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Abstract

We construct a well-behaved compactification of the space of finite covers of a stacky
curve using admissible cover degenerations. Using our construction, we compactify
the space of tetragonal curves on Hirzebruch surfaces. As an application, we explicitly
describe the boundary divisors of the closure inM6 of the locus of smooth plane quintic
curves.

1. Introduction

Let X be a smooth stacky curve, that is, a connected, proper, one dimensional, smooth Deligne–
Mumford stack of finite type over the complex numbers. Consider finite maps φ : P →X , where
P is a smooth orbifold curve. The space of such maps admits a modular compactification as
the space of twisted stable maps of Abramovich and Vistoli [AV02]. This compactification is
analogous to the space of Kontsevich stable maps in the case of schematic X . Although this
space is proper, it may have many components, and it is difficult to identify in it the limits of
finite maps. We construct a compactification which is analogous to the space of admissible covers
(Theorem 2.5). This compactification is smooth with a normal crossings boundary divisor, and
the locus of finite maps is dense. It admits a morphism to the Abramovich–Vistoli space.

Two classical applications motivate us. First, taking X = [M0,4/S4] would give us a nice
compactification of the space of curves of fiberwise degree 4 on ruled surfaces. Second, taking
X = M 1,1 would give us a nice compactification of the space of elliptic fibrations. We work
out the first case in detail. It generalizes and extends to the boundary the picture of tetragonal
curves, trigonal curves, and theta characteristics from [Vak01].

The case of X = [M0,4/S4] also yields the answer to the question “Which stable curves are
limits of smooth plane curves?” in the first non-trivial case, namely the case of plane quintics.
For this application, we project a plane quintic from a point on it to view it as a curve C of
fiberwise degree 4 on the Hirzebruch surface F1. The data (F1 → P1, C) gives a map P1 99K X
defined away from the 18 branch points of C → P1. Let P be the orbifold curve obtained by
taking the root stack of order 2 at these branch points. Then P1 99K X extends to a finite map
φ : P →X . Our compactification of the space of such maps admits a morphism toM6. We can
compute the closure of the locus of plane quintics simply as the image of this morphism.

Theorem 1.1. Let Q ⊂ M6 be the locus of plane quintic curves and Q its closure in M6. The
generic points of the components of the boundary Q ∩

(
M6 \M6

)
of Q represent the following

stable curves.

– With the dual graph X

(i) A nodal plane quintic.
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(ii) X hyperelliptic of genus 5.

– With the dual graph X Yp

(iii) (X, p) the normalization of a cuspidal plane quintic, and Y of genus 1.
(iv) X of genus 2, Y Maroni special of genus 4, p ∈ X a Weierstrass point, and p ∈ Y a

ramification point of the unique degree 3 map Y → P1.
(v) X a plane quartic, Y hyperelliptic of genus 3, p ∈ X a point on a bitangent, and p ∈ Y

a Weierstrass point.
(vi) X a plane quartic, Y hyperelliptic of genus 3, and p ∈ X a hyperflex (KX = 4p).

(vii) X hyperelliptic of genus 4, Y of genus 2, and p ∈ X a Weierstrass point.
(viii) X of genus 1, and Y hyperelliptic of genus 5.

– With the dual graph X Y
q

p

(ix) X Maroni special of genus 4, Y of genus 1, and p, q ∈ X on a fiber of the unique degree
3 map X → P1.

(x) X hyperelliptic of genus 3, Y of genus 2, and p ∈ Y a Weierstrass point.
(xi) X of genus 2, Y a plane quartic, p, q ∈ X hyperelliptic conjugate, and the line through

p, q tangent to Y at a third point.
(xii) X hyperelliptic of genus 3, Y of genus 2, and p, q ∈ X hyperelliptic conjugate.

– With the dual graph X Y

(xiii) X hyperelliptic of genus 3, and Y of genus 1.

In the theorem, the letters X,Y denote the normalization of the component of the curve
represented by the correspondending vertex. For example, (ii) represents an irreducible nodal
curve whose normalization is hyperelliptic of genus 5.

The closure of Q in M6 is known to be the union of Q with the locus of hyperelliptic curves
[Gri85]. This result also follows from our techniques.

By definition, the curves in Q are stable reductions of singular plane curves. Our compact-
ification does not retain a map to the linear system of quintics on P2. Therefore, it does not
identify the singular plane quintics whose stable reductions yield the limiting curves listed above.
However, we can get a partial correspondence using [Has00] (see Table 1).

Divisor in Theorem 1.1 Singular plane curve

(i), (ix), (xi), (xii) An irreducible plane curve with an A2n+1 singularity, n =
0, 1, 2, 3

(iii), (iv), (v), (vii) An irreducible plane curve with an A2n singularity, n =
1, 2, 3, 4

(vi) The union of a smooth plane quartic and a hyperflex line
(A7 singularity)

(viii) The union of a smooth conic and a 6-fold tangent smooth
cubic (A11 singularity)

(x) An irreducible plane curve with a D5 singularity
(xiii) An irreducible plane curve with a D4 singularity
(ii) The union of a nodal cubic and a smooth conic with 5-fold

tangency along a nodal branch (D12 singularity).
Table 1. Singular plane curves that yield the divisors in Theorem 1.1
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Let us mention an issue of parity that we have so far suppressed. As indicated before, suitable
maps φ : P → X correspond to curves C of fiberwise degree 4 on Hirzebruch surfaces Fn. The
space of such maps breaks up into two connected components corresponding to the parity of n.
The parity also manifests as the parity of a theta characteristic on a trigonal curve that can be
associated to the data of φ. In any case, for the application to quintics, we must restrict to the
component of odd n.

Having outlined the main ideas, here is a roadmap of the details. Section 2 contains the
construction of the admissible cover compactification of maps to a general stacky curve X . Sec-
tion 3 studies the case of X = [M0,4/S4] and the corresponding compactifications of tetragonal
curves on Hirzebruch surfaces. Section 4 specializes to the case of tetragonal curves of genus 6
on F1, or equivalently, plane quintics. Appendix A describes the geometry of P1 bundles over
orbifold curves that we need in Section 4. Theorem 1.1 follows from combining Proposition 4.2,
Proposition 4.3, Proposition 4.11, Proposition 4.12, and Proposition 4.14.

We work over the complex numbers C. A stack means a Deligne–Mumford stack. An orbifold
means a Deligne–Mumford stack without generic stabilizers. Orbifolds are usually denoted by
curly letters (X ,Y), and stacks with generic stabilizers by curlier letters (X ,Y ). Coarse spaces
are denoted by the absolute value sign (|X |, |Y |). A curve is a proper, reduced, connected, one-
dimensional scheme/orbifold/stack, of finite type over C. The projectivization of a vector bundle
is the space of its one dimensional quotients.

2. Moduli of branched covers of a stacky curve

In this section, we construct the admissible cover compactification of covers of a stacky curve
in three steps. First, we construct the space of branched covers of a family of orbifold curves
with a given branch divisor (§ 2.1). Second, we take a fixed orbifold curve and construct the
space of branch divisors on it and its degenerations (§ 2.2). Third, we combine these results and
accommodate generic stabilizers to arrive at the main construction (§ 2.3).

2.1 Covers of a family of orbifold curves with a given branch divisor

Let S be a scheme of finite type over C and π : X → S a (balanced) twisted curve as in [AV02].
This means that π is a flat family of at worst nodal stacky curves which are isomorphic to their
coarse spaces except possibly at finitely many points. The stack structure at these finitely many
points is of the following form:

– At a node:

[Spec (C[x, y]/xy) /µr] where ζ ∈ µr acts by ζ : (x, y)→ (ζx, ζ−1y)

– At a smooth point:

[Spec C[x]/µr] where ζ ∈ µr acts by x 7→ ζx.

Since all our twisted curves will be balanced, we drop this adjective from now on. We call the
integer r the order of the corresponding orbifold point.

Let Σ ⊂ X be a divisor that is étale over S and lies in the smooth and representable locus
of π. Define BrCovd(X/S,Σ) as the category fibered in groupoids over SchemesS whose objects
over T → S are

(p : P → T, φ : P → XT ),
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where p is a twisted curve over T and φ is representable, flat, and finite with branch divisor
brφ = ΣT .

Consider a point of this moduli problem, say φ : P → Xt over a point t of S. Then P is also
a twisted curve with nodes over the nodes of Xt. Since φ is representable, the orbifold points of
P are only over the orbifold points of Xt.

We can associate some numerical invariants to φ which will remain constant in families. First,
we have global invariants such as the number of connected components of P, their arithmetic
genera, and the degree of φ on them. Second, for every smooth orbifold point x ∈ Xt we have
the local invariant of the cover φ : P → Xt given by its monodromy around x. The monodromy
is given by the action of the cyclic group AutxX on the d element set φ−1(x). This data is
equivalent to the data of the ramification indices over x of the map |φ| : |P| → |Xt| between the
coarse spaces. Notice that the monodromy data at x also determines the number and the orders
of the orbifold points of P over x. The moduli problem BrCovd(X/S,Σ) is thus a disjoint union
of the moduli problems with fixed numerical invariants. Note, however, that having fixed d, X/S,
and Σ, the set of possible numerical invariants is finite.

Proposition 2.1. BrCovd(X/S,Σ) → S is a separated étale Deligne–Mumford stack of finite
type. If the orders of all the orbinodes of all the fibers of X → S are divisible by the orders of
all the permutations in the symmetric group Sd, then BrCovd(X/S,Σ)→ S is also proper.

Proof. Fix non-negative integers g and n. Consider the category fibered in groupoids over
SchemesS whose objects over T → S are (p : P → T, φ : P → X ) where P → T is a twisted curve
of genus g with n smooth orbifold points and φ is a twisted stable map with φ∗[Pt] = d[Xt].
This is simply the stack of twisted stable maps to X of Abramovich–Vistoli. By [AV02], this
is a proper Deligne–Mumford stack of finite type over S. The conditions that φ : P → XT be
finite and unramified away from Σ are open conditions. For φ : P → XT finite and unramified
away from Σ, the condition that brφ = ΣT is open and closed. Thus, for fixed g and n the stack
BrCovg,nd (X/S,Σ) is a separated Deligne–Mumford stack of finite type over S. But there are only
finitely many choices for g and n, so BrCovd(X/S,Σ) is a separated Deligne–Mumford stack of
finite type over S.

To see that BrCovd(X/S,Σ)→ S is étale, consider a point t→ S and a point of BrCovd(X/S,Σ)
over it, say φ : P → Xt. Since φ is a finite flat morphism of curves with a reduced branch divisor
Σ lying in the smooth locus of Xt, it follows that the map on deformation spaces

Defφ → Def(Xt,Σt)

is an isomorphism. So BrCovd(X/S,Σ)→ S is étale.

Finally, assume that the indices of all the orbinodes of the fibers of X → S are sufficiently
divisible as required. Let us check the valuative criterion for properness. For this, we take S to
be a DVR ∆ with special point 0 and generic point η. Let φ : Pη → Xη be a finite cover of degree
d with branch divisor Ση. We want to show that φ extends to a finite cover φ : P → X with
branch divisor Σ, possibly after a finite base change on ∆.

Let x be the generic point of a component of X0. By Abhyankar’s lemma, φ extends to a
finite étale cover over x, possibly after a finite base change on ∆. We then have an extension of
φ on all of X except over finitely many points of X0.

Let x ∈ X0 be a smooth point. Recall that every finite flat cover of a punctured smooth
surface extends to a finite flat cover of the surface. Indeed, the data of a finite flat cover consists
of the data of a vector bundle along with the data of an algebra structure on the vector bundle.
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A vector bundle on a punctured smooth surface extends to a vector bundle on the surface by
[Hor64]. The maps defining the algebra structure extend by Hartog’s theorem. Therefore, we get
an extension of φ over x.

Let x ∈ X0 be a limit of a node in the generic fiber. Then X is locally simply connected at x.
(That is, V \ {x} is simply connected for a sufficiently small étale chart V → X around x.) In
this case, φ trivially extends to an étale cover locally over x.

Let x ∈ X0 be a node that is not a limit of a node in the generic fiber. Then X has the form
U = [Spec C[x, y, t]/(xy − tn)/µr] near x where r is sufficiently divisible. In this case, φ extends
to an étale cover over U by Lemma 2.2, where we interpret an étale cover of degree d as a map
to Y = BSd.

We thus have the required extension φ : P → X . The equality of divisors brφ = Σ holds
outside a codimension 2 locus on X , and hence on all of X . The proof of the valuative criterion
is then complete.

Lemma 2.2. Let Y be a Deligne–Mumford stack and let U be the orbinode

U = [Spec C[x, y, t]/(xy − tn)/µr].

Suppose φ : U 99K Y is defined away from 0 and the map |φ| on the coarse spaces extends to
all of |U |. Suppose for every σ ∈ Aut|φ|(0) Y we have σr = 1. Then µ extends to a morphism
φ : U → Y .

Proof. Let G = Aut|µ|(0) Y . We have an étale local presentation of Y of the form [Y/G] where
Y is a scheme. Since it suffices to prove the statement locally around 0 in the étale topology, we
may take Y = [Y/G]. Consider the following tower:

Spec C[u, v, t]/(uv − t) = Ũ

Spec C[x, y, t]/(xy − tn) = U

[Spec C[x, y, t]/(xy − tn)/µr] = U

Y

[Y/G]
.

We have an action of µnr on Ũ where an element ζ ∈ µnr acts by ζ · (u, v, t) 7→ (ζu, ζ−1v, t).
The map Ũ → U is the geometric quotient by µn = 〈ζr〉 ⊂ µnr and the map U → U is the
stack quotient by µr = µnr/µn. Since Ũ is simply connected, we get a map µnr → G and a lift
Ũ → Y of φ which is equivariant with respect to the µnr action on Ũ and the G action on Y .
Since σr = 1 for all σ ∈ G, the map Ũ → Y is equivariant with respect to the µn action on Ũ
and the trivial action on Y . Hence it gives a map U → Y and by composition a map U → [Y/G].
Since U → U is étale, we have extended φ to a map at 0 étale locally on U .

2.2 The Fulton–MacPherson configuration space

The goal of this section is to construct a compactified configuration space of b distinct points on
orbifold smooth curves in the style of Fulton and MacPherson. We first recall (a slight general-
ization of) the notion of a b-pointed degeneration from [FM94]. Let X be a smooth schematic
curve and let x1, . . . , xn be distinct points of X. A b-pointed degeneration of (X, {x1, . . . , xn}) is
the data of

(ρ : Z → X, {σ1, . . . , σb}, {x̃1, . . . , x̃n}),
where
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– Z is a nodal curve and {σj , xi} are b+ n distinct smooth points on Z;

– ρ maps x̃i to xi

– ρ is an isomorphism on one component of Z, called the main component and also denoted
by X. The rest of the curve, namely Z \X, is a disjoint union of trees of smooth rational
curves, each tree meeting X at one point.

We say that the degeneration is stable if each component of Z contracted by ρ has at least three
special points (nodes or marked points).

We now define a similar gadget for an orbifold curve.

Definition 2.3. Let X be a smooth orbifold curve with n orbifold points x1, . . . , xn. A b-pointed
degeneration of X is the data of

(ρ : Z → X , {σ1, . . . , σb}),

where

– Z is a twisted nodal curve, schematic away from the nodes and n smooth points, say
x̃1, . . . , x̃n;

– σ1, . . . , σb are b distinct points in the smooth and schematic locus of Z;

– ρ maps x̃i to xi and induces an isomorphism ρ : Autx̃i Z → Autxi X ;

– the data on the underlying coarse spaces (|ρ| : |Z| → |X |, {σ1, . . . , σb}, {x̃1, . . . , x̃n}) is a
b-pointed degeneration of (|X |, {x1, . . . , xn}).

We say that the degeneration is stable if the degeneration of the underlying coarse spaces is
stable.

Let X be an orbifold curve with n orbifold points x1, . . . , xn. Let U ⊂ X b be the complement
of all the diagonals and orbifold points. Let π : X × U → U be the second projection and
σj : U → X × U the section of π corresponding to the jth factor, namely

σj(u1, . . . , ub) = (uj , u1, . . . , ub).

Let ρ : X × U → X be the first projection.

Proposition 2.4. There exists a smooth Deligne–Mumford stack X [b] along with a family of
twisted curves π : Z → X [b] such that the following hold:

(i) X [b] contains U as a dense open substack and π : Z → X [b] restricts over U to X ×U → U .

(ii) X [b] \ U is a divisor with simple normal crossings and the total space Z is smooth.

(iii) The sections σj : U → X ×U and the map ρ : X ×U → X extend to sections σj : X [b]→ Z
and a map ρ : Z → X .

(iv) For every point t in X [b], the datum (ρ : Zt → X , {σj}) is a b-pointed stable degeneration
of X .

(v) We may arrange X [b] and π : Z → X [b] so that the indices of the orbinodes of the fibers of
π are sufficiently divisible.

Proof. Let X be the coarse space of X . Let X[b] be the Fulton–MacPherson moduli space of b
points on X where the points are required to remain distinct and also distinct from the xi. It is
a smooth projective variety containing U as a dense subset with a normal crossings complement.
It admits a universal family of nodal curves π : Z → X[b] with smooth total space Z along with
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b + n sections σj : X[b] → Z and x̃i : X[b] → Z, and a map ρ : Z → X. The universal family
extends the constant family X × U → U ; the sections σj extend the tautological sections; the
sections x̃i extend the constant sections xi; and the map ρ extends the projection X × U → X.
The fibers of Z → X[b] along with the points σj , x̃i, and the map ρ form a stable b-pointed
degeneration of (X,x1, . . . , xn).

We can construct X[b] following the method of [FM94]—start with Xb and the constant
family X × Xb → X and one-by-one blow up the proper transforms of the strata where the
sections σj coincide among themselves or coincide with the points xi. We summarize the picture
so far in the following diagram:

X × U Z X

U X[b]

ρ

σj , xi σj , x̃i

.

We now use the results of Olsson [Ols07] to modify X[b] and Z → X[b] in a stacky way to
obtain the claimed X [b] and Z → X . Our argument follows the proof of [Ols07, Theorem 1.9].
Fix a positive integer d that is divisible by ai = |Autxi X| for all i. The simple normal crossings
divisor X[b]\U gives a canonical log structureM on X[b]. This log structure agrees with the log
structure that X[b] gets from the family of nodal curves Z → X[b] as explained in [Ols07, § 3].
Denote by r the number of irreducible components of X[b] \U . Let α be the vector (d, . . . , d) of
length r. Let X [b] be the stack F (α) constructed in [Ols07, Lemma 5.3]. The defining property
of F (α) is the following: a map T → F (α) corresponds to a map T → X[b] along with an

extension of log structures MT →M′T which locally has the form Nr ×d−−→ Nr. Thus, X [b] maps
to X[b] and comes equipped with a tautological extension M → M′, where we have used the
same symbol M to denote the pullback to X [b] of the log structure M on X[b]. By [Ols07,
Theorem 1.8], the data (Z ×X[b] X [b], {xi, ai},M→M′) defines a twisted curve Z → X [b] with
a map Z → Z which is a purely stacky modification (an isomorphism on coarse spaces).

Before we proceed, let us describe the modification X [b] → X[b] and Z → Z explicitly in
local coordinates. Let 0 ∈ X[b] be a point such that Z0 is an l-nodal curve. Étale locally around
0, the pair (X[b], X[b] \ U) is isomorphic to

(Spec C[x1, . . . , xb], x1 . . . xl). (1)

Étale locally around a node of Z0, the map Z0 → X[b] is isomorphic to

Spec C[x1, . . . , xb, y, z]/(yz − x1)→ Spec C[x1, . . . , xb]. (2)

In the coordinates of (1), the map X [b]→ X[b] is given by[
Spec C[u1, . . . , ul, xl+1, . . . , xb]

/
µld

]
→ Spec C[x1, . . . , xb]

(u1, . . . , ul, xl+1, . . . , xb) 7→ (ud1, . . . , u
d
l , xl+1, . . . , xb).

(3)

Here µld acts by multiplication on (u1, . . . , ul) and trivially on the xi. Having described X [b] →
X[b], we turn to Z → Z. Let

V = Spec C[u1, . . . , ul, xl+1, . . . , xb]

be the étale local chart of X [b] from (3). The map ZV → ZV is an isomorphism except over the
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points x̃i and the nodes of Z0. Around the point x̃i of Z0, the map ZV → ZV is given by

[SpecOV [s]/µai ]→ SpecOV [t],

s 7→ tai ,
(4)

where ζ ∈ µai acts by ζ · s = ζs. Around the node of Z0 from (2), the map ZV → ZV is given by

[SpecOV [a, b]/(ab− u1)/µd]→ SpecOV [y, z]/(yz − ud1)

(a, b) 7→ (ad, bd),
(5)

where ζ ∈ µd acts by ζ · (a, b) = (ζa, ζ−1b).

We now check that our construction has the claimed properties. From (3), it follows that
X [b] → X[b] is an isomorphism over U . Therefore, X [b] contains U as a dense open. From
(3), we also see that the complement is simple normal crossings. From (4), we see that the
map ZU → ZU is the root stack of order ai at xi × U . Therefore, ZU → U is isomorphic to
X × U → U . From the local description, we see that Z is smooth. The sections σj : X[b] → Z
give sections σj : X [b] → Z ×X[b] X [b]. But Z → Z ×X[b] X [b] is an isomorphism around σj .
So we get sections σj : X [b] → Z. To get ρ : Z → X , we start with the map |ρ| : Z → X
obtained by composing Z → Z with ρ : Z → X. To lift |ρ| to ρ : Z → X , we must show that the
divisor |ρ|−1(xi) ⊂ Z is ai times a Cartier divisor. The divisor ρ−1(xi) ⊂ Z consists of multiple
components: a main component x̃i(X[b]) and several other components that lie in the exceptional
locus of Z → X ×X[b]. From (4), we see that the multiplicity of the preimage in Z of x̃i(X[b])
is precisely ai. In the coordinates of (2), the exceptional components are cut out by powers of
y, z, or xi. In any case, we see from (5) that their preimage in Z is divisible by d, which is in
turn divisible by ai. Therefore, |ρ| : Z → X lifts to ρ : Z → X . For a point t in X [b], the datum
(ρ : Zt → X, {σj}, {x̃i}) is a b-pointed stable degeneration of (X, {x̃i}). From the description of
Z → Z, it follows that (ρ : Zt → X , {σj}) is a b-pointed stable degeneration of X . Finally, we
see from (5) that the order of the orbinodes of the fibers of Z → X [b] is d, which we can take to
be sufficiently divisible.

2.3 Moduli of branched covers of a stacky curve

The goal of this section to combine the results of the previous two sections and accommodate
generic stabilizers.

Let X be a smooth stacky curve. We can express X as an étale gerbe X → X , where X is
an orbifold curve. Fix a positive integer b and let X [b] be a Fulton–MacPherson space of b distinct
points constructed in Proposition 2.4. Let π : Z → X [b], and σj : X [b] → Z, and ρ : Z → X be
as in Proposition 2.4. We think of X [b] as the space of b-pointed stable degenerations of X , and
the data (Z, ρ : Z → X , σj) as the universal object.

Let the divisor Σ ⊂ Z be the union of the images of the sections σj . Set Z = Z×ρX . Define
BrCovd(X , b) as the category fibered in groupoids over Schemes whose objects over a scheme T
are

(T → X [b], φ : P → ZT ),

such that ψ : P → ZT induced by φ is representable, flat, and finite of degree d with brψ = ΣT .

Theorem 2.5. BrCovd(X , b) is a Deligne–Mumford stack smooth and separated over C of
dimension b. If the indices of the orbinodes of the fibers of Z → X [b] are sufficiently divisible,
then it is also proper.
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Remark 2.6. Strictly speaking, BrCovd(X , b) is an abuse of notation since this object depends
on the choice of X [b]. However, as long as the nodes of Z → X [b] are sufficiently divisible, this
choice will not play any role.

Proof. We have a natural transformation BrCovd(X , b) → BrCovd(Z/X [b],Σ) defined by φ 7→
ψ. Let S be a scheme with a map µ : S → BrCovd(Z/X [b],Σ). Such µ is equivalent to (π : P →
S, ψ : P → ZS). Then S ×µ BrCovd(X , b) is just the stack of lifts of ψ to ZS . Equivalently,
setting P = P ×φ Z , the objects of S ×µ BrCovd(X , b) over T/S are sections PT → PT of
PT → PT . We denote the latter by SectS(P → P).

That S ×µ BrCovd(X , b) = SectS(P → P) is a separated Deligne–Mumford stack of finite
type over S follows from [AV02]. That SectS(P → P) → S is étale follows from the unique
infinitesimal extension property for sections of étale morphisms (This is standard for étale mor-
phisms of schemes and not too hard to check for étale morphisms of Deligne–Mumford stacks.)
Assume that the orders of the nodes of ZS → S are sufficiently divisible. The nodes of P are
étale over the nodes of Z via the map ψ of degree d. Therefore, the orders of the nodes of P → S
are at worst 1/d times the orders of the nodes of ZS → S. So we may assume that the orders of
the nodes of P → S are also sufficiently divisible. To check that SectS(P → P)→ S is proper,
let S = ∆ be a DVR and let a section s : P → P be given over the generic point of ∆. First,
s extends to a section over the generic points of P0 after replacing ∆ by a finite cover. Second,
s extends to a section over the smooth points and the generic nodes of P0 since P is locally
simply connected at these points. Finally, s extends over the non-generic nodes by Lemma 2.2
(the extension of the section on the coarse spaces follows from normality).

We have thus proved that BrCovd(X , b) → BrCovd(Z/X [b],Σ) is representable by a sepa-
rated étale morphism of Deligne–Mumford stacks which is also proper if the orders of the nodes
of Z → X [b] are sufficiently divisible. By combining this with Proposition 2.4, we complete the
proof.

Let K(X , d) be the Abramovich–Vistoli space of twisted stable maps to X . This is the
moduli space of φ : P → X , where P is a twisted curve and φ is a representable morphism
such that the map on the underlying coarse spaces is a Kontsevich stable map that maps the
fundamental class of |P| to d times the fundamental class of |X |.

Proposition 2.7. BrCovd(X , b) admits a morphism to K(X , d).

Proof. On BrCovd(X , b) we have a universal twisted curve P → BrCovd(X , b) with a morphism
P → X . This morphism is obtained by composing the universal P → Z with ρ : Z → X . By
[AV02, Proposition 9.11], there exists a factorization P → P ′ → X , where P ′ → BrCovd(X , b)
is a twisted curve and P ′ → X is a twisted stable map. On coarse spaces, this factorization
is the contraction of unstable rational components. The twisted stable map P ′ → X gives the
morphism BrCovd(X , b)→ K(X , d).

3. Moduli of tetragonal curves on Hirzebruch surfaces

In this section, we apply our results to X = [M0,4/S4]. Set

M̃0,4 := [M0,4/S4].

9
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We interpret the quotient as the moduli space of stable marked rational curves where the marking
consists of a divisor of degree 4. Let

π : (S̃, C̃)→ M̃0,4

be the universal family where S̃ → M̃0,4 is a nodal curve of genus 0 and C̃ ⊂ S̃ a divisor of
relative degree 4.

The action of S4 on M0,4 has a kernel: the Klein four group

K = {id, (12)(34), (13)(24), (14)(23)},

acts trivially. Therefore, a generic t→ M̃0,4 has automorphism group K. The action of K on S̃t
and C̃t is faithful. There are three special points t at which Autt M̃0,4 jumps. The first, which we
label t = 0, is specified by

(S̃t, C̃t) ∼= (P1, {1, i,−1,−i}),
with Aut0 M̃0,4 = D4 ⊂ S4. The second, which we label t = 1, is specified by

(S̃t, C̃t) ∼= (P1, {0, 1, e2πi/3, e−2πi/3}),

with Aut1 M̃0,4 = A4 ⊂ S4. The third, which we label t =∞, is specified by

(S̃t, C̃t) ∼= (P1 ∪P1, {0, 1; 0, 1})

where the two P1s are attached at a node (labeled∞ on both). We have Aut∞ M̃0,4 = D4 ⊂ S4.

The quotient S4 /K is isomorphic to S3. Therefore, the orbifold curve underlying M̃0,4 is
[M0,4/S3]. Consider the inclusion S3 ⊂ S4 as permutations acting only on the first three
elements. The inclusion S3 → S4 is a section of the projection S4 → S3. We can thus think
of S3 as acting on M0,4 by permuting three of the four points and leaving the fourth fixed.

Set M̃0,1+3 := [M0,4/S3]. We can interpret this quotient as the moduli space of stable marked
rational curves, where the marking consists of a point and a divisor of degree 3 (hence the
notation “1+3”).

We have the fiber product diagram

M̃0,4

M̃0,1+3

BS4

BS3
.

Since S4 = K o S3, the map BS4 → BS3 is the trivial K gerbe BK, where K is the sheaf
of groups on BS3 obtained by the action of S3 on K by conjugation. Therefore, we get that
M̃0,4 = BK ×BS3 M̃0,1+3.

The relation S4 = K oS3 indicates a relation between quadruple and triple covers. This is
the classic correspondence due to Recillas.

Proposition 3.1. Let P be a Deligne–Mumford stack. We have a natural bijection between
{φ : C → P}, where φ is a finite étale cover of degree 4 and {(ψ : D → P,L) where ψ is a finite
étale cover of degree 3 and L a line bundle on D with L2 = OD and Normψ L = OP . Furthermore,
under this correspondence we have φ∗OC = OP ⊕ ψ∗L.

Proof. This is essentially the content of [Rec73]. We sketch a proof in our setup.

An étale cover of degree d is equivalent to a map to BSd. From S4 = K oS3, we get that
an étale cover C → P of degree 4 is equivalent to a map µ : P → BS3 and a section of K ×µ P.

10
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Such a section is in turn equivalent to an element of H1(P,K). Let ψ : D → P be the étale cover
of degree 3 corresponding to µ. Denote K ×µ P by K for brevity. We have the following exact
sequence on P (pulled back from an analogous exact sequence on BS3):

0→ K → ψ∗ (Z2)D → (Z2)P → 0.

The associated long exact sequence gives

H1(P,K) = ker
(
H1(D,Z2)→ H1(P,Z2)

)
.

If we interpret H1(−,Z2) as two-torsion line bundles, then the map H1(D,Z2) → H1(P,Z2) is
the norm map. The bijection follows.

In the rest of the proof, we view the data of the line bundle L as the data of an étale double
cover τ : D̃ → D. The double cover and the line bundle are related by τ∗OD̃ = OD ⊕ L.

It suffices to prove the last statement universally on BS4—it will then follow by pullback. A
cover of BS4 is just a set with an S4 action and a sheaf on BS4 is just an S4-representation.
Consider the 4-element S4-set C = {1, 2, 3, 4}. The corresponding 3-element S4-set D with an
étale double cover τ : D̃ → D is given by

D̃ = {(12), (13), (14), (23), (24), (34)} τ−→ D = {(12)(34), (13)(24), (14)(23)}.

It is easy to check that we have an isomorphism of S4-representations

C⊕C[D̃] = C[D]⊕C[C].

In terms of φ : C → BS4, ψ : D → BS4, and τ : D̃ → D, this isomorphism can be written as an
isomorphism of sheaves on BS4:

O ⊕ ψ∗OD ⊕ ψ∗L = ψ∗OD ⊕ φ∗OC .

Canceling ψ∗OD gives the statement we want.

Let f : S → P1 be a P1-bundle and C ⊂ S a smooth curve such that f : C → P1 is a finite
simply branched map of degree 4. Away from the b = 2g(C) + 6 branch points p1, . . . , pb of
C → P1, we get a morphism

φ : P1 \ {p1, . . . , pb} → M̃0,4 \ {∞}.

Set P = P1(
√
p1, . . . ,

√
p
b
). Abusing notation, denote the point of P over pi by the same letter.

Then φ extends to a morphism φ : P → M̃0,4, which maps p1, . . . , pb to ∞, is étale over ∞, and

the underlying map of orbifolds P → M̃0;1+3 is representable of degree b. We can construct the
family of 4-pointed rational curves that gives φ as follows. Consider the P1-bundle S×P1 P → P
and the curve C ×P1 P ⊂ S ×P1 P. Since C → P1 was simply branched, C ×P1 P has a simple
node over each pi. Let S̃ → S ×P1 P be the blow up at these nodes and C̃ the proper transform
of C. The pair (S̃, C̃) over P gives the map φ : P → M̃0,4. The geometric fiber of (S̃, C̃) over pi
is isomorphic to (P1 ∪ P1, {0, 1; 0, 1}) where we think of the P1s as joined at ∞. The action of
Z2 = Autpi P is trivial on one component and is given by x 7→ 1− x on the other component.

Conversely, let φ : P → M̃0,4 be a morphism that maps p1, . . . , pb to ∞, is étale over ∞, and

the underlying map of orbifolds P → M̃0;1+3 is representable of degree b. Let f : (S̃, C̃)→ P be

the corresponding family of 4-pointed rational curves. Away from p1, . . . , pb, the map f : S̃ → P
is a P1-bundle. Locally near pi, we have

P = [Spec C[t]/Z2].

11
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Set U = Spec C[t]. Since φ is étale at t = 0, the total space S̃U is smooth. Since t = 0 maps to∞,
the fiber of f over 0 is isomorphic to (P1 ∪P1, {0, 1, 0, 1}) where we think of the P1s as joined

at ∞. Consider the map Z2 = Autpi P → D4 = Aut∞ M̃0,4. Since the map induced by φ on the
underlying orbifolds is representable, the image of the generator of Z2 is an element of order 2 in
D4 not contained in the Klein four subgroup. The only possibility is a 2-cycle, whose action on
the fiber is trivial on one component and x 7→ 1− x on the other. Let S̃U → S′U be obtained by
blowing down the component on which the action is non-trivial and let C ′U ⊂ S′U be the image of

C̃U . Note that the Z2 action on (S̃U , C̃U ) descends to an action on (S′U , C
′
U ) which is trivial on

the central fiber. Thus S′U/Z2 → U/Z2 is a P1 bundle and C ′U/Z2 → U/Z2 is simply branched
(the quotients here are geometric quotients, not stack quotients). Let (S,C) be obtained from
(S̃, C̃) by performing this blow down and quotient operation around every pi. Then f : S → P1

is a P1-bundle and C ⊂ S is a smooth curve such that C → P1 is a finite, simply branched cover
of degree 4. We call the construction of (S,C) from (S̃, C̃) the blow-down construction.

We thus have a natural bijection

{f : (S,C)→ P1} ↔ {φ : P → M̃0,4}, (6)

where on the left we have a P1-bundle S → P1 and a smooth curve C ⊂ S such that f : C → P1

is a finite, simply branched cover of degree 4 and on the right we have P = P1(
√
p
1
, . . . ,

√
p
b
)

and φ that maps pi to ∞, is étale over ∞, and induces a representable finite map of degree b to
M̃0,1+3.

Assume that C ⊂ S on the left is general so that the induced map P → M̃0,1+3 is simply

branched over distinct points away from 0, 1, or ∞. Then the monodromy of P → M̃0,1+3 over
0, 1, and ∞ is given by a product of 2-cycles, a product of 3-cycles, and identity, respectively.
Said differently, the map |φ| : P1 → P1 has ramification (2, 2, . . . ) over 0; (3, 3, . . . ) over 1, and
(1, 1, . . . ) over ∞. In particular, the degree b of |φ| is divisible by 6. Taking b = 6d, the map

φ : P → M̃0;1+3 has 5d− 2 branch points.

Denote by Qd the open and closed substack of BrCov6d(M̃0,4, 5d−2) that parametrizes covers
with connected domain and ramification (2, 2, . . . ) over 0, (3, 3, . . . ) over 1, and (1, 1, . . . ) over

∞. Denote by Td the open and closed substack of BrCov6d(M̃0,1+3, 5d− 2) defined by the same
two conditions. Let Hd,g be the space of admissible covers of degree d of genus 0 curves by genus
g curves as in [ACV03]. Recall that the directrix of Fn is the unique section of Fn → P1 of
negative self-intersection.

Proposition 3.2. Qd is a smooth and proper Deligne–Mumford stack of dimension 5d − 2. It
has three connected (= irreducible) components Q0

d, Qodd
d , and Qeven

d . Via (6), general points of
these components correspond to the following f : (S,C)→ P1:

– Q0
d: S = Fd and C = a disjoint union of the directrix σ and a general curve of class 3(σ+dF ).

– Qodd
d : S = F1 and C = a general curve of class 4σ + (d+ 2)F .

– Qeven
d : S = F0 and C = a general curve of class (4, d).

The components ofQd admit morphisms to the corresponding spaces of admissible covers, namely
Q0
d → H3,3d−2, Qodd

d → H4,3d−3, and Qeven
d → H4,3d−3.

Proof. That Qd is a smooth and proper Deligne–Mumford stack of dimension 5d−2 follows from
Theorem 2.5. That the components admit morphisms to the spaces of admissible covers follows
from the same argument as in Proposition 2.7.
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Recall that Qd parametrizes covers of M̃0,4 and its degenerations. Let U ⊂ Qd be the dense
open subset of non-degenerate covers. It suffices to show that U has three connected components.
Via (6), the points of U parametrize f : (S,C)→ P1, where S → P1 is a P1-bundle and C ⊂ S
is a smooth curve such that C → P1 is simply branched of degree 4. Say S = Fn. Since C → P1

is degree 4 and ramified at 6d points, we get

[C] = 4σ + (d+ 2n)F.

Let U0 ⊂ U be the open and closed subset where C is disconnected. Since C is smooth, the
only possibility is n = d and C is the disjoint union of σ and a curve in the class 3(σ + dF ). As
a result, U0 is irreducible and hence a connected component of U .

Let U even ⊂ U be the open and closed subset where n is even. Since C is smooth, we must
have d + 2n > 4d. In particular, H1(S,OS(C)) = H2(S,OS(C)) = 0, and hence (S,C) is the
limit of (F0, Cgen), where Cgen ⊂ F0 is a curve of type (4, d). Therefore, U even is irreducible, and
hence a connected component of U .

By the same reasoning, the open and closed subset Uodd ⊂ U where n is odd is the third
connected component of U .

There is a second explanation for the connected components of Qd, which involves the theta
characteristics of the trigonal curve D → P1 associated to the tetragonal curve C → P1 via
the Recillas correspondence (see [Vak01]). Let V ⊂ Td be the open set parametrizing non-

degenerate covers of M̃0,1+3. It is easy to check that V is irreducible and the map Qd → Td is
representable, finite, and étale over V . Therefore, the connected components of Qd correspond
to the orbits of the monodromy of Qd → Td over V . Let v be a point of V , ψv : P → M̃0,1+3 the

corresponding map, (T̃ , σ̃ t D̃v)→ P the corresponding (1+3)-pointed family of rational curves,
and f : (S, σtDv)→ P1 the family obtained by the blow-down construction as in (6). Note that
Dv is the coarse space of D̃v.

By Proposition 3.1, the points of Qd over v are in natural bijection with the norm-trivial
two-torsion line bundles L on D̃v. Since |P| has genus 0, a line bundle on P is trivial if and only
if it has degree 0 and the automorphism groups at the orbifold points act trivially on its fibers.
Let p1, . . . , p6d be the orbifold points of P. Note that D̃v also has the same number of orbifold
points, say q1, . . . , q6d, with qi lying over pi. All the orbifold points, {pi} and {qj}, have order 2.
Since qi is the only orbifold point over pi, the action of Autpi P on the fiber of NormL is trivial
if and only if the action of Autqi Dv on the fiber of L is trivial. If this is the case for all i, then

L is a pullback from the coarse space Dv. Thus, norm-trivial two-torsion line bundles on D̃v are
just pullbacks of two-torsion line bundles on Dv. The component Q0

d corresponds to the trivial
line bundle. The non-trivial ones split into two orbits because of the natural theta characteristic
θ = f∗OP1(d− 1) on Dv.

We can summarize the above discussion in the following sequence of bijections:{
Points in Qd over
a general v ∈ Td

}
↔
{

Two torsion line
bundles on Dv

}
⊗θ↔
{

Theta characteris-
tics on Dv

}
. (7)

Proposition 3.3. Under the bijection in (7), the points of Qeven
d correspond to even theta

characteristics and the points of Qodd
d correspond to odd theta characteristics.

Proof. Let u ∈ Qd be a point over v. Let f : (S,C)→ P1 be the corresponding 4-pointed curve on
a Hirzebruch surface and L the corresponding two-torsion line bundle on Dv. By Proposition 3.1,
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we get

OP1 ⊕ f∗L = f∗OC .
Tensoring by OP1(d− 1) gives

OP1(d− 1)⊕ f∗θ = f∗OC ⊗OP1(d− 1).

Thus the parity of θ is the parity of h0(C, f∗OP1(d − 1)) − d. It is easy to calculate that for C
on F0 of class (4, d), this quantity is 0 and for C on F1 of class (4σ + (d+ 2)F ), this quantity is
1.

It will be useful to understand the theta characteristic θ on Dv in terms of the map to M̃0,1+3.

Let (T , σtD)→ M̃0,1+3 be the universal (1+3)-pointed curve. The curve D has genus 0 and has

two orbifold points, both of order 2, one over 0 and one over ∞. Let M̃0,1+3 → M̃′0;1+3 be the
coarse space around∞ and D → D′ the coarse space around the orbifold point over ∞. Then D′
is a genus 0 orbifold curve with a unique orbifold point of order 2. Furthermore, D′ → M̃′0,1+3

is simply branched over ∞ and the line bundle O(1/2) on D′ is the square root of the relative

canonical bundle of D′ → M̃′0,1+3. We have the fiber diagram

Dv D′

P1 M̃′0,1+3

µ

. (8)

Thus θrel = µ∗O(1/2) is a natural relative theta characteristic on Dv. With the unique theta
characteristic O(−1) on P1, we get the theta characteristic θ = θrel ⊗O(−1).

4. Limits of plane quintics

In this section, we fix d = 3 and write Q for Q3. By Proposition 3.2, a general point of Qodd

corresponds to a curve of class (4σ+ 5F ) on F1. Such a curve is the proper transform of a plane
quintic under a blow up F1 → P2 at a point on the quintic. Therefore, the image in M6 of
Qodd is the closure of the locus Q of plane quintic curves. The goal of this section is to describe
the elements in the closure. More specifically, we will determine the stable curves corresponding
to the generic points of the irreducible components of ∆ ∩ Q, where ∆ ⊂ M6 is the boundary
divisor.

We have the sequence of morphisms

Qodd α−→ H4,6
β−→M6.

Set Q̃ = α(Qodd). We then get the sequence of surjections

Qodd α−→ Q̃
β−→ Q.

Let U ⊂ Q be the locus of non-degenerate maps. Call the irreducible components of Q \ U the
boundary divisors of Q.

Proposition 4.1. Let B be an irreducible component of Q ∩ ∆. Then B is the image of a
boundary divisor B of Qodd such that dimα(B) = dimB = 12, dimβ ◦α(B) = 11, and β ◦α(B) ⊂
∆.
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Figure 1. An admissible cover, and its dual graph with and without the redundant components

Proof. Note that dimQodd = dim Q̃ = 13 and dimQ = 12. Since ∆ is a Cartier divisor, we have
codim(B,Q) = 1. Let B̃ ⊂ Q̃ be an irreducible component of β−1(B̃) that surjects onto B. Then
codim(B̃, Q̃) = 1. Let B ⊂ Qodd be an irreducible component of α−1(B̃) that surjects onto B̃.
Then B is the required boundary divisor of Q.

Recall that points of Q correspond to certain finite maps φ : P → Z, where Z → M̃0,4 is a
pointed degeneration. Set P = |P| and Z = |Z|. The map P → Z is an admissible cover with
(2, 2, . . . ) ramification over 0, (3, 3, . . . ) ramification over 1, and (1, 1, . . . ) ramification over ∞.
We encode the topological type of the admissible cover by its dual graph (Γφ : ΓP → ΓZ). Here
ΓZ is the dual graph of (Z, {0, 1,∞}), ΓP is the dual graph of P , and Γφ is a map that sends
the vertices and edges of ΓP to the corresponding vertices and edges of ΓZ . We decorate each
vertex of ΓP by the degree of φ on that component and each edge of ΓP by the local degree
of φ at that node. We indicate the main component of Z by a doubled circle. For the generic
points of divisors, Z has two components, the main component and a ‘tail’. In this case, we
will omit writing the vertices of ΓP corresponding to the ‘redundant components’—these are
the components over the tail that are unramified except possibly over the node and the marked
point. These can be filled in uniquely. Figure 1 shows an example of an admissible cover and its
dual graph, with and without the redundant components.

Proposition 4.2. Let B ⊂ Q be a boundary divisor such that dimα(B) = dimB and α(B) ⊂
H4,6 \H4,6. Then the generic point of B has one of the following dual graphs (drawn without the
redundant components).

1.

∞
1
0

6

12
2

2.

∞

1
0

9

9
2

3.

∞

1
0

3

15
2

4.

∞

0
1

8

10
32

5.

∞

0
1

2

16
32

6.

1

0
∞

18 ii

1 6 i 6 14

7.

1

0
∞

6

12
i+ jj

i

1 6 i 6 9, 1 6 j 6 4

8.

1

0
∞

6

6

6

i+ j + k
k
j
i

1 6 i, j, k 6 4

Proof. Consider the finite map br : H4,6 → M̃0,18 that sends a branched cover to the branch
points. Under this map, the preimage of M0,18 is H4,6. So it suffices to prove the statement

15



Anand Deopurkar

with γ = br ◦α instead of α and M̃0,18 instead of H4,6. Notice that γ sends (φ : P → Z) to the
stabilization of (P, φ−1(∞)).

Assume that B ⊂ Q is a boundary divisor satisfying the two conditions. Let φ : P → Z be a
generic point of B. The dual graph of Z has the following possibilities:

(I)
∞
1
0

(II)
∞

1
0 (III)

∞

0
1 (IV)

1

0
∞

Let M ⊂ Z be the main component, T ⊂ Z the tail and set t = M ∩ T .

Suppose Z has the form (I), (II), or (III). Let E ⊂ P be a component over T that has at s
points over t where s > 2. Since γ(φ) does not lie in M0,18, such a component must exist. The
contribution of E towards the moduli of γ(φ) is due to (E, φ−1(t)), whose dimension is bounded
above by max(0, s−3). The contribution of E towards the moduli of φ is due to the branch points
of E → T . Let e be the degree and b the number of branch points of E → T away from t (counted
without multiplicity). Then b equals e+s−2 in case (I), e/2+s−1 in case (II), and e/3+s−1 in
case (III). Since γ is generically finite on B, we must have b−dim Aut(T, t) = b−2 6 max(0, s−3).
The last inequality implies that s = 2, e = 2 in cases (I) and (II), and s = 2, e = 3 in case
(III). We now show that all other components of P over T are redundant. Suppose E′ ⊂ P is a
non-redundant component over T different from E. This means that E′ → T has a branch point
away from t and the marked point (which is present only in cases (II) and (II)). Composing
E′ → T with an automorphism of T that fixes t and the marked point (if any) gives another φ
with the same γ(φ). Since there is a positive dimensional choice of such automorphisms and α
is generically finite on B, such E′ cannot exist. We now turn to the picture of P over M . Since
s = 2, P has two components over M . We also know the ramification profile over 0, 1, ∞, and
t. This information restricts the degrees of the two components modulo 6: in case (I), they must
both be 0 (mod 6); in case (II), they must both be 3 (mod 6); and in case (III), they must be 4
and 2 (mod 6). Taking these possibilities gives the pictures (1)–(5).

Suppose Z has the form (IV). By the same argument as above, P can have at most one
non-redundant component over T . On the other side, we see from the ramification profile over 0
and 1 that the components of P over M have degree divisible by 6. We get the three possibilities
(6), (7), or (8) corresponding to whether P has 1, 2, or 3 components over M .

The next step is to identify the images in M6 of the boundary divisors of the form listed
in Proposition 4.2. Recall that the map Q → M6 factors through the stabilization map Q →
K(M̃0,4), where K(M̃0,4) is the Abramovich–Vistoli space of twisted stable maps. The flavor
of the analysis in cases (1)–(5) versus cases (6)–(8) is quite different. So we treat them in two
separate sections that follow.

4.1 Divisors of type (1)–(5)

Proposition 4.3. There are 5 irreducible components of Q ∩ ∆ which are the images of the
divisors of Qodd of type (1)–(5). Their generic points correspond to one of the following stable
curves:

– With the dual graph

(i) A nodal plane quintic.

– With the dual graph X Yp

(ii) X hyperelliptic of genus 3, Y a plane quartic, and p ∈ Y a hyperflex (KY = 4p).
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– With the dual graph X Y
p

q

(iii) X Maroni special of genus 4, Y of genus 1, and p, q ∈ X in a fiber of the degree 3 map
X → P1.

(iv) X hyperelliptic of genus 3, Y of genus 2, and p ∈ Y a Weierstrass point.

– With the dual graph X Y

(v) X hyperelliptic of genus 3, and Y of genus 1.

Recall that a Maroni special curve of genus 4 is a curve that lies on a singular quadric in its
canonical embedding in P3.

The rest of § 4.1 is devoted to the proof of Proposition 4.3.

The map Q → M6 factors via the space K(M̃0,4) of twisted stable maps. Let (φ̃ : P̃ →
Z,Z → M̃0,4) correspond to a generic point of type (1)–(5). Under the morphism to K(M̃0,4),

all the components of P̃ over the tail of Z are contracted. The resulting twisted stable map
φ : P → M̃0,4 has the following form: P is a twisted curve with two components joined at one
node; φ maps the node to a general point in case (1), to 0 in cases (2) and (3), and to 1 in cases
(4) and (5). In all the cases, φ is étale over ∞. Let (S̃, C̃)→ P be the pullback of the universal
family of 4-pointed rational curves. Let P → P be the coarse space at the 18 points φ−1(∞) and
let f : (S,C) → P be the family obtained from (S̃, C̃) by the blow-down construction as in (6)
on page 12. Then S → P is a P1 bundle and C → P is simply branched over 18 smooth points.

Every P1-bundle over P is the projectivization of a vector bundle (see, for example, [Pom13]).
It is easy to check that vector bundles on P split as direct sums of line bundles and line bundles
on P have integral degree. Therefore, S = PV for some vector bundle V on P of rank two. The
degree of V (modulo 2) is well-defined and determines whether (S,C) comes from Qodd or Qeven.
The normalization of P is the disjoint union of two orbicurves P1 and P2, both isomorphic to
P1( r
√

0). The number r is the order of the orbinode of P . Since φ : P → M̃0,4 is representable, the
possible values for r are 1 and 2 in case (1), 2 and 4 in cases (2) and (3), and 3 in cases (4) and
(5). Set Vi = V |Pi and Ci = f−1(Pi) ⊂ PVi. The number of branch points of Ci → Pi is deg φ|Pi

and Ci → Pi is étale over 0. Let [Ci] = 4σi + miF , where σi ⊂ PVi is the class of the directrix.
Using the description of curves in P1-bundles over P1( r

√
0) from Appendix A (Proposition A.3

and Corollary A.4), we can list the possibilities for Vi and mi. These are enumerated in Table 2.
An asterisk in front of the (arithmetic) genus means that the curve is disconnected. In these
disconnected cases, it is the disjoint union σ t D, where D is in the linear system 3σ + mF .
The notation (0, a1), (0, a2) represents the vector bundle O⊕L, where L is the line bundle on P
whose restriction to Pi is O(ai).

We must identify in classical terms (as in Proposition 4.3) the curves Ci appearing in Table 2.
Let C be a general curve in the linear system 4σ+mF on Fa for a fractional a. Let X = |Fa| and
let X̂ → X be the minimal resolution of singularities. Denote also by C the proper transform of
C ⊂ X in X̂. From Proposition A.2, we can explicitly describe the pair (X̂, C). By successively
contracting exceptional curves on X̂, we then transform (X̂, C) into a pair where the surface is a
minimal rational surface. We describe these modifications diagrammatically using the dual graph
of the curves involved, namely the components of the fiber of X̂ → P1 over 0, and the proper
transforms in X̂ of the directrix σ and the original curve C. We draw the components of X̂ → P1

over 0 in the top row, and σ and C in the bottom row. We label a vertex by the self-intersection
of the corresponding curve and an edge by the intersection multiplicity of the corresponding
intersection. We represent coincident intersections by a 2-cell. The edges emanating from C are
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Number Dual graph r V m1 m2 g(C1) g(C2)

1 1 1 (0, 0), (0, 1) 2 3 3 0∗

2 1 1 (0, 1), (0, 0) 4 1 3 0
3 1 1 (0, 2), (0,−1) 6 3 3∗ 0∗

4 1 2 (0, 1/2), (0, 1/2) 3 2 4 1
5 2 2 (0, 1/2), (0,−3/2) 5/2 9/2 2 2∗

6 2 2 (0, 1/2), (0, 1/2) 5/2 5/2 2 2
7 2 4 (0, 1/4), (0, 3/4) 2 3 3 3
8 3 2 (0, 1/2), (0, 1/2) 7/2 3/2 5 −1∗

9 3 4 (0, 3/4), (0, 1/4) 4 1 6 0
10 3 4 (0, 5/4), (0,−1/4) 5 1 6 0
11 4 3 (0, 1/3), (0,−4/3) 7/3 4 3 2∗

12 4 3 (0, 1/3), (0, 2/3) 7/3 8/3 3 2
13 4 3 (0, 2/3), (0, 1/3) 3 2 3 2
14 4 3 (0, 5/3), (0,−2/3) 5 8/3 3∗ 2
15 5 3 (0, 2/3), (0, 1/3) 4 1 6 −1∗

16 5 3 (0, 4/3), (0,−1/3) 16/3 1 6 −1∗

Table 2. Possibilities for the divisors of type (1)–(5)

in the same order before and after.

We can read-off the classical descriptions in Proposition 4.3 from the resulting diagrams. For
example, diagram 2 implies that a curve of type 4σ + (5/2)F on F1/2 is of genus 2; it has three
points on the fiber over 0, namely σ(0) (the leftmost edge), τ(0) (the rightmost edge), and x (the
middle edge), of which σ(0) and x are hyperelliptic conjugates. Likewise, diagram 3 implies that
a curve of type 4σ + 3F on F1/2 is Maroni special of genus 4 and its two points over 0 lie on a
fiber of the unique map C → P1 of degree 3. We leave the remaining such interpretations to the
reader.

1. 4σ + 2F on F1/2:

σ
−1

−2 −1 −2

C

;

0 −2

C

2. 4σ + (5/2)F on F1/2:

σ
−1

−2 −1 −2

C

;

0 −2

C

3. 4σ + 3F on F1/2:

σ
−1

−2 −1 −2

C

;

0 −2

C

4. 4σ + (7/2)F on F1/2:

σ
−1

−2 −1 −2

C

;

1

C

2

5. 4σ + 2F on F1/3:

σ
−1

−2 −2 −1 −3

C

;

0 −3

C

6. 4σ + (7/3)F on F1/3:

σ
−1

−2 −2 −1 −3

C

;

0 −3

C
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7. 4σ + (8/3)F on F2/3:

σ
−1

−3 −1 −2 −2

C

;

0 −2

C

2

8. 4σ + 3F on F2/3:

σ
−1

−3 −1 −2 −2

C

;

1

C

3

9. 4σ + 2F on F1/4:

σ
−1

−2 −2 −2 −1 −4

C

;

0 −4

C

10. 4σ + 3F on F3/4:

σ
−1

−4 −1 −2 −2 −2

C

;

1

C

4

We similarly analyze the curves σ t C where C is of type 3σ +mF .

11. 3σ + (9/2)F on F3/2:

σ
−2

−2 −1 −2

C

;

1

C

3

12. 3σ + 4F on F4/3:

σ
−2

−2 −2 −1 −3

C

;

1

C

4

13. 3σ + 5F on F5/3:

σ
−2

−3 −1 −2 −2

C

;

σ
−2

0

C

3

The proof of Proposition 4.3 now follows from Table 2 and the diagrams above. We discard
rows 9, 10, 15, and 16 of Table 2 since they map to the interior ofM6. For the remaining ones, we
read off the description of C1 and C2 from the corresponding diagram and get C = C1∪C2. While
attaching (C1, S1) to (C2, S2), we must take into account whether the directrices of the Si meet
each other or whether the directrix of one meets a co-directrix of the other. From S = PV and
V = O⊕L, we see that if the restrictions of L to Pi have the same sign, then the two directrices
meet and if they have the opposite sign, then a directrix meets a co-directrix. Proceeding in this
way, we get that rows 2, 5, 6, 13, and 14 map to loci in M6 of dimension at most 10, and hence
do not give divisors of Q. Row 1 gives divisor (v); rows 3 and 4 give divisor (iii); rows 7 and 11
give divisor (ii); row 8 gives divisor (i); and row 12 gives divisor (iv). The proof of Proposition 4.3
is thus complete.

4.2 Divisors of type (6)–(8)

To handle boundary divisors of type (6)–(8), we need to do some preparatory work. First, we

need to understand the tetragonal curves arising from finite maps to M̃0,4 ramified over ∞.

Second, we need to understand the tetragonal curves arising from maps to ∞ ∈ M̃0,4. Third, we
need to understand the parity of the curve obtained by putting these together.

First, we consider finite maps to M̃0,4. Away from the points mapping to ∞, a map to

M̃0,4 gives a fiberwise degree 4 curve in a P1-bundle. The question that remains is then local

around the points that map to ∞. Let D be a disk, set D = D( r
√

0), and let φ : D → M̃0,4 be a
representable finite map that sends 0 to ∞. Let n be the local degree of the map D → P1 of the
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underlying coarse spaces. Let f : (S, C)→ D be the pullback of the universal family of 4-pointed
rational curves. Then (S0, C0) ∼= (P1 ∪P1, {1, 2, 3, 4}), where the P1’s meet in a node and 1, 2 lie

on on component and 3, 4 lie on the other. Let π ∈ S4 be the image in Aut∞ M̃0,4 of a generator
of Aut0D.

In the following proposition, an An singularity over a disk with uniformizer t is the singularity
with the formal local equation x2− tn+1. Thus an A0 singularity is to be interpreted as a smooth
ramified double cover and an A−1 singularity as a smooth unramified double cover.

Proposition 4.4. With the notation above, the curve |C| is the normalization of |C′|, where C′
is a curve of fiberwise degree 4 on a P1 bundle S ′ over an orbifold disk D′ of one of the following
forms.

Case 1 : π preserves the two components of S0. Then D′ = D and S ′ = P1 × D′. On the central
fiber of S ′ → D′, the curve C′ has an Ai and an Aj singularity over D′ with i+ j = n− 2. If
n is even and i is even, then π is trivial; if n is even and i is odd, then π has the cycle type
(2, 2); and if n is odd then π has the cycle type (2).

Case 2 : π switches the two components of S0. Then D′ = D( 2
√

0) and S ′ = P(O ⊕ O(1/2)). Let
u : D̃′ → D′ be the universal cover. On the central fiber of S′×u D̃′ → D̃′, the curve C′×u D̃′
has two An−1 singularities over D̃′ that are conjugate under the action of Z2. If n is even
then π has the cycle type (2, 2), and if n is odd then π has the cycle type (4).

Remark 4.5. The apparent choice of i and j in the first case is not a real ambiguity. By an
elementary transformation centered on the Ai singularity, we can transform (i, j) to (i−2, j+2).

Proof. Since φ : D → M̃0,4 is representable, the map Aut0D → Aut∞ M̃0,4 = D4 is injective.

So the order r of 0 ∈ D is 1, 2, or 4. Let D̃ → D be the universal cover. Set S̃ = S ×D D̃ and
C̃ = C ×D D̃. Then S̃ is a surface with an action of Zr compatible with the action of Zr on D̃.
The action of the generator of Zr on the central fiber of S̃ → D̃ is given by π. Note that rn
is the local degree of the map D̃ → M̃0,4. Therefore, the surface S̃ has an Am−1 singularity at

the node of the central fiber S̃0, where m = rn/2. We take the minimal desingularization of S̃,
successively blow down the −1 curves on the central fiber compatibly with the action of Zr until
we arrive at a P1-bundle, and then take the quotient by the induced Zr action. The resulting
surface S ′ and curve C′ are as claimed in the proposition.

We illustrate the process for Case 2 and odd n, in which case r = 4. Let t be a uniformizer
on D̃. In suitable coordinates, S̃ → D̃ has the form

C[x, y, t]/(xy − tm)← C[t],

where m = 2n. A generator ζ ∈ Z4 acts by

ζ · t = it, ζ · x = y, ζ · y = −x.

Let Ŝ → S̃ be the minimal desingularization. Then Ŝ0 is a chain of P1s, say

Ŝ0 = P0 ∪ P1 ∪ · · · ∪ Pn ∪ · · · ∪ Pm−1 ∪ Pm,

where Pi meets Pi+1 nodally at a point. Under the induced action of Z4, ζ sends Pi to Pm−i.
Contract P0, . . . , Pn−1 and Pm, . . . , Pn+1 successively, leaving only Pn. Let S (resp. C) be the
image of Ŝ (resp. Ĉ) under the contraction. Then C has two Am−1 singularities on Pn, say at 0
and ∞. The Z4 action descends to an action on S and the generator exchanges 0 and ∞ on Pn.
Note that the Z2 ⊂ Z4 acts trivially on the central fiber. Let us replace S (resp. C, D) by its
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geometric quotient under the Z2 action. Then S → D is a P1 bundle and C ⊂ S has two An−1
singularities on the central fiber. The group Z2 acts compatibly on (S,C) and D and exchanges
the two singularities of C. Setting S ′ = [S/Z2], C′ = [C/Z2], and D′ = [D/Z2] gives the desired
claim.

The other cases are analogous.

Second, we consider maps that contract the domain to∞ ∈ M̃0,4. Let us denote the geometric

fiber of the universal family (S̃, C̃)→ M̃0,4 over ∞ by

(S̃, C̃)∞ = (PA ∪ PB, {1, 2, 3, 4}) where 1, 2 ∈ PA ∼= P1 and 3, 4 ∈ PB ∼= P1.

We have

D4
∼= Aut∞ M̃0,4 = Stab({{1, 2}, {3, 4}}) ⊂ S4 .

Over the BD4 ⊂ M̃0,4 based at ∞, the universal family is given by

(S̃, C̃)BD4 = [(PA ∪ PB, {1, 2, 3, 4})/D4].

We have the natural map

[{1, 2, 3, 4}/D4]→ [{A,B}/Z2]. (9)

Let P be a smooth connected orbifold curve and let φ : P → BD4 ⊂ M̃0,4 be a representable

morphism, where the BD4 is based at ∞. Set C̃φ = C̃ ×φ M̃0,4. From (9), we see that the degree

4 cover C̃φ → P factors as a sequence of two degree 2 covers

C̃φ → Gφ → P. (10)

The two points of Gφ over a point of P are identified with the two components of S̃ over that
point.

Let us analyze this factorization from the point of view of the tetragonal-trigonal correspon-
dence ( Proposition 3.1). Consider the induced map ψ : P → BZ2 ⊂ M̃0,1+3, where the BZ2 is
based at∞. It is important to distinguish between the 4 numbered points forM0,4 and those for
M0,1+3. We denote the latter by I, II, III, IV with the convention that the S3 = S4 /K action
is given by conjugation via the identification

I ↔ (13)(24), II ↔ (14)(32), III ↔ (12)(34), IV ↔ id .

Then the Z2 = D4/K action switches I and II and leaves III and IV fixed. As a result, the
trigonal curve D = Dψ of Proposition 3.1 is the disjoint union

Dψ = P t Eψ, (11)

where Eψ → P is a double cover. (Caution: the double cover Gφ → P of (10) is different from
the double cover Eψ → P of (11)). Let L be the norm-trivial two-torsion line bundle on Dψ
corresponding to the lift φ : P → M̃0,4 of ψ : P → M̃0,1+3. Since L2 is trivial, the action of the
automorphism groups of points of Dψ on the fibers of L is either trivial or by multiplication by
−1. The following proposition relates the ramification of |G|φ → |P| with this action.

Proposition 4.6. Identify P with its namesake connected component in Dψ = P t Eψ. Let
p ∈ P be a point. Then |G|φ → |P| is ramified over p if and only if the action of Autp P on Lp is
nontrivial.

Proof. Write Gφ = G, C̃φ = C̃ and so on. The map |G| → |P| is ramified over p if and only if the

action of Autp P on the fiber Gp is non-trivial. Denote the fiber of C̃ → P over p by {1, 2, 3, 4},
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S̃U ŜU S′U

←− −→

Figure 2. The blow-up blow-down construction

considered as a set with the action of Autp P. Then the fiber of D → P over p is

{I, II, III} = {(13)(24), (14)(32), (12)(34)},

among which {(13)(24), (14)(32)} comprise points of E and {(12)(34)} the point of P. From the
proof of Proposition 3.1, we know that the two-torsion line bundle L on D corresponds to the
étale double cover τ : D̃ → D where the fiber of D̃ over p is {(12), (13), (14), (23), (24), (34)}.
The action of Autp P on Lp is non-trivial if and only if the action of Autp P on {(12), (34)} is
non-trivial. But we can identify the Autp P set {(12), (34)} with the Autp P set {A,B}, which
is precisely the fiber of G → P over p.

We have all the tools to determine the stable images of the divisors of Q of type (6)–(8), but
to be able to separate Qodd from Qeven, we need some further work.

We need to extend the blow-down construction in (6), which we recall. Let P be a smooth

orbifold curve of with b orbifold points of order 2 and let φ : P → M̃0,4 be a finite map of degree b

such that the underlying map P → M̃0,1+3 is representable and has ramification type (1, 1, . . . )

over ∞. Let f : (S̃, C̃)→ P be the pullback of the universal family of 4-pointed rational curves.
Let p ∈ P be an orbifold point. Then we have S̃p ∼= P1∪P1 and the Z2 = Autp P acts trivially on
one P1 and by an involution on the other. By blowing down the component with the non-trivial
action and taking the coarse space, we get a family f : (S,C) → P , where P = |P|, S → P is a
P1 bundle, and C ⊂ S is simply branched over P .

Now assume that P is reducible and p ∈ P is a smooth orbifold point of order 2 lying on
a component that is contracted to ∞ by φ. (We still require that the underlying map φ : P →
M̃0,1+3 be representable at p.) Locally near p, the curve P has the form [Spec C[x]/Z2]. Set

U = Spec C[x]. Then S̃U ∼= P1 ∪ P2, where Pi ∼= P1 × U and the Pi are joined along sections
si : U → Pi (see Figure 2). Like the case before, the action of Z2 on the fiber P1|0 ∪P2|0 must be
trivial on one component, say the first, and an involution on the other. Unlike the case before,
we cannot simply blow down the P1 with the non-trivial action. Let ŜU be the blow up of S̃U
along the (non-Cartier) divisor P2|0 (see Figure 2). Then ŜU = P̂1 ∪ P2, where P̂1 is the blow
up of P1 at the point s1(0) = P1 ∩ P2|0, and P̂1 and P2 are joined along the proper transform
ŝ1 of s1 and s2. The proper transform of P1|0 is a −1 curve on the P̂1 component of ŜU . Let
ŜU → S′U be the blow-down along this −1 curve. Then S′U → U is a P1 ∪ P1-bundle with a
trivial Z2 action on the central fiber S′0. Therefore the quotient S = S′U/Z2 is a P1 ∪P1 bundle

over the coarse space P of P at p. The image C ⊂ S of C̃ ⊂ S̃ is simply branched over p ∈ P
and is disjoint from the singular locus of S. We call the construction of (S,C) from (S̃, C̃) the
blow-up blow-down construction.

Let us verify that the blow-up blow-down construction is compatible in a one-parameter
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family with the blow-down construction. This verification is local around the point p. Let ∆
be a DVR and P → ∆ a smooth (not necessarily proper) curve with a section p : ∆ → P .

Set P = P (
√
p). Let φ : P → M̃0,4 be a map such that the underlying map P → M̃0,1+3 is

representable. Assume that for a generic point t ∈ ∆, the map φt maps p to ∞ and is étale
around p but φ0 contracts P0 to ∞. Let f : (S̃, C̃) → P be the pullback by φ of the universal
family of 4-pointed rational curves.

Proposition 4.7. There exists a (flat) family S → P over ∆ such that the generic fiber St → Pt
is the P1 bundle obtained from S̃t → P̃t by the blow-down construction and the special fiber
S0 → P0 is the P1 ∪P1 bundle obtained from S̃0 → P̃0 by the blow-up blow-down construction.

Proof. We may take P = [U/Z2], where U → ∆ is a smooth curve and Z2 acts freely except
along a section p : ∆ → U . Say S̃|p = P1 ∪ P2, where Pi → ∆ are P1-bundles meeting along a

section and the Z2 acts trivially on P2 and by an involution on P1. Note that S̃U |t is a smooth
surface for a generic t and P1|t ⊂ S̃U |t is a −1 curve. Let β : ŜU → SU be the blow-up along P2.
Then βt is an isomorphism for a generic t ∈ ∆. We claim that β0 is is the blow up of P2|0 in
S̃U |0. To check the claim, we do a local computation. Locally around p(0), we can write U as

Spec C[x, t],

where p is cut out by x. Now S̃U → U is a family of curves whose generic fiber is P1, and whose
discriminant locus (where the fiber is singular) is supported on xt = 0. Furthermore, we know
that the multiplicity of the discriminant along (x = 0) is 1. Therefore, around the node of S̃|0,
we can write S̃U as

Spec C[x, y, z, t]/(yz − xtn).

In these coordinates, say P2 ⊂ S̃U is cut out by the ideal (x, y). Direct calculation shows that
the specialization of Bl(x,y) Spec C[x, y, z, t]/(yz − xtn) at t = 0 is Bl(x,y) Spec C[x, y, z]/(yz), as

claimed. Let P̂1 ⊂ ŜU be the proper transform of P1. Then P̂1|t ⊂ ŜU |t is a −1 curve for all t. Let
ŜU → S′U be the blow-down. Then the action of Z2 on S′U |p is trivial. The quotient S = S′U/Z2

with the map S → P is the required family.

Let φ : P → M̃0,4 be an Abramovich–Vistoli stable map arising from a generic point of a
divisor in Q of type (6)–(8). Then P has 18 smooth orbifold points of order 2. Let P → P be
the coarse space at these 18 points. Let f : (S̃, C̃)→ P be the pullback of the universal family of
4-pointed rational curves and let (S,C)→ P be the family obtained by the blow-up blow-down
construction. Then the surface S is a degeneration of F0 or F1. The following observation lets
us distinguish the two cases.

Proposition 4.8. Suppose s : P → S is a section lying in the smooth locus of S → P . Then the
self-intersection s2 is an integer. If it is even (resp. odd), then S is a degeneration of F0 (resp.
F1).

Proof. Note that s(P ) ⊂ S is a Cartier divisor. Let L be the associated line bundle. Then
s2 = deg(s∗L). Since degrees of line bundles on P are integers, s2 is an integer. Suppose S is
a degeneration of Fi. Then a smoothing of L is a line bundle on Fi of fiberwise degree 1. Its
self-intersection determines the parity of i.

Such a section s does not always exist, however. For example, the P1 ∪ P1 bundle over a
contracted component of P may have non-trivial monodromy that exchanges the two components.
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To distinguish odd and even in these cases, we must understand the parity of the limiting theta
characteristic on the associated trigonal curve.

We quickly recall the theory of limiting theta characteristic from [Chi08]. Consider a one-
parameter family of smooth curves degenerating to a nodal curve C. Suppose we have a theta-
characteristic on this family away from the central fiber. Then, after possibly making a base
change and replacing the nodes by orbifold nodes of order two, the theta-characteristic extends
uniquely to a (locally free) theta-characteristic on the central fiber. Note that the limit theta-
characteristic may not be a line bundle on C itself, but on C, where C → C is an orbinodal
modification. By a limiting theta characteristic on C, we mean a theta characteristic on an
orbinodal modification of C. Suppose L is a theta characteristic on C and x ∈ C is an orbinode.
Then Autx C acts on Lx by ±1. Suppose the action is non-trivial. Let ν : Ĉ → C be the normal-
ization at x and c : Ĉ → C′ the coarse space at the two points of Ĉ over x. Then c∗ν

∗L is a theta
characteristic on C′ and

h0(C,L) = h0
(
C′, c∗ν∗L

)
. (12)

Suppose the action is trivial. Then L is a pullback from the coarse space around x, so we may
assume that Autx C is trivial. Let ν : Ĉ → C be the normalization at x, as before, and x1, x2
the two points of Ĉ over x. Let εx be the two-torsion line bundle on C obtained by taking the
trivial line bundle on Ĉ and gluing the fibers over x1 and x2 by −1. Then L⊗ εx is another theta
characteristic on C, and by [Har82, Theorem 2.14] we have

h0(C,L ⊗ εx) = h0(C,L)± 1. (13)

Let Z → M̃0,1+3 be a pointed degeneration and ψ : P → Z a finite cover corresponding to
a generic point of a divisor of type (6), (7), or (8). Let f : Dψ → P the corresponding étale
triple cover. We assume that the orders of the orbinodes of Z and therefore Dψ are sufficiently
divisible. Therefore, we have a limiting theta characteristic θ on |D|ψ. Denote by the same symbol
its pullback to Dψ. Note that the action on θx of AutxDψ is trivial for all x except possibly the
nodes.

Let Pmain ⊂ P (resp. Ptail) be the union of the components that lie over the main (resp. tail)
component of Z. Denote by Dmain

ψ (resp. Dtail
ψ ) the pullback of Dψ to Pmain (resp. Ptail). Then

Dtail
ψ is the disjoint union Ptail t Eψ, where Eψ → Ptail is a double cover.

Proposition 4.9. Let x be a node of the Ptail component of Dtail
ψ . Then the action of AutxDψ

on θx is non-trivial.

Proof. We look at the limiting relative theta characteristic on the universal family. Let D → Z
be the pullback along Z → M̃0,1+3 of the universal triple cover on M̃0,1+3. Note that D has
three components, say D1, E1, and E2, and the dual graph of D → Z is as follows

1

0
∞

D13

E1 2

E2 1

2

1

.

Let Z ′ be obtained from Z by taking the coarse space at∞ and D′ (resp. E ′1, E ′2) from D (resp. E1,
E2) by taking the coarse space at the points over ∞. Then the cover D′ → Z ′ is simply branched
over ∞, and it is a degeneration of the cover D′ →M′0,1+3 in (8). The relative dualizing sheaf of
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D′ → Z ′ has degree 0 o E ′2. Let θrel be the limiting theta characteristic on |D′|. Since x2 = E ′2∩D1

is the unique orbifold point on E ′2, the action of Autx2 E ′2 on θrel at x2 must be trivial.

The map ψ : Dψ → D maps a node x on the Ptail component to x2. Therefore, the action of
AutxDψ on ψ∗θrel|x is trivial. Let θP be the unique limiting theta characteristic on |P|. Then
the action of Autf(x) P on θP at f(x) is by −1 and f : AutxDψ → Autf(x) P is an isomorphism.
Since θ = ψ∗θrel ⊗ f∗θP , we get the assertion.

Remark 4.10. Let ψ′ : P ′ → M̃0,1+3 be the Abramovich–Vistoli stable map obtained from
ψ : P → Z by contracting the unstable (= redundant) components of Ptail. Let D′ψ → P ′ be
the corresponding triple cover and let θ′ be the limiting theta characteristic. The statement of
Proposition 4.9 holds also for D′ψ → P ′ and θ′. Indeed, in a neighborhood of the node x, the
pairs (Dψ, θ) and (D′ψ, θ′) are isomorphic.

We now have all the tools to determine the images in M6 of the boundary components of
Qodd of type (6), (7), and (8).

4.2.1 Type (6)

Proposition 4.11. There are 10 irreducible components of Q ∩∆ which are images of divisors
of type (6) in Qodd

6 . Their generic points correspond to the following stable curves:

– With the dual graph X

(i) A nodal plane quintic.

– With the dual graph X Yp

(ii) (X, p) the normalization of a cuspidal plane quintic and Y of genus 1.
(iii) X Maroni special of genus 4, Y of genus 2, p ∈ X a ramification point of the unique

degree 3 map X → P1, and p ∈ Y a Weierstrass point.
(iv) X a plane quartic, Y hyperelliptic of genus 3, p ∈ X a point on a bitangent, and p ∈ Y

a Weierstrass point.
(v) X of genus 2, Y hyperelliptic of genus 4, p ∈ Y a Weierstrass point.
(vi) X a plane quartic, Y hyperelliptic of genus 3, and p ∈ X a hyperflex (KX = 4p).

(vii) X of genus 1, Y hyperelliptic of genus 5.

– With the dual graph X Y
q

p

(viii) X Maroni special of genus 4, Y of genus 1, and p, q ∈ X on a fiber of the unique degree
3 map X → P1.

(ix) X a plane quartic, Y of genus 2, the line through p, q ∈ X tangent to X at a third
point, and p, q ∈ Y hyperelliptic conjugate.

(x) X a curve of genus 2, Y hyperelliptic of genus 3, and p, q ∈ Y hyperelliptic conjugate.

The rest of § 4.2.1 is devoted to the proof.

Recall that type (6) corresponds to (φ : P → Z,Z → M̃0,4) where φ has the following dual
graph:

Z1

1

0
Ztail ∞

P118 Ptail ii
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C1

C1
tail

C2
tail

Figure 3. A sketch of C1 ⊂ S1 and Ctail ⊂ Stail as in type (6)

Let (S̃, C̃)→ P be the pullback of the universal family of 4-pointed rational curves. Let P → P
be the coarse space away from the node. Let f : (S,C) → P be obtained from (S̃, C̃) by the
blow-up blow-down construction. Define C1 = f−1(P1), Ctail = f−1(Ptail), and similarly for S1
and Stail. Set x = P1 ∩ Ptail. Denote the fiber of S → P over x by (P1 ∪ P1, {1, 2, 3, 4}), where
1, 2 lie on one component and 3, 4 on the other.

First, we look at Ptail. The map Stail → Ptail is a P1 ∪ P1 bundle. Recall the étale double
cover G → Ptail in (10) on page 21, whose fiber over t corresponds to the two components of
Stail|t. Since the action of Autt Ptail on the two components is trivial for all t except possibly the
node, G → Ptail descends to an étale double cover G → Ptail. Since Ptail has only one orbifold
point, it is simply connected, and hence G is the trivial cover Ptail t Ptail. The degree 4 cover
Ctail → Ptail factors as Ctail → G→ Ptail. Hence, it is a disjoint union Ctail = C1

tail t C2
tail. Both

Citail are hyperelliptic curves, each contained in a component of Stail and lying away from the
singular locus (See a sketch in Figure 3). We claim that if both C1

tail → Ptail and C2
tail → Ptail

are nontrivial covers, then the boundary divisor maps to a locus of codimension at least 2 in
Q. Indeed, compose C2

tail → Ptail by an automorphism of Ptail that fixes x. The resulting cover
also represents an element of the same boundary divisor and has the same image if M6. The
claim follows from the fact that there is a 2-dimensional choice of moduli for Aut(Ptail, x). We
may thus assume that C2

tail = Ptail t Ptail. Without loss of generality, take C2
tail|x = {3, 4}. Then

the monodromy of {1, 2, 3, 4} at x is either trivial or (12). The map C1
tail → Ptail is ramified at i

points. The component of Stail containing C1
tail is the bundle P(O ⊕O(i/2)). The component of

Stail containing C2
tail is the trivial bundle P1 × Ptail (See Figure 3).

Second, we look at P1. The map S1 → P1 is a P1-bundle away from x; over x the fiber is
isomorphic to P1 ∪P1 (See Figure 3). By blowing down the component containing 1 and 2 as in
the proof of Proposition 4.4 , we see that |C1| is the normalization of a curve C ′1 on a Hirzebruch
surface Fl which has an Ai−1 singularity over the fiber over x along with two smooth unramified
points, namely {3, 4}. Note that S → P admits a section of self-intersection l (mod 2), which
consists of a horizontal section of the component of Stail containing C2

tail and a section of S1 → P1

that only intersects the component of S1|x containing {3, 4}. Also note that C ′1 ⊂ Fl is of class
4σ + (3 + 2l)F . Since C and hence C ′1 is connected, the only possible odd choice of l is l = 1.

In conclusion, the (pre)-stable images of generic points of divisors of type (6) are of the
following two forms: First, for odd i we get C1 ∪p Ctail, where (C1, p) is the normalization of
a curve of class 4σ + 5F on F1 with an Ai−1 singularity, Ctail is a hyperelliptic curve of genus
(i − 1)/2, and p ∈ Ctail is a Weierstrass point. Second, for even i we get C1 ∪p,q Ctail where
(C1, {p, q}) is the normalization of a curve of class 4σ+ 5F on F1 with an Ai−1 singularity, Ctail

is a hyperelliptic curve of genus i/2 and p, q ∈ Ctail are hyperelliptic conjugate. In both cases,
we have 1 6 i 6 14. The case of i = 1 gives a smooth stable curve so we discard it. The cases
i = 3, 5, 7, 9 give the divisors (ii), (iii), (iv), (v) of Proposition 4.11. The case of i = 11 yields
a codimension 2 locus. The case of irreducible C ′1 and i = 2, 4, 6, 8 give the divisors (i), (viii),
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(ix), (x), respectively. The cases of i = 10, 12 yield codimension 2 loci. We also have cases with
reducible C ′1 for i = 2, 4, 6. For i = 2, we can have C ′1 be the union of σ with a tangent curve of
class 3σ+5F , which again gives divisor (ii). For i = 4, we can have C ′1 be the union of σ+F with
a 4-fold tangent curve of class 3σ+4F , which gives divisor (vi). For i = 6, we can have C ′1 be the
union of σ+2F with a 6-fold tangent curve of class 3σ+3F or the union of 2σ+2F with a 6-fold
tangent curve of class 2σ+ 3F , both of which give divisor (vii). The proof of Proposition 4.11 is
thus complete.

4.2.2 Type (7)

Proposition 4.12. There are 8 irreducible components of Q ∩∆ which are images of divisors
of type (7) in Qodd

6 . Their generic points correspond to the following stable curves:

– With the dual graph X

(i) X hyperelliptic of genus 5.

– With the dual graph X Yp

(ii) X of genus 2, Y Maroni special of genus 4, p ∈ X a Weierstrass point, p ∈ Y a
ramification point of the unique degree 3 map Y → P1.

(iii) X hyperelliptic of genus 3, Y of genus 3, p ∈ X a Weierstrass point, p ∈ Y a point on
a bitangent.

(iv) X hyperelliptic of genus 4, Y of genus 2, p ∈ X a Weierstrass point.

– With the dual graph X Y
q

p

(v) X hyperelliptic of genus 3, Y of genus 2, and p ∈ Y a Weierstrass point.
(vi) X of genus 2, Y a plane quartic, p, q ∈ X hyperelliptic conjugate, the line through p, q

tangent to Y at a third point.
(vii) X hyperelliptic of genus 3, Y of genus 2, p, q ∈ X hyperelliptic conjugate.

– With the dual graph X Y

(viii) X hyperelliptic of genus 3, Y of genus 1.

The rest of § 4.2.2 is devoted to the proof.

Recall that type (7) corresponds to (φ : P → Z,Z → M̃0,4) where φ has the following dual
graph:

Z1

1

0
Ztail ∞

P16

P212

Ptail i+ j
j

i

Let (S̃, C̃)→ P be the pullback of the universal family of 4-pointed rational curves. Let P → P
be the coarse space away from the nodes. Let f : (S,C)→ P the family obtained by the blow-up
blow-down construction. Define C1 = f−1(P1), and similarly for C2, Ctail, S1, S2, and Stail. Set
x1 = Ptail ∩ P1 and x2 = Ptail ∩ P2.

First, we look at Ptail. The map Stail → Ptail is a P1 ∪ P1 bundle. The étale double cover
given by the two components is G → Ptail of (10) which induces an étale double cover G→ Ptail

as in type (6). We have the factorization Ctail → G → Ptail. Since Ptail has two orbifold points
x1 and x2, this cover may be nontrivial. If G → Ptail is trivial, then Ctail is the disjoint union
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C1
tail t C2

tail of two double covers of Ptail. If G → Ptail is nontrivial, then |G| is a rational curve
and |Ctail| is its double cover.

Second, we look at P1. Denote the fiber of S1 → P1 over x1 by (PA ∪ PB, {1, 2, 3, 4}), where
PA ∼= PB ∼= P1; 1, 2 ∈ PA; and 3, 4 ∈ PB. Let π ∈ S4 be a generator of the monodromy of
C1 → P1 at x1. By Proposition 4.4, |C1| is the normalization of |C ′1|, where C ′1 is a fiberwise
degree 4 curve on a P1-bundle S′1 = Fl over P ′1 where P ′1 = P1 or P ′1 = P1(

√
0). In either case,

C ′1 is of class 4σ+ (1 + 2l)F . From Corollary A.4, we see that the only possibilities for l are l = 0
and 1 if P ′1 = P1 and l = 1/2 if P ′1 = P1(

√
0). Also, if l = 1 then C ′1 is the disjoint union of σ

with a curve in the class 3σ + 3F .

The case P ′1 = P1 occurs if π preserves the two components PA and PB. By Proposition 4.4,
C ′1 has an Ai−k and an Ak−2 singularity over 0 for some k = 1, . . . , i + 1. By Remark 4.5, we
may assume that the singularities are Ai−1 and A−1 or Ai−2 and A0 (if i is even).

The case P ′1 = P1(
√

0) occurs if π switches the two components PA and PB. By Proposi-
tion 4.4, over an étale chart around 0 ∈ P1(

√
0), the pullback of C ′1 has two Ai−1 singularities

over 0 that are conjugate under the Z2 action. To identify such a curve in more classical terms,
we use the strategy of § 4.1. Indeed, by diagram (1) on page 18, we get that |C ′1| is a curve
of class 2σ + 4F on F2 disjoint from the directrix and with an Ai−1 singularity on the fiber of
F2 → P1 over 0.

We now simply enumerate the possibilities for |C1| along with its attaching data with the rest
of C, namely the divisor |D1| = |f−1(x1)|. We list the possible dual graphs for (|C1|, |D1|), where
the vertices represent connected components of |C1| labeled by their genus, and the half-edges
represent points of |D1|, labeled by their multiplicity in |D1|. In the case where π preserves A
and B, we record some additional data as follows. We make the convention that the half edges
depicted on top (resp. bottom) are images of the points which lie on PA ⊂ S1 (resp. PB ⊂ S1).
We then record the self-intersection (modulo 2) of a section σA (resp. σB) of S1 → P1 that lies
in the smooth locus of S1 → P1 and meets PA (resp. PB). In the case where π switches A and
B, there is no such additional information. Here we make the convention that the half-edges are
depicted on the sides.

For example, let us take i = 1. For l = 0, we get C ′1 ⊂ S′1 = F0 of class 4σ + F with
an A0 singularity (that is, a point of simple ramification) over 0 ∈ P1. This gives us the dual
graph in 1.1. To get the additional data, we must reconstruct S1 from S′1, which we do by a
stable reduction of the 4-pointed family (S′1, C

′
1)→ P1 of rational curves around 0. To do so, set

P1 = P1(
√

0). We first pass to the base change S′1 ×P1 P1, on which the curve C ′1 ×P1 P1 has a
node. The blow up of S′1 ×P1 P1 at the node and the proper transform of C ′1 ×P1 P1 gives the
required family (S1, C1). The central fiber of S1 → P1 is PA ∪ PB, where PA is the exceptional
curve of the blow up and PB is the proper transform of the original fiber. The self-intersection
of a section meeting PA (resp. PB) is −1/2 (resp. 0). This leads to the complete picture 1.1. For
l = 1, the some procedure gives 1.2. For l = 1/2, we get that |C ′1| is a curve of class 2σ + 4F on
F2 disjoint from σ and with an A0 singularity (that is, a point of simple ramification) over the
fiber F of F2 → P1 over 0. The divisor |D′1| is |C ′1| ∩ 2F . This leads to the picture 1.3. We get
the pictures for i = 2, 3, 4 analogously.

– i = 1

1.1. 0
2

σ2A = −1/2, σ2B = 0

1.2. 0 1
2

σ2A ≡ 1/2, σ2B ≡ −1
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1.3. 1 4

– i = 2

1.4. 0 0

σ2A ≡ −1, σ2B ≡ 0

1.5. 0
2

2

σ2A ≡ −1/2, σ2B ≡ −1/2

1.6. 0 2
2

– i = 3

1.7. 0 0
2

σ2A ≡ −1/2, σ2B ≡ 1

1.8. 0 4

– i = 4

1.9. 0 0 0

σ2A ≡ 1, σ2B ≡ 1

1.10. 0 2 0 2

Third, we look at P2. The story here is entirely analogous to that of P1, except that the curve
C ′2 ⊂ Fl is of class 4σ + (2 + 2l)F , and the allowed values of l are l = 0, 1/2, 1, and 2. The case
of l = 2 corresponds to a disjoint union of σ and 3σ+ (2 + 2l)F . The case of l = 1/2 corresponds
to diagram 3 on page 18, which shows that |C ′2| is a curve of class 3σ+ 6F on F2 disjoint from σ
and with an Aj−1 singularity on the fiber over 0. We enumerate the possibilities with the same
conventions as before.

– j odd, say j = 2p+ 1.

2.1. 3− p
2

σ2A ≡ p+ 1/2, σ2B ≡ 1
For 0 6 p 6 3.

2.2. 3− p
2

σ2A ≡ p− 1/2, σ2B ≡ 0
For 0 6 p 6 3.

2.3. 4− p
2

0

σ2A ≡ p− 1/2, σ2B ≡ 0

2.4. 4− p 4

– j even, say j = 2p.

2.5. 3− p

σ2A ≡ p+ 1, σ2B ≡ 1
For 1 6 p 6 3.

2.6. 3− p

σ2A ≡ p, σ2B ≡ 0
For 1 6 p 6 3.

2.7. 4− p0

σ2A ≡ p, σ2B ≡ 0
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2.8. 0 0

σ2A ≡ 1, σ2B ≡ 1
For p = 4.

2.9. 0 0

σ2A ≡ 0, σ2B ≡ 0
For p = 4.

2.10. 0 1 0

σ2A ≡ 0, σ2B ≡ 0
For p = 4.

2.11. 4− p
2

2

σ2A ≡ p− 3/2, σ2B ≡ 3/2

2.12. 4− p
2

2

σ2A ≡ p− 1/2, σ2B ≡ 1/2

2.13. 4− p 2
2

2.14. 1 2 0 2

For p = 4.

The marked curves appearing as C2 above are not arbitrary in moduli. But it is easy to find
which marked curves appear by using that they are normalizations of a singular curve C ′2 on a
known surface of a known class and a known singularity. We now write down these descriptions.
We denote by a or a1, a2 (resp. b or b1, b2) the point(s) represented by the half-edges on top
(resp. bottom). The numbering goes from the left to the right.

Dual graph p Description

2.1 0 Plane quartic with 2a+ b1 + b2 a canonical divisor
2.1 1 Genus 2 with b1 and b2 hyperelliptic conjugate
2.1 2, 3 Any moduli
2.2 0 Hyperelliptic genus 3 with 3 marked points
2.2 1 Genus 2 with a a Weierstrass point
2.2 2,3 Any moduli
2.3 0 P1t Maroni special of genus 3 with 2a+ b2 the g13
2.3 1 P1t plane quartic with 2a+ 2b2 a canonical divisor
2.3 2 P1t genus 2 with b2 a Weierstrass point
2.3 3 P1t genus 1 with a− b2 two-torsion
2.3 4 Any moduli
2.4 0 Maroni special genus 4 with a ramification point of the g13
2.4 1 Plane quartic with a point on a bitangent
2.4 2,3,4 Any moduli
2.5 1 Genus 2 with b1, b2 hyperelliptic conjugate
2.5 2, 3 Any moduli
2.6 1 Genus 2 with a1, a2 hyperelliptic conjugate
2.6 2, 3 Any moduli
2.7 1 P1t plane quartic with a1 + a2 + 2b2 a canonical divisor
2.7 2 P1t genus 2 with b2 a Weierstrass point
2.7 3 P1t genus 1 with a1 + a2 = 2b2
2.7 4 Any moduli
2.8, 2.9 – Any moduli
2.10 – Genus 1 with a− b two-torsion
2.11 1 Hyperelliptic genus 3 with any 2 points
2.11 2 Genus 2 with a a Weierstrass point
2.11 3,4 Any moduli
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C1 C2

C1
tail

C2
tail

Figure 4. A sketch of C1 ⊂ S1, Ctail ⊂ Stail, and C2 ⊂ S2 as in type (7)

Dual graph p Description

2.12 1 Plane quartic with 2a1 + 2a2 a canonical divisor
2.12 2 Genus 2 with b a Weierstrass point
2.12 3,4 Any moduli
2.13 1 Plane quartic with the line joining the two points tangent at a third
2.13 2,3,4 Any moduli
2.14 – Any moduli

Having described Ctail → Ptail, C1 → P1, and C2 → P2 individually, we now put them
together. Let us first consider the case where G→ Ptail is trivial. Recall that in this case Ctail is
a disjoint union of two double covers C1

tail and C2
tail of Ptail. The dual graph of the coarse space

of C = C1 ∪ C1
tail ∪ C2

tail ∪ C2 has the following form

|C1| |C2|

|C1
tail|

|C2
tail|

. (14)

Here a dashed line represents one or two nodes with the following admissibility criterion: In the
case of one node, the node point is a ramification point of the map to |P | on both curves. In the
case of two nodes, the two node points are unramified points in a fiber of the map to |P | on both
curves. The convention for drawing points of A (resp. B) on top (resp. bottom) for C1 and C2

still applies, except that the A/B for C1 and A/B for C2 may be switched. Note that C comes
embedded in a surface S fibered over P obtained by gluing S1 → P1, S2 → P2, and Stail → Ptail

(see Figure 4). We can determine the parity of f : S → P using Proposition 4.8. We produce
a section of S → P by gluing sections of Si → Pi and of Stail → Ptail. We have recorded the
self-intersections of the sections σi of Si → Pi (modulo 2). Consider a section σtail of Stail → Ptail

that matches with σi over xi and lies in the smooth locus of Stail → Ptail. Such a section is a
section of the P1 bundle S1

tail → Ptail or S2
tail → Ptail, say the first. Then the self-intersection of

σtail (modulo 2) is b1/2, where b1 is the number of ramification points of C1
tail → Ptail. We then

get

σ2 = σ21 + σ22 + σ2tail.

The parity of σ2 determines the parity of f : S → P by Proposition 4.8.

For example, taking C1 as in 1.9, C2 as in 2.2, C1
tail of genus 0, and C2

tail of genus p+ 1 gives

31



Anand Deopurkar

C1 C2 g
(
C1
tail

)
g
(
C2
tail

)
Divisor in Proposition 4.12

1.7 or 1.9 2.2 p = 0 0 1 viii
1.9 2.2 p = 0 2 −1 v

1.7 or 1.9 2.3 p = 0 2 −1 ii
1.7 or 1.9 2.3 p = 1 3 −1 iii
1.7 or 1.9 2.3 p = 2 4 −1 iv
1.7 or 1.9 2.3 p = 2 0 3 v
1.7 or 1.9 2.7 p = 1 2 −1 vii
1.7 or 1.9 2.7 p = 2 3 −1 vii
1.7’or 1.9 2.7 p = 2 −1 3 v

1.9 2.7 p = 4 5 −1 i
1.9 2.9 5 −1 i

1.7 or 1.9 2.11 p = 1 0 2 v
Table 4. Divisors of type (7) with trivial G→ Ptail

the following instance of (14).

0 0 0

0

p+ 1

3− p

The resulting S → P admits a section with self-intersection p+ 1 (mod 2) and hence represents
a divisor of Qodd for even p. For p = 0, we get the divisor (viii) in Proposition 4.12. For p = 2,
we get a codimension 2 locus.

We similarly take all possible combinations of C1, C2, and Ctail, compute the stable images
(see Table 4), and do a dimension count to see which ones give divisors. The combinations
not shown in the Table 4 correspond to boundary divisors of Qodd whose images in Q have
codimension higher than one. A prime (’) denotes the dual graph obtained by a vertical flip
(that is, by switching A and B).

Let us now consider the case where G→ Ptail is nontrivial. In this case |G| is a rational curve
and |Ctail| is its double cover. The dual graph of the coarse space of C = C1 ∪Ctail ∪C2 has the
following form

|C1| |C2||Ctail|

Again, the dashed lines represent either a node or two nodes with the same admissibility criterion
as before. The curve C comes embedded in a surface S fibered over P with the intriguing feature
that the piece Stail → Ptail is a P1∪P1 bundle with non-trivial monodromy of the two components.
In this case, we do not know how to determine the parity of (S,C). But as far as the image of
|C| in M6 is concerned, the question is moot by the following observation.

Proposition 4.13. Suppose φ : P → Z is a generic point in a boundary component of Q of type
(7) such that the intermediate cover G→ Ptail is nontrivial. Then there exists a φ′ : P → Z in a
boundary component of Q of type (7) of opposite parity which maps to the same point in M6

as φ.
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C1 C2 g (Ctail) Divisor in Proposition 4.12

1.8 or 1.10 2.4 (p = 0) 2 ii
1.8 or 1.10 2.4 (p = 1) 3 iii
1.8 or 1.10 2.4 (p = 2) 4 iv
1.8 or 1.10 2.13 (p = 1) 2 vi
1.8 or 1.10 2.13 (p = 2) 3 vii

Table 5. Divisors of type (7) with non-trivial G→ Ptail

Proof. Let ψ : P → M̃0,1+3 be the map induced by φ and D → P the associated triple cover. By
(11), we have Dtail = Ptail t Eψ. The data of φ gives a norm-trivial two-torsion line bundle L on
D. Let x ∈ Ptail ⊂ Dtail be the point over the node Ptail ∩ P1. Since G→ Ptail is non-trivial, by
Proposition 4.6 we get that AutxDtail acts by −1 on Lx. Let θ be the limiting theta characteristic
on |D|. By Proposition 4.9, the action of AutxDtail on θx is also by −1. Note that the parity of
φ is the parity of h0(D, θ ⊗ L). Let D̂ → D be the normalization at x and let x1, x2 be the two
points of D̂ over x. Let εx be the two-torsion line bundle on D obtained by taking the trivial line
bundle on D̂ and gluing the fibers over x1 and x2 by −1. Let φ′ : P → Z correspond to the same
ψ but the norm-trivial two-torsion line bundle L ⊗ εx. By (13), φ′ has the opposite parity as φ.
The difference in the curve C for φ and φ′ is only in the manner of attaching C1 to the rest of
the curve. But on the level of coarse spaces, any choice leads to the same stable curve.

We take all possible combinations of C1, C2, and Ctail and compute the stable images (see
Table 5). The combinations not shown in Table 5 give loci of codimension higher than one. The
proof of Proposition 4.12 is thus complete.

4.2.3 Type (8)

Proposition 4.14. There are 2 irreducible components of Q ∩∆ which are images of divisors
of type (8) in Qodd

6 . Their generic points correspond to the following stable curves:

– With the dual graph X

(i) X hyperelliptic of genus 5.

– With the dual graph X Y

(ii) X hyperelliptic of genus 3, Y of genus 1.

The rest of § 4.2.3 is devoted to the proof.

Recall that type (8) corresponds to φ : P → Z with the following dual graph.

Z1

1

0
Ztail ∞

P16

P26

P36

Ptail i+ j + kj

k

i

We have already developed all the tools to analyze this case in § 4.2.2. The cover Ctail → Ptail

factors as Ctail → G → Ptail. Since Ptail has at most 3 orbifold points, the cover G → Ptail is
either trivial or non-trivial. In the trivial case, Ctail is the disjoint union C1

tailtC2
tail of two double
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covers of Ptail. In the non-trivial case, |G| is a rational curve and |Ctail| is its double cover. The
curves Ci given by Pi → Z1 for i = 1, 2, 3 are enumerated as 1.1–1.10 in § 4.2.2.

We take all possible combinations of C1, C2, C3, and Ctail and compute the stable images.
The case of trivial G → Ptail gives two divisors. Up to renumbering the subscripts, these arise
from C1 = C2 = 1.9 and C3 = 1.7 or 1.9. The first has |C1

tail| of genus −1 and |C2
tail| of genus

5 and it gives divisor (i). The second has |C1
tail| of genus 1 and |C2

tail| of genus 3 and it gives
divisor (ii). All other combinations give loci of codimension higher than one.

The case of non-trivial G→ Ptail gives one divisor. By renumbering the subscripts if necessary,
say that the non-trivial monodromy of G→ Ptail is at the node x1 = Ptail∩P1 and x2 = Ptail∩P2.
Then taking C1 and C2 from {1.8, 1.10} and C3 = 1.9 gives divisor (i). All other combinations
give loci of codimension higher than one. Note that the question of parity is moot in this case
by the same argument as in Proposition 4.13. The proof of Proposition 4.14 is thus complete.

Appendix A. Linear series on orbifold scrolls

Let P be the orbifold curve P1( r
√

0), which has one orbifold point with stabilizer Zr over 0. The
goal of this section is to describe P1 bundles over P, their coarse spaces, and linear series on
them. We recall the following standard facts about P.

Proposition A.1. Let P = P1( r
√

0).

(i) Every P1-bundle over P is the projectivization of a rank two vector bundle.

(ii) Every vector bundle on P is the direct sum of line bundles.

(iii) The line bundles on P are of the form OP(a) for a ∈ 1
rZ, where OP(1/r) refers to the dual

of the ideal sheaf of the unique (reduced) orbifold point on P.

Let c : P → P1 be the coarse space map. Note that c∗OP1(a) = OP(a) for a ∈ Z and
c∗OP(a) = OP1(bac) for a ∈ 1

rZ. Set Fa = Proj(OP ⊕ OP(−a)). The tautological line bundle
OFa(1) on Fa has a unique section. We denote its zero locus by σ and call it the directrix. It
is the unique section of Fa → P with negative self intersection σ2 = −a. It corresponds to
the projection OP ⊕OP(−a)→ OP(−a). There are sections τ disjoint from σ corresponding to
projections OP ⊕OP(−a)→ OP . These τ lie in the divisor class σ+aF , where F is the pullback
of OP(1). Observe that if a is not an integer, then τ(0) is independent of the choice of τ . We call
τ a co-directrix.

Proposition A.2. Retain the notation introduced above. If a ∈ Z, then |Fa| is smooth and
|Fa| → P1 is the P1-bundle Proj(OP1⊕OP1(−a)). If a 6∈ Z, then |Fa| is smooth except at the two
points σ(0) and τ(0). At σ(0), it has the singularity 1

r (1, ra). At τ(0), it has the singularity 1
r (1, r−

ra). Furthermore, the scheme theoretic fiber of |Fa| → P1 over 0 has multiplicity r/ gcd(r, ra).

Proof. Fix a generator ζ ∈ µr. In local coordinates around 0, we can write P as

[Spec C[x]/µr],

where ζ acts by x 7→ ζx. In these coordinates, we can trivialize OP ⊕OP(−a) as a µr equivariant
vector bundle with basis 〈X,Y 〉 on which ζ acts by X 7→ X and Y 7→ ζraY . We think of X and
Y as homogeneous coordinates on the projectivization. Then τ corresponds to X = 0 and σ to
Y = 0. Locally around τ(0) we can write Fa as

[Spec C[x,X/Y ]/µr], where ζ · (x,X/Y ) = (ζx, ζr−raX/Y ).
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Similarly, around σ(0) we can write Fa as

[Spec C[x, Y/X]/µr], where ζ · (x, Y/X) = (ζx, ζraY/X).

The claims about the singularities follow from these presentations.

In either chart, invert the second coordinate, and let m ∈ Z be such that r divides mra +
gcd(r, ra). Then the invariant ring is generated by u = xgcd(r,ra)(X/Y )−m. On the other hand,
the invariant ring in C[x] is generated by v = xr. Up to an invertible function, the preimage of
v is ur/ gcd(r,ra). The claim about the multiplicity follows.

We now turn to linear systems on Fa. Let π : Fa → P be the projection.

Proposition A.3. Let C ⊂ Fa be a member of |nσ +mF |. Then degωC/P = (n− 1)(2m− an).
If C does not pass through σ(0), then m− na is a non-negative integer. If C is étale over 0, then
at least one of m−na or m− (n− 1)a is a non-negative integer. If C is smooth, then m−na > 0
or m− na = −a. In the former case, C is connected. In the latter case, C is the disjoint union of
σ and a curve in |(n− 1)τ |.

Proof. We have ωFa/P = −2σ − aF . By adjunction, ωC/P = (n− 2)σ + (m+ a)F . Hence

degωC/P = ((n− 2)σ + (m− a)F )(nσ +mF ) = (n− 1)(2m− an).

For the next two statements, expand a global section s of π∗O(nσ+mF ) locally around 0 as
a homogeneous polynomial of degree n in local coordinates X ⊕ Y for O ⊕O(−a). Say

s = p0X
n + p1X

n−1Y + · · ·+ pn−1XY
n−1 + pnY

n,

where pi is the restriction of a global section of O(m − ia). For C to not pass through σ(0), pn
must not vanish at 0. For the zero locus of s to be étale over 0, at least one of pn or pn−1 must not
vanish at 0. But O(m− ia) has a section not vanishing at 0 if and only if m− ia is a nonnegative
integer.

For the next statements, note that C · σ = m − na. If C is smooth and m − na < 0, then C
must contain σ and have σ · (C \σ) = 0. This forces C to be the disjoint union of σ and a curve in
|(n− 1)τ |. If m−na > 0, then we see that h0(C,OC) = 1, which implies that C is connected.

Corollary A.4. Let C ⊂ Fa be a curve in the linear system 4σ +mF such that the degree of
the ramification divisor of C → P is b. Then m = b/6 + 2a. If C does not pass through σ(0), then
a 6 b/12. If C is étale over 0, then a 6 b/6. If C is smooth, then either a 6 b/12 or a = b/6.
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