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Abstract

We prove that the rational Picard group of the simple Hurwitz spaceHd,g is trivial
for d up to five. We also relate the rational Picard groups of the Hurwitz spaces to the
rational Picard groups of the Severi varieties of nodal curves on Hirzebruch surfaces.
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0 Introduction

LetHd,g be the simple Hurwitz space which parametrizes isomorphism classes of simply
branched degree d covers of genus zero curves by genus g curves. AlthoughHd,g has been
studied classically, many fundamental questions about its geometry are still unanswered.
The goal of this paper is to address one such question, the question of its Picard group. It is
conjectured (for example, [DE96]) that the rational Picard group PicQ(Hd,g) is trivial. We
call this the Picard rank conjecture forHd,g. Our main result is a proof of this conjecture
for d ≤ 5.

Theorem A. The rational Picard group ofHd,g is trivial for d ≤ 5.

In the main text, Theorem A is divided into the case of degree 3 (Proposition 3.3),
degree 4 (Proposition 4.10), and degree 5 (Proposition 5.4).

The Picard rank conjecture was known for d = 2 and 3. For d = 2, it was proved
by Cornalba and Harris [CH88, Lemma 4.5], and for d = 3 by Stankova-Frenkel [SF00,
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§ 12.2]. In these cases, now there are more refined results about the Picard group of the
moduli stacks; see [Cor07] for d = 2 and [BV12] for d = 3.

The conjecture is also known for d > 2g − 2. In this range, the map Hd,g →Mg is a
fibration, whereMg is the moduli space of smooth curves of genus g. An analysis of this
fibration shows that PicQ(Hd,g) = 0 if and only if PicQ(Mg) ∼= Q (see, for example,
[Moc95] or [DE96, § 3]). Thus, the conjecture for d > 2g − 2 follows from Harer’s
theorem [Har83].

We briefly explain the rationale behind the conjecture. Let us blur the distinction be-
tween the coarse moduli spaces and the fine moduli stacks. This is harmless, since we are
concerned with the rational Picard group. Let us also take d ≥ 4 (the discussion holds
for d = 2, 3 with minor modifications). Denote by H̃d,g the partial compactification of
Hd,g that parametrizes covers [α : C → P1] where C is allowed to be nodal, but still irre-
ducible, and α need not be simply branched. Let α : C → P be the universal family over
H̃d,g, where ρ : C → H̃d,g is a family of irreducible, at worst nodal curves of arithmetic
genus g, and π : P → H̃d,g a family of smooth curves of genus 0. From this data, we can
construct three ‘tautological’ divisor classes on H̃d,g given by

ρ∗(c1(ωρ)
2), ρ∗(c1(ωρ)α

∗c1(ωπ)), and ρ∗([δρ]).

Here ω stands for the relative dualizing sheaf and δ for the singular locus. It is easy to
check that the three tautological classes are Q-linearly independent. On the other hand,
H̃d,g\Hd,g is a union of three irreducible divisors, namely the locus ∆ whereC is singular,
the locus T where α has a higher order ramification point, and the locus D where α has
two ramification points over a branch point. It is also easy to check that the classes of ∆,
T , and D are Q-linearly independent. Thus, PicQ(Hd,g) = 0 is equivalent to PicQ(H̃d,g)

being generated by the tautological classes. The Picard rank conjecture thus expresses
the often-satisfied expectation that there are no other divisor classes than the tautological
ones.

We now outline our strategy for proving Theorem A. Let α : C → P1 be a degree
d cover. Then C embeds in a Pd−2-bundle over P1, which we denote by PE → P1.
Thanks to the work of Casnati and Ekedahl, the resolution of the ideal of C in PE can be
described explicitly. The terms in this resolution involve (twists of) vector bundles on P1

[CE96]. Let U ⊂ H̃d,g be the open locus where these vector bundles are the most generic.
The key steps in our proof are the following.

1. Identify the divisorial components of H̃d,g \ U .

2. Express U as a (successive) quotient of an open subset of an affine space by actions
of linear algebraic groups.

3. Use the previous two steps to get a bound on the Picard rank of H̃d,g, and in turn,
the Picard rank ofHd,g.
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Needless to say, we are able to carry out all three steps only for d ≤ 5. However, we can
carry out parts of step (1) in general. For step (2), we highlight that it remains unknown
in general whether one can dominate H̃d,g by an affine space for d ≥ 6.

To analyze H̃d,g \U , we must analyze the loci in H̃d,g where the bundle E and the vec-
tor bundles appearing in the resolution of C are unbalanced. We call these loci the Maroni
loci and the Casnati–Ekedahl loci, respectively. We spend significant effort on understand-
ing the decomposition of H̃d,g into these loci. Contained in Section 2, the results of this
analysis may be of independent interest.

A key tool in our analysis is a construction that relates the Maroni loci to the Sev-
eri varieties of Hirzebruch surfaces. Originally due to Ohbuchi [Ohb97], this ‘associated
scroll construction’ allows us to get the required dimension estimates. The key input here
is a theorem of Tyomkin that guarantees that the Severi varieties of Hirzebruch surfaces
are irreducible of the expected dimension [Tyo07].

The associated scroll construction also lets us relate the Picard ranks of the Hurwitz
spaces to the Picard ranks of the Severi varieties. To state our result, let us denote by
Ug(Fm, dτ) the space of irreducible nodal curves of geometric genus g in the linear system
|dτ | on the Hirzebruch surface Fm, where τ is the section with self-intersection m.

Theorem B. Let m ≥ b(g + d − 1)/(d − 1)c. Then PicQ Ug(Fm, dτ) = 0 implies
PicQHd,g = 0.

Letm ≥ d2(g+d−1)/(d−1)e. Then PicQ Ug(Fm, dτ) = 0 if and only if PicQHd,g =

0.

In the main text, Theorem B is Theorem 6.7.

0.1 Notation

We work with a few different versions of the Hurwitz spaces. We assemble their def-
initions here. We work over the field C of complex numbers. By a curve, we mean a
connected, proper, reduced scheme of finite type over C. Throughout, assume that g ≥ 3.

Hd,g: This is the coarse moduli space of [α : C → P1], where C is a smooth curve
of genus g and α a finite map of degree d with simple branching (that is, the
branch divisor of α is supported at 2g + 2d − 2 distinct points). Two such cov-
ers [α1 : C1 → P1] and [α2 : C2 → P1] are considered isomorphic if there are
isomorphisms φ : C1 → C2 and ψ : P1 → P1 such that α2 ◦ φ = ψ ◦ α1.

H̃d,g: This is the coarse moduli space of [α : C → P1], whereC is an irreducible, at worst
nodal curve of arithmetic genus g, and α a finite map of degree d. The isomorphism
condition is the same as that forHd,g.
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H†d,g: This is like Hd,g, but with ‘framed’ target P1. The objects it parametrizes are
[α : C → P1] as in the description of Hd,g, but [α1 : C1 → P1] and [α2 : C2 →
P1] are considered isomorphic if there is an isomorphism φ : C1 → C2 such that
α2 ◦ φ = α1.

H̃†d,g: This is like H̃d,g, but with framed target P1.

All four are irreducible quasi-projective varieties with at worst quotient singularities. In
particular, they are normal and Q-factorial. The group AutP1 = PGL2 acts on the framed
versions. The unframed versions are the quotients by this action in the sense that the fibers
of the morphism from the framed space to the unframed space are precisely the PGL2

orbits. We have
dimHd,g = dim H̃d,g = 2g + 2d− 5,

and
dimH†d,g = dim H̃†d,g = 2g + 2d− 2.

In addition, we work with the following Severi varieties:

Ug(Fm, dτ): This is the locus of irreducible nodal curves of geometric genus g in the
linear series |dτ | in the Hirzebruch surface Fm. Here τ ⊂ Fm is the section of
self-intersection m.

Vg(Fm, dτ): This is the closure of Ug(Fm, dτ) in the projective space |dτ |.

V irr
g (Fm, dτ): This is the open subset of reduced and irreducible curves in Vg(Fm, dτ).

We do not distinguish between a vector bundle and the corresponding locally free
sheaf. Note that the vector bundle associated to the locally free sheaf F is the relative
Spec of the symmetric algebra on F∨.

1 Preliminaries

In this expository section, we recall two key results. The first describes the Picard group
of the quotient of a variety by a group action. The second is a structure theorem for finite
covers which enables us to describe a large open subset of the Hurwitz space as such a
quotient.

1.1 Picard groups of quotients

Let G be a linear algebraic group acting on a variety X . Denote by PicGX the group
of G-linearized line bundles on X . Forgetting the G-linearization gives a homomorphism
PicGX → PicX .



Picard rank of Hurwitz spaces of degree up to 5 5

Proposition 1.1. [KKV89, Lemma 2.2 + Proposition 2.3] For a connected linear alge-
braic group G acting on an irreducible variety X , we have an exact sequence

χ(G)→ PicGX → PicX,

where χ(G) is the group of (algebraic) characters of G. Furthermore, if X is normal,
then the sequence has an extension by a homomorphism PicX → PicG.

Let π : X → Y be a morphism that is equivariant with the trivial G action on Y . Let L
be a line bundle on Y . The pullback π∗L carries a natural G-linearization. We thus have a
homomorphism PicY → PicGX .

Proposition 1.2. LetX and Y be irreducible normal varieties,G a linear algebraic group
acting on X , and π : X → Y a surjective morphism, equivariant with the trivial action
on Y . Suppose the fibers of π consist of single G-orbits. Then the map PicY → PicGX

is injective and we have

rk PicY ≤ rkχ(G) + rk PicX.

Furthermore, if G is reductive and the stabilizers Gx are finite, then we have an isomor-
phism

PicY ⊗Q
∼−→ PicGX ⊗Q.

Proof. Suppose L is a line bundle on Y such that π∗L is trivial as a G-linearized line
bundle. Then π∗L has a G-invariant nowhere-vanishing section. We claim that such a
section descends to a nowhere-vanishing section of L on Y . The crucial point is that in our
setup, Y is a geometric quotient of X [MFK94, Proposition 0.2]. That is, for every open
U ⊂ Y , the preimage π−1U is open and the functions on U are the invariant functions on
π−1U :

Γ(U,OY ) = Γ(π−1U,OX)G.

It follows that the sections of L on U are the invariant sections of π∗L on π−1(U):

Γ(U,L) = Γ(π−1U, π∗L)G.

Thus, a G-invariant section σ of π∗L on X gives a section σ of L on Y . It is easy to check
that if σ is nowhere-vanishing, so is σ.

The bound on rk PicY follows from the injectivity and Proposition 1.1. For the last
statement, we use the characterization of the image of PicY → PicGX from [KKV89,
Proposition 4.2]: a G-linearized line bundle L is in the image if and only if for every
x ∈ X , the stabilizer group Gx acts trivially on the fiber Lx. Since the stabilizers are
finite, we can arrange this by passing to a large enough power of L.
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We end with a simple application.

Proposition 1.3. Let U ⊂ H̃d,g be any open subset and U † its preimage under H̃†d,g →
H̃d,g. Then

rk PicU = rk PicU †.

Proof. Apply Proposition 1.1 and Proposition 1.2 with G = PGL2, X = U †, and Y =

U .

1.2 The Casnati–Ekedahl structure theorem

Let X and Y be integral schemes and α : X → Y a finite flat Gorenstein morphism of
degree d ≥ 3. The map α gives an exact sequence

0→ OY → α∗OX → Eα
∨ → 0, (1.1)

where E = Eα is a vector bundle of rank (d− 1) on Y , called the Tschirnhausen bundle
of α. Denote by ωα the dualizing sheaf of α. Applying HomY (−, OY ) to (1.1), we get

0→ E → α∗ωα → OY → 0. (1.2)

The map E → α∗ωα induces a map α∗E → ωα.

Theorem 1.4. [CE96, Theorem 2.1] In the above setup, α∗E → ωα gives an embed-
ding ι : X → PE with α = π ◦ ι, where π : PE → Y is the projection. Moreover, the
subscheme X ⊂ PE can be described as follows.

1. The resolution of OX as an OPE module has the form

0→ π∗Nd−2(−d)→ π∗Nd−3(−d+ 2)→ π∗Nd−4(−d+ 3)→ . . .

· · · → π∗N2(−3)→ π∗N1(−2)→ OPE → OX → 0,
(1.3)

where the Ni are vector bundles on Y . Restricted to a point y ∈ Y , this sequence is
the minimal free resolution of Xy ⊂ PEy.

2. The ranks of the Ni are given by

rkNi =
i(d− 2− i)

d− 1

(
d

i+ 1

)
,

3. We have Nd−2 ∼= π∗ detE. Furthermore, the resolution is symmetric, that is, iso-
morphic to the resolution obtained by applying HomOPE

(−, Nd−2(−d)).

The branch divisor of α : X → Y is given by a section of (detE)⊗2. In particular, if
X is a curve of (arithmetic) genus g, α has degree d, and Y = P1, then

rkE = d− 1 and degE = g + d− 1. (1.4)
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2 The Maroni and Casnati–Ekedahl loci

Consider a cover α : C → P1 and the relative canonical embeddingC ⊂ PEα. Since vec-
tor bundles on P1 split as direct sums of line bundles, the vector bundleEα, and the higher
syzygy bundles Ni appearing in Theorem 1.4 are discrete invariants of α. We thus get a
decomposition of the Hurwitz space into locally closed subsets where the isomorphism
type of the bundlesEα andNi are constant. This section is devoted to the analysis of some
of these locally closed subvarieties, particularly their dimensions. We only consider the
bundle Eα and Fα := N1. Note that

Eα = ker(α∗ωα → OY ) and Fα = α∗IC(2),

where IC ⊂ OPEα is the ideal sheaf of C.

Definition 2.1. For vector bundles E and F on P1, define the following closed subvari-
eties ofH†d,g:

M(E,F ) := {[α : C → P1] | Eα ∼= E and Fα ∼= F},
M(E) := {[α : C → P1] | Eα ∼= E},
C(F ) := {[α : C → P1] | Fα ∼= F}.

Call M(E) the Maroni loci and C(F ) the Casnati–Ekedahl loci. Define subvarieties
M̃(E,F ), M̃(E), and C̃(F ) of H̃†d,g analogously.

Abusing notation, we denote the images of these loci in the unframed versions Hd,g

and H̃d,g by the same letters. The framed versus unframed setting is usually clear by con-
text, and sometimes irrelevant, for example in discussing the codimensions. We caution
the reader that these loci are not necessarily irreducible or of expected dimension (Exam-
ple 4.3, Example 4.4). Even determining whether they are non-empty remains a challenge
in full generality.

2.1 The associated scroll construction

To analyze the Maroni loci M(E), we associate to a cover of P1 a curve on a Hirzebruch
surface. The construction is originally due to Ohbuchi [Ohb97]. Let C be an irreducible
curve of arithmetic genus g and α : C → P1 a finite cover of degree d. Let ζ be a global
section of OC(m) = α∗OP1(m) that projects to a nonzero section of E∨α (m). In other
words, ζ is not a pullback of a section from P1. The section ζ gives a map from C to
the total space of the line bundle O(m) over P1. Let Fm = Proj(O ⊕ O(−m)) be the



8 Anand Deopurkar, Anand Patel

Hirzebruch surface that compactifies this total space. We thus get the diagram

C Fm

P1

α

ν

π

.

Let σ ⊂ Fm be the directrix and τ ⊂ Fm the section disjoint from σ (so that σ2 = −m
and τ 2 = m). By construction, ν(C) ⊂ Fm avoids the directrix σ. Suppose C is smooth
and α : C → P1 does not factor nontrivially. Then ν is birational onto its image, and
therefore ν(C) is a reduced and irreducible element of the linear system |dτ |. By the
following proposition, ν(C) is a point in the Severi variety Vg(Fm, dτ).

Proposition 2.2. A reduced and irreducible curve on Fm of geometric genus g in the
linear system |dτ | is a flat limit of irreducible nodal curves of geometric genus g.

Proof. Let C ⊂ Fm be such a reduced and irreducible curve. Let C → C the normal-
ization. Denote by ν the composite map ν : C → Fm. Let M be a component of the
Kontsevich space of mapsMg(Fm, dτ) containing ν. Let Nν be the normal sheaf of ν;
this is the cokernel of TC → ν∗TFm . Then, we have a lower bound: dimM ≥ χ(Nν).
Since

χ(Nν) = χ(ν∗TFm)− χ(TC) = g − deg(KFm · C)− 1,

we get
dimM≥ g − deg(KFm · C)− 1.

By [Har86, Proposition 2.2], a general νgen : Cgen → Fm inM is birational onto its image
and the image has only nodes as singularities.

We can make the construction in a family. Let M be a reduced scheme, ρ : C → M

a generically smooth family of reduced and irreducible curves of genus g, and α : C →
P1×M a finite flat M -morphism of degree d. Set OC(m) = α∗O(m). Assume that none
of the fibers αt : Ct → P1 factor nontrivially and H0(Ct, OCt(m)) has constant rank.
Then ρ∗OC(m) is a vector bundle on M . The trivial subbundle H0(P1, O(m)) ⊗ OM

maps injectively to ρ∗OC(m). Let U be the complement of the image of this map in
the total space of ρ∗OC(m). Fiberwise, the sections of U correspond to the sections ζ
which project nontrivially onto E∨α (m). Then the associated scroll construction gives a
morphism

U → Vg(Fm, dτ).

We will use this construction where M is a Maroni locus. As described, the construction
depends on the existence of a universal family, and thus gives a morphism from the fine
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moduli stack. But since Vg(Fm, dτ) is a scheme, we get a canonical induced map from
the coarse space.

The following crucial result makes the above construction useful.

Theorem 2.3 ([Tyo07]). All Severi varieties parametrizing irreducible curves on Hirze-
bruch surfaces are irreducible and of expected dimension. In particular, the variety Vg(Fm, dτ)

is irreducible of dimension dm+ 2d+ g − 1.

We also need the following result, which we prove for the lack of a reference.

Proposition 2.4. Let C ⊂ Fm be a general point of Vg(Fm, dτ) and C → C the normal-
ization. Then the composite C → P1 is simply branched.

Proof. In light of Theorem 2.3, it suffices to exhibit a particular C of geometric genus g
in Vg(Fm, dτ) whose normalization is simply branched over P1. One way is to start with
X = P1 and α : X → P1 a simply branched cover of degree d. Then Eα = O(1)⊕(d−1).
Choosing a general section ofE∨α (m) gives ν : X → Fm such that ν(X) is nodal. It is easy
to see that ν(X) is in the closure of Vg(Fm, dτ). Indeed, since the set of nodes of ν(X)

impose independent conditions on |KFm + dτ |, they automatically impose independent
conditions on |dτ | as well, and hence we may smooth out the required number of nodes
of ν(X) to deform to a curve of geometric genus g. A general fiber of such a smoothing
is the required C.

Remark 2.5. We can realize the associated scroll construction geometrically as follows.
The choice of a general global section ζ of OC(m) can be thought of as a choice of a
geometric section σ : P1 → PE. In the Pd−2 fibers of π : PE → P1, we now have
d+ 1 points: d points coming from the fibers of the map α : C → P1, and one more point
provided by the section σ. For general t ∈ P1, these d+1 points will be in general position,
and so will define a unique rational normal curve Rt ⊂ PE. Consider the birationally
ruled surface S ⊂ PE defined as the closure of the union of the Rt’s. S contains both σ
and C, and is fibered over P1. We contract all components of the fibers of the projection
π : S → P1 which do not meet the directrix σ. The resulting surface is Fm, with σ being
the directrix. The image of C under the contraction S → Fm is the associated scroll
construction.

For a vector bundle E = O(a1)⊕ · · · ⊕O(an) on P1, set

bEc = min{ai} and dEe = max{ai}.

Given a cover α : C → P1, the associated scroll construction ν : C → Fm can be made for
m ≥ bEαc. Conversely, given a point C ∈ V irr

g (Fm, dτ), let C → C be the normalization.
Then the induced cover α : C → P1 has bEαc ≤ m.
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Proposition 2.6. If M̃(E) is nonempty, then

dEe ≤ 2g + 2d− 2

d
. (2.1)

Furthermore, if Eα comes from a cover [α : C → P1], with C irreducible, and where α
does not factor nontrivially, then

g + d− 1(
d
2

) ≤ bEαc ≤
g + d− 1

d− 1
. (2.2)

Proof. The resolution of OC in Theorem 1.4 tells us that C ⊂ PEα is not contained in
any hyperplane divisor. Let h denote the hyperplane divisor class associated to OPEα(1),
and let f denote the class of the fiber of π : PE → P1. Set N := dEαe. Then the divisor
class h−Nf is effective. Since C is irreducible and does not lie in (h−Nf), it intersects
(h−Nf) non-negatively. Since h · [C] = 2g + 2d− 2, and f · [C] = d, we conclude that
N ≤ 2d+2g−2

d
.

For the second inequality, we appeal to the associated scroll construction. Let n :=

bEαc. Since α does not factor, ν : C → Fn must be birational onto its image. Adjunction
on Fn gives

pa(ν(C)) =

(
d

2

)
n− (d− 1).

The second statement now follows from the inequality g ≤ pa(ν(C)).

The following theorem of Ohbuchi [Ohb97] places a strong restriction on a large class
of Tschirnhausen bundles E.

Proposition 2.7 ([Ohb97]). Let α : C → P1 be a cover of degree d, with C irreducible,
and where α does not factor nontrivially. Write Eα = O(a1) ⊕ · · · ⊕ O(ad−1) where
bEαc = a1 ≤ a2 ≤ · · · ≤ ad−1 = dEαe. Then

ai+1 − ai ≤ bEαc for 1 ≤ i ≤ d− 2. (2.3)

Remark 2.8. Proposition 2.7 implies the second inequality in Proposition 2.6.

Definition 2.9. We call a vector bundle E on P1 of rank d− 1 and degree g+ d− 1 tame
if it satisfies the inequalities (2.1), (2.2), and (2.3).

Notice that Proposition 2.6 and Proposition 2.7 imply that Eα is tame in the following
two cases: α is simply branched, or d is prime. Indeed, in either case, the cover cannot
factor non-trivially.

Denote by the partial order on vector bundles on P1 given by E  E ′ if E special-
izes to E ′ in a flat family. Define the finite set T [m] by

T [m] := {Isomorphism classes of tame bundles E of rank d− 1, degree g + d− 1, and bEc = m}.
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Observe that T [m] contains an element E[m] such that E[m]  E for all E ∈ T [m]. In
other words, E[m] is the most generic among all the bundles in T [m].

Theorem 2.10. Let m be an integer satisfying g+d−1
(d2)

≤ m ≤ g+d−1
d−1 .

1. If M(E) is nonempty, then E is a tame bundle.

2. If bEc ≤ m then M(E) ⊂M(E[m]).

3. M(E[m]) ⊂M(E[m+ 1]) for all m.

4. M(E[m]) is an irreducible subvariety of H†d,g of codimension g − (d − 1)m + 1

unless m = bg+d−1
d−1 c, in which case M(E[m]) = H†d,g.

5. If d is prime, then all the statements above hold with M(−) replaced by M̃(−) and
H†d,g replaced by H̃†d,g.

In the proof, we use a theorem of Coppens, which we state using our setup.

Theorem 2.11 ([Cop99]). For all m satisfying g+d−1
(d2)

≤ m ≤ g+d−1
d−1 , there is a genus g

and degree d cover C → P1 with Tschirnhausen bundle E[m]. Moreover, C is birational
onto its image under the associated scroll construction C → Fm.

Proof of Theorem 2.10. We repeatedly use simultaneous normalization in the following
way: Suppose we have a family C → ∆ of reduced irreducible curves of geometric genus
g. Then the normalization Cν of C gives a family Cν → ∆ of smooth curves of genus g
[Tei80]. For the ease of reading, we do not make this process explicit every time.

The first statement follows from Proposition 2.6 and Proposition 2.7.
For the second statement, first note that if [C] ∈ Vg(Fm, dτ) is a general point and

ν : C → C the normalization, then C → P1 is simply branched and has Tschirnhausen
bundle E[m]. Indeed, we can get a [C] ∈ Vg(Fm, dτ) with Tschirnhausen module E[m]

by applying the associated scroll construction to a cover given by Theorem 2.11. By
Proposition 2.4, we may deform such [C] so that the normalization is simply branched. By
the genericity of E[m], the normalization of the deformed curve also has Tschirnhausen
bundle E[m]. Now, suppose bEc ≤ m and [C → P1] is a point with Tschirnhausen
bundle E. Then the associated scroll construction gives ν : C → Fm. Since α is simply
branched, ν is birational onto its image. Then ν(C) is the limit of curves in Vg(Fm, dτ)

whose normalization has Tschirnhausen bundle E[m]. The second statement follows.
The third statement is a corollary of the second statement.
For the fourth statement, supposem = bg+d−1

d−1 c. ThenE[m] is balanced, soM(E[m]) =

H†d,g. Suppose m < bg+d−1
d−1 c. Let U ⊂ Vg(Fm, dτ) be the locus of nodal curves of ge-

ometric genus g whose normalization is simply branched over P1. Then U is a smooth
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open subset of Vg(Fm, dτ). Normalization of the universal family of curves in Fm of ge-
ometric genus g gives a family of smooth curves of genus g with a simply branched map
of degree d to P1 (induced from Fm → P1.) By definition, the image is in M(E[m]). We
thus get a dominant map

q : U →M(E[m]).

The fiber of q over [α : C → P1] corresponds to the global sections of OC(m) that project
non-trivially onto E∨(m). For general α ∈ M(E[m]), we have Eα = E[m]. Also, since
m < bg+d−1

d−1 c, the bundle E[m] has a unique O(m) summand and all other summands
have degree greater than m. Therefore, the general fiber of q has dimension m+ 2. From
the dimension of Vg(Fm, dτ), we get

dimM(E[m]) = dimVg(Fm, dτ)− (m+ 2) = (d− 1)m+ g + 2d− 3.

Since dimH†d,g = 2g + 2d− 2, the fourth statement follows.
For the last statement, note that all the arguments hold for M̃(E) if d is prime, since the

associated scroll construction ν : C → Fm is automatically birational onto its image.

Theorem 2.10 gives us good control on the dimensions of the Maroni loci for E based
on the minimal summand of E. We must now consider those E which are non-generic,
but nonetheless have the same minimal summand as the generic Tschirnhausen bundle.
Set k = bg+d−1

d−1 c. Then

E[k] = O(k)⊕r ⊕O(k + 1)⊕d−r−1,

where 0 < r ≤ d − 1. A general cover α ∈ H†d,g has E[k] as its Tschirnhausen bundle.
Let E ′ be any tame bundle, and set s := h0(E ′∨(k)). Upper semicontinuity implies s ≥ r.
Suppose s > r. Define

M◦(E ′) =
{
α ∈ H†d,g | Eα ∼= E ′

}
.

Then M◦(E ′) is locally closed, and M◦(E ′) = M(E ′).

Lemma 2.12. Under the assumptions above, let Z ⊂M◦(E ′) be any irreducible compo-
nent. Then the codimension of Z inH†d,g is at least (s− r) + 1.

Proof. Let z = dimZ. We use the associated scroll construction over Z. We have an open
subset U of a vector bundle of rank s + k + 1 over Z and a morphism U → Vg(Fk, dτ).
Since E ′ 6= E[k], the closure of the image of U is a proper subvariety of Vg(Fk, τ). In
particular, we have dimU < dimVg(Fk, dτ) = dk+2d+g−1. The lemma follows from
this inequality.

We now have the tools to determine all the Maroni divisors.
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Proposition 2.13. The Maroni locus M(E) ⊂ Hd,g is a divisor if and only if g = (k −
1)(d−1) for some integer k ≥ 1, and E = E[k−1] = O(k−1)⊕O(k)⊕d−3⊕O(k+ 1).
Furthermore, in this situation, M(E[k − 1]) is irreducible.

Proof. If bEc = k = bg+d−1
d−1 c, then the statement follows by applying Lemma 2.12.

If, on the other hand, bEc < bg+d−1
d−1 c, then the statement follows from statement 4 of

Theorem 2.10.

We record a particularly interesting case of the irreducibility of the Maroni divisor.

Corollary 2.14. Let g = 2(d − 1). Then M(E[2]) ⊂ Hd,g is irreducible, and it is the
ramification locus of the generically finite and dominant forgetful map µ : Hd,g →Mg.

Proof. The irreducibility statement follows from Theorem 2.10. To show that M(E[2]) is
the ramification locus of µ, consider [α : C → P1] ∈ Hd,g and the map of sheaves:

0→ α∗(TP1)→ TC → Nα → 0.

The tangent space to Hd,g at α is H0(C,Nα)/α∗H0(P1, TP1) and the tangent space to
Mg at C is H1(C, TC). The map

dµ : H0(C,Nα)/α∗H0(P1, TP1)→ H1(C, TC)

fails to be surjective precisely when H1(C, α∗TP1) 6= 0, that is, when α ∈M(E[2]).

2.2 Linear independence of T , D, and ∆

In this section, we prove that the divisorial components of the boundary of H̃d,g are lin-
early independent. Define the closed loci T , D, ∆ in H̃d,g by

T = {[α : C → P1] | α−1(q) = 3p1 + p2 + · · ·+ pd−2 for some q and distinct pi.}
D = {[α : C → P1] | α−1(q) = 2p1 + 2p2 + p3 + · · ·+ pd−2 for some q and distinct pi.}
∆ = {[α : C → P1] | C is singular.}

These three loci correspond to the three possibilities of the limit when two branch points
of a branched cover come together. Note that T , D, and ∆ are irreducible and their union
is the complement of H̃d,g inHd,g.

Proposition 2.15. For d ≥ 4, the classes of T , D, and ∆ are linearly independent in
PicQ(H̃d,g). For d ≥ 3, the same is true for the classes of T and ∆.
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Proof. We construct curves with non-singular intersection matrix with our divisors. For
this, a slight enlargement of H̃d,g is more convenient. Define H̃ns

d,g as the moduli space of
[α : C → P1] where C is an at worst nodal curve of arithmetic genus g, not necessarily
irreducible, but without any separating nodes, and α is a map of degree d. The target P1

is taken to be unframed. It is easy to see that H̃d,g is a dense open subset of H̃ns
d,g with

codimension two complement. Abusing notation, we denote the closures of T , D, and ∆

in H̃ns
d,g by the same letters. It suffices to prove the proposition for H̃ns

d,g.
We now construct test curves in H̃ns

d,g. Pick non-negative integers g1 and g2 with g1 +

g2 = g−1 and positive integers d1 and d2 with d1+d2 = d. Take a family αb : Xb → P1 of
covers of degree d1 and genus g1, where b denotes a parameter on a smooth complete curve
B. Assume that we have two sections p, q : B → X with αb(pb) = 0 and αb(qb) =∞ for
all b ∈ B. Take β : E → P1 to be a fixed simply branched cover of degree d2 and genus
g2, unramified over 0 and∞, and let p′, q′ ∈ E be two points over 0 and∞ respectively.
Our test curve in H̃ns

d,g is given by the family γb : Cb → P1, where Cb is obtained by
gluing (Xb, pb, qb) to the constant family (E, p′, q′), and γb : Cb → P1 is induced from
α : Xb → P1 and β : E → P1. The construction is depicted in Figure 1.

pb qb
Xb

p′ q′ E

P1
∞0

Figure 1: We construct families of covers parametrized by b ∈ B by attaching a variable
family of covers αb : Xb → P1 to a fixed cover β : E → P1.

Let Tα, Dα, and ∆α denote the pullbacks of the divisor classes T , D, and ∆ along
the map from B to H̃d1,g1 given by αb. Define Tγ , Dγ , and ∆γ likewise. Let e be the
intersection number of Br(α) with a horizontal section of P1 × B. Denote by [p] (resp.
[q]) the class of p(B) (resp. q(B)) on X .

Claim. With the notation above, we have

deg Tγ = deg Tα + 3([p] + [q]) · Ram(α),

degDγ = degDα + (2g2 + 2d2 − 2)e+ 4e− 4([p] + [q]) · Ram(α), and

deg ∆γ = deg ∆α + [p]2 + [q]2.
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Proof of the claim. The pullback of the line bundle O(∆) from H̃ns
d,g to B is given by

(Np/X ⊗Np′/E)⊗ (Nq/E ⊗Nq′/E)⊗OB(∆α),

where Np/X denotes the normal bundle of p in X , and so on. The third equation follows.
For a generic b ∈ B, the point of H̃ns

d,g given by γb : Cb → P1 does not lie in T or D.
We have the following specializations:

1. αb : Xb → P1 has a fiber of the form 3p1 + p2 + . . . . Such b’s are precisely the
points of Tα, each contributing 1 to deg Tγ .

2. αb : Xb → P1 has a fiber of the form 2p1 + 2p2 + p3 + . . . . Such b’s are precisely
the points of Dα, each contributing 1 to degDγ

3. A branch point of αb : Xb → P1 coincides with a branch point of β : E → P1.
There are (2g2 + 2d2 − 2)e such b’s, each contributing 1 to degDγ .

4. pb (resp. qb) is a ramification point of αb. We compute the intersection multiplicity
of B with T and D at such a point by looking at a versal deformation space of
γb. We may restrict γb over an analytic neighborhood U of 0 (resp.∞). Let x be a
coordinate on U . Then γ−1b (U)→ U has the form

U [y]/(y3 − xy) t U t · · · t U → U.

A versal deformation of this cover is given over SpecC[s, t] by

U [y]/(y3 − xy − sx− t) t U t · · · t U → U.

In SpecC[s, t], the divisorD does not contain the origin, and hence the intersection
number of B with D at b is 0. The divisor T ⊂ SpecC[s, t] is defined by t = 0. The
curve B approaches the origin along the locus where U [y]/(y3 − xy − sx − t) is
singular, namely along s3+t = 0. We deduce that the intersection number ofB with
T at b is 3. There are [p] · Ram(α) (resp. [q] · Ram(α)) such b’s, each contributing
3 to deg Tγ .

5. pb (resp. qb) is not a ramification point of αb, but lies over a branch point. Again, we
look at a versal deformation of γb. In this case, γ−1b (U)→ U has the form

U [y]/(y2 − x) t U [z]/(z2 − x2) t U t · · · t U → U.

A versal deformation of this cover is given over SpecC[s, t] by

U [y]/(y2 − x) t U [z]/(z2 − x2 − sx− t) t U t · · · t U → U.
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In SpecC[s, t], the divisor T does not contain the origin, and hence the intersection
number of B with T at b is 0. The divisor D ⊂ SpecC[s, t] is defined by t = 0.
The curve B approaches the origin along the locus where U [z]/(z2 − x2 − sx− t)
is singular, namely along s2− 4t = 0. We deduce that the intersection number of B
withD at b is 2. Let us count the number of such points, first for pb, and analogously
for qb. The points b for which pb is not a ramification point but lies over a branch
point correspond to the intersection points of Br(α) ∩ {0} × B which are not the
images of the points of Ram(α) ∩ p(B). Note, however, that the image of a point
of Ram(α) ∩ p(B) is actually a point of tangency of Br(α) with {0} × B, and
hence contributes 2 to the intersection number e = Br(α) · {0}×B. The remaining
count, which we want, is therefore e− 2[p] · Ram(α). Similarly, the count for qb is
e− 2[q] · Ram(α).

The expressions for Tγ and Dγ follow from combining the above contributions.

Returning to the proof of the proposition, consider the following three particular test
curves for d ≥ 4.

B1: Take αb : Xb → P1 to be a family of hyperelliptic curves of genus g − 1 obtained by
taking a double cover X → P1×P1 branched along a curve of type (2g, 2). To have
sections p and q of X over {0}×P1 and {∞}×P1, let the branch divisor be tangent
to {0} × P1 and {∞} × P1. Take E to be a smooth rational curve and γ : E → P1

a generic cover of degree d− 2.

B2: Take αb : Xb → P1 to be a family of trigonal curves of genus g−1 obtained by taking
a general pencil on F0 in the linear system |((g + 1)/2, 3)| if g is odd, or on F1 in
the linear system |3 ·Directrix + (g/2 + 2) · Fiber| if g is even. Two base-points give
pb and qb. Take E to be a rational curve and γ : E → P1 a general cover of degree
d− 3.

B3: Take αb : Xb → P1 to be a family of hyperelliptic curves of genus g − 2 as in B1.
Take E to be a smooth genus 1 curve and γ : E → P1 a generic cover of degree
d− 2. This curve exists only for d ≥ 4.

Using the claim, we get the following non-singular intersection matrix.

T D ∆
B1 6 4d− 12 8g − 6
B2 3g + 9 8d− 24 7g − 3
B3 6 4d− 8 8g − 14

For d = 3, we take a pencil in F0 or F1 as inB1, but of trigonal curves of genus g, without
any E. Then the middle column vanishes, and the second row becomes (3g+6, 0, 7g+6),
which is linearly independent from the first row.
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3 Degree three

Let C be a curve of genus g and α : C → P1 a map of degree three. The relative canonical
map embeds C as a divisor in a P1-bundle PE over P1, where E is a vector bundle of
rank two and degree g + 2.

Let

Egen = O

(⌊
g + 2

2

⌋)
⊕O

(⌈
g + 2

2

⌉)
be the most generic vector bundle on P1 of rank 2 and degree g + 2. Set

UEgen := {α ∈ H̃3,g | Eα ∼= Egen}.

Note that UEgen is an open subset of H̃3,g.

Proposition 3.1. The complement of UEgen in H̃3,g is a divisor if and only if g is even, in
which case it is irreducible.

Proof. This is the degree 3 case of Proposition 2.13.

Let π : PEgen → P1 be the projection. Set

V = H0(P1, Sym3Egen ⊗ detEgen∨).

Elements of PsubV correspond to divisors in the linear series of the line bundleOPEgen(3)⊗
π∗(detEgen)∨ on PEgen. Let Cv ⊂ PEgen be the divisor corresponding to v ∈ V . Let
V ◦ ⊂ PsubV be the open locus consisting of v ∈ V ◦ for which Cv is irreducible and at
worst nodal. Let G := Aut(π) be the group of automorphisms of PEgen over P1. Then
G acts on V ◦. The assignment

v 7→ [π : Cv → P1]

gives a map
q : V ◦ → H̃†3,g.

Denote by U †Egen the preimage of UEgen under H̃†3,g → H̃3,g.

Proposition 3.2. The image of q is U †Egen . The fibers of q consist of single G-orbits.

Proof. For brevity, set E = Egen. For v ∈ V ◦, consider the sequence

0→ OPE(−3)⊗ π∗ detE → OPE → OCv → 0.

Applying Rπ∗, we get
0→ OP1 → π∗OCu → E∨ → 0, (3.1)



18 Anand Deopurkar, Anand Patel

which says that the Tschirnhausen bundle of Cu → P1 is E. Conversely, from the
Casnati–Ekedahl resolution, it follows that every point of U †Egen is in the image of q.

Let u, v ∈ U †Egen be in a fiber of q. Then there is an isomorphism Cu → Cv over the
identity of P1. The sequence (3.1) for Cu and Cv shows that such an isomorphism induces
an isomorphism E → E. The induced automorphism of PE over P1 takes Cu to Cv and
hence u to v.

Proposition 3.3. [Picard rank conjecture for degree three] We have PicQH3,g = 0.

Proof. Retain the notation introduced above. For brevity, set U = UEgen and U † = U †Egen .
Then V ◦ → U † is a quotient byG and U † → U is a quotient by PGL2. By Proposition 1.2
and Proposition 3.2, we have

rk PicQ U ≤ rk PicQ U
† + rkχ(PGL2) = rk PicQ U

†

≤ rk PicQ V
◦ + rkχ(G) ≤ 1 + rkχ(G).

The final inequality follows because V ◦ is an open subset of a projective space. Let e be
the number of divisorial components of H̃3,g \ U . We then get the bound

rk PicQ H̃3,g ≤ rk PicQ U + e ≤ 1 + rkχ(G) + e.

If g is even, then

G = PGL2

rkχ(G) = 0

e = 1 by Proposition 3.1.

If g is odd, then

G =

{(
a l

b

)
| a, b ∈ C∗, l ∈ H0(P1, O(1))

}/
C∗

rkχ(G) = 1

e = 0 by Proposition 3.1.

In either case, we have

rk PicQ H̃3,g ≤ 2.

By Proposition 2.15, the classes in PicQ(H̃3,g) of the two components of H̃3,g \ H3,g are
linearly independent. Therefore, we get PicQH3,g = 0 as desired.
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4 Degree four

Let C be a curve of genus g and α : C → P1 a map of degree four. The relative canonical
map embeds C into a P2-bundle PE over P1, where E is a vector bundle of rank three
and degree g+3. The Casnati-Ekedahl structure theorem provides the following resolution
of OC :

0→ π∗ detE(−4)→ π∗F (−2)→ OPE → OC → 0,

where F is a vector bundle of rank two and degree g + 3.
Explicitly, we can describe C ⊂ PE as follows. Write F = O(a) ⊕ O(b), where

a+ b = g+ 3, and a ≤ b. Let h denote the divisor class associated to OPE(1) on PE and
f the class of the fiber of the projection π : PE → P1. Then the curve C is the complete
intersection of two divisors

C = Qa ∩Qb,

where [Qa] = 2h− af and [Qb] = 2h− bf .
Even more explicitly, we can describe the equations of Qa and Qb as follows. Write

E = O(m1) ⊕ O(m2) ⊕ O(m3). Over an open set U ⊂ P1, let X, Y, and Z denote the
relative coordinates on PE|U corresponding to the three summands of E. Assume that
m1 ≤ m2 ≤ m3. Over U , the divisor Qa is the zero locus of a form

p1,1X
2 + p1,2XY + p1,3XZ + p2,2Y

2 + p2,3Y Z + p3,3Z
2 (4.1)

where pi,j is the restriction to U of a global section of O(mi + mj − a). Similarly, over
U , the divisor Qb is the zero locus of a form

q1,1X
2 + q1,2XY + q1,3XZ + q2,2Y

2 + q2,3Y Z + q3,3Z
2 (4.2)

where qi,j is the restriction to U of a global section of O(mi +mj − b).
The irreducibility of C puts some restrictions on the possible (E,F ). Indeed, if p1,1 =

q1,1 = 0, then the section [X : Y : Z] = [1 : 0 : 0] of PE is contained in both Qa and Qb,
making C = Qa ∩Qb reducible. An irreducible C thus forces

2m1 ≥ a. (4.3)

Proposition 4.1. Let E be a vector bundle of rank 3 and degree g + 3 and F a vector
bundle of rank 2 and degree g+3. If the locusM(E,F ) is non-empty, then it is irreducible
and unirational.

Proof. Consider the dense open subsetM◦(E,F ) ⊂M(E,F ) corresponding to α ∈ H4,g

that have Eα ∼= E and Fα ∼= F . It suffices to prove the statement for M◦(E,F ).
Consider the vector space

V := H0(P1, F∨ ⊗ Sym2E).
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Elements of V correspond to maps π∗F (−2) → OPE . Let V ◦ ⊂ V be the open sub-
set where the ideal generated by the image of π∗F (−2) defines a smooth curve, simply
branched over P1. Then V ◦ surjects onto M◦(E,F ).

Remark 4.2. From the dominant map V ◦ →M(E,F ) in the proof of Proposition 4.1, it
is easy to compute the codimension of M(E,F ) inH4,g, which is

codimM(E,F ) = dim Ext1(E,E) + dim Ext1(F, F )− dim Ext1(F, Sym2 F ).

We may think of dim Ext1(E,E) + dim Ext1(F, F ) as the ‘expected codimension.’ The
next example shows that the actual codimension is not always the expected codimension.

Example 4.3. Let E = O(m) ⊕ O(2m) ⊕ O(g + 3 − 3m), where dg+3
6
e ≤ m < g+3

5
.

To get an irreducible curve C, the only possibility for F is F = O(2m) ⊕ O(g + 3 −
2m), by (4.3). The resulting locus M(E,F ) is not of expected codimension because
dim Ext1(F, Sym2E) is nonzero.

Example 4.4. The Maroni locus M(E) may be reducible. Let g = 12, and consider the
bundle E = O(3)⊕O(5)⊕O(7). Then the reader can easily check (using Bertini’s theo-
rem) thatM(E,F ) andM(E,F ′) are nonempty and of equal codimension dim Ext1(E,E)

for the bundles F = O(6) ⊕ O(9) and F ′ = O(5) ⊕ O(10). Therefore M(E,F ) and
M(E,F ′) are two components of M(E). It is easy to see by analyzing the explicit equa-
tions that these are the only components of M(E).

Let Egen (resp. F gen) be the most generic vector bundle on P1 of rank 3 (resp. 2) and
degree g + 3. Define

UEgen := {α ∈ H̃4,g | Eα ∼= Egen},
UF gen := {α ∈ H̃4,g | Fα ∼= F gen},

UEgen,F gen := UEgen ∩ UF gen .

It is easy to see that these are are open subsets of H̃d,g. Our next task is to identify the
divisorial components of their complements.

Proposition 4.5. The subvarietyM := H̃4,g \UEgen is a divisor if and only if g is divisible
by three, in which case it is irreducible.

Proof. This is the degree 4 case of Proposition 2.13.

For the complement of UF gen , we could do a careful analysis of the defining equations
of C in PE, as we will have to do for the next case of d = 5. But we can take a more
geometric approach using the resolvent cubic construction. Originally due to Recillas
[Rec73], the construction can be described as follows. For simplicity, we give an informal
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description, restricting to simply branched covers. See [Cas98] for a detailed account.
Consider a point [α : C → P1] of H4,g. The resolution of OC as an OPEα module shows
that C ⊂ PEα is the complete intersection of two relative quadrics. A fiber of PFα → P1

naturally corresponds to the pencil of conics in the corresponding fiber of PEα → P1

containing the corresponding fiber of C → P1. Each such pencil contains three singular
conics, counted with multiplicity. The total locus of these singular conics forms a trigonal
curveR(C) ⊂ PFα. LetR(α) : R(C)→ P1 be the projection. We callR(α) the resolvent
cubic of α. Using thatC → P1 is simply branched, it is easy to check thatR(C) is smooth
and the branch divisor ofR(α) coincides with the branch divisor of α. In particular, R(C)

has genus g + 1. The association α→ R(α) defines a map

R : H4,g → H3,g+1,

which we call the resolvent cubic map. The fiber of R over a point [D → P1] ∈ H3,g+1

corresponds bijectively to the set of étale double covers D′ → D (see [Rec73] or [Cas98,
Theorem 6.5]). In particular, R is a finite morphism.

Proposition 4.6. Let F be a vector bundle of rank 2 and degree g+3 on P1. The Casnati-
Ekedahl locus C(F ) ⊂ H4,g is non-empty if and only if bF c ≥ dg+3

3
e. In this case, it is of

the expected codimension dim Ext1(F, F ).

Proof. Consider a point [α : C → P1] ofH4,g and its resolvent cubicR(α) : R(C)→ P1.
Since R(C) ⊂ PFα, and Fα is a vector bundle of rank two and degree (g + 1) + 2, it
must be the Tschirnhausen bundle of R(C). That is, we have ER(α) = Fα. By [Rec73],
the map R is finite, and hence C(F ) = R−1(M(F )). Both of the statements about C(F )

now follow from the corresponding statements about M(F ).

Proposition 4.7. Let g ≥ 4. The subvariety CE := H4,g \UF gen has codimension at least
two if g is even and is an irreducible divisor if g is odd.

Proof. The image R(UF gen) ⊂ H3,g+1 is the open locus of trigonal covers having F gen as
their Tschirnhausen bundle. The complement Z := H3,g+1 \ R(UF gen) has codimension
at least two if g + 1 is odd and it is the Maroni divisor if g + 1 is even (Proposition 3.1).
The complement H4,g \ UF gen is the preimage R−1(Z). Therefore, the statements about
the codimension follow from the finiteness of R.

For the question of reducibility, let F = O(k−1)⊕O(k+1) with k = (g+3)/2 ≥ 3.
The claim is that C(F ) is irreducible when g > 3, and has two components when g = 3.
We have

C(F ) =
⋃
E

M(E,F ).

By Proposition 4.1, the varieties M(E,F ) are irreducible. Therefore, every component of
C(F ) must be of the form M(E,F ) for some E.



22 Anand Deopurkar, Anand Patel

Let g > 3 and suppose E 6= Egen. The inclusion M(E,F ) ⊂ M(E) and Propo-
sition 2.13 imply that M(E,F ) is a divisor if and only if M(E,F ) = M(E) and E =

O(m−1)⊕O(m)⊕O(m+1). By choosing two generic quadrics as in (4.1) and (4.2), we
can explicitly construct a curve in M(E,F gen), showing that M(E,F ) 6= M(E). Thus,
it follows that the only component of C(F ) is M(Egen, F ).

Example 4.8. The divisor H4,g \ UF gen is not irreducible for g = 3. Indeed, take F =

O(2) ⊕ O(4). Then M(Egen, F ) is an irreducible component. Now consider the only
other possibility for E, namely E = O(1) ⊕ O(2) ⊕ O(3). By (4.3), a cover in M(E)

must have F = O(2) ⊕ O(4). Furthermore, for this E and F , we can choose the two
quadrics generically and see that M(E,F ) is nonempty. Therefore, M(E) = M(E,F ) is
another component ofH4,g \ UF gen .

Our next goal is to exhibit UEgen,F gen as a quotient. Let π : PEgen → P1 be the projec-
tion. For brevity, set E = Egen and F = F gen. Set

V := H0(P1, F∨ ⊗ Sym2E).

An element v ∈ PsubV corresponds to a map π∗F (−2)→ OPE . Let Cv be the zero locus
of the image of this map. Let V ◦ ⊂ PsubV be the open locus consisting of v ∈ PsubV

for which Cv is irreducible and at worst nodal. Let GF := Aut(PF/P1) and GE :=

Aut(PE/P1). Then GF ×GE acts on V ◦. The assignment

v 7→ [π : Cv → P1]

defines a map
q : V ◦ → H̃†4,g.

Denote by U †E,F the preimage of UE,F under H̃†4,g → H̃4,g.

Proposition 4.9. The image of q is U †Egen,F gen . The fibers of q consist of single G-orbits.

Proof. The proof is exactly analogous to the proof of Proposition 3.2.

Proposition 4.10. [Picard rank conjecture for degree four] We have PicQH4,g = 0.

Proof. Retain the notation introduced above. For brevity, set U = UEgen,F gen and U † =

U †Egen,F gen . By Proposition 1.2 and Proposition 4.9, we have

rk PicQ U ≤ rk PicQ U
† + rkχ(PGL2) = rk PicQ U

†

≤ rk PicQ V
◦ + rkχ(G) ≤ 1 + rkχ(G).

The final inequality follows because V ◦ is an open subset of a projective space. Let e be
the number of divisorial components of H̃3,g \ U . We then get the bound

rk PicQ H̃4,g ≤ rk PicQ U + e ≤ 1 + rkχ(G) + e.
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Recall that G = GF gen ×GEgen .
If g is an odd multiple of 3, then

G = PGL2×PGL3

rkχ(G) = 0

e = 2 corresponding to M in Proposition 4.5 and CE in Proposition 4.7.

If g is odd, but not divisible by 3, then

G = PGL2×GE

GE =


a b l1
c d l2
0 0 e

 | a, b, c, d, e ∈ C, e(ad− bc) ∈ C∗, li ∈ H0(P1, O(1))

/C∗.
rkχ(G) = 1

e = 1 corresponding to CE in Proposition 4.7.

If g is even and divisible by 3, then

G = GF × PGL2

GF =

{(
a l

b

)
| a, b ∈ C∗, l ∈ H0(P1, O(1))

}/
C∗

rkχ(G) = 1

e = 1 corresponding to M in Proposition 4.5.

If g is even and not divisible by 3, then

G = GF ×GE where GF and GE are as in the previous two cases,

rkχ(G) = 2

e = 0.

In all cases, we get
rk PicQ H̃4,g ≤ 3.

By Proposition 2.15, the classes in PicQ H̃4,g of the three components of H̃4,g \ H4,g are
linearly independent. Therefore, we get PicQH4,g = 0 as desired.

5 Degree five

Let C be a curve of genus g and α : C → P1 a map of degree five. The relative canonical
map embeds C into a P3 bundle PE over P1, where E is a vector bundle of rank four and
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degree g+ 4. The Casnati-Ekedahl structure theorem provides the following resolution of
OC :

0→ π∗ detE(−5)→ π∗(F∨(detE))(−3)→ π∗F (−2)→ OPE → OC → 0

where F is a vector bundle of rank three and degree 2g + 8.
Explicitly, we can describe C ⊂ PE as follows. The resolution is determined com-

pletely by the middle map

w : π∗(F∨(detE))(−3)→ π∗F (−2).

This map may be viewed an element of the vector space H0(P1, F ⊗ F ⊗ E(− detE)).
Due to a theorem of Casnati [Cas96], w can be taken to be anti-symmetric, that is, in the
subspace

V := H0(P1,∧2F ⊗ E ⊗ detE∨).

Even more explicitly, we can describe the defining equations of C as follows. Let

F = O(n1)⊕ · · · ⊕O(n5), where n1 ≤ · · · ≤ n5, and

E = O(m1)⊕ · · · ⊕O(m4), where m1 ≤ · · · ≤ m4.

We represent an element w ∈ V by a skew symmetric matrix of forms

Mw =


0 L1,2 L1,3 L1,4 L1,5

−L1,2 0 L2,3 L2,4 L2,5

−L1,3 −L2,3 0 L3,4 L3,5

−L1,4 −L2,4 −L3,4 0 L4,5

−L1,5 −L2,5 −L3,5 −L4,5 0

 (5.1)

where Li,j ∈ H0(P1, E ⊗ detE∨ ⊗ O(ni + nj)). In PE, the curve Cw is cut out by the
4× 4 sub-Pfaffians of the matrix Mw.

The irreducibility ofC puts some restrictions on the possible matrices. Indeed, suppose

L1,2 = L1,3 = 0.

Then the Pfaffian Q5 of the submatrix obtained by eliminating the fifth row and column
is

Q5 = L1,2L3,4 − L1,3L2,4 + L2,3L1,4 = L2,3L1,4.

Since Q5 is reducible, it forces Cw to be reducible.
Suppose further thatE = O(k)r⊕O(k+1)4−r, where 0 ≤ r ≤ 3. Then the observation

above implies that the maximum of the degrees of the summands ofE⊗(detE∨)⊗O(n1+

n3) must be nonnegative, meaning

n1 + n3 + k − (g + 4) ≥ −1.
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Since the ni are increasing, we get the inequalities

ni + nj + (k + 1)− (g + 4) ≥ 0 for every (i, j) with i 6= j except (i, j) = (1, 2). (5.2)

Let Egen (resp. F gen) be the most generic vector bundle on P1 of rank 4 (resp. 5) and
degree g + 4 (resp. 2g + 8). Define UEgen , UF gen , and UEgen,F gen as before. These are the
open subsets of H̃5,g consisting of covers α for which Eα, Fα, and both Eα and Fα are the
most generic.

Proposition 5.1. The subvariety M := H̃5,g \ UEgen has codimension at least two if g is
not divisible by 4, and has a unique divisorial component if g is divisible by 4.

Proof. This is the degree 5 case of Proposition 2.13.

For the complement of UF gen , we must analyze the defining equations of C in PE.

Proposition 5.2. The subvariety CE := H5,g \ UF gen has codimension at least two if
g + 4 is not a multiple of 5 (with the exception of g = 3 in which case the complement
parametrizes hyperelliptic curves), and contains a unique divisorial component if g+ 4 is
a multiple of 5.

Proof. We must characterize the Casnati-Ekedahl loci C(F ) which are divisorial. We
have

C(F ) =
⋃
E

M(E,F ).

The lociM(E,F ) are irreducible by virtually the same argument as in Proposition 4.1 (In
the proof, just take V = H0(P1,∧2F⊗E⊗detE∨).) Therefore, any component of C(F )

must be of the form M(E,F ). From the explicit description of degree 5 covers above, it
is straightforward to compute that

codimM(E,F ) = dim Ext1(E,E) + dim Ext1(F, F )− h1(∧2F ⊗ E ⊗ detE∨).

Suppose E 6= Egen. Then M(E,F ) ⊂ M(E). By Proposition 2.13, M(E) has codi-
mension at least two unless E = O(k)⊕O(k+ 1)⊕d−3⊕O(k+ 2). In this case, using the
explicit description of degree 5 covers, it is easy to construct covers α with Eα = E and
Fα = F gen. Thus,M(E,F ) 6= M(E), and sinceM(E) is irreducible,M(E,F ) ⊂M(E)

has codimension at least one. Therefore, M(E,F ) ⊂ H4,g has codimension at least two.
Therefore, for M(E,F ) to be divisorial, we must have E = Egen. In this case, we

have
codimM(E,F ) = dim Ext1(F, F )− h1(∧2F ⊗ E ⊗ detE∨).

Suppose h1(∧2F ⊗ E ⊗ detE∨) = 0. Note that dim Ext1(F, F ) = 1 if and only if

F = O(n− 1)⊕O(n)⊕O(n)⊕O(n)⊕O(n+ 1).



26 Anand Deopurkar, Anand Patel

In this case 5n = 2(g + 4), and hence 5 divides g + 4.
We are thus reduced to showing that M(E,F ) is not a divisor when E = Egen and

h1(∧2F ⊗ E(− detE)) > 0,

with the exception of g = 3. Write

E = O(k)⊕r ⊕O(k + 1)⊕4−r where 0 ≤ r ≤ 3,

and

F = O(n1)⊕O(n2)⊕O(n3)⊕O(n4)⊕O(n5), where n1 ≤ · · · ≤ n5.

Consider an anti-symmetric matrix

Mw = (Li,j) 1 ≤ i, j ≤ 5,

as in (5.1), representing an element of H0(∧2F ⊗ E ⊗ detE∨). Inequality (5.2) implies
that any contribution to h1(∧2F ⊗ E ⊗ detE∨) must come from the L1,2 entry. In other
words, we have

h1(∧2F ⊗ E(− detE)) = h1(E ⊗ detE∨ ⊗O(n1 + n2)).

Since E = Egen, we have h1(E ⊗ detE∨ ⊗O(n1 + n2)) > 0 if and only if

n1 + n2 + (k + 1)− (g + 4) < 0.

Hence, we get

h1(E ⊗ detE∨ ⊗O(n1 + n2)) = 4(−(n1 + n2 + k − (g + 4))− 1)− (4− r)
= 4g − 4(n1 + n2 + k) + r + 8.

Equation (5.2) tells us that n1 + n3 + (k + 1) − (g + 4) ≥ 0, which implies n2 < n3.
Therefore,

dim Ext1(F, F ) ≥ (2n5 + 2n4 + 2n3)− 3(n1 + n2)− 6.

Combining the two, we get

dim Ext1(F, F )−h1(E⊗detE∨⊗O(n1+n2)) ≥ 2n5+2n4+2n3+n1+n2−3(g+4)−2.

Using n1 + · · ·+ n5 = 2(g + 4), the above inequality becomes

dim Ext1(F, F )− h1(E ⊗ detE∨ ⊗O(n1 + n2)) ≥ (g + 4)− (n1 + n2)− 2.

Finally, by using the assumption n1 + n2 + (k + 1)− (g + 4) < 0, we conclude that

codimM(Egen, F ) = dim Ext1(F, F )− h1(E ⊗ detE∨ ⊗O(n1 + n2)) > k − 1.

If k > 1, then we get codimM(Egen, F ) > 1 as desired. We consider the cases where
k = 1 on an individual basis. These cases correspond to 0 ≤ g ≤ 4.
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Case: g = 4. ThenEgen = O(2)⊕4 and F gen = O(3)⊕4⊕O(4). The relative canonical
map embeds C in PEgen ' P3 ×P1. The projection to P3 restricts to the canonical map
on C. Therefore, if C is non-hyperelliptic, then there is only one quadric in P3 containing
the canonical model of C. This means that the bundle F has exactly one O(4) summand,
and hence F ∼= F gen. The locus where C is hyperelliptic is easily seen to be codimension
2 inH5,4. This exhausts all possibilities in this case.

Case: g = 3. Then Egen = O(1)⊕O(2)⊕3 and F gen = O(2)⊕O(3)⊕4. Consider the
special bundle F = O(2)⊕O(2)⊕O(3)⊕2 ⊕O(4). Then

dim Ext1(F, F )− h1(∧2F ⊗ E ⊗ detE∨) = 1.

Now consider a general [α : C → P1] ∈ M(E,F ) ⊂ H5,3. Let [X : Y : Z : W ] denote
the homogeneous coordinates (locally over P1) on PE corresponding to the summands of
E. As usual, denote by h the class of OPE(1) and by f the class of the fiber of PE → P1.
Since O(4) is a summand of F , there exists a unique effective divisor Q of class 2h− 4f

on PE which contains C. The quadric Q may be written as the zero locus of a form

c0Y
2 + c1Y Z + · · ·+ c5W

2,

where ci are constants. Let p : PE 99K P2 × P1 be the projection from the section [1 :

0 : 0 : 0], and g : PE 99K P2 × P1 → P2 the composition with the projection onto
the first factor. Then the rational map g is given by the linear system |h − 2f | on PE,
which restricts to the canonical series on C. However, the fact that C lies on the relative
quadric Q means that the image g(C) is exactly the conic defined by the equation for Q.
Thus, C is hyperelliptic. Given the above geometric understanding of the O(4) summand
of F , it is easy to show that if we begin with a hyperelliptic curve C, and a degree 5 map
α : C → P1, then Fα must contain a unique O(4) summand. By the inequalities in (5.2),
there are no other choices for F .

Case: g = 1, 2. In these cases, we leave it to the reader to see that there are no
nontrivial Casnati-Ekedahl or Maroni loci.

As before, we now exhibit UEgen,F gen as a quotient. For brevity, set E = Egen and
F = F gen. Set

V := H0(P1,∧2F ⊗ E ⊗ detE).

An element v ∈ PsubV defines an anti-symmetric matrix as in (5.1). Let Cv be the zero
locus of the 4 × 4 sub-Pfaffians of this matrix. Let V ◦ ⊂ PsubV be the open locus con-
sisting of v for which Cv is irreducible and at worst nodal. Let GF := Aut(PF/P1) and
GE := Aut(PE/P1. Then G := GF × GE acts on V ◦. The assignment v 7→ [π : Cv →
P1] defines a map

q : V ◦ → H̃†5,g.
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Let U †E,F be the preimage of UEgen,F gen under H̃†5,g → H̃5,g.

Proposition 5.3. The image of q is U †Egen,F gen . The fibers of q consist of single G-orbits.

Proof. The proof is exactly analogous to that of Proposition 3.2.

Proposition 5.4. [Picard rank conjecture for degree five] We have PicQH5,g = 0.

Proof. The proof is entirely analogous to the proof of Proposition 4.10. We indicate only
the major steps. Set U = UEgen,F gen , and U † = U †Egen,F gen . Applying Proposition 1.2 to
V ◦ → U † and U † → U , we get

rk PicQ U ≤ 1 + rkχ(G).

Let e be the number of divisorial components of H̃5,g \ U . We then get

rk PicQ H̃5,g ≤ 1 + rkχ(G) + e.

Both G and e depend on g modulo 4 and 5. Using Proposition 5.1 and Proposition 5.2, we
get the following possibilities.

rkχ(G) = rkχ(GE) + rkχ(GF ) e
4 | g, 5 | g + 4 0 = 0 + 0 2 (M and CE)
4 | g, 5 - g + 4 1 = 0 + 1 1 (M )
4 - g, 5 | g + 4 1 = 1 + 0 1 (CE)
4 - g, 5 - g + 4 2 = 1 + 1 0.

In all the cases, we have PicQ H̃5,g ≤ 3. With Proposition 2.15, this gives PicQH5,g =

0.

6 From Hurwitz spaces to Severi varieties

The associated scroll construction in § 2.1 lets us relate the Picard rank of a Hurwitz space
to the Picard rank of a Severi variety. In this section, we work out this relation.

Recall the notation Ug(Fm, dτ), Vg(Fm, dτ), and V irr
g (Fm, dτ) from § 0.1. When con-

fusion is unlikely, we abbreviate them by U , V , and V irr. Following Diaz and Harris
[DH88a], we enlarge U by including the irreducible curves of geometric genus g hav-
ing a cusp, a tacnode, a triple point, and irreducible nodal curves of geometric genus
(g − 1) (that is, curves having an “additional” node). Denote by Ũ the normalization of
this partial compactification. The local analysis from [DH88a, § 1] of the Severi variety at
points corresponding to cusps, tacnodes, triple points, and an additional node shows that
Ũ is smooth. Since Ũ maps to the linear series |dτ |, it carries over it a family of (singular)
curves. The normalization of the total space of this family gives a family C → Ũ of curves
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of arithmetic g. A generic fiber of C → Ũ is the normalization the corresponding curve
on Fm.

Using the universal family, we can construct tautological divisor classes on Ũ as fol-
lows. Consider the diagram

C Fm

Ũ

ρ

ν

.

Define five tautological divisor classes on Ũ (The subscript s stands for “Severi”):

1. λs := c1(ρ∗ωρ)

2. κs := ρ∗(c1(ωρ)
2)

3. ξs := ρ∗(ν
∗(f) · c1(ωρ))

4. θs := ρ∗(ν
∗(σ) · c1(ωρ))

5. ψs := ρ∗(ν
∗[Point])

Since the irreducible curves in the linear system |dτ | avoid the directrix σ, we get θs =

ψs = 0. Therefore, a natural conjecture is the following.

Conjecture 6.1. The rational Picard group of Ũ is tautological, that is

PicQ Ũ = Q〈λs, κs, ξs〉.

Denote by CU , TN , TP , and ∆ the closures in V irr of the locus curves with a cusp,
tacnode, triple point, or an additional node, respectively. Abusing notation, denote their
preimages in Ũ by the same letters.

Remark 6.2. It is not hard to check that the classes in PicQ Ũ ofCU , TN , TP , and ∆ can
be expressed as Q-linear combinations of λs, κs, and ξs and vice versa. Conjecture 6.1 is
therefore equivalent to

PicQ U = 0.

Proposition 6.3. The only divisorial components of V irr \ U are CU , TN , TP , and ∆.

Proof. It suffices to show that the codimension one components of V \ U are the loci of
curves with cusps, tacnodes, triple points or an additional node. This follows by the same
proof as for Theorem 1.4 in [DH88b]. The critical ingredient of the argument is provided
by Lemma 6.4.
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Lemma 6.4. Let D ∈ |dτ | be a reduced irreducible curve on the Hirzebruch surface Fm.
Denote by A the conductor ideal of the singularities of D. Then A imposes independent
conditions on H0(Fm, O(dτ)).

Proof. Let K = KFm be the canonical class. The anti-canonical class −K is effective.
Furthermore, the fixed component of −K is the directrix σ, and −K separates points
away from σ.

It is a classical that A imposes independent conditions on the adjoint linear system
|K + D|. Let Z = V (A) be the zero dimensional scheme defined by the ideal sheaf A.
Then the restriction map

H0(O(K +D))→ H0(OZ(K +D))

is surjective. Therefore, we can conclude the same for

H0(O(D))→ H0(OZ(D))

by multiplying the previous restriction map by a general section of O(−K).

We now rephrase the Picard rank conjecture for Hurwitz spaces in a manner similar to
Conjecture 6.1. Consider the diagram

C P1

H̃†d,g

f

α

.

Define the following tautological divisor classes on H̃†d,g (The subscript “h” stands for
“Hurwitz”):

1. λh := c1(f∗ωf )

2. κh := f∗(c1(ωf )
2)

3. ξh := f∗(α
∗[Point] · c1(ωf ))

Conjecture 6.5. The rational Picard group of H̃†d,g is tautological, that is, PicQ H̃†d,g =

Q〈λh, κh, ξh〉.

Remark 6.6. It is easy to see that the classes of T , D, and ∆ can be expressed as
Q-linear combinations of λh, κh, and ξh and vice versa. Also, by Proposition 1.3, the
framed/unframed distinction is irrelevant. Therefore, Conjecture 6.5 is equivalent to the
Picard rank conjecture stated in the introduction, namely that

PicQHd,g = 0.
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We now state the main theorem of this section.

Theorem 6.7. If m ≥ b(g+ d− 1)/(d− 1)c, then Conjecture 6.1 for Ũg(Fm, dτ) implies
Conjecture 6.5 for H̃†d,g. If m ≥ d2(g + d− 1)/de, then Conjecture 6.1 for Ũg(Fm, dτ) is
equivalent to Conjecture 6.5 for H̃†d,g.

Proof. Let m ≥ b(g + d − 1)/(d − 1)c. Retain the notation introduced in this section.
In particular, abbreviate Ug(Fm, dτ) by U , and so on. Let π : Fm → P1 be the projection
and σ ⊂ Fm the directrix. Fix a section ζ ∈ H0(Fm, π

∗O(m)) corresponding to a smooth
element of the linear series |τ |. We view Fm \σ as the total space of the line bundle O(m)

on P1 and ζ as the tautological section of π∗O(m) on this total space.
Let φ : C → P1 be the composite φ = π ◦ ν. Let Z ⊂ Ũ be the open subset consisting

of u where h0(Cu, φ∗O(m)) is minimal. Likewise, let W ⊂ H̃†d,g be the subset consisting
of [α : C → P1] where h0(C, α∗O(m)) is minimal. By Proposition 2.13, the complement
of W in H̃†d,g has codimension at least two. Let V be the total space of the vector bundle
f∗α

∗O(m)|W over W .
We have a birational morphism q : Z → V defined as follows. A point u ∈ Ũ is

mapped to [φu : Cu → P1, v], where v ∈ H0(Cu, φ∗uO(m)) is the restriction of ζ . To
define the inverse, we must restrict to an open subset of V . Let X ⊂ V be the open
subset consisting of ([α : C → P1], v), where v ∈ H0(C, α∗O(m)) is such that the lift of
C → P1 to C → Fm defined by v is birational onto its image. We then get a morphism
p : X → V irr, which is quasi-finite, and generically one-to-one. Let Y ⊂ X be the open
subset consisting of points whose associated element in V irr has at worst a cusp, a tacnode,
a triple point, or an additional node. By Proposition 6.3, and the quasi-finiteness of p,
the complement of Y in X has codimension at least two. Since Y is normal, we get a
morphism p : Y → Z ⊂ Ũ , inverse to q. We summarize the spaces we have defined and
their relationships in the following diagram.

H̃†d,g W

V X Y Z

Ũ
?

?

?

p

q

. (6.1)

The inclusions are open inclusions. Y and Z are isomorphic via p and q. The maps marked
by ? induce isomorphisms on Picard groups. For the open inclusions, this is because the
complements have codimension at least two. For V → W , this is because it is a vector
bundle.

Denote the pullbacks of λh, κh, and ξh to W , V , X , and Y by the same letters. Then,
we have

p∗λs = λh p∗κs = κh p∗ξs = ξh

q∗λh = λs q∗κh = κs q∗ξh = ξs.



32 Anand Deopurkar, Anand Patel

We may thus drop the subscripts and use λ, κ, and ξ to denote the corresponding divisors
on any of the spaces in (6.1).

Before we proceed, we must comment on the inclusion X ↪→ V . The complement
consists of ([α : C → P1], v), where v ∈ H0(C, α∗O(m)) does not give a birational map
to Fm. Let us disregard the α’s that factor non-trivially (such α’s form set of codimension
at least two). Then the only such v are the pullbacks of the sections in H0(P1, O(m)).
The locus ([α : C → P1], v), where v ∈ α∗H0(P1, O(m)) has codimension at least two
except in the case g ≡ −1 (mod (d− 1)), and m = b(g + d− 1)/(d− 1)c, that is, when
the generic splitting of α∗OC is

α∗OC = O ⊕O(−m)⊕O(−m− 1)⊕ · · · ⊕O(−m− 1).

In this case, the complement of X in V has a divisorial component given by the image
of the constant vector bundle H0(P1, O(m))⊗ OW . However, the class of this divisor in
PicQ V ∼= PicQW is in the span of λ, κ, and ξ. Therefore, in any case, PicQ V is spanned
by λ, κ, and ξ if and only if PicQX is.

Assume that Conjecture 6.1 holds. From diagram (6.1), we see that PicQX is spanned
by λ, κ, and ξ. By the comment about X ↪→ V above, this implies that PicQ V , and in
turn PicQ H̃†d,g is spanned by λ, κ, and ξ. Hence Conjecture 6.5 holds.

Assume that m ≥ d2(g+d−1)/(d−1)e and Conjecture 6.5 holds. Then, by Proposi-
tion 2.6 the inclusion Z ↪→ Ũ is in fact an isomorphism. Again, diagram (6.1) shows that
PicQ Ũ is spanned by λ, κ, and ξ. Hence Conjecture 6.1 holds.
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