv3 .

For the last statement, see that M contains R if and only if the map M → S̃/R is zero; M
is closed under multiplication if and only if the map M ⊗RM → S̃/M is zero. Both conditions
can be checked after the extension R→ R′.

Using Proposition 4.7 and our analysis of R′-subalgebras of the étale extension R′ → S̃′ from
Subsection 4.2.1, we get a description of Crimp(φ̃,Σ, l).

Proposition 4.8. Retain the setup introduced at the beginning of Subsection 4.2.2. Let m, n
be such that

n+m = 3b/2 and n−m = 3l.
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First, Crimp(φ̃,Σ, l) is non-empty only if m and n are non-negative integers distinct and nonzero
modulo 3 and 2m > n. If these numerical conditions are satisfied, then Crimp(φ̃,Σ, l) is irre-
ducible of dimension blc. Its points correspond to R-subalgebras of S̃ generated as an R-module
by 1, xnS̃ and xmf ∈ S̃, with f of the form

f = 1 +
∑

0<i<n−m
i≡m (mod 3)

aix
i,

for some ai ∈ k.

Proof. Let C̃ → C = SpecS → ∆ be a crimp with branch divisor given by 〈tb〉 and µ invariant
l. Then C̃ ′ → C ×∆ ∆′ → ∆′ is a crimp with branch divisor given by 〈s3b〉 and µ invariant 3l.
Set S′ = S ⊗R R′. Then

S̃′/S′ ∼= k[s]/sm ⊕ k[s]/sn.

In particular, m and n must be integers. From Proposition 4.7, 0, m and n are distinct mod 3.

Crimp(φ̃,Σ, l) may be identified with the space of R-modules S satisfying

R ⊂ S ⊂ S̃ and S̃′/S′ ∼= k[s]/sm ⊕ k[s]/sn, (4.6)

(where S′ = S ⊗R R′) with the additional restriction that S be closed under multiplication. Let
S be an R-submodule of S̃ satisfying (4.6). From Proposition 4.7, S is generated by 1, xmf and
xng where f and g are nonzero modulo x. Then S is determined by the image of f in S̃/xn−mS̃.
For S to be closed under multiplication, the image of x2mf2 in S̃/xnS̃ must be an R-linear
combination of 1 and xmf . Since all elements of S lying in R have x-valuation divisible by three,
this is impossible unless x2mf2 ≡ 0 in S̃/xnS̃; that is 2m > n.

For 2m > n, every f ∈ S̃/xn−mS̃ nonzero modulo 〈R, x〉 yields an S satisfying (4.6) closed
under multiplication. Two choices f1 and f2 determine the same S if and only if they are related
by

xmf1 = axmf2 + b,

for a, b ∈ R with a invertible. It is not hard to check that f can be chosen uniquely of the form

f = 1 +
∑

0<i<n−m
i≡m (mod 3)

aix
i,

for some ai ∈ k. Therefore, Crimp(φ̃,Σ, l) is irreducible of dimension b(n−m)/3c = blc.

4.2.3 Crimp(φ̃,Σ, l) for φ̃ simply ramified Fix φ̃ : C̃ = Spec S̃ → ∆, a triple cover with C̃
smooth and φ̃ simply ramified. Let ∆′ → ∆ be the double cover given by R→ R′ = R[s]/(s2−t).
Let S̃′ be the normalization of S̃ ⊗R R′ and set C̃ ′ = Spec S̃′. Set S̃1 = R[x]/(x2 − t) and fix an
isomorphism of R-algebras

S̃ ∼= S̃1 ⊕R,
and an isomorphism of R′-algebras

S̃′ ∼= R′ ⊕R′ ⊕R′,

with the normalization map S̃ ⊗R R′ → S̃′ given by

(x, 0) 7→ (s,−s, 0) (0, r) 7→ (0, 0, r).

Identify R with its image in S̃ and R′ with its image in S̃′.
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Proposition 4.9. Let M ⊂ S̃ be an R-submodule of rank three containing R.

(i) M is spanned by three elements: 1, (f1(x), 0) and (f2(x), 0), with the fi(x) having x-
valuations vi that are distinct modulo 2.

(ii) Set M ′ = M ⊗R R′ and identify it with its image in S̃′. Then

S̃′/M ′ ∼= k[s]/sv1 ⊕ k[s]/sv2 .

(iii) M is closed under the multiplication map induced from S̃ if and only if M ′ is closed under
the multiplication map induced from S̃′.

Proof. Identify S̃/R with S̃1. Then there is an equivalence between submodules of S̃ containing
R and submodules of S̃1. With this modification, the proof is almost identical to the proof of
Proposition 4.7, with S̃1 playing the role of S̃.

Using Proposition 4.9 and our analysis of R′ subalgebras of the étale extension R′ → S′ from
Subsection 4.2.1, we get a description of Crimp(φ̃,Σ, l).

Proposition 4.10. Retain the setup introduced at the beginning of Subsection 4.2.3. Let m, n
be such that

n+m = b and n−m = 2l.

First, Crimp(φ̃, l) is non-empty only if n and m are non-negative integers distinct modulo 2. If
these numerical conditions are satisfied, then we have the following two cases:

(i) If 2m > n, then Crimp(φ̃,Σ, l) is irreducible of dimension blc. Its points correspond to
R-subalgebras of S̃ generated as an R-module by 1, xnS̃ and (xmf, 0) for f ∈ S̃1 of the
form

f = 1 +
∑

0<i<n−m
i odd

aix
i,

(ii) If n > 2m, then we have two further cases:
(a) If m is odd, then Crimp(φ̃,Σ, l) is empty.
(b) If m is even, then Crimp(φ̃,Σ, l) is irreducible of dimension m/2. Its points correspond

to R-subalgebras of S̃ generated as an R-module by 1, xnS̃ and (xmf, 0) for f ∈ S̃1 of
the form

f = 1 +
∑

n−2m6i<n−m
i odd

aix
i,

for some ai ∈ k.

Proof. Let C̃ → C = SpecS → ∆ be a crimp with branch divisor given by 〈tb〉 and µ invariant
l. Then C̃ ′ → C ×∆ ∆′ → ∆′ is a crimp with branch divisor given by 〈s2b〉 and µ invariant 2l.
Set S′ = S ⊗R R′. Then

S̃′/S′ ∼= k[s]/sm ⊕ k[s]/sn.

In particular, m and n must be integers. From Proposition 4.7, m and n are distinct modulo 2.

Crimp(φ̃,Σ, l) may be identified with the space of R-modules S satisfying

R ⊂ S ⊂ S̃ and S̃′/S′ ∼= k[s]/sm ⊕ k[s]/sn, (4.7)

(where S′ = S ⊗R R′) with the additional condition that S be closed under multiplication.
Let S be an R-submodule of S̃ satisfying (4.7). See that S is determined by the image of f in
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S̃1/x
n−mS̃1. For S to be closed under multiplication x2mf2 ∈ S̃1/x

nS̃1 must be an R-multiple of
xmf in S1/x

nS̃1.

In the case 2m > n, any f ∈ S̃1/x
n−mS̃1 nonzero modulo x yields an S satisfying (4.7) closed

under multiplication. Two f1 and f2 give the same S if and only if they are related by

f1 = af2,

for some unit a ∈ R. It is not hard to check that f can be chosen uniquely of the form

f = 1 +
∑

0<i<n−m
i odd

aix
i,

for some ai ∈ k. Thus, Crimp(φ̃,Σ, l) is irreducible of dimension b(n−m)/2c = blc.
In the case n > 2m, the condition for being closed under multiplication is non-vacuous. For

this to hold, x2mf2 ∈ S̃1/x
nS̃1 must be an R-multiple of xmf . Since elements of R have even

x-valuation, we conclude that m must be even. In this case, x2mf2 ≡ xmfg (mod xn) for some
g ∈ R implies that the image of f in S̃1/x

n−2mS̃1 is contained in the image of R. Thus the unique
choice of f as above must have the form

f = 1 +
∑

n−2m6i<n−m
i odd

aix
i.

Thus, Crimp(φ̃,Σ, l) is irreducible of dimension m/2.

4.3 Dimension counts

We use the results from Subsection 4.1 and Subsection 4.2 to count the dimension of important
loci in Tg;1. Let 0 6 l 6 g be an integer with l ≡ g (mod 2). Denote by Tg;1(l) ⊂ Tg;1 the locally
closed locus consisting of (P ;σ;φ : C → P ) where P ∼= P1 and φ has Maroni invariant l. Let
m 6 n be such that

n+m = g + 2 and n−m = l.

Proposition 4.11. Let 0 6 l 6 g be an integer with l ≡ g (mod 2). Then Tg;1(l) is irreducible
of dimension given by

dim Tg;1(l) =


2g + 2 if l = 0,

2g + 3− l if 0 < l 6 (g + 2)/3,

(3g + l)/2 + 1 if (g + 2)/3 < l.

In particular, Tg;1(l) has codimension one in the following two cases: l = g and l = 2 (for even
g). For 2 < l < g, it has codimension at least two.

Proof. Let E = OP1(m)⊕OP1(n) and set

V = H0(Sym3(E)⊗ detE∨)

= H0 (OP1(2m− n)⊕OP1(m)⊕OP1(n)⊕OP1(2n−m)) .

Using n+m = g + 2 and n−m = l > 0, we get

dimV =

{
2(g + 2) + 4 if 2m > n, i.e. l 6 (g + 2)/3

3(g + l)/2 + 6 if 2m < n, i.e. l > (g + 2)/3
. (4.8)
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Using Theorem 4.1, a point v ∈ V gives a triple cover φv : C → P1 with φv∗OC/OP1 = E∨. Let
U ⊂ V ×P1 be the open subset

U = {(v, p) | p 6∈ br(φv)}.

Then we have a surjective morphism U → Tg;1(l). Hence Tg;1(l) is irreducible. The dimension
of a general fiber of U → Tg;1(l) is simply

dim AutE + dim Aut(P1) = dim AutE + 3.

Hence

dim Tg;1(l) = dimU − dim AutE − 3 = dimV − dim AutE − 2. (4.9)

Observe that

dim AutE = dim Hom(E,E) =

{
4 if l = 0, i.e. m = n

l + 3 if l > 0, i.e. m < n
. (4.10)

By combining (4.8), (4.9) and (4.10), we get the desired dimension count.

Denote by T •g;1(l) ⊂ Tg;1 the locally closed locus consisting of (P ;σ;φ : C → P ) where P ∼= P1

and φ has concentrated branching with µ invariant l.

Proposition 4.12. Let 0 6 l 6 g and l ≡ g (mod 2). Then T •g;1(l) is irreducible of dimension
given by

dim T •g;1(l) =

{
l − 1 if l 6 (g + 2)/3

(g − l)/2 if l > (g + 2)/3
.

In particular, T •g;1(l) ⊂ Tg;1 has codimension at least two.

Proof. Note that for a point (φ : C → P1;σ) of T •g;1(l), the normalization C̃ is isomorphic to

P1 tP1 tP1. Thus, all the curves parametrized by T •g;1(l) are crimps of the fixed cover

φ : C̃ = P1 tP1 tP1 → P1.

Let • ⊂ M0;b,1 be the closed substack consisting of (P ; Σ;σ) where Σ is supported at a point.
Then • has only one k-point, namely p→ • given by (P1; b · 0;∞). Since Autp M0;b,1 = Gm, we
have

dim • = −1. (4.11)

Furthermore, T •g;1(l) is contained in • ×M0;b,1
Tg;1.

Set C̃ = P1 t P1 t P1 and consider the space Crimp(C̃ → P1; b · 0). Recall that this is the
moduli space of (C̃ → C → P1), where the branch locus of C → P1 is b · 0. We have a natural
morphism

Crimp(C̃ → P1; b · 0)→ p×M0;b,1
Tg;1,

given by

(C̃ → C → P1) 7→ (C → P1;∞).

By [Deo12, Proposition 7.7], this morphism is finite. Hence, the locus p ×M0;b,1
Tg;1(l) has the

same dimension as the locus in Crimp(C̃ → P1; b · 0) of crimps with µ invariant l. From the
explicit description of this locus in Proposition 4.6, we get

dim(p×M0;b,1
T •g;1(l)) =

{
l if 2m 6 n, i.e. l 6 (g + 2)/3,

(g + 2− l)/2 if 2m > n, i.e. l > (g + 2)/3.
(4.12)
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By combining (4.11) and (4.12), we get the desired dimension count.

Let b = b1 + · · ·+bn be a partition of b with bi > 1 and n > 2. Denote by M0;b,1({bi}) ⊂M0;b,1

the locally closed locus consisting of k-points (P ; Σ;σ) where P ∼= P1 and Σ has the form
Σ =

∑
i bipi for n distinct points p1, . . . , pn ∈ P1. Set

Tg;1({bi}) = M0;b,1({bi})×M0;b,1
Tg;1.

Proposition 4.13. With the above notation, we have

dim Tg;1({bi}) 6 n− 2 +
∑
i

bbi/6c.

In particular, Tg;1({bi}) has codimension at least two if n 6 b− 2.

Proof. First of all, see that dim M0;b,1({bi}) = n − 2. Next, we compute the dimensions of
the fibers of br : Tg;1({bi}) → M0;b,1({bi}). Let p : Spec k → Tg;1({bi}) be a point, given by
(P1;σ;φ : C → P1) with Σ =

∑
i bipi. By [Deo12, Proposition 7.7] and [Deo12, Proposition 7.2],

the dimension of the fiber of br containing p is simply the dimension of
∏
i Crimp(φ̃i, bi · pi),

where φ̃ is the cover of the disk ∆i around pi obtained by normalizing C. From the descriptions
of Crimp(φ̃i, bi · pi) in Proposition 4.6, Proposition 4.8 and Proposition 4.10, we see that

dim(Crimp(φ̃i, bi · pi)) 6 bbi/6c.

The result follows.

A part of Theorem C follows immediately from the dimension counts. Recall that for a
rational map β : X 99K Y , the exceptional locus Exc(β) ⊂ X is the closed subset where β is not
an isomorphism.

Proposition 4.14. For 2 < l < g, the rational map βl : T
l
g;1 99K T

l−2
g;1 is an isomorphism away

from codimension two.

Proof. Exc(βl) is an open subset of the locus of covers of Maroni invariant l. By Proposition 4.11,

Exc(βl) ⊂ T
l
g;1 has codimension at least two.

Exc(β−1
l ) is an open subset of the locus of covers with concentrated branching and µ invariant

l. By Proposition 4.12, Exc(β−1
l ) ⊂ T l−2

g;1 has codimension at least two.

5. The Hyperelliptic contraction

Let g > 2. In this section, we prove that βg : T
g
g;1 99K T

g−2
g;1 is a divisorial contraction morphism.

The idea is to analyze the exceptional loci Exc(βg) and Exc(β−1
g ); the result follows seamlessly

from this analysis.

Set H = Exc(βg) ⊂ T
g
g;1; this is the locus of curves with Maroni invariant g. By Proposi-

tion 4.11, H is irreducible of dimension 2g + 1. In other words, it is an irreducible divisor. We
call H the hyperelliptic divisor. The terminology is justified by the following observation.

Proposition 5.1. A (geometric) generic point of H corresponds to (P1;σ;φ : C → P1) of the
following form (see Figure 5):

− C = E ∪ P with P ∼= P1 and E ∩ P = {p},
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· · ·
p

E

P

P1
σ

φ

Figure 5. A generic point of the hyperelliptic divisor.

− E is a smooth hyperelliptic curve of genus g and p ∈ E is a non-Weierstrass point,

− φ : E → P1 has degree two and φ : P → P1 has degree one,

− σ 6∈ brφ.

Proof. Let (P1;σ;φ : C = E ∪ P → P1) be such a cover. Then we have

h0(φ∗OC ⊗OP1(1)) = h0(φ∗OP1(1)) = 3,

which implies that φ∗OC ∼= OP1⊕OP1(−1)⊕OP1(−g−1). Hence φ has Maroni invariant g. Note
that the locus of such (P1;σ;φ : C = E ∪ P → P1) has dimension 2g + 1. Since this locus lies in
H, which is irreducible of the same dimension, we conclude that this locus is dense in H.

Theorem 5.2. The birational map βg : T
g
g;1 99K T

g−2
g;1 extends to a morphism. The extension

contracts the hyperelliptic divisor H to a point. The point βg(H) corresponds to the cover
(P1;σ;φ : C → P1), where φ has concentrated branching and C has a singularity of type D2g+2.

We first recall a lemma that gives a simple criterion to check whether an extension defined
on k-points is in fact a morphism.

Lemma 5.3. Let X and Y be algebraic spaces over k with X normal and Y proper. Let U ⊂ X
be a dense open set and φ : U → Y a morphism. Let φ′ : X(k)→ Y (k) be a function that agrees
with the one given by φ on U(k). Assume that φ′ is “continuous in one-parameter families” in
the following sense: for every ∆ which is the spectrum of a DVR with residue field k, and every
morphism γ : ∆→ X which sends ∆◦ to U , we have

φ′(γ(0)) = (φ ◦ γ)(0),

where the right hand side is the image of 0 under the unique extension to ∆ of φ ◦ γ : ∆◦ → Y .
Then φ : U → Y extends to a morphism φ : X → Y that induces φ′ on k-points.

Proof. This is essentially [Smy11b, Lemma 4.2]. There, it is assumed that X is proper and φ|U
is an isomorphism. However, the proof shows that neither assumption is required.

Proof of Theorem 5.2. Consider the exceptional locus Exc(β−1
g ). Let p : Spec k → Exc(β−1

g ) be
a point, given by a cover (P1;σ;φ : C → P1). Then M(φ) 6 g − 1 and φ has concentrated
branching with µ(φ) = g. Without loss of generality, we may take σ = ∞ and brφ = b · 0. The
normalization C̃ of C is the disjoint union P1 t P1 t P1. Let Spec k[x] ⊂ P1 be the standard
neighborhood of 0. From Proposition 4.6, we see that, up to permuting the three components of
C̃ over P1, the subalgebra OC ⊂ OC̃ is generated locally around 0 as an OP1 module by

1, xg+1O
C̃
, and (x, axg,−axg),

for some a ∈ k. Observe that if a = 0, then M(φ) = g, which is not allowed; hence a 6= 0.
However, two covers given by nonzero a, a′ ∈ k are isomorphic via the morphism induced by the
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scaling

(P1,∞, 0)→ (P1,∞, 0), x 7→ g
√
a/a′x.

We conclude that Exc(β−1
g ) consists of a single point. Taking a = 1, we see that the map C → P1

is given locally by

k[x]→ k[x, y]/(y2 − x2g)(y − x).

In particular, the singularity of C is a D2g+2 singularity.

Next, consider the pointwise extension β′g : T
g
g;1(k) → T

g−2
g;1 (k) which agrees with the one

induced by βg on the complement of H = Exc(βg) and sends all the points of H to the unique
point of Exc(β−1

g ). It is clearly continuous in one-parameter families in the sense of Lemma 5.3.

Since T
g
g;1 is normal and T

g−2
g;1 proper, we conclude that βg extends to a morphism that contracts

H to a point.

6. The Maroni contraction

Let g > 4 be even. In this section, we prove that β2 : T
2
g;1 99K T

0
g;1 is a divisorial contraction

morphism. The idea is the same as in the case of the hyperelliptic contraction; we first define
the extension on k-points and then argue that it is a morphism by checking continuity on one-
parameter families. The details are a bit more involved as Exc(β−1

2 ) is not merely a point. The
pointwise extension is obtained by relating the so-called cross-ratio of a marked unbalanced cover
on one side and the so-called principal part of an unbalanced crimp on the other side. We begin
by defining these two quantities.

For use throughout this section, set V = k⊕3/k, where k is diagonally embedded and P =
PsubV/S3, where S3 acts on V by permuting the three coordinates. The two dimensional vector
space V is to be thought of as the space of functions on {1, 2, 3} × Spec k modulo constant
functions.

6.1 The cross-ratio of a marked unbalanced cover

Consider a point p : Spec k → Tg;1 given by (P1;σ;φ : C → P1). Set F = φ∗OC/OP1 and assume
that

F ∼= OP1(−m)⊕OP1(−n) with 0 < m < n.

Define the cross-ratio of φ over σ as a point of Psub(F |σ) as the line given by

k ∼= H0(F ⊗OP1(m))↪→F |σ ⊗OP1(m) ∼= F |σ.

Since the isomorphisms on both sides are canonical up to the choice of a scalar, this line is well
defined. An identification C|σ

∼−→ {1, 2, 3} induces an identification F |σ
∼−→ V and lets us treat

the cross-ratio as a point of PsubV . Let χ(p) be the image of the cross-ratio in P = PsubV/S3.
Then χ(p) is independent of the identification C|σ

∼−→ {1, 2, 3}.
The name “cross-ratio” comes from the following geometric realization of χ(p). For simplicity,

assume that C is Gorenstein. We have the canonical embedding C↪→FM , where M = n − m
and FM = PF∨ is a Hirzebruch surface. Let τ : P1 → FM be the unique section of negative
self-intersection and P ∼= P1 the fiber of FM → P1 over σ. On P , we have four marked points,
namely the three distinct points of C|σ and the point τ(σ). The element χ(p) is simply the
moduli of (P,C|σ, τ(σ)). Even if C is not Gorenstein, it is Gorenstein over an open set U ⊂
P1 containing σ. The geometric description of χ(p) goes through if we consider the restricted
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embedding C|U ↪→FM |U .

6.2 The principal part of an unbalanced crimp

Analogous to the cross ratio, there is a P-valued invariant of a cover with concentrated branching.
This is a local invariant, so we consider φ̃ : C̃ → ∆, where ∆ is the disk Spec kJtK and φ̃ an

étale triple cover. Let C̃ → C
φ→ ∆ be a crimp; set F̃ = O

C̃
/O∆ and F = OC/O∆ and

Q = O
C̃
/OC = F̃ /F . Assume that

Q ∼= k[t]/tm ⊕ k[t]/tn with 0 < m < n.

Then the map i : F → F̃ is divisible by tm and the rank of the induced map

t−mi : F |0 → F̃ |0
is one. Define the principal part of the crimp to be the point of Psub(F̃ |0) given by the image of
t−mi.

More explicitly, from Proposition 4.6, we know that OC is generated as an O∆ module by
1, tmf and tnO

C̃
, where f ∈ F̃ is nonzero modulo t. The principal part is simply the line

〈f(0)〉 ⊂ F̃ |0. Thus, it partially encodes the moduli of a crimp.

Finally, consider a point p : Spec k → Tg;1 given by (P1;σ;φ : C → P1), where φ has con-

centrated branching at 0 with an unbalanced crimp, as above. Identifying C̃|σ
∼−→ {1, 2, 3} lets

us treat the principal part as a point of PsubV . Let ρ(p) be the image of the principal part in
P = PsubV/S3. Then ρ(p) is independent of the identification C̃|σ

∼−→ {1, 2, 3}.
The invariants χ(p) and ρ(p) are equal in a particular case.

Proposition 6.1. Let p = (P1;σ;φ : C → P1) be such that φ has concentrated branching and
M(φ) = µ(φ) > 0. Then the cross-ratio equals the principal part:

χ(p) = ρ(p).

Proof. Let C̃ = P1tP1tP1 → C be the normalization. Set F = φ∗OC/OP1 and F̃ = φ̃∗OC̃/OP1

as usual. Let the splitting type of F and the splitting type of the singularity be (m,n) with
m < n. Suppose supp br(φ) = {0} and let OP1(−1) → OP1 be the ideal sheaf of {0}. The
inclusion i : F → F̃ factors through

i′ : F ⊗OP1(m)→ F̃ ∼= O⊕2
P1 .

Clearly, it is an isomorphism away from 0. Let f be a nonzero global section of F ⊗ OP1(m).
Now, χ(p) is defined by the image of f in F ⊗ OP1(m)|σ = F̃ |σ and ρ(p) by the image of f in
F̃ |0. Since F̃ is trivial, the two are equal.

We now relate the cross-ratio and the principal part in the context of the blowing down of
a trigonal curve. Let X be a smooth surface, s ∈ X a point, β : BlsX → X the blowup and E
the exceptional divisor. Let P ⊂ X be a smooth curve through s, P̃ its proper transform and
s̃ = E ∩ P̃ . Let C̃ → BlsX be a triple cover, étale over P̃ , and set F̃ = O

C̃
/OBlsX . Assume that

F̃ |E ∼= OE(−m)⊕OE(−n), with 0 < m < n.

Let C → X be the cover obtained by blowing down C̃ → BlsX along E. Then C|P → P is a
crimp over s with normalization C̃|

P̃
. Assume that the singularity of C|P → P over s also has

the splitting type (m,n).
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Proposition 6.2. In the above setup, the cross-ratio of (E; s̃; C̃|E → E) and the principal part
of (C̃|

P̃
→ C|P → P ) are equal.

Proof. By Lemma 3.5, we have OC = β∗OC̃ . Denote by ν the map

ν : β∗OC |P̃ → O
C̃
|
P̃
.

This map expresses O
C̃
|
P̃

as the normalization of β∗OC |P̃ = OC |P . Set F = OC/OX . As the
singularity of C|P → P over s has splitting type (m,n), there is a nonzero section f of F defined
around s such that ν(β∗f |

P̃
) has valuation m with respect to a uniformizer of P̃ at s̃. By shrinking

X if necessary, assume that f is defined on all of X. As F = β∗F̃ , we can interpret f as a section
of F̃ on BlsX. Since F̃ |E ∼= OE(−m) ⊕ OE(−n), the section f must in fact be the image of a
section f ′ under the inclusion

F̃ ⊗ ImE → F̃ .

Furthermore, since the section f |
P̃

has valuation m at s̃, the section f ′|
P̃

has valuation zero at s̃.

Said differently, the restriction of f ′ to s̃ is nonzero. We see that the cross-ratio of (E; s̃; C̃|E → E)
and the principal part of (C̃|

P̃
→ C|P → P ) are defined by the line spanned by the image of f ′

in F̃ |s̃.

6.3 The Maroni contraction

We are now ready to tackle β2 : T
2
g;1 99K T

0
g;1. The exceptional locus Exc(β2) is the locus in T

2
g;1

consisting of covers with Maroni invariant two. By Proposition 4.11, this locus is an irreducible
divisor. We call it the Maroni divisor.

Theorem 6.3. Let g > 4 be even. The birational map β2 : T
2
g;1 99K T

0
g;1 extends to a morphism.

The extension contracts the Maroni divisor to P ∼= P1.

Proof. Set g = 2h. Consider the exceptional locus Exc(β−1
2 ) ⊂ T

0
g;1. Let p : Spec k → Exc(β−1

2 )
be a point, given by (P1;σ;φ : C → P1). Then M(φ) = 0 and φ has concentrated branching with
µ(φ) = 2. Without loss of generality, we may take σ =∞ and brφ = b · 0. The normalization C̃
of C is the disjoint union P1 tP1 tP1. Let Spec k[x] ⊂ P1 be the standard neighborhood of 0.
From Proposition 4.6, the subalgebra OC ⊂ OC̃ is generated locally around 0 as an OP1 module
by

1, xh+1O
C̃

and xh−1f,

for some f ∈ O
C̃

whose image in F̃ = O
C̃
/OP1 is nonzero modulo x. Clearly OC is determined

by f ∈ F̃ /x2F̃ and f only matters up to multiplication by a unit in k[x]/x2. Let f = f1 + xf2,
where fi ∈ F̃ |0 with f1 6= 0. Multiplying by units of k[x]/x2, we see that OC is determined by
a line 〈f1〉 ⊂ F̃ |0 and an element f2 in the one-dimensional k-vector space F̃ |0/〈f1〉. However, if
f2 = 0, then M(φ) = 2, which is not allowed. On the other hand, two covers given by f1 + xf2

and f1 + axf2, for a ∈ k∗, are isomorphic via the map induced by the scaling

(P1,∞, 0)→ (P1,∞, 0), x 7→ ax.

The upshot is that p ∈ Exc(β−1
2 ) is determined by the line 〈f1〉 ⊂ F̃ |0, or equivalently by the

principal part ρ(p) ∈ P.

We now define an extension β′2 of β2 : T
2
g;1 99K T

0
g;1 on k-points. Let p ∈ Exc(β2) be a point

corresponding to (P1;σ;φ : C → P1) with M(φ) = 2. Let β′2(p) be the unique point of Exc(β−1
2 )

whose principal part equals the cross-ratio χ(p) as points of P.
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By Lemma 5.3, it suffices to check that β′2 is continuous in one-parameter families. Let

∆→ T
2
g;1 be a map sending ∆◦ to the complement of Exc(β2) and 0 to a point p ∈ Exc(β2). By

replacing ∆ by a finite cover, assume that the map lifts to ∆→ T 2
g;1 and is given by the family

(P ;σ;φ : C → P ) over ∆. From the proof of the valuative criterion for T lg;1 (Theorem 3.1), we

know the procedure to modify (P ;σ;φ : C → P ) so that the central fiber lies in T 0
g;1. After a

sufficiently large base change, it involves blowing up σ(0) and blowing down the proper transform
of P |0, until the central fiber has Maroni invariant 0. Throughout this process, the central fiber
continues to have µ invariant 2. By repeated applications of Proposition 6.1 and Proposition 6.2,
we conclude that the principal part of the resulting limit equals the cross-ratio of the original
central fiber. It follows that β′2 is continuous in one-parameter families.

7. The Picard group

In this section, we compute the rational Picard groups and the canonical divisors of T
l
g;1 for

0 < l < g. Recall from Corollary 3.3 that T
l
g;1 are Q-factorial and from Proposition 4.14 that for

0 < l < g, they are isomorphic to one another away from codimension two. Hence their Picard
groups are identical. Also recall that we have an isomorphism of rational Picard groups of the
stack and the coarse space

PicQ(T lg;1)
∼−→ PicQ(T

l
g;1).

Since the locus of points with nontrivial automorphisms has codimension at least two, this
isomorphism is canonical and is given by the pushforward and the pullback in the corresponding
directions.

We begin by defining several classes in PicQ(T lg;1). Let (P;σ;φ : C → P) be the universal

family over T lg;1. Denote by πP : P → T lg;1 and πC : C → T lg;1 the projections. When no confusion
is likely, we denote both projections by π. Let Σ := brφ ⊂ P be the branch divisor.

Definition 7.1. Define the divisor classes

c2
1 = π∗

(
c1(φ∗OC)

2[P]
)
,

c2 = π∗ (c2(φ∗OC)[P]) ,

Br2 = π∗(Σ
2),

λ = det(R1π∗OC)
∨,

T = The class of the closure of the locus where φ has a triple ramification point,

δ = The class of the locus where C is singular,

σ2 = π∗

(
σ(T lg;1)2

)
,

K = The canonical divisor.

Proposition 7.2. Let 0 < l < g and l ≡ g (mod 2). Then

PicQ(T lg;1) = Q〈c2
1, c2〉 ∼= Q⊕2.

The reason we prefer c2
1 and c2 as a basis is that their cohomological nature allows us to

compute intersections with curves very easily.

Proof. We may throw away loci of codimension at least two. Consider the open subset Vg;1 (resp.
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Ug;1) of T lg;1 consisting of (P ;σ;φ : C → P ) where br(φ) has at least (b − 1) (resp. b) points in
its support. By Proposition 4.13, the complement of Vg;1 has codimension at least two. Hence

PicQ(T lg;1) = PicQ(Vg;1).

On the other hand, consider the complement of Ug;1 in Vg;1. It parametrizes (P ;σ;φ : C → P )
where br(φ) has the form 2p + p3 + · · · + pb for distinct points p, p3, . . . , pb ∈ P . Then φ either
has a triple ramification point or a node over p. In other words, we have

Vg;1 \ Ug;1 = T ∪ δ.

It is easy to see that both T and δ are irreducible. We thus have an exact sequence

Q〈T, δ〉 → PicQ(Vg;1)→ PicQ(Ug;1)→ 0. (7.1)

We claim that PicQ(Ug;1) = 0. Indeed, consider the moduli space Ug of unmarked trigonal curves,
namely

Ug = {(P ;φ : C → P )},
where P ∼= P1, C is a smooth and connected curve of genus g and φ is simply branched. From
[SF00, Proposition 12.1] or [BV12, Theorem 1.1], we know that PicQ(Ug) = 0. Let φ : C → P be
the universal object over Ug. Then P → Ug is a conic bundle and Ug;1 ⊂ P is the complement of
br(φ). We conclude that PicQ(Ug;1) = 0. From the sequence (7.1), we conclude that the dimension

of PicQ(T lg;1) is at most two. It is easy to verify (for example, by intersecting with test curves)
that c2

1 and c2 are linearly independent.

We now express all the divisors described above in terms of c2
1 and c2. We are particularly

interested in the expressions for λ, δ andK. As in the proof of Proposition 7.2, we may throw away
loci of codimension at least two. Accordingly, let W0;b,1 ⊂M0;b,1 be the open locus consisting of
points (P ;σ; Σ), where P ∼= P1 and supp br(φ) has at least (b− 1) points. Then W0;b,1 ⊂M0;b,1

has complement of codimension at least two. Likewise, let Vg;1 be the preimage of W0;b,1 in T lg;1.

Then Vg;1 ⊂ T
l
g;1 also has complement of codimension at least two.

Proposition 7.3. Denote by D ⊂W0;b,1 the divisor consisting of points where Σ is not reduced.
Then

br∗D = 3T + δ.

Proof. By the discussion in the proof of Proposition 7.2, we have

supp br∗D = suppT ∪ supp δ.

It remains to verify the multiplicities. One way to compute the multiplicities is to look at the
morphism Defφ → Def(P ;Σ). Let U → P1 be a neighborhood of p and φ|U : C|U → U the
restriction of φ; it suffices to look at Defφ|U → DefU,Σ|U . In fact, we may even restrict to an étale
neighborhood.

Take the case where v ∈ T . Then, étale locally around p, the cover φ has the form

φ : Spec k[x, y]/(x− y3)→ Spec k[x].

The branch divisor is given by Σ = x2. A versal deformation of the subscheme Σ ⊂ Spec k[x] can
be given over R = k[u, v] as the family

SpecR[x]/(x2 + ux+ v).
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The divisor D ⊂ SpecR corresponding to non-reduced Σ is given by 〈u2 − 4v〉. A versal defor-
mation of φ can be given over S = k[a, b] as the family

SpecS[x, y]/(x− y3 − ay − b)→ SpecS[x].

The divisor T ⊂ SpecS corresponding to covers with a triple ramification point is given by
〈a〉. On the other hand, the branch divisor in SpecS[x] is 〈27(x − b)2 + 4a3〉. Thus, under the
induced map SpecS → SpecR, the pullback of 〈u2− 4v〉 is 〈a3〉. In other words, T appears with
multiplicity three in br∗D.

The case where v ∈ δ is similar. Étale locally around p, the cover φ has the form

φ : Spec k[x] t Spec k[x, y]/(x2 − y2)→ Spec k[x].

A versal deformation of φ can be given over S′ = k[c] as the family

SpecS′[x] t SpecS′[x, y]/(x2 − y2 − c)→ SpecS′[x].

The divisor δ ⊂ SpecS′ corresponding to singular covers is given by 〈c〉. On the other hand,
the branch divisor in SpecS′[x] is 〈x2 − c〉. Thus, under the induced map SpecS → SpecR, the
pullback of 〈u2 − 4v〉 is 〈c〉. In other words, δ appears with multiplicity one in br∗D.

Proposition 7.4. Let l be such that 0 < l < g and l ≡ g (mod 2). Then the following relations

hold in PicQ(T lg;1):

Br2 = 4c2
1,

λ =
g + 1

2(g + 2)
c2

1 − c2,

T = 3c2,

δ =
4g + 6

(g + 2)
c2

1 − 9c2,

σ2 = − 1

(g + 2)2
c2

1.

Proof. The relations follow from Chern class calculations. They all appear in various places in
[SF00]. We present the details for completeness.

Take a one-parameter family of triple covers

C
φ→ P

π→ B,

where B is a smooth projective curve, P → B a P1 bundle and C → B a family of connected
curves of genus g. Let Σ = brφ ⊂ P . Set E = (φ∗OC/OP )∨. Then c1(φ∗OC) = −c1(E) and
c2(φ∗OC) = c2(E). Choose a (possibly rational) class ζ on P which has degree one on the fibers
of π and satisfies ζ2 = 0. In the calculations that follow, we omit writing pullbacks or push-
forwards where they are clear by context. We use [ ] to denote the class of a divisor in the Chow
ring. Chern classes are understood to be applied to the fundamental class.

Since Σ = brφ is the zero locus a section of (detφ∗O
∨
C)⊗2, we have

[Σ] = 2c1(E).

Squaring this gives the first relation.
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Using that Σ has relative degree b = 2(g + 2) over B and ζ2 = 0, we get

[Σ] · ζ =
c2

1(E)

g + 2
and c1(E) · ζ =

c2
1(E)

2(g + 2)
. (7.2)

From Grothendieck–Riemann–Roch applied to π : P → B, we get

ch(Rπ∗OC) = g + λ

= π∗ (ch(φ∗OC) · td(P/B))

= π∗

((
1− c1(E) +

c2
1(E)− 2c2(E)

2

)
· (1− ζ)

)
.

Combining with (7.2), we get the second relation

λ =
c2

1(E)

2
− c2(E) + Σ · ζ

=
g + 1

2(g + 2)
c2

1 − c2.

We have an embedding C↪→PE over P that exhibits C as the zero locus of a section α of the
line bundle L = OPE(3)⊗ detE∨. Set ξ = c1(OPE(1)). Then ξ satisfies the equation

ξ2 − c1(E)ξ + c2(E) = 0.

Let J3L be the bundle of order three jets of L along the fibers of πE : PE → P . More precisely,

J3L = π1∗ (π2
∗L⊗O3∆) ,

where πi are the two projections PE ×P PE → P and ∆ ⊂ PE ×P PE the diagonal divisor.
Then the locus T ⊂ B of points b ∈ B over which C|b → P |b has a triple ramification point is
simply the image in B of the zero locus of the section J3α of J3L induced from the section α of
L. In particular,

deg T = c3(J3L).

Since J3L = L + L ⊗ ΩPE/P + L ⊗ Ω⊗2
PE/P in the Grothendieck group of sheaves on PE and

c1(ΩPE/P ) = −2ξ + c1(E), we get the third relation

deg T = πE∗(3ξ − c1(E)) · ξ · (−ξ + c1(E))

= 3c2(E) = 3c2.

Our next goal is to compute the divisor br∗D. This is simply the branch divisor of Σ → B.
The ramification divisor of Σ→ B is given by ωΣ/B. By adjunction, we have

ωΣ/B = (ωP/B + c1(Σ))|Σ
= (−2ζ + 2c1(E)) · 2c1(E)

=
4g + 6

g + 2
c2

1(E),

and hence br∗D = 4g+6
g+2 c

2
1. Using Proposition 7.3, we get the third relation

δ = br∗D − 3T

=
4g + 6

g + 2
c2

1 − 9c2.
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For the last relation, recall that the section σ : B → P is disjoint from Σ. Abusing notation,
also denote by σ the image σ(B) ⊂ P . Now, [σ] and c1(E)

g+2 are two divisor classes on P that have
degree one on the fibers and their product is zero. The last relation follows.

Proposition 7.5. Let 0 < l < g and l ≡ g (mod 2). The canonical divisor of T lg;1 (or T
l
g;1) is

given by

K = −2(g + 3)(2g + 3)

(g + 2)2
c2

1 + 6c2

=
2

(g + 2)(g − 3)

(
3(2g + 3)(g − 1)λ− (g2 − 3)δ

)
.

Proof. Retain the notation introduced just before Proposition 7.3. We restrict to the open subset
Vg;1. Let KV (resp. KW ) be the canonical divisor of Vg;1 (resp. W0;b,1). Since the finite morphism
Vg;1 →W0;b,1 is étale except over D ⊂W0;b,1 and br∗D = 3T + δ, we have

KV = br∗KW + 2T. (7.3)

We first compute KW in terms of D. Let w be a point of W0;b,1 corresponding to the data
(P ; Σ;σ). We have the following canonical identification of the tangent space to W0;b,1 at w:

TwW0;b,1 = Hom(IΣ/I
2
Σ, OΣ)⊕Hom(Iσ/I

2
σ, Oσ).

With this, the relation between D and KW follows from an easy test-curve calculation, as follows.
Take a one parameter family (π : P → B;σ; Σ) giving a map f : B →W0;b,1, where B is a smooth

projective curve. Set ζ = [σ]
2 + [Σ]

2b . Then ζ has degree one on the fibers of π and satisfies ζ2 = 0.
Hence ωP/B = −2ζ. By adjunction

degωΣ/B = (−2ζ + [Σ]) · [Σ] =
b− 1

b
· Σ2.

Therefore,

degD = degωΣ/B =
b− 1

b
· Σ2.

On the other hand, we have

f∗TW0;b,1
= π∗H omΣ(IΣ/I

2
Σ, OΣ)⊕ π∗H omσ(Iσ/I

2
σ, Oσ).

Observe that

deg π∗H omΣ(IΣ/I
2
Σ, OΣ) = deg

(
H omΣ(IΣ/I

2
Σ, OΣ)

)
−

degωΣ/B

2

= Σ2 − degD

2
=

b+ 1

2(b− 1)
degD.

Using σ2 = −Σ2/b2 = −degD/(b(b− 1)), we get

−degKW = deg f∗TW0;b,1

= deg π∗H omΣ(IΣ/I
2
Σ, OΣ) + deg π∗H omσ(Iσ/I

2
σ, Oσ)

=
b+ 1

2(b− 1)
degD + σ2 =

b+ 2

2b
· degD.

Using (7.3) and Proposition 7.3, we get

KV = −b+ 2

2b
· (3T + δ) + 2T.

Substituting T and δ from Proposition 7.4 and using b = 2g + 4 yields the result.
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8. The ample cones

In this section, we identify the cone of ample divisors on T
l
g;1. We retain the notation introduced

in Section 7, especially the list of divisors from Definition 7.1.

Define the divisor Dl by the formula

Dl = (4c2 − c2
1) +

(
2l

2g + 4

)2

c2
1,

Recall that a Q-Cartier divisor on an algebraic space is nef if it intersects non-negatively with
all complete curves in that space. The bulk of the section is devoted to proving that certain

divisors on T
l
g;1 are nef.

Theorem 8.1. Let 0 < l < g and l ≡ g (mod 2). A divisor is nef on T
l
g;1 if and only if it is a

non-negative linear combination of Dl and Dl+2.

The proof is the content of Subsection 8.1 and Subsection 8.2. Using the Nakai–Moishezon
criterion for ampleness, we then deduce projectivity.

Theorem 8.2. Let 0 < l < g and l ≡ g (mod 2). A divisor is ample on T
l
g;1 if and only if it is a

positive linear combination of Dl and Dl+2. In particular, the algebraic space T
l
g;1 is a projective

variety.

The proof is the content of Subsection 8.3. In terms of the more standard generators λ and
δ, the divisor Dl admits the following expression:(

g − 3

2

)
Dl = ((7g + 6)λ− gδ) +

l2

g + 2
· (9λ− δ) .

8.1 Positivity for families with Br2 > 0

We first prove that Dl and Dl+2 are non-negative on one-parameter families in T
l
g;1 with non-

negative Br2.

Proposition 8.3. Let B be a smooth projective curve and π : P → B a P1 bundle with a section
σ : B → P . Let φ : C → P be a triple cover, étale over σ. Assume that on the generic point of
B, we have

φ∗OC/OP ∼= OP (−m)⊕OP (−n),

where m 6 n are positive integers. Assume, furthermore, that br(φ)2 > 0. Set ci = ci(φ∗OC).
Then (

4c2 − c2
1 +

(
n−m
n+m

)2

c2
1

)
[P ] > 0.

Corollary 8.4. Assume that 0 < l < g and l ≡ g (mod 2). Let B be a projective curve and

f : B → T
l
g;1 a morphism such that f∗(Br2) > 0. Then

f∗Dl+2 > f
∗Dl > 0.

Proof. By replacing B by a finite cover and normalizing, we may assume that we have a map

f : B → T lg;1 and B is smooth. We apply Proposition 8.3 to the family of l-balanced covers
corresponding to f . As n+m = g + 2 and n−m 6 l, we conclude that f∗Dl > 0. Finally, since
Br2 = 4c2

1 and Br2 > 0, we get f∗Dl+2 > f∗Dl.
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We now prove Proposition 8.3. We freely use the divisor relations from Proposition 7.4. We
begin by an inequality between the chern classes of a family of vector bundles on P1. Recall that
a balanced vector bundle on P1 is one of the form O(d)⊕r.

Proposition 8.5. Let B be a smooth projective curve, P → B a P1 bundle, and E a vector
bundle of rank r on P . If the restriction of E to some fiber of P → B is balanced, then the class
π∗(2rc2(E)− (r − 1)c2

1(E)) on B is non-negative.

The result is a special case of a result of Moriwaki [Mor98, Theorem A]. Stankova-Frenkel
proves the particular case (r = 2) that we need [SF00, Proof of Proposition 12.2]. Nevertheless,
here is another proof.

Proof. Observe that 2rc2(E)− (r − 1)c2
1(E) is unaffected if E is replaced by E ⊗ L for any line

bundle L. Thus, possibly after replacing B by a finite cover, assume that detE ∼= OP . We must
conclude that π∗c2(E) > 0.

That E is generically balanced and detE = OP forces Eb ∼= O⊕rPb for a generic b ∈ B. Then
π∗E is a vector bundle of rank r on B. Since π∗π∗E → E is generically an isomorphism and
detE = OP , it follows that c1(π∗E) 6 0. Since R1π∗E is supported on finitely many points,
we evidently have c1(R1π∗E) > 0. Therefore, c1(Rπ∗E) 6 0. But Grothendieck–Riemann–Roch
shows that c1(Rπ∗E) = −π∗c2(E).

Proof of Proposition 8.3. Assume, possibly after a finite base change, that we have three disjoint
sections τi : B → C lying over σ, for i = 1, 2, 3. For a generic b, we have

φ∗OCb
∼= OPb ⊕OPb(−m)⊕OPb(−n).

If m = n, then by Proposition 8.5, we get 4c2 − c2
1 > 0. Since Br2 = 4c2

1 > 0, this implies the
desired result. Henceforth, assume that m < n.

Set F = φ∗OC/OP , and consider the map

χ : π∗(F ⊗OP (mσ))→ π∗(F |σ ⊗OP (mσ)).

Note that π∗(F ⊗ OP (mσ)) is a line bundle on B. Since φ−1σ = τ1 t τ2 t τ3, the bundle F |σ is
trivial. Clearly, over the points b ∈ B where F ∼= O(−m)⊕O(−n), the map χ is injective. Hence,
there is a map p : O⊕2

σ = F |σ → Oσ such that the induced map

p ◦ χ : π∗(F ⊗OP (mσ))→ π∗(Oσ(mσ))

is an isomorphism at the generic point of B.

Denote by (n−m)σ the scheme defined by the (n−m)th power of the ideal of σ. Consider
the diagram of vector bundles of rank (n−m− 1) on B:

π∗(F ⊗OP (m))⊗ π∗OP ((n−m− 1)σ) π∗Oσ(mσ)⊗ π∗OP ((n−m− 1)σ)

π∗(F ⊗OP ((n− 1)σ)) π∗O(n−m)σ((n− 1)σ)
. (8.1)

The top and the left maps are clear. The bottom one is the composition

π∗(F ⊗OP ((n− 1)σ))→ π∗(F |(n−m)σ ⊗OP ((n− 1)σ)
p→ π∗(O(n−m)σ((n− 1)σ)).

The one on the right is induced by the map of rings

Oσ → O(n−m)σ
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dual to the projection (n − m)σ → σ. The map on the right is an isomorphism; the rest are
isomorphisms generically on B. In particular, we conclude that

deg π∗O(n−m)σ((n− 1)σ) > deg π∗(F ⊗OP ((n− 1)σ)). (8.2)

We compute both sides in terms of ci(φ∗OC) = ci(F ), henceforth abbreviated by ci. The left side
is easy from the exact sequences

0→ Oσ((m+ i)σ)→ O(n−m−i)σ((n− 1)σ)→ O(n−m−i−1)σ((n− 1)σ)→ 0,

for 0 6 i 6 n−m− 1. So we have

deg π∗O(n−m)σ((n− 1)σ) = ((n− 1)σ + (n− 2)σ + · · ·+mσ) · σ

=

(
(n+m− 1)(n−m)

2

)
σ2

= −
(

(n+m− 1)(n−m)

2(n+m)2

)
c2

1.

(8.3)

For the right side, apply Grothendieck–Riemann–Roch, keeping in mind

ωπ · σ = −σ2, σ2 = − c2
1

2(n+m)
, ωπ · c1 = − c2

1

(n+m)
, and c1 · σ = ω2

π = 0.

The result is

ch(Rπ∗(F ⊗OP ((n− 1)σ)))

= π∗
(
chF · chOP ((n− 1)σ) · tdP/B

)
= π∗

((
2 + c1 +

c2
1

2
− c2

)
·
(

1 + (n− 1)σ +
(n− 1)2σ2

2

)
·
(

1− ωπ
2

))
,

so that

c1(Rπ∗(F ⊗OP ((n− 1)σ)))

=

(
(n+m)2 + (n+m)− 2(n− 1)2 − 2(n− 1)

2(n+m)2

)
c2

1 − c2

= −
(

(n−m)(n+m− 1)− 2mn

2(n+m)2

)
c2

1 − c2.

(8.4)

See that R1π∗(F ⊗OP ((n− 1)σ)) is supported on finitely many points of B. Hence

c1(π∗(F ⊗OP ((n− 1)σ))) > c1(Rπ∗(F ⊗OP ((n− 1)σ))).

Combining with (8.2), we arrive at

c1(π∗OP ((n− 1)σ)|(n−m)σ) > c1(Rπ∗(F ⊗OP ((n− 1)σ))).

Substituting the left side from (8.3) and the right side from (8.4), we get

−
(

(n+m− 1)(n−m)

2(n+m)2

)
c2

1 > −
(

(n−m)(n+m− 1)− 2mn

2(n+m)2

)
c2

1 − c2

=⇒ 4c2 −
(

4mn

(n+m)2

)
c2

1 = (4c2 − c2
1) +

(
n−m
n+m

)2

c2
1 > 0.

The proof is thus complete.
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Remark 8.6. Let us examine the proof to determine when equality holds. This is the case if
and only if the map π∗(F ⊗ OP ((n − 1)σ)) → π∗O(n−m)σ((n − 1)σ) is an isomorphism and
R1π∗(F ⊗OP ((n− 1)σ)) = 0. Then the splitting type of Fb is (m,n) for all b ∈ B. Therefore, all
the maps in (8.1) are isomorphisms. In particular, we have an isomorphism π∗(F ⊗ OP (m)) ∼=
Oσ(mσ). Hence the map

π∗(F ⊗OP (m))→ π∗(F |σ ⊗OP (m)),

which defines the cross-ratio, is equivalent to a (nonzero) global section of

H omB(π∗(F ⊗OP (m)), π∗(F |σ ⊗OP (m))) ∼= O⊕2
B .

The upshot is that C → P is a family of triple covers with a constant Maroni invariant l = n−m
and a constant cross-ratio.

Retracing the steps, it is easy to see that Dl is zero on a family with constant Maroni invariant
and constant cross-ratio.

8.2 Positivity for families with Br2 < 0

Having taken care of families with Br2 > 0, we now consider families with Br2 < 0. Note that
Br2 < 0 implies that the branch divisor is supported along a section of negative self interse

Proposition 8.7. Let B be a smooth projective curve and π : P → B a P1 bundle with a
section σ : B → P . Assume that Br2 < 0 and let ζ be the unique section of π of negative self-
intersection. Let φ : C → P be a triple cover étale away from ζ. Assume that the splitting type
of the singularity of C → P over ζ is (m,n) over a generic point of B, where m < n are positive
integers. Then (

4c2 − c2
1 +

(
n−m
n+m

)2

c2
1

)
[P ] > 0.

Corollary 8.8. Assume that 0 < l < g and l ≡ g (mod 2). Let B be a projective curve and

f : B → T
l
g;1 a morphism such that f∗Br2 < 0. Then

f∗Dl > f
∗Dl+2 > 0.

Proof. Since 4c2
1 = Br2 and Br2 < 0, we have c2

1 < 0. Therefore f∗Dl > f∗Dl+2. Hence, it suffices
to prove that f∗Dl+2 > 0.

By replacing B by a finite cover and normalizing if necessary, we may assume that f lifts to a

map f : B → T lg;1 and B is smooth. Say f is given by (P ;σ;φ : C → P ). Since 4c2
1 = Br2 < 0, the

branch divisor of φ must be supported on the section ζ of P → B of negative self-intersection.
Thus, Proposition 8.7 applies. Since our family consists of l-balanced covers, we have n−m > l,
and hence n − m > l + 2 because n − m ≡ l ≡ g (mod 2). Using n + m = b/2, c2

1 < 0 and
n−m > l + 2 in the conclusion of Proposition 8.7, we conclude that

f∗Dl+2 > 0.

Proof of Proposition 8.7. By making a base change if necessary, assume that we have three
sections τi : B → C over σ, for i = 1, 2, 3. Let C̃ → C be the normalization and φ̃ : C̃ → P
the corresponding map. By [Tei80], the fibers are C̃ → B are normalizations of the fibers of
C → B. Therefore, C̃ is the disjoint union of three copies of P , each containing one section
τi. Set F = φ∗OC/OP , and E = φ̃∗OC̃/OP . Note that E ∼= O⊕2

P . The inclusion φ∗OC ↪→φ̃∗OC̃
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induces an inclusion F ↪→E, which is an isomorphism away from ζ. We think of F as a subsheaf
of E via this inclusion.

Since the generic spitting type of the singularity of the fibers of C → B over ζ is (m,n), we
have the inclusions

Inζ · E ⊂ F ⊂ Imζ · E.

Let F = F/
(
Inζ · E

)
and E =

(
Imζ /I

n
ζ

)
· E. Both F and E are supported on ζ, are π-flat, and

their π-fibers have lengths (n−m) and 2(n−m) respectively. Pushing forward F → E, we get

i : π∗F → π∗E,

a map of locally free sheaves on B of rank (n−m) and 2(n−m), respectively. The target π∗E
is isomorphic to π∗(I

m
ζ /I

n
ζ )⊗ (O⊕2

B ).

We examine i explicitly over a point b ∈ B where the splitting type of the singularity is
(m,n). Let x be a local coordinate for Pb near ζ(b). Since the singularity of Cb → Pb is of type
(m,n), the subalgebra OCb ⊂ O

C̃b
= O⊕3

P is generated as an OP1
b

module, locally around x, by

〈1, xmf, xnO⊕3
Pb
〉, where the image of f in Eb is nonzero modulo x. Therefore,

F b = k〈xmf, xm+1f, . . . , xn−1f〉.

Since the image of f in E|ζ(b) is nonzero, it is nonzero in one of the projections p : O⊕2
ζ(b) =

E|ζ(b) → Oζ(b). It follows that the composite jb = p ◦ ib gives an isomorphism

jb : F b
∼−→ Imζ(b)/I

n
ζ(b).

Consequently, the composition j = p ◦ i is an isomorphism on the generic fiber:

j : π∗F → π∗(I
m
ζ /I

n
ζ ).

We conclude that

deg π∗(I
m
ζ /I

n
ζ ) > deg π∗F . (8.5)

We compute both sides in terms of ci(φ∗OC), abbreviated henceforth by ci. Since P → B is a P1

bundle with two disjoint sections σ and ζ of positive and negative self-intersection, respectively,
we have

ωP/B = −σ − ζ.

By Grothendieck–Riemann–Roch,

ch(π∗(I
m
ζ /I

n
ζ )) = π∗(ch(Imζ /I

n
ζ ) · tdP/B)

= π∗
(
(ch Imζ − ch Inζ ) · tdP/B

)
= π∗

((
(n−m)ζ +

(m2 − n2)ζ2

2

)
·
(

1 +
σ + ζ

2

))
;

c1(π∗E) =

(
m2 − n2 + n−m

2(n+m)2

)
c2

1.

The last equality uses ζ2 = −σ2 = c2
1/(n+m)2.

39



Anand Deopurkar

Similarly, using c1 = −(m+ n)ζ and Grothendieck–Riemann–Roch,

ch(π∗F ) = π∗(chF · tdP/B)

= π∗((chF − 2 ch Inζ ) · tdP/B)

= π∗

((
c1 + 2nζ +

c2
1

2
− c2 − n2ζ2

)
·
(

1 +
ζ + σ

2

))
;

c1(π∗F ) =

(
m2 − n2 + 2mn+ n−m

2(m+ n)2

)
c2

1 − c2.

Substituting into (8.5), we get

4c2 −
(

4mn

(m+ n)2

)
c2

1 = 4c2 − c1 +

(
n−m
m+ n

)2

c2
1 > 0.

Remark 8.9. Let us examine the proof to determine when equality holds. This is the case if and
only if the map F → Imζ /I

n
ζ is an isomorphism. Then fiber Cb → Pb has a singularity of splitting

type (m,n) for all b ∈ B. Furthermore, the map F |ζ → E|ζ , which defines the principal part, is
equivalent to a (nonzero) global section of

H om(F |ζ , E|ζ) ∼= O⊕2
ζ .

The upshot is that the family C → P has singularities of a constant µ invariant l = n−m and
a constant principal part.

Retracing the above steps, it is easy to see that Dl is zero on any family with concentrated
branching and singularities with constant µ invariant and constant principal parts.

We have essentially finished the proof of Theorem 8.1; it is now a matter of collecting the
pieces.

Proof of Theorem 8.1. By Corollary 8.4 and Corollary 8.8 we conclude that Dl and Dl+2 are

non-negative on any complete curve in T
l
g;1. Hence, every non-negative linear combination of Dl

and Dl+2 is nef.

It remains to show that Dl and Dl+2 are indeed the edges of the nef cone. For that, it
suffices exhibit curves on which Dl is zero and Dl+2 is positive, and vice-versa. Remark 8.6 and
Remark 8.9 tell us how to construct such curves. We explain the constructions briefly. Let m < n
be such that n+m = g + 2 and n−m = l.

For the edge 〈Dl〉, we construct a family of covers with constant Maroni invariant l and
constant cross-ratio. Such a family can be constructed, for example, as follows. Let C → P2 be
a connected, generically étale triple cover with

OC/OP2
∼= OP2(−m)⊕OP2(−n).

Let p ∈ P2 be a point over which C → P2 is étale. Let P = Blp P2 and set C ′ = C ×P2 Blp P2.
Then P → P1 is a P1 bundle with a section σ given by the exceptional divisor. The family

(P ;σ;C ′ → P ) gives a curve in T
l
g;1. The pullback of Dl to this curve is zero and the pullback

of Dl+2 is positive.

For the edge 〈Dl+2〉, we construct a family of covers with concentrated branching having
µ invariant l + 2 and constant principal part. To construct such a family, consider the two-
parameter family of sub-algebras S(a, b) of O⊕3

P1 , where S(a, b) is generated locally around 0 as
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an OP1 module by

1, (xm−1 + axn−1 + bxn, 0, 0), and xn+1O⊕3
P1 .

Via the scaling x 7→ tx, we have an isomorphism

S(a, b)
∼−→ S(tn−ma, tn−m+1b).

The resulting family on the weighted projective stack P(n−m,n−m+ 1) = (k⊕2 \0)/Gm gives

a curve in T
l
g;1. The pullback of Dl+2 to this curve is zero and the pullback of Dl is positive.

8.3 Projectivity

In this section, we prove that divisors in the interior of the nef cone of T
l
g;1 are indeed ample.

This would follow from Kleiman’s criterion if we knew that T
l
g;1 is a scheme. However, it is a

priori only an algebraic space. Kleiman’s criterion can fail for algebraic spaces, as pointed out
by Kollár [Kol96, § VI, Exercise 2.19.3]. However, Nakai–Moishezon criterion still holds.

Theorem 8.10 (Nakai–Moishezon criterion for ampleness). [Kol90, Theorem 3.11] Let X be an
algebraic space proper over an algebraically closed field and H a Cartier divisor on X. Then H
is ample if and only if for every irreducible closed subspace Y ⊂ X of dimension n, the number
Hn · Y is positive.

To deduce that divisors in the interior of the nef cone are ample, we need a mild extension
of [FS11, Lemma 4.12]

Lemma 8.11. Let X be an algebraic space proper over an algebraically closed field. Suppose
X satisfies the following: for every irreducible subspace Y ⊂ X, there is a finite surjective map
Z → Y and a Cartier divisor D on X whose pullback to Z is numerically equivalent to a nonzero
and effective divisor. Then any Cartier divisor in the interior of the nef cone of X is ample.

Proof. The proof follows the proof of [FS11, Lemma 4.12] almost verbatim.

We now have the tools to prove Theorem 8.12. We recall the statement for the convenience
of the reader.

Theorem 8.12. Let 0 < l < g and l ≡ g (mod 2). A divisor is ample on T
l
g;1 if and only if it is a

positive linear combination of Dl and Dl+2. In particular, the algebraic space T
l
g;1 is a projective

variety.

Proof. We check that X = T
l
g;1 satisfies the hypothesis of Lemma 8.11. Let Y ⊂ X be an

irreducible closed subspace. Choose a finite surjective map Z → Y such that Z is a normal

scheme and Z → X lifts to Z → T lg;1, given by a family (π : P → Z;σ;φ : C → P ). Set
Σ = br(φ) ⊂ P . Then Σ is a π-flat divisor of degree b, disjoint from σ. By passing to a finite
cover of Z if necessary, assume that we have three disjoint sections τ1, τ2, τ3 : Z → C over σ and
sections σ1, . . . , σb : Z → P such that

Σ = σ1(Z) + · · ·+ σb(Z)

as divisors on P . Observe that all the σi are disjoint from σ, and hence are linearly equivalent
to each other. Furthermore, π∗[σ

2
i ] = −π∗[σ2].

We exhibit a divisor class on X whose pullback to Z is nonzero and effective.
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Case 1: σi are not all coincident. Without loss of generality, σ1 6= σ2 at a generic point
of Z. If σ1(z) 6= σ2(z) for all z ∈ Z, then we have three disjoint sections σ, σ1 and σ2 of the P1

bundle P → Z. Hence P → Z is trivial and Σ ⊂ P is a constant family. In other words, the map

Z → T lg;1 lies in a geometric fiber of br : H 3 →M . By [Deo12, Lemma 6.2], the pullback of −λ
is ample on Z. In particular, some multiple of −λ pulls back to a nonzero and effective divisor.

If σ1(z) = σ2(z) for some z ∈ Z, then π∗(σ1 · σ2) is a nonzero and effective divisor on Z. Since

σ1 ∼ σ2 ∼ −σ, the divisor π∗(σ1 · σ2) is equivalent to the pullback of the divisor −σ2 on T
l
g;1.

Case 2: σi are all coincident. Say σi = ζ for i = 1, . . . , b. In this case, we have a family
of covers with concentrated branching. We begin as in the proof of Proposition 8.7.

Let the splitting type of the singularity over a generic z ∈ Z be (m,n), with m < n. Let C̃ → C
be the normalization. By [Tei80], the fibers of C̃ → Z are the normalizations of the corresponding
fibers of C → Z. In particular, C̃ ∼= P t P t P . Set

F = φ∗OC/OP and E = φ̃∗OC̃/OP
∼= O⊕2

P .

We have inclusions

Inζ E ⊂ F ⊂ Imζ E.
Set

F = F/Inζ E and E = Imζ E/I
n
ζ E.

Then we have an induced map F → E. Also, see that E ∼= (Imζ /I
n
ζ )⊕2. Since the generic splitting

type of the singularity is (m,n), there is a projection E → Imζ /I
n
ζ such that F → Imζ /I

n
ζ is an

isomorphism over the generic point of Z. Suppose F → Imζ /I
n
ζ is not an isomorphism over all of

Z. Then we get a map of line bundles on Z:

detπ∗F → detπ∗(I
m
ζ /I

n
ζ )

whose vanishing locus is a nonzero effective divisor. The class of this vanishing locus can be
expressed as a pullback of c2

1 and c2; in fact, it is precisely Dn−m, as computed in the proof of
Proposition 8.7.

We are thus left with the case where F → Imζ /I
n
ζ is an isomorphism. In this case, F and E are

vector bundles on (n −m)ζ of rank one and two respectively. The map F → E is just a global
section f of V = H om(n−m)ζ(F ,E) ∼= O⊕2

(n−m)ζ . The restriction f |ζ is a section of O⊕2
ζ , and

hence it is constant. We are thus dealing with a family of covers with concentrated branching, a
constant µ invariant and a constant principal part.

Set G = IsomZ((P, ζ, σ), (P1, 0,∞)). Then G→ Z is a Gm torsor. We have a canonical isomor-
phism

(PG, ζG, σG)
∼−→ (P1 ×G, 0×G,∞×G).

Let x be a uniformizer of P1 around 0. Then V G
∼= (k[x]/xn−m)

⊕2 ⊗k OG. We can interpret the
global section fG of V G as a Gm equivariant map φG : G → (k[x]/xn−m)⊕2, where Gm acts on
the k vector space (k[x]/xn−m)⊕2 by t : xi 7→ tixi. Since the restriction of fG to ζ is constant,
φG has the form φG = (c + ψG), where c ∈ k⊕2 is a constant and ψG : G → (xk[x]/xn−m)⊕2.
Explicitly, over a point b ∈ G, the subalgebra OCb ⊂ OC̃b is generated as an OPb module, locally
around 0, by

1, xnO
C̃b

and xm(c+ ψG(b)).

Since the Maroni invariant of the resulting cover is less than n−m, we conclude that ψG(b) 6= 0
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for any b ∈ G. Furthermore, since the map Z → T
l
g;1 is quasi-finite, so is the map ψG : G →

(xk[x]/xn−m)⊕2. We thus have a finite map

ψ : Z → [(xk[x]/xn−m)⊕2 \ 0/Gm],

where the right side is a weighted projective stack. We conclude that ψ∗O(1) is ample. But
ψ∗O(−1) is the line bundle associated to G→ Z, which is P \ σ → Z. Therefore,

c1(ψ∗O(1)) = c1(ζ∗OP (−ζ))

= π∗(−ζ2) = π∗(σ
2).

In particular, the pullback to Z of some multiple of the divisor σ2 on T
l
g;1 is effective.

As a result of the positivity of the interior of the cone spanned by Dl and Dl+2, we can easily
deduce the following.

Proposition 8.13. Let 0 < l < g and l ≡ g (mod 2). Consider the map βl : T
l
g;1 99K T

l−2
g;1 . Then

Exc(βl) is covered by K-negative curves. If l > 0, then Exc(β−1
l ) is covered by K-positive curves.

Proof. Exc(βl) is the locus of (P ;σ;φ : C → P ) where φ has Maroni invariant l. This locus
is covered by curves S in which the cross-ratio is constant. Similarly Exc(β−1

l ) is the locus of
(P ;σ;φ : C → P ) where φ has concentrated branching and µ invariant l+ 2. For l > 0, this locus
is covered by curves T in which the principal part is constant. By Remark 8.6 (resp. Remark 8.9),
the divisor Dl (resp. Dl+2) is zero on such S (resp. T ). Since Dl+2 and K are on the opposite

sides of the line spanned by Dl in PicQ(T
l
g;1), the claim follows.

9. The final model

In this section, we prove that for even g, the final model T
0
g;1 is Fano and for odd g, the final

model T
1
g;1 is a Fano fibration over P1.

9.1 The case of even g

Let g = 2(h − 1), where h > 1. Fix an identification P1 = Proj k[X,Y ]. Set 0 = [0 : 1] and
∞ = [1 : 0]. Let G = Aut(P1,∞); this is the group of affine linear transformations

µα,β : (X,Y ) 7→ (X + βY, αY ),

where α ∈ k∗ and β ∈ k. Let Λ be the two dimensional k vector space Λ = ker(tr : k⊕3 → k),
where tr is the sum of the three coordinates. Λ should be thought of as the space of traceless
functions on {1, 2, 3} × Spec k. Set Γ = Λ⊗k OP1(h) and

V = H0
(
Sym3 Γ⊗P1 det Γ∨

)
= (Sym3(Λ)⊗k det Λ∨)⊗k H0(OP1(h)).

By the structure theorem of triple covers (Theorem 4.1), balanced triple covers of P1 of arithmetic
genus g correspond precisely to elements of V . Note that V admits a natural action of GL(Λ)×G.
Indeed, GL(Λ) = GL2 acts naturally on the first factor in V , whereas G acts on the second factor
by

µα,β : p(X,Y ) 7→ p ◦ µ−1
α,β(X,Y ).
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Let v1, v2 ∈ V be two points and C1 → P1 and C2 → P1 the corresponding balanced triple
covers. Using the point ∞ ∈ P1 as the additional marked point, treat them as marked triple
covers (Ci → P1;∞). We observe that these two marked covers are isomorphic if and only if

v1 and v2 are related by the action of GL2×G. Thus, we might expect T 0
g;1 to be the quotient

[V/GL2×G]. This is not quite true since not all elements of V give an element of T 0
g;1. Firstly,

the cover must be étale over ∞ and secondly, it must not have µ invariant 0. Thus, we expect

T 0
g;1 = [U/GL2×G],

for a suitable open U ⊂ V . In what follows, we prove that this is indeed the case. Along the way,
we also simplify the presentation [U/GL2×G].

The first step is to exhibit a morphism T 0
g;1 → [V/GL2×G]. Let S be a scheme and S → T 0

g;1

a morphism given by (P ;σ;φ : C → P ). Let E = (φ∗OC/OP )∨. By the structure theorem for
triple covers (Theorem 4.1), the cover C → P gives a global section v of Sym3(E)⊗ detE∨. Set

T = IsomS(σ∗E,Λ)×S IsomS((P, σ), (P1,∞)).

Then T → S is a GL2×G torsor. Over T , we have canonical identifications

σ∗TET
∼−→ Λ⊗k OT and (PT , σT )

∼−→ (P1 × T,∞× T ).

Since C → P is a family of balanced triple covers, E is fiberwise isomorphic to Γ. On T , the
isomorphism σ∗ET

∼−→ Λ⊗k OT gives a canonical isomorphism

ET
∼−→ ΓT .

Thus, we may treat vT as a global section of Sym3 ΓT ⊗det Γ∨T , or equivalently as a map T → V .
By construction, this map is GL2×G equivariant. We thus have a morphism

q : T 0
g;1 → [V/GL2×G]. (9.1)

Proposition 9.1. The morphism q in (9.1) is representable and an injection on k-points.

Recall that k-points of [X/H] are just orbits of the action of H(k) on X(k).

Proof. Let p : Spec k → T 0
g;1 be a point. For representbility, we must show that the map

Autp → Autq(p) is injective. Say p is given by (P ;σ;φ : C → P ). Set E = (φ∗OC/OP )∨ and
pick identifications E|σ ∼= Λ and (P, σ) ∼= (P1,∞). Consider an element ψ ∈ Autp. Then ψ
consists of (ψ1, ψ2), where ψ1 : (P1;∞) → (P1;∞) is an automorphism and ψ2 : C → C is an
automorphism over ψ1. To understand the image of ψ in Autq(p), consider the map on algebras

ψ#
2 : ψ∗1φ∗OC → φ∗OC

dual to ψ2 : C → C. The map ψ#
2 induces a map α : E → ψ∗1E. Then the image of ψ = (ψ1, ψ2)

is just (α|σ, ψ1).

Suppose that (α|σ, ψ1) = id. Then ψ1 = id. Furthermore, the fact that E is balanced and
α|σ = id implies that α = id. From the sequence

0→ OP → φ∗OC → E∨ → 0,

it follows that ψ2 = id. Thus Autp → Autq(p) is injective.

It is clear that q is injective on k-points—two sections v1, v2 in the same orbit of GL2×G
clearly give isomorphic marked covers.
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Theorem 9.2. Let g = 2(h− 1), where h > 1. Then

T 0
g;1
∼= [(A2g+3 \0)/(S3 ×Gm)],

where Gm acts by weights

1, 2, . . . , h, 1, 2, . . . , h, 1, 2, . . . , h, 2, 3 . . . , h.

The space T
0
g;1 is the quotient of the weighted projective space

P (1, . . . , h, 1, . . . , h, 1, . . . , h, 2, . . . , h)

by an action of S3. In particular, T
0
g;1 is a unirational, Fano variety.

We use the following lemma in the proof to simplify a group action.

Lemma 9.3. Let X be a normal variety over k with the action of a connected algebraic group
H. Let X ′ ⊂ X be a reduced and irreducible subvariety and H ′ ⊂ H a subgroup such that the
action of H ′ restricts to an action on X ′. If [X ′/H ′]→ [X/H] is a bijection on k-points, then it
is an isomorphism.

Proof. The map [X ′/H ′]→ [X/H] is clearly representable. Set Y = X×[X/H] [X
′/H ′]. It suffices

to prove that Y → X is an isomorphism. We have the diagram

X ′ ×H X ′

Y [X ′/H ′]

X [X/H]
.

The smooth morphism Y → [X ′/H ′] shows that Y is reduced and the surjective morphism
X ′ ×H → Y shows that it is irreducible. Furthermore, Y → X induces a bijection on k-points.
The quasi-finite map Y → X can be factored as Y ↪→Y → X, where the first is a dense open
inclusion and the second a finite map. Since X is normal, Zariski’s main theorem implies that
Y → X is an isomorphism. But then Y ↪→Y is a bijection on k-points. It follows that Y = Y .

Proof of Theorem 9.2. Retain the notation at the beginning of Subsection 9.1. Let U ⊂ V be
the open subset consisting of v ∈ V whose associated triple cover is étale over ∞. Then U is

invariant under the GL2×G action and q : T 0
g;1 → [V/GL2×G] lands in [U/GL2×G].

We now simplify the presentation [U/GL2×G]. Choose coordinates on Λ: say s = (1,−1, 0)
and t = (0, 1,−1). Write points of V explicitly as

vs,t = (as3 + bs2t+ cst2 + dt3)⊗ (s∗ ∧ t∗),

where a, b, c, d ∈ H0(OP1(h)). Let a =
∑
aiX

h−iY i, where ai ∈ k, and similarly for b, c and d.
Let W ⊂ U be the closed subvariety defined by

vs,t(1, 0) = st(t+ s)⊗ (s∗ ∧ t∗) and 2a1 + 2d1 − b1 − c1 = 0.

The first equation specifies v over ∞; the second is the result of imposing the condition that the
branch divisor of the triple cover given by v be centered around 0. Explicitly, the points of W
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have the form (
h∑
i=1

ah−iX
iY h−i

)
s3 ⊗ (s∗ ∧ t∗)

+

(
Xh +

h∑
i=1

bh−iX
iY h−i

)
s2t⊗ (s∗ ∧ t∗)

+

(
Xh +

h∑
i=1

ch−iX
iY h−i

)
st2 ⊗ (s∗ ∧ t∗)

+

(
h∑
i=1

dh−iX
iY h−i

)
t3 ⊗ (s∗ ∧ t∗).

where 2a1 + 2d1 − b1 − c1 = 0. The action of S3 ⊂ GL2 by permuting the three coordinates of
Λ ⊂ k3 and the action of Gm ⊂ G by scaling (X,Y ) 7→ (X, tY ) restrict to actions on W .

Claim. The map i : [W/S3 ×Gm]→ [U/GL2×G] is an isomorphism

Proof. By Lemma 9.3, it suffices to check that it is a bijection on k-points.

We first check that i is injective on k-points. Said differently, we want to check that two points
of W that are related by the action of GL2×G are in fact related by the action of S3×Gm. Let
w1, w2 ∈ W and ψ = (ψ1, ψ2) ∈ GL2×G be such that w1 = ψw2. Then the linear isomorphism
ψ1 : k〈s, t〉 → k〈s, t〉 takes st(s + t) ⊗ s∗ ∧ t∗ to itself. It is easy to check that it must lie in the
S3 ⊂ GL2. Secondly, observe that for ψ2 : (X,Y ) 7→ (X + βY, αY ), we have

ψ−1
2 (2a1 + 2d1 − b1 − c1) = α(2a1 + 2d1 − b1 − c1)− hβ. (9.2)

By the second defining condition for W , we must have β = 0. In other words, ψ ∈ S3 ×Gm.

We now check that i is surjective on k-points. Said differently, we want to check that every
GL2×G-orbit of U has a representative in W . Take a point v ∈ U . Since v describes a cover étale
over∞, the homogeneous cubic in vs,t(1, 0) has distinct roots. By a suitable linear automorphism
of k〈s, t〉, the element vs,t(1, 0) can thus be brought into the form st(s + t) ⊗ s∗ ∧ t∗. Secondly,
(9.2) shows that we can make 2a1 + 2d1 − b1 − c1 = 0 after a suitable translation (X,Y ) 7→
(X + βY, Y ).

Returning to the main proof, we have a morphism

q : T 0
g;1 → [U/GL2×G] = [W/S3 ×Gm],

which is representable and injective on k-points. Denote by 0 ∈ W the point corresponding to
ai = bi = ci = di = 0 for all i = 1, . . . , h. Its corresponding cover has concentrated branching
over 0 ∈ P1 and µ invariant zero. Hence q factors through

q : T 0
g;1 → [(W \ 0)/(S3 ×Gm)]. (9.3)

The right side [(W \0)/(S3×Gm)] is smooth and proper over k. Indeed, it is a weighted projective
stack modulo an action of S3. Thus, the morphism q in (9.3) is a representable, proper morphism
between two smooth stacks of the same dimension which is an injection on k-points. By Zariski’s
main theorem, it must be an isomorphism.

Finally, note that

W ∼= A2g+3 = A(a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d2, . . . , dh);
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the d1 can be dropped owing to the condition 2a1 + 2d1 − b1 − c1 = 0. The Gm acts by weight i
on ai, bi, ci, di, as desired.

9.2 The case of odd g

Let g = 2h− 1. In this case, we do not have quite as explicit a description of the final model as
in the case of even g. Nevertheless, we prove that it is a Fano fibration over P1.

The morphism to P1 is defined by the cross-ratio as in Subsection 6.1. We quickly recall the
construction. Set V = k⊕3/k, to be thought of as the space of functions on {1, 2, 3} × Spec k
modulo the constant functions. Then there is an action of S3 on V and an induced action of S3

on PsubV . The cross-ratio map

χ : T 1
g;1 → [PsubV/S3]

is defined as follows. Let S → T 1
g;1 be a morphism given by (π : P → S;σ;φ : C → P ). Set

F = φ∗OC/OP . Since F is fiberwise isomorphic to O(−h)⊕O(−h−1), we see that π∗(F⊗OP (hσ))
is a line bundle on S. Consider the map

π∗(F ⊗OP (hσ))⊗ σ∗OP (−hσ)→ σ∗F. (9.4)

It is easy to see that this remains injective at every point of S. Moreover, passing to Z =
IsomS(C|σ, {1, 2, 3}), we have an identification σ∗ZFZ

∼−→ V ⊗k OZ . Hence (9.4) yields a map
Z → PsubV , which is by construction S3 equivariant. We thus get a map S → [PsubV/S3].

The map χ : T 1
g;1 → [PsubV/S3] induces a map on the coarse spaces:

χ : T
1
g;1 → PsubV/S3

∼= P1. (9.5)

Theorem 9.4. Consider the cross-ratio map χ : T
1
g;1 → P1 as in (9.5). Then,

(i) χ∗OP1(1) = 3D1
2 ;

(ii) fibers of χ are Fano varieties of Picard rank one.

Proof. We use the setup introduced above, assuming furthermore that S is a smooth curve. On
Z, we have

π∗(F ⊗OP (hσ))⊗ σ∗OP (−hσ)→ σ∗F = V ⊗k OZ .
For the first relation, note that PsubV → PsubV/S3 = P1 is a degree six cover. Hence, it suffices
to prove that the pullback of OPsubV (1) to Z has class D1/4. But the class of this pullback is
just

− c1(π∗F ⊗OP (hσ))− c1(σ∗OP (−hσ)). (9.6)

Since R1π∗(F ⊗ OP (hσ)) = 0, the first summand in (9.6) comes from a calculation using
Grothendieck–Riemann–Roch (see (8.4) for a more general calculation). The result is

c1(π∗F ⊗OP (hσ)) =
h2

(2h+ 1)2
c2

1 − c2.

The second summand in (9.6) is simply −hπ∗[σ2]. Using Proposition 7.4, we get

−c1(π∗F ⊗OP (hσ))− c1(σ∗OP (−hσ)) = c2 −
h2 + h

(2h+ 1)2
c2

1 =
D1

4
.

The first relation is thus proved.
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Finally, set K = K
T

1
g;1

and let Y ⊂ T 1
g;1 be a fiber of χ. Then all curves in Y have intersection

number zero withD1; it follows that they are (numerically) rational multiples of each other. Hence
the Picard rank of Y is one.

Since 〈D1〉 and 〈D3〉 bound the ample cone of T g;1 andD1|Y ∼= 0, the ray 〈D3〉must be positive
on Y . But D3 and K are on the opposite sides of the line spanned by D1; hence K|Y = KY is
anti-ample.

Finally, we collect the pieces together for the chamber decomposition. Recall that the Mori
chamber Mor(β) of a birational contraction β : X 99K Y is the cone spanned by the pullback of
the ample cone of Y and the exceptional divisors of β. If the birational map X 99K Y is clear,
we abuse notation and call Mor(β) the Mori chamber of Y .

Theorem 9.5. Let 0 6 l < g be such that l ≡ g (mod 2).

(i) For l > 0, the interior of the cone 〈Dl, Dl+2〉 is the Mori chamber of the model T
l
g;1.

(ii) For even g, the cone 〈D0, D2〉 is the Mori chamber of the model T
0
g;1.

(iii) For even (resp. odd) g, the ray 〈D0〉 (resp. 〈D1〉) is an edge of the effective cone.

Proof. Since the T
l
g;1 are isomorphic to each other away from codimension two for 0 < l < g,

the Mori chamber of T
l
g;1 is simply its ample cone. Hence, (i) follows from Theorem 8.12.

For even g, consider the Maroni contraction T
l
g;1 → T

0
g;1. Note that T

0
g;1 has Picard rank one.

The pullback of the ample ray of T
0
g;1 is the ray 〈D2〉. On the other hand, the Maroni divisor–the

exceptional locus of the Maroni contraction–has classD0/4 (both classes can be computed by easy

test-curve calculations). It follows that 〈D0, D2〉 is the Mori chamber associated to T
l
g;1 → T

0
g;1

and 〈D0〉 is the edge of the effective cone.

For odd g, we know by Theorem 9.4 that 3D1/2 is the pullback of OP1(1) along the cross-ratio
map. Hence the ray 〈D1〉 must be an edge of the effective cone.

10. The case of a marked ramified fiber

The spaces of weighted admissible covers and the spaces of l-balanced covers together provide
a beautiful picture of the birational geometry of the space of trigonal curves with a marked
unramified fiber, that is, a fiber of type (1, 1, 1). It is natural to ask if a similar picture holds for
the spaces with marked fibers of type (1, 2) or (3). Recall that the picture consists of two parts:
the first is a sequence of divisorial contractions given by spaces of weighted admissible covers,
and the second is a sequence of flips given by the spaces of l-balanced covers.

The recipe for constructing the first sequence of divisorial contractions is virtually the same.
Let r = 1, 2, or 3 and let Tg;1/r be the open and closed substack of H 3 ×M M0;b,1 parametriz-
ing (φ : C → P;P → P ;σ), where C is connected and Autσ(P) = µr. The r determines the
ramification type of the fiber over σ of the induced cover of the coarse spaces C → P . Setting

T g;1/r(ε) = Tg;1/r ×M0;b,1
M0;b,1(ε),

we generalize Theorem A for all ramification types.

In this section, we indicate how to generalize Theorem B, namely how to construct the
analogues of the spaces of l-balanced covers. As before, there is an interplay between the global
geometry of marked triple covers measured by a refined Maroni invariant and the local geometry
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^ 2π/r

Figure 6. The “teardrop curve” P1( r
√
∞) over C

of trigonal singularities measured by a generalized µ invariant. The section is further divided as
follows. In Subsection 10.1, we recall some facts about the orbi-curve (P;σ) with Autσ P = µr,
which is the base in our families of triple covers. In Subsection 10.2, we define the Maroni invariant
for a cover of (P;σ) and relate it to the classical geometry of the induced cover on the coarse
spaces. In this section, we also recall the generalized µ invariant. In Subsection 10.3, we define
l-balanced covers and prove the main theorem. The proof is by a formal reduction to the case
r = 1; there is little extra work.

10.1 The teardrop curve P
Consider the orbi-curve P with coarse space ρ : P → P1, where the local picture of ρ over∞ ∈ P1

is given by

[Spec k[v]/µr]→ Spec k[x], (10.1)

where µr acts by v 7→ ζv and x = vr. The curve P can also be described as the root stack

P = P1( r
√
∞)

or as a weighted projective stack

P = [A2 \0/Gm],

where Gm acts by weights 1 and r. The name “teardrop curve” is inspired by the picture for
k = C, where P is imagined to be a ‘pinching’ of the Riemann sphere to make it have conformal
angle 2π/r at ∞ (see Figure 6).

Let ξ ⊂ P be the reduced preimage of ∞ ∈ P1. In the explicit description of P in (10.1), this
is the closed substack defined by v = 0. Let L be the dual of the ideal sheaf of ξ in P and set

OP(d) = L⊗dr,

for d ∈ 1
rZ. Thus, L = OP(1/r).

Proposition 10.1. With the notation above,

(i) Pic(P) is generated by OP(1/r).
(ii) The degree of OP(d) is d, for every d ∈ 1

rZ.
(iii) The canonical sheaf (which is also the dualizing sheaf) of P is OP(−1− 1/r).
(iv) We have

ρ∗OP1(n) = OP(n), for n ∈ Z,

and

ρ∗OP(d) = OP1(bdc), for d ∈ 1

r
Z.

(v) Every vector bundle on P is isomorphic to a direct sum of line bundles.
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Proof. All of these statements are easy to see, except possibly the last one. The proof for the
case of P1 sketched by Hartshorne [Har77, V.2, Exercise 2.6] works verbatim. We present the
details for lack of a reference.

Let E be a vector bundle on P. Since the degree of subsheaves of ρ∗E is bounded above, the
degree of subsheaves of E is also bounded above. Let L ⊂ E be a line bundle of maximum degree.
Then the quotient E′ = E/L is locally free. We claim that Ext1(E′, L) = 0. Then E = E′ ⊕ L,
and the statement follows by induction on the rank.

By duality, Ext1(E′, L) = Hom(L(1 + 1/r), E′)∨. Since we have an inclusion Hom(L(1 +
1/r), E′) ⊂ Hom(L(1/r), E′), proving that the latter vanishes implies that the former vanishes.
On one hand, we have the exact sequence

Hom(L(1/r), E)→ Hom(L(1/r), E′)→ Ext1(L(1/r), L) = Hom(L,L(−1))∨ = 0.

On the other hand, we know that Hom(L(1/r), E) = 0 by the maximality of degL. We conclude
that Hom(L(1/r), E′) = 0.

10.2 The refined Maroni and µ invariants

10.2.1 The refined Maroni invariant Denote by P the teardrop curve P1( r
√
∞) as in Sub-

section 10.1. Proposition 10.1 (v) gives us a way to define the Maroni invariant for triple covers
of P.

Definition 10.2. Let φ : C → P be a triple cover. Set F = φ∗OC/OP . Then we have

F ∼= OP(−m)⊕OP(−n),

for some m,n ∈ 1
rZ. Define the Maroni invariant of φ to be the difference

M(φ) = |m− n|.

Note that the Maroni invariant lies in 1
rZ.

The refined Maroni invariant can be read off from the usual Maroni invariant of a new cover
associated to φ : C → P. We now explain this procedure. Choose a point p ∈ P, away from ξ and
define ψ : P̃ → P to be the cyclic cover of degree r branched over p. Explicitly, P̃ is given by

P̃ = SpecP

(
r−1⊕
i=0

OP(−i/r)

)
, (10.2)

where the ring structure is given by a section of OP(1) vanishing at p. It is easy to see that
P̃ ∼= P1. Set

C̃ = C ×P P̃
with the induced map φ̃ : C̃ → P̃ .

Proposition 10.3. With the above notation, we have M(φ) = M(φ̃)/r.

Proof. By construction, we have ψ∗OP(d) = O
P̃

(dr). Since φ̃∗OC̃ = ψ∗φ∗OC , the statement
follows.

At first sight, the refined Maroni invariant seems to be an artifact of the stacky way of keeping
track of ramification. However, it can be described purely in terms of the geometry of the cover
of the coarse spaces. We now describe this connection.
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As before, let ρ : P = P1( r
√
∞)→ P1 be the teardrop curve. Consider a k-point of Tg;1/r given

by (P → P1;∞; C → P) and let C → P1 be the induced cover on the coarse spaces. To lighten
notation, we treat OC and OC as sheaves on P and P respectively, omitting the pushforward
symbols. Then OC = ρ∗OC . Therefore, if we have the splitting

OC ∼= OP ⊕OP(−m)⊕OP(−n),

then we deduce the splitting

OC ∼= OP1 ⊕OP1(b−mc)⊕OP1(b−nc).

Thus, the splitting type of C → P determines the splitting type of C → P1. For r > 1, however, it
carries a bit more information. Let us understand what sort of extra information is contained in
this refinement. To that end, observe that the data of the splitting type of C → P1 is equivalent
to the data of the sequence 〈h0(OC(l)) | l ∈ Z〉.

First consider the case r = 3. In this case, the map C → P1 is totally ramified over ∞.
Denoting by x ∈ C the unique point over ∞ ∈ P1, we have OC(1) ∼= OC(3x). Therefore, the
data of the splitting type of C → P1 is the data of the sequence 〈h0(OC(3lx)) | l ∈ Z〉. On
the other hand, the data of the splitting type of C → P is precisely the data of the sequence
〈h0(OC(lx)) | l ∈ Z〉. Thus the refined Maroni invariant encodes the so-called Weierstrass gap
sequence of the point x on C.

Now consider the case r = 2. In this case, the map C → P1 has ramification type (2, 1) over
∞. Let the preimage of∞ be 2x+y, where x, y ∈ P1. As before, the data of the splitting type of
C → P1 is the data of the sequence 〈h0(OC(l(2x+ y)) | l ∈ Z〉. On the other hand, the splitting
type of C → P encodes, in addition, the data of h0(OC(l(2x+y)−x)) and h0(OC(l(2x+y)+x)),
for l ∈ Z.

10.2.2 The µ invariant Let φ : C → P be a triple cover, étale except possibly over a point
p ∈ P different from ξ. In this case, we say that φ has concentrated branching. Define the µ
invariant of φ to be the µ invariant of the singularity of C → P over p as per the generalization
in Subsection 4.2. We recall this generalization in the current context. Let ∆ = Spec ÔP,p be

the formal disk around p and set C = C ×P ∆. Let C̃ → C be the normalization. Then C̃ → ∆
is not necessarily étale. We choose a cover ∆′ → ∆ of degree d such that the normalization of
C ′ = C ×∆′ ∆ is étale over ∆′. Then, by definition, we have

µ(C → ∆) =
1

r
µ(C ′ → ∆′). (10.3)

Note that the µ invariant lies in 1
rZ.

As in the case of the refined Maroni invariant, the µ invariant can be read off from that of
the modified cover φ̃ : C̃ → P̃ . We recall the procedure. Define the cyclic cover P̃ → P ramified
only over p, as in (10.2). Set

C̃ = C ×P P̃
with the induced map φ̃ : C̃ → P̃ . Let q ∈ P̃ be the unique point over p ∈ P. See that φ̃ : C̃ → P̃
has concentrated branching over q.

Proposition 10.4. With the above notation, we have µ(φ) = 1
rµ(φ̃).

Proof. This follows immediately from (10.3).
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10.3 The stack of l-balanced covers

Having defined the Maroni invariant and the µ invariant for covers of the teardrop curve, we
are ready to formulate and prove the analogue of Theorem 3.1. We begin by defining l-balanced
covers. The definition follows Definition 1.1 almost verbatim.

Definition 10.5. Let l ∈ 1
rZ be non-negative and P ∼= P1( r

√
∞) the teardrop curve with the

stacky point ξ as in Subsection 10.1. Let φ : C → P be a triple cover, étale over ξ. We say that
φ is l-balanced if the following two conditions are satisfied.

(i) The Maroni invariant of φ is at most l.
(ii) If φ has concentrated branching, then its µ invariant is greater than l.

We can reduce Definition 10.5 to the case of an unramified fiber, namely Definition 1.1, by
looking at a modified cover C̃ → P̃ . Let p ∈ P be a point contained in br(φ) and P̃ → P the
cyclic cover of degree r branched over p as in (10.2). Set

C̃ = C ×P P̃ ,

with the induced map φ̃ : C̃ → P̃ .

Proposition 10.6. With the above notation, the cover φ is l-balanced if and only if the cover
φ̃ is rl-balanced in the sense of Definition 1.1.

Proof. Combine Proposition 10.3 and Proposition 10.4.

Recall that Tg;1/r ⊂H 3 is the open and closed substack whose geometric points parametrize
covers (P → P ;σ1;φ : C → P), where Autσ1(P) = µr and C is a connected curve of genus g.

Definition 10.7. Define T lg;1/r to be the category whose objects over a scheme S are

T lg;1/r(S) = {(P → S;P → P ;σ;φ : C → P )},

such that

(i) (P → S;P → P ;σ;φ : C → P) is an object of Tg;1/r(S);
(ii) P → S is smooth, that is, a P1 bundle;
(iii) For all geometric points s→ S, the cover φs : Cs → Ps is l-balanced.

See that T lg;1/r ⊂ Tg;1/r is an open substack.

Theorem 10.8. T lg;1/r is an irreducible Deligne–Mumford stack, smooth and proper over k.

By the jugglery of modifying a cover C → P to get a cover C̃ → P̃ used many times in
Subsection 10.2, the major steps in the proof can be reduced to the analogous steps in the case
of r = 1. As a result, little hard work goes into the proof of Theorem 10.8.

Proof. We divide the proof into steps.

That T lg;1/r is irreducible, smooth, and of finite type. This part is identical to that in
the proof of Theorem 3.1. We skip the details.

That T lg;1/r is separated. We use the valuative criterion. Let ∆ = SpecR be the spectrum
of a DVR, with special point 0, generic point η and residue field k. Consider two morphisms

∆ → T lg;1/r given by (Pi → Pi → ∆;σi;φi : Ci → Pi) for i = 1, 2. Let ψη be an isomorphism
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of this data over η. We must show that ψη extends to an isomorphism over all of ∆. We may
replace ∆ by a finite cover, if we so desire.

Let Σi ⊂ Pi be the branch divisor of φi. By passing to a cover of ∆ if necessary, assume that we
have sections pi : ∆ → Σi which agree over η, that is ψPη ◦ p1|η = p2|η. Denote by ξi ⊂ Pi the

reduced preimage of σi and consider the cyclic triple cover P̃i → Pi defined by

P̃i = SpecPi

r−1⊕
j=0

OPi(−ξi)

 ,

where the ring structure is given by a section of OPi(rξi)
∼= OPi(pi) vanishing along pi. Set

C̃i = Ci ×Pi P̃i,

with the induced map φ̃i : C̃i → P̃i. The reduced preimage σ̃i of σi gives a section σ̃i : ∆ → P̃i.
By Proposition 10.6, (P̃i; σ̃i; φ̃i : C̃i → P̃i) is a family of rl-balanced covers, for i = 1, 2. We have
an isomorphism ψ̃η of this data over η. By the separatedness in Theorem 3.1, ψ̃η extends to an

isomorphism ψ̃ over all of ∆. By descent, we conclude that ψη extends to an isomorphism over
all of ∆.

That T lg;1/r is Deligne–Mumford. Since we are in characteristic zero, it suffices to prove

that a k-point (P → P1;∞;φ : C → P) of T lg;1/r has finitely many automorphisms. We have a
morphism of algebraic groups

τ : Aut(P → P1;∞;φ : C → P)→ Aut(P1),

where the group on the left is proper because T lg;1/r is separated and the group on the right is
affine. It is clear that ker τ is finite. Hence the group on the left is finite.

That T lg;1/r is proper. Let ∆ = SpecR be as before. Let (Pη → Pη;ση;φη : Cη → Pη) be

an object of T lg;1/r over η. We need to show that, possibly after a finite base change, it extends

to an object of T lg;1/r over ∆.

By replacing ∆ by a finite cover if necessary, assume that we have a section p : η → brφη. Define

the cyclic cover P̃η → Pη of degree r branched over p, as before. Set

C̃η = Cη ×Pη P̃η,

with the induced map φ̃ : C̃η → P̃η and the sections σ̃η : η → P̃η and p̃η : η → P̃η given by

the reduced preimages of ση and pη, respectively. Then (P̃η; σ̃η; φ̃η : C̃η → P̃η) is a family of rl-
balanced covers. By the properness in Theorem 3.1, it extends to a family of rl-balanced covers
(P̃ ; σ̃; φ̃ : C̃ → P̃ ) over ∆. The idea is to descend C̃ → P̃ down to C → P, extending Cη → Pη.
We first extend (Pη, ση, pη) over η to (P, σ, p) over ∆ so that P̃ is the cyclic cover of degree r of
P branched over p. For this, note that Pη → η is a P1-bundle. Possibly after replacing ∆ by a
ramified cover of degree r, identify (Pη, ση, pη) with (P1

η,∞, 0) via an isomorphism that induces

an isomorphism (P̃ , σ̃, p)
∼−→ (P̃1

∆,∞, 0), where the latter P̃1 ∼= P1 covers the former P1 by
[X : Y ] 7→ [Xr : Y r]. Set P = P1

∆ with two sections σ and p given by ∞ and 0, respectively.
Then (P, σ, p) is an extension of (Pη, ση, pη). Setting P = P ( r

√
σ), we get an extension of Pη. Note

that the covering P̃ → P factors through P̃ → P, extending P̃η → Pη, and exhibiting P̃ → P as
a cyclic triple cover of degree r branched over p.

Let Σ ⊂ P be the unique flat extension of the divisor br(φη) ⊂ Pη. Then the preimage of Σ in P̃
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is br φ̃. Since the divisor br φ̃ is disjoint from σ̃, the divisor Σ is disjoint from σ. Thus (P ; Σ;σ)
is an object of M0;b,1(∆). By the properness of Tg;1/r → M0;b,1, we have a unique extension
φ : C → P. It remains to prove that the central fiber is l-balanced.

We claim that we have an isomorphism

C̃
∼−→ C ×P P̃ over P̃ . (10.4)

Indeed, by construction, we have such an isomorphism over η. Note that C̃ → P̃ and C ×P P̃
are covers of P̃ , isomorphic over η, and they have the same branch divisor. By the separatedness
of Tg;1/r →M0;b,1, we conclude that the isomorphism C̃η → Cη ×Pη P̃η extends over ∆, yielding
(10.4).

Finally, since the central fiber of φ̃ : C̃ → P̃ is rl-balanced, we conclude that the central fiber of
φ : C → P is l-balanced using Proposition 10.6.
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