
THE CANONICAL SYZYGY CONJECTURE FOR RIBBONS

ANAND DEOPURKAR

ABSTRACT. Green’s canonical syzygy conjecture asserts a simple relationship between
the Clifford index of a smooth projective curve and the shape of the minimal free
resolution of its homogeneous ideal in the canonical embedding. We prove the ana-
logue of this conjecture formulated by Bayer and Eisenbud for a class of non-reduced
curves called ribbons. Our proof uses the results of Voisin and Hirschowitz–Ramanan
on Green’s conjecture for general smooth curves.

1. INTRODUCTION

Let X be a projective variety over a field K and L a very ample line bundle on X .
Consider the embedding X ⊂ Pn given by the complete linear system |L|. Associated
to X ⊂ Pn is the homogeneous ideal I ⊂ S = K[x0, . . . , xn]. The data of (X , L) and
the data of (S, I) represent two different points of view of studying the same object—
a geometer would rather work with (X , L) whereas an algebraist would rather work
with (S, I). But since (X , L) and (S, I) contain the same information, there ought to be
a connection between the properties of (X , L) that a geometer would study with the
properties of (S, I) that an algebraist would.

The question of finding relationships between the geometric properties of (X , L) and
the algebraic properties of (S, I) has led to fascinating theorems and conjectures. One
of the most deeply studied cases is where X is a smooth curve (but see [11] and [7]
for more general results, especially in an asymptotic setting). In this case, the work
of Green [11] and Green–Lazarsfeld [10] predicts a simple relationship between the
Clifford index of X and the shape of the minimal free resolution of S/I as an S module.
When L is the canonical bundle, this relationship is the content of Green’s canonical
syzygy conjecture, which we now recall. We state it in terms of the Koszul cohomology
groups Kp,q. Recall that when X ⊂ Pn is projectively normal, Kp,q(X , L) is naturally
identified with the graded component of degree (p+ q) in the pth term of the minimal
free resolution of S/I .

From here on, let K be an algebraically closed field of characteristic zero.

Conjecture 1.1 (Green’s canonical syzygy conjecture [11]). Let C be a smooth projective
curve of genus g ≥ 2 over K. The Koszul cohomology group Kp,2(C ,ωC) vanishes if and
only if p is smaller than the Clifford index of C.
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2 THE CANONICAL SYZYGY CONJECTURE FOR RIBBONS

The statement of the conjecture generalizes classical results of Noether and Petri,
namely that a canonically embedded curve is projectively normal, and that its homoge-
neous ideal is generated by quadrics if it does not carry a g1

3 or a g2
5 .

In 1995, Bayer and Eisenbud laid out an approach to prove a generic version of
Green’s conjecture by a degeneration argument. They considered a special class of
degenerate curves, called ribbons. These are double structures on P1 locally isomorphic
to SpecK[s,ε]/ε2, and they arise as flat limits of families of canonically embedded
curves as the curves approach a hyperelliptic curve. Despite being non-reduced, ribbons
retain many nice features of smooth curves, such as a projectively normal canonical
embedding and a sensible notion of Clifford index. In terms of this Clifford index, we
have the following analogue of Conjecture 1.1 due to Bayer and Eisenbud.

Conjecture 1.2 (Canonical syzygy conjecture for ribbons [5]). Let C be a ribbon over
K of arithmetic genus g. Then Kp,2(C ,ωC) vanishes if and only if p is smaller than the
(ribbon) Clifford index of C.

By the semi-continuity of the Clifford index and the smoothability results of Fong [9],
Conjecture 1.2 implies Conjecture 1.1 for a general curve of every Clifford index (see
the proof of Corollary 1.4).

Having described the conjectures, let us review what is known. Schreyer and Teixidor
I Bigas settled Conjecture 1.1 for general p-gonal curves of genus g, where g is large
compared to p. Schreyer settled the cases g > (p − 1)(p − 2) [16]; Teixidor I Bigas
advanced it much further to handle g ≥ 3p + 2 [17]. In two breakthrough papers,
Voisin proved Conjecture 1.1 when C is general in moduli [18, 19]. Combined with
prior work of Hirschowitz and Ramanan [14], her work implies that Conjecture 1.1
holds for every smooth curve of odd genus and maximum Clifford index. Since then,
several authors—Aprodu, Farkas, Lelli-Chiesa, and Pacienza—have made remarkable
progress on Conjecture 1.1; it has been proved for general curves of every gonality, for
curves lying on a K3 surface, and for certain curves on rational surfaces [1–4,15]. Yet,
the full conjecture remains unproved.

In this paper, we prove Conjecture 1.2. Our proof uses the results of Voisin and
Hirschowitz–Ramanan.

Theorem 1.3. The canonical syzygy conjecture (Conjecture 1.2) holds for every ribbon.

As a result, we get another proof of the following.

Corollary 1.4. Green’s canonical syzygy conjecture (Conjecture 1.1) holds for a non-empty
open subset of curves of a given genus and Clifford index.

Proof. In the appendix to [11], Green and Lazarsfeld show that Kp,2(C) 6= 0 for p ≥ c
for every smooth curve C of Clifford index c. The hard part is the converse.

We now show the converse for a non-empty open subset of curves with Clifford index
c. Start with a ribbon C0 of Clifford index c. By Theorem 1.3, we have Kp,2(C0,ωC0

) = 0
for p < c. By [9, Theorem 2], C0 is the limit of a family of curves Ct whose generic
member is a smooth curve of Clifford index c. Since the vanishing of Kp,2(Ct ,ωCt

) is
an open condition, and it holds for t = 0, it holds for the generic t, and hence for a
non-empty open subset of curves with Clifford index c. �
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The proof of Theorem 2 of [9] shows that a ribbon of Clifford index c is a limit of a
family of curves whose generic member is a smooth curve of gonality c + 2. Therefore,
the argument of Corollary 1.4 in fact yields the following stronger statement.

Corollary 1.5. Green’s conjecture (Conjecture 1.1) holds for a dense open subset of curves
of a given genus and gonality.

It would be wonderful to have a proof of Conjecture 1.2 independent of Voisin’s proof
of Conjecture 1.1 for general curves. It would give a new proof of Voisin’s difficult theo-
rem and would address the original motivation of Bayer and Eisenbud behind studying
ribbons. Nevertheless, any proof is better than no proof.

Irrespective of the original motivation, the canonical syzygy conjecture for ribbons
is important for another reason, which comes from recent progress in the log minimal
model program for M g . For a canonical curve C ⊂ Pg−1 with vanishing Kp,2(C ,ωC),
we can define a point in a Grassmannian called the pth syzygy point of C . This point
encodes the vector space of pth syzygies among the generators of the homogeneous
ideal of C (see [6] for details). The GIT quotients of the loci of pth syzygy points are
expected to lead to the canonical model of M g . To describe this canonical model, it is
essential to know which curves (if any) have GIT semi-stable syzygy points. We expect
that the pth syzygy point of a general ribbon will be GIT semi-stable. The vanishing of
Kp,2 shows that the pth syzygy point is at least well-defined.

The paper is organized as follows. Section 2 contains basic results about ribbons
and their deformations. Section 3 proves Theorem 1.3 for ribbons of odd genus and
maximum Clifford index. Section 4 extends the result to all ribbons. All schemes and
stacks are locally of finite type over K.

2. RIBBONS

We quickly review the theory of ribbons from [5]. Let D be a reduced and connected
scheme over K. A ribbon over D is a scheme C with an isomorphism D→ Cred such that
the ideal I of D ⊂ C satisfies I2 = 0 and is locally free of rank 1 when considered as a
sheaf on D. A ribbon over P1 is called a rational ribbon. All our ribbons will be rational,
so we drop this adjective.

A ribbon C of arithmetic genus g gives an exact sequence

(1) 0→ OP1(−g − 1)→ ΩC |P1 → ΩP1 → 0.

We have an isomorphism ΩC |P1
∼= OP1(−a− 2)⊕OP1(−b− 2) for some integers a and b

with 0 ≤ a ≤ b ≤ g − 1 and a + b = g − 1. The Clifford index Cliff(C) of C is defined
to be the integer a. We say that C is hyperelliptic if the following equivalent conditions
hold: (i) the inclusion P1 ⊂ C admits a retraction C → P1, (ii) Cliff(C) = 0, (iii) the
sequence in (1) is split.

A ribbon of arithmetic genus g may be described explicitly as obtained from gluing
U1 = SpecK[s,ε]/ε2 and U2 = SpecK[t,η]/η2 by isomorphisms

ε= t−g−1η

s−1 = t + F(t)η,
(2)
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on U1 ∩ U2, where F(t) ∈ K[t, t−1]. In fact, what matters is only the image of F(t)
in K[t, t−1]/(K[t] + t−g+1K[t−1]). We abuse notation and denote this image also by
F(t). The element F(t) corresponds to the extension (1) in Ext1(ΩP1 ,OP1(−g − 1)).
In particular, F(t) = 0 if and only if C is hyperelliptic. Two ribbons C1 and C2 are
isomorphic by a map that restricts to the identity on the underlying P1 if and only if
F1(t) = cF2(t) for some c ∈K∗.

Let x ∈ C be a closed point, β : C ′→ C the blow up at x , and E ⊂ C ′ the exceptional
divisor. Then C ′ is a ribbon of arithmetic genus g − 1 and ωC ′ = β∗ωC(−E). Blowing
up is related to the Clifford index as follows.

Proposition 2.1 (See [5, Corollary 2.5]). The Clifford index Cliff(C) is the smallest num-
ber k such that there exists a sequence

Ck→ ·· · → C1→ C0 = C

where Ci+1→ Ci is a blow-up at a closed point and Ck is hyperelliptic.

The usual Clifford index of smooth curves and the Clifford index for ribbons obey
semi-continuity.

Theorem 2.2 (See [8, Theorem 2.1]). Let C →∆ be a proper flat family over a DVR ∆
where the geometric general fiber Cη is smooth and the special fiber C0 is a ribbon. Then
Cliff(C0)≤ Cliff(Cη).

All ribbons of a given genus and Clifford index are related.

Theorem 2.3 (See [5, § 8]). Let c ≥ 1. There exists a surface X g,c ⊂ Pg such that all
canonically embedded ribbons of genus g and Clifford index c are hyperplane sections of
X g,c. In particular, the graded betti numbers dim Kp,q(C ,ωC) depend only on the genus g
and the Clifford index c of C.

We need basic results about the deformation theory of ribbons.

Proposition 2.4. A ribbon C has a smooth versal deformation space.

Proof. For non-hyperelliptic ribbons, this follows from [5, Theorem 6.1]. Here is an-
other proof that works for all ribbons, using deformation theory. Denote by T i the
deformation-obstruction functors of Lichtenbaum and Schlessinger for i = 0, 1,2 (see
[13, § 1.3]). Let T i

C be the sheaf T i(C/K,OC). Suppose A→ A′ is a surjection of local
Artin K-algebras with kernel K. Let CA′ → Spec A′ be a deformation of C . The obstruc-
tions to lifting CA′ → Spec A′ to a deformation CA→ Spec A lie successively in H0(C , T 2

C ),
H1(C , T 1

C ), and H2(C , T 0
C ). Since C has dimension 1, we have H2(C , T 0

C ) = 0. Since C
is a local complete intersection, we have T 2

C = 0. To compute T 1
C , we do a simple local

computation. Consider U = SpecK[s,ε]/ε2. Set S = K[s,ε], J = ε2S, and R = S/J .
The cotangent complex for U/K is given by

L• : 0→ J/J2 d
−→ ΩS/K ⊗S R.

By definition, T 1
U = H1(HomR(L•, R)). Let e be a generator of the free R module J/J2.

Note that ΩS/K ⊗S R = R〈ds, dε〉 and d(e) = εdε. Denote by ∂s, ∂ε, and e∗ the dual
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generators of ds, dε, and e, respectively. Then

T 1
U = coker(d∗ : R〈∂s,∂ε〉 → R〈e∗〉),

where d∗(∂s) = 0 and d∗(∂ε) = εe∗. Therefore, we get T 1
U = R/ε〈e∗〉 = K[s]〈e∗〉. By

a similar computation on V = SpecK[t,η]/η2 and gluing, we get T 1
C
∼= OP1(2g + 2).

Therefore, H1(C , T 1
C ) = 0 and hence deformations of C are unobstructed. �

Proposition 2.5. Let (U , 0) be a versal deformation space of C and CU → U a versal
family. Let N ⊂ U be the closed subset consisting of u ∈ U where Cu has worse than nodal
singularities. Then the codimension of N in U at 0 is at least 2.

Said differently, N ⊂ U is the complement of the open set of u ∈ U over which Cu is
a semi-stable curve.

Proof. Note that all ribbons degenerate isotrivially to the hyperelliptic ribbon. Indeed,
in the gluing description (2), we may replace F(t) by cF(t) and take c to 0. There-
fore, it suffices to prove the proposition for the hyperelliptic ribbon. Furthermore, since
(U , 0) is irreducible, it suffices to exhibit an irreducible pointed scheme (T, 0) and a
map φ : (T, 0) → (U , 0) such that the codimension of φ−1(N) in T at 0 is at least 2.
Said differently, it suffices to construct a family of curves CT → T such that C0 is a hy-
perelliptic ribbon and the locus of t ∈ T such that Ct has worse than nodal singularities
has codimension at least 2. Take T = A2g+3 = A〈a0, . . . , a2g+2〉 with 0 = (0, . . . , 0) and
let CT → T be the family of hyperelliptic curves defined affine locally by

y2 = a2g+2 x2g+2 + · · ·+ a1 x + a0.

The locus of worse than nodal curves corresponds to the set of (a0, . . . , a2g+2) for which
the polynomial a2g+2 x2g+2+ · · ·+ a1 x + a0 has a zero of multiplicity at least 3. It is easy
to see that this locus has codimension 2. �

3. PROOF FOR RIBBONS OF ODD GENUS AND MAXIMUM CLIFFORD INDEX

Let X be a projective scheme and L an invertible sheaf on X . Set V = H0(X , L). Recall
that the Koszul cohomology group Kp,q(X , L) is defined as the middle cohomology group
in the sequence

∧p+1V ⊗H0(X , Lq−1)→∧pV ⊗H0(X , Lq)→∧p−1V ⊗H0(X , Lq+1),

where the map is given by

v1 ∧ · · · ∧ vp ⊗w 7→
p
∑

i=1

(−1)i v1 ∧ · · · ∧ bvi ∧ · · · ∧ vp ⊗ viw.

Let g = 2k + 1 with k ≥ 1. Let U be the (non-separated) stack of all curves C that
satisfy the following conditions:

(1) C is Gorenstein of arithmetic genus g and h0(C ,OC) = 1.
(2) ωC is very ample and embeds C as an arithmetically Gorenstein subscheme in

Pg−1,
(3) a versal deformation space of C is smooth.
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All three are open conditions and hence U is an open substack of the stack of all curves
constructed, for example, in [12]. The first two conditions are more important than
the third; the third is there just to avoid any problems about divisor theory. Denote by
Unodal ⊂ U the open substack parametrizing curves with at worst nodes as singularities.
Then Unodal ⊂ M g . In fact, Unodal is precisely M

va

g , the stack of stable curves with a very

ample dualizing sheaf; it is studied in [1]. Note that Mg ∩ Mg
va

is the complement in
Mg of the hyperelliptic locus; we denote it by Mnh

g . Also note that all non-hyperelliptic
ribbons satisfy the three conditions—the first is clear; the second is [5, Theorem 5.3];
and the third is Proposition 2.4.

Let π: C→ U be the universal curve. Set V= π∗ (ωπ). Then V is locally free of rank
g on U. Consider the Koszul complex

K• : ∧k+1V
δ1−→ ∧kV⊗V

δ2−→ ∧k−1V⊗π∗
�

ω2
π

� δ3−→ ∧k−2V⊗π∗
�

ω3
π

� δ4−→ . . .

· · · → ∧k+1−pV⊗π∗
�

ωp
π

�

→ ·· · → ∧0V⊗π∗
�

ωk+1
π

�

.

Define E and F by

E= cokerδ1

F = kerδ3.

Proposition 3.1. E and F are locally free on U of the same rank.

Proof. E is clearly locally free. Consider a point [C] ∈ U. Since the homogeneous
coordinate ring of the canonical embedding of C is Gorenstein, we have the duality

Kp,q(C ,ωC)∼= Kg−2−p,3−q(C ,ωC)
∗.

In particular, we have Kp,q(C ,ωC) = 0 for p ≥ 4 and for p = 3 and q < g−2. Therefore,
the complex K• is exact from the third place onward: ker(δq+1) = im(δq) for all q ≥ 3.
Since K• is a finite complex of locally free sheaves, it follows that F = kerδ3 is locally
free.

It is easy to see that the rank of both E and F is 2·g!
(k−1)!(k+1)! . �

The map δ2 in K• induces a map δ : E→ F. Observe that

(3) cokerδ|[C] = Kk−1,2(C ,ωC).

Let D ⊂ U be defined by the vanishing of det(δ).
Let Dk+1 ⊂ U be the closure of the locus of (k+ 1)-gonal curves in Mnh

g .

Proposition 3.2. Let C be a non-hyperelliptic ribbon of odd genus 2k + 1. We have the
equality Dk+1 = D in an open subset containing [C] ∈ U.

Proof. The results of Voisin [19] and Hirschowitz–Ramanan [14] give Dk+1 = D on Mnh
g .

Consider the open inclusion Mnh
g ⊂ Unodal. Note that Unodal \ Mnh

g has one divisorial
component ∆0 whose general fiber corresponds to an irreducible nodal curve. In [19],
Voisin shows that Kk−1,2(C ,ωC) = 0 for every C in a linear series on a K3 surface, which
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includes irreducible nodal curves. Therefore D does not contain ∆0 as a component.
Since Dk+1 is the closure of a divisor on Mnh

g , it does not contain ∆0 as a component
either. Therefore, the equality of divisors D = Dk+1 holds in codimension 1 on Unodal and
hence on all of Unodal. The same reasoning and Proposition 2.5 implies that D = Dk+1
holds around every point in U corresponding to a ribbon. �

Corollary 3.3. For a ribbon C of genus 2k + 1 with the maximum Clifford index k, we
have Kk−1,2(C ,ωC) = 0.

Proof. Note that the smooth curves parametrized by Dk+1 have Clifford index at most
k − 1. By upper semi-continuity (Theorem 2.2), we see that [C] 6∈ Dk+1, and hence
[C] 6∈ D by Proposition 3.2. By (3), this is equivalent to Kk−1,2(C ,ωC) = 0. �

4. PROOF FOR ALL RIBBONS

We now deduce the canonical syzygy conjecture for all ribbons from Corollary 3.3.
The basic idea is to compare the Koszul cohomology group of a singular curve to that
of its blow-up. This idea appears already in the work of Voisin [18], but we can exploit
it much more for ribbons because they are singular everywhere!

Lemma 4.1. Let C be a ribbon and β : C ′ → C the blow up at a closed point. Then we
have an inclusion Kk,1(C ′,ωC ′) ⊂ Kk,1(C ,ωC).

Proof. This follows by the same argument as in [18, Corollary 1]. We reproduce the
details for completeness.

Since ωC ′ = β∗ωC(−E) where E is the exceptional divisor of β , we have inclusions
H0(C ′,ωl

C ′)→ H0(C ,ωl
C) for l ≥ 0.

Set V ′ = H0(C ′,ωC ′) and V = H0(C ,ωC). Consider the Koszul complexes

∧k+1V ′ ∧kV ′ ⊗ V ′ ∧k−1V ′ ⊗H0(C ′,ω2
C ′) . . .

∧k+1V ∧kV ⊗ V ∧k−1V ⊗H0(C ,ω2
C) . . .

δ′

j1 j2

δ

For any vector space U , the Koszul differential δ : ∧k+1 U → ∧kU ⊗ U has a retract
∧: ∧k U ⊗ U →∧k+1U given by the wedge product. Precisely, the two are related by

∧ ◦δ = (k+ 1) id .

Suppose α′ ∈ ∧kV ′ ⊗ V ′ is such that j2(α′) = δ(β) for some β ∈ ∧k+1V . Then

∧ ◦ j2(α
′) = ∧ ◦δ(β) = (k+ 1)β .

It is easy to see that ∧ ◦ j2(α′) = j1 ◦ ∧(α′). Set β ′ = ∧(α′)/(k+ 1). Then

j2(δ
′(β ′)) = δ( j1(β

′)) = δ(β) = j2(α
′).

Since j2 is injective, we get δ′(β ′) = α′. In other words, any element of ∧kV ′ ⊗ V ′

that becomes a coboundary in ∧kV ⊗ V is already a coboundary. Therefore the map on
cohomology Kk,1(C ′,ωC ′)→ Kk,1(C ,ωC) is injective. �
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Theorem 4.2. Let C be a ribbon of genus g and Clifford index c. Then Kp,2(C ,ωC) = 0 if
and only if p < c.

Proof. The “only if” direction is the ‘easy’ direction; it is the content of [5, Corollary 7.3].
We now prove the other direction. For c = 0, there is nothing to prove. Henceforth,

we assume c ≥ 1. In particular, C is non-hyperelliptic. Recall the following:

(1) Kp,q(C ,ωC) = 0 implies Kp′,q(C ,ωC) = 0 for all p′ ≤ p,
(2) we have the duality Kp,q(C ,ωC) = Kg−2−p,3−q(C ,ωC)∗.

Since all canonically embedded ribbons of genus g and Clifford index c have the same
graded betti numbers (Theorem 2.3), it suffices to prove the theorem for one such
ribbon. That is, we must show that Kc−1,2(C ,ωC) = 0 for one ribbon of genus g and
Clifford index c.

By the definition of the Clifford index, we have 2c ≤ g − 1. Write g = 2k+ 1− i and
c = k− i for integers k and i with k ≥ 1 and k ≥ i ≥ 0. Let C be a ribbon of genus 2k+1
and maximum Clifford index k. By Proposition 2.1, there is a sequence of blow-ups

Ck→ ·· · → Ci → ·· · → C0 = C ,

where Ck is hyperelliptic. In this sequence, C = Ci is a ribbon of genus g = 2k + 1− i
and Clifford index c = k− i. By Corollary 3.3, we know that Kk−1,2

�

C ,ωC

�

= 0, which
gives Kk,1

�

C ,ωC

�

= 0 by duality. By repeated applications of Lemma 4.1, we deduce
that Kk,1(C ,ωC) = 0. Note that g − 2 − k = k − i − 1 = c − 1. Therefore, we get
Kc−1,2(C ,ωC) = 0 by duality. The proof of the theorem is thus complete. �
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