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1. Introduction

There is an extremely fruitful homology and cohomology theory for smooth
manifolds. It comes in several different guises — de Rham cohomology, simpli-
cial (co)homology, singular (co)homology, sheaf cohomology, etc — which all lead
to the same answer. There is a functorial product (cup product) having a beautiful
geometric interpretation as intersection of cycles. The product gives a duality be-
tween the cohomology groups of complimentary dimensions. Furthermore, there is
additional structure in special cases like Hodge decomposition for Kähler manifolds
and Lefschetz hyperplane theorems for complex projective varieties.

The theory loses a lot its features in the case of singular spaces. Although the
cup product survives, it does not lead to a duality. Moreover, the product cannot be
interpreted as intersections of chains, partly because of the loss of duality between
homology and cohomology.

Figure 1. A pinched torus with cycles that cannot be made transverse
1
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As an example, consider the ‘pinched torus,’ which is constructed, say, by shrink-
ing S1 × {1} on S1 × S1 (Figure 1). Consider the two curves C and D shown in
the figure. One can try to define the intersection number C ·D by trying to move
them to a transverse position. However, the idea of transversality breaks down at
the singular point, and one cannot move C or D away from the singularity. Thus,
the inability to define an intersection pairing for singular spaces can be attributed
to the inability to move cycles away from singularities.

Mark Goresky and Robert MacPherson realized that to have a well defined inter-
section products in homology, one must restrict the cycles to certain ‘intersectable’
ones by controlling how they were allowed to pass through the singularities. They
found that the class of spaces on which this would make sense is that of ‘stratified
pseudomanifolds.’ These are stratified spaces

X = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ · · · ⊃ X0,

where Xi−1 ⊂ Xi is closed, Xi\Xi−1 an i-dimensional manifold, and the stratifi-
cation satisfies certain local niceness conditions (Definition 2.1). One must then
control how the chains are allowed to intersect the various strata. On one extreme,
all the chains are required to be transverse to the strata and on the other extreme
there are no such restrictions. If X is normal, the former gives cohomology groups
H �(X) (Proposition 6.7), the later homology groups H�(X); one has the usual cap
product Hi(X) ⊗ Hj(X) → Hj−i(X). Goresky and MacPherson’s insight was to
have chains lying between these two extremes, their deviation from transversality
to the strata measured by sequences of integers called ‘perversities.’ Given a per-
versity p, one obtains a chain complex IC �

p(X) consisting of simplicial chains whose
intersection with the strata is controlled by p (Definition 3.2). The cohomology
groups of this complex are the intersection homology groups IHp

� (X).
In [GM80], Goresky and MacPherson define these intersection homology groups.

They construct non-degenerate products in complimentary perversities generalizing
the cap product between cohomology and homology. In the special case whereX has
only even dimensional strata (e.g. complex varieties), they obtain a duality for the
self-complimentary ‘middle’ perversity, generalizing Poincaré duality for compact
manifolds. They also prove that the intersection homology groups retain other
desirable properties, namely the Mayer-Vietoris sequence, the Künneth formula,
Poincaré duality, and for complex projective varieties, the Lefschetz hyperplane
theorem. They work in the piecewise linear setting, using simplicial methods. Their
proofs are explicit and geometrical.

While they were developing the theory, Goresky and MacPherson communicated
their ideas to Deligne. He suggested that using sheaves may prove technically
advantageous. Inspired by his ideas, Goresky and MacPherson worked out the
sheaf theoretic formulation and published entirely different proofs of their earlier
results in Inventiones Mathematicae in 1983 ([GM83]). The new approach, albeit
much more technical and less geometric, proved to be technically superior. Not only
did they obtain their previous results, but they also proved that the intersection
homology groups were homeomorphism invariants! See Kleiman’s fascinating article
[Kle07] for more on the history of the development of the subject.

The point of departure of [GM83] is to give a formulation of intersection homol-
ogy groups that makes them amenable to sheaf theoretic techniques, and then use
these techniques to prove various properties. For example, one obtains Poincaré
duality as a result of Verdier duality. Before we dive into the theory, let us think
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about why using sheaves might be beneficial. Despite being mathematically vague
(or probably even nonsensical), the following will hopefully help the reader see the
point of the endeavor.

The first step is to construct a complex of sheaves chains IC�
p, whose global

sections give the complex IC �
p. This, in itself, is not much better since the global

section functor of sheaves behaves in a fairly complicated way. However, we observe
(Proposition 4.1) that the individual sheaves ICip are soft and hence acyclic with
respect to the global section functor. Hence the intersection homology groups
Hi(ΓIC�

p) are isomorphic to the hypercohomology groups H(IC�
p), which depend

only on the quasi isomorphism class of the complex IC�
p. In effect, the study of the

complex IC �
p is reduced to the study of the complex IC�

p.
On the face of it, this does not seem like progress. We have replaced the complex

of groups IC �
p by the complex of sheaves IC�

p, and sheaves seem more complicated
than groups. However, the complex IC �

p depends highly on the global geometry,
whereas the complex IC�

p, being a complex of sheaves, can be described locally.
In particular, if a local study of our spaces gives us a usable characterization of
the complex IC�

p then we would be set. This is exactly what happens! The local
computation of cohomology in Section 5 gives a list of properties of IC�

p that char-
acterize the complex up to quasi isomorphism (Theorem 6.2). We obtain Poincaré
duality by showing that the Verdier dual complex of IC�

p satisfies the axioms for
the complimentary perversity q, and hence must be quasi isomorphic to IC�

q. A
more careful analysis, as done in [GM83, §4] gives a set of characterizing properties
that only depends on the topological properties of X. This implies that the groups
IHp

� depend only on the homeomorphism class of X. We, however, do not go into
the details of the second characterization.

The paper is organized as follows. In Section 2, we review the basic notions of
piecewise linear topology. In Section 3, we define the intersection homology groups
using simplicial chains and do a simple example computation. In Section 4, we
take up the sheaf theoretic approach, constructing the complex IC�

p and proving
some basic properties. In Section 5, we compute the local cohomology of IC�

p. In
Section 6, we use the local computation to extract a set of characterizing properties
for the quasi isomorphism class of IC�

p. We also describe Deligne’s complex P,
a particularly simple object quasi isomorphic to IC�

p. In Section 7, we use the
apparatus of Verdier duality to outline a proof of Poincaré duality for intersection
homology. In Section 8, we use Deligne’s complex P to compute IH �

p for some
Schubert varieties. Appendix A and Appendix B give a summary of results from
homological algebra and sheaf theory required for some of the later sections. Our
discussion of intersection homology is heavily based on [Bor84a].

2. PL Spaces and stratified pseudomanifolds

The intersection homology groups are defined for stratified spaces endowed with
a piecewise linear structure. In spite of the heavily simplicial nature of the basic
definitions, our discussion of piecewise linear topology will be fairly brief. The
reader should consult [Hud69] for a more rigorous treatment of the subject. Lurie’s
notes [Lur09] give a quick overview.

Roughly, a piecewise linear space or pl space is a topological space obtained by
gluing together polyhedra in a piecewise linear fashion. Pl maps are the maps that
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are piecewise linear when restricted to these polyhedral pieces. What follows is a
precise formulation of this idea.

A simplex in Rn is the convex hull of finitely many points that are linearly
independent in the affine sense. A polyhedron is a finite union of simplices. Finite
unions, finite intersections and finite products of polyhedra are polyhedra. Let
P ⊂ Rn and Q ⊂ Rm be polyhedra and f : P → Q a map between them. Then
f is piecewise linear (or simply pl) if we can write P as a union of simplices ∆i

such that f |∆i : ∆i → Rm is the restriction of an affine linear map from Rn to Rm.
Composition of two pl maps is pl; pl maps are continuous; and if a pl map is a
homeomorphism, then the inverse is also pl.

Having defined polyhedra, which are some distinguished subsets of Rn, and pl
maps, which are a distinguished class of morphisms between them, we can define
an abstract pl space by the familiar recipe of patching. Thus, a pl space is a
second countable, Hausdorff topological space with a family F of coordinate charts
f : P → X, where P is a polyhedron, such that

(1) if f : P → X is in F , then f is a homeomorphism onto its image;
(2) every x ∈ X lies in the interior of f(P ) for some f : P → X in F ;
(3) if f : P → X and g : Q → X are in F and f(P ) ∩ f(Q) 6= ∅ then there

exists h : R → X in F with h(R) = f(P ) ∩ f(Q) and f−1h : R → P and
g−1h : R→ Q are pl;

(4) F is maximal satisfying the above properties.

The notion of a pl map between two pl space is as expected. We say that a
map φ : (X,F ) → (Y,G ) is pl if for every chart f : P → X in F and every chart
g : Q → Y in G with g(Q) ⊂ φ ◦ f(P ), the map g−1 ◦ φ ◦ f : P → Q is pl. Let
(X,F ) and (Y,G ) be pl spaces such that X ⊂ Y . Then X is a pl subspace if the
inclusion X ↪→ Y is pl. An open subspace U of a pl space (X,F ) is naturally a pl
subspace with charts given by {f ∈ F | imf ⊂ U}. The Euclidean space Rn is a
pl space with charts given by inclusions of polyhedra. A product of two pl spaces
is a pl space.

The topological realization |K| of a locally finite simplicial complex K is natu-
rally a pl space. A triangulation of a pl space X is a pl isomorphism t : |K| → X.
Every pl space admits a triangulation; every compact pl space admits a finite tri-
angulation. Moreover, if f : X → Y is a pl map between pl spaces then there exists
triangulations t : |K| → X and s : |L| → Y such that the map s−1 ◦ f ◦ t : |K| → |L|
sends simplices linearly to simplices. The most fruitful way to think about pl spaces
for our purposes is to imagine them as topological spaces equipped with a class of
triangulations such that any two triangulations have a common refinement and a
linear subdivision of a triangulation is a triangulation.

Out of the various operations one can perform on pl spaces (joins, suspensions,
products, etc), one will be of considerable importance: forming the cone. Let L be
a compact pl space. The closed cone coL is the topological space L× [0, 1]/L×{0}.
The point corresponding to [L×{0}] is called the vertex of the cone, often denoted
by v. The pl structure on coL is best described by specifying a triangulation. A
triangulation of coL is obtained by simply taking the closed cones of the simplices
in a (finite) triangulation of L. The open cone coL is just the image of L× [0, 1) in
coL with the induced pl structure. For an ε > 0, we call the image of L× [0, ε) in
coL a conical neighborhood of the vertex. The open (and closed) cone on an empty
set is defined to be a point.
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An n dimensional pl manifold is a pl space X such that every point in X has an
open neighborhood that is pl isomorphic to an open subset of Rn.

We now come to the objects of prime interest. As we have seen, the aim of inter-
section homology is to have a good homology theory for singular spaces. However,
one cannot expect it to work for spaces with arbitrary bad behavior (whatever that
means). A sufficiently general, but workable notion is the following.

Definition 2.1. ([Hae84]) A stratified pl pseudomanifold of dimension n is defined
inductively as follows. For n = 0, it is simply a countable discrete set. In general,
it is a pl space X with a stratification

X = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ · · · ⊃ X0

satisfying the following properties:
(1) X\Xn−2 is dense in X;
(2) Xk−1 is a closed pl subspace of Xk;
(3) Xk\Xk−1 is empty or a k dimensional pl manifold;
(4) for every x in Xk\Xk−1, there exists a stratified pl pseudomanifold

Lx = Ln−k−1 ⊃ Ln−k−3 ⊃ · · · ⊃ L0,

and a neighborhood U of x in X with a pl isomorphism U
∼→ Rk × coLx

which maps U ∩Xj isomorphically to Rk × coLj−k−1 for j > k and maps
U ∩Xk isomorphically to Rk × {v}, where v is the vertex of coLx.

The set Xk\Xk−1 is called the codimension n−k stratum, and Lx is called the link
of x.

The last condition is called ‘local normal triviality.’ It roughly says that small
neighborhoods of nearby points in the stratum Xk\Xk−1 look ‘the same.’ In other
words, the stratification of X does not degenerate as we move in a particular stra-
tum Xk\Xk−1. The second condition guarantees that X has ‘pure dimension’ n. If
Xk\Xk−1 is empty, we do not mention Xk in the stratification.

For example, the pinched torus T (Figure 1) is a stratified pl pseudomanifold
with the stratification T2 = T and T0 = {p}, where p is the singularity. All complex
quasiprojective varieties have a stratified pl pseudomanifold structure. In fact, one
can take all nonempty strata to be even dimensional.

Given a complex irreducible quasiprojective variety X of complex dimension
n, a näıve attempt at a stratification would be the following. We set X2n to be
X, set X2n−2 to be a (complex) codimension 1 subvariety of X2n containing the
singular locus of X2n, and likewise, in general, set X2k−2 to be a codimension
1 subvariety X2k that contains the singular locus of X2k. Although this process
produces a stratification in which the open strata X2k\X2k−2 are manifolds, it
does not guarantee local normal triviality. For example ([Hae84, 1.5]), consider the
surface X in C3 defined by y2 = tz2 (it is a family of a pair of lines degenerating
to a double line). The singular locus is the line L given by y = z = 0. The
stratification X4 = X and X2 = L fails local normal triviality at (0, 0, 0). Adding
another stratum X0 = {(0, 0, 0)} rectifies the situation, however, and gives us a
stratified pl pseudomanifold.

Thus, although the fact that complex quasiprojective varieties admit a stratifi-
cation as in Definition 2.1 is not completely trivial, we will rest assured that it can
always be done. For more details, see the references listed in [Hae84, 1.5].
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3. Intersection homology groups

The idea behind intersection homology is to restrict how simplicial chains are
allowed to intersect various strata. As an indexing device for this purpose, we define
perversities.

Definition 3.1. A perversity on X is a sequence of integers (p2, p3, . . . , pn, . . . )
satisfying p2 = 0, and pk ≤ pk+1 ≤ pk + 1.

The following are some examples of perversities:

0 = (0, . . . , 0, . . . ),

t = (0, 1, . . . , n− 2, . . . ),

m1 = (0, 0, 1, 1, . . . ,
⌊
k

2

⌋
− 1, . . . ),

m2 = (0, 1, 1, 2, . . . ,
⌈
k

2

⌉
− 1, . . . ).

For a perversity p, the sequence t−p is also a perversity, called the complimentary
or dual perversity of p. Thus, 0 and t are complimentary and so are m1 and m2.

Before we introduce the perverse chain complex, we recall the usual simplicial
chain complex on X. Fix a (commutative) ring R and let X be a pl space. For a
triangulation T of X we set

(3.1) C−iT (X,R)c = {Finite R-linear combinations of i-simplices in T}.
We have simplicial boundary maps ∂−i : C−iT (X,R)c → C−i+1

T (X,R)c that make
C �
T (X,R)c a chain complex. A linear subdivision S of T induces chain maps

C �
T (X,R)c → C �

S(X,R)c. We set

C �(X,R)c = lim−→
T

C �
T (X,R)c.

The elements of C−i(X,R)c are called i-chains on X. For an i-chain ξ, we denote
by |ξ| the support of ξ. This is simply the union of the i-simplices of T that have
nonzero coefficient in ξ. Clearly, the support of a chain does not change under a
subdivision, letting us talk about supports of chains in C−i(X,R)c. Note that the
supports are compact, which is the reason for the subscript c. The cohomology
groups of C �(X,R)c are simply the homology groups H �

c(X,R) 1.
For our purposes, a more useful idea will be that of homology with closed sup-

ports. This is obtained by dropping the finiteness restriction in (3.1). Explicitly,
we set

C−iT (U,R) = {(Possibly infinite) R-linear combinations of i-simplices in T}.
C−i(U,R) = lim−→

T

C−iT (U)

Note that although the chains ξ in C−iT (X) are infinite, any given point of X is
contained in only finitely many simplices of ξ as the triangulation T is locally finite.
The usual formula for boundaries makes C �(X) a chain complex. The notion of the
support of a chain ξ still makes sense. Observe that the support is a closed subset
of X. The cohomology groups of C �(X) are called homology groups with closed
supports, denoted by H �(X,R). Visibly, if X is compact then H �

c(X,R) = H �(X,R).

1usually denoted without the subscript c
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A few remarks are in order. First of all, the strange sign convention for the
indices i is to make all complexes go towards the right (i.e. the differentials raise
the degree.) This makes the homological algebra more uniform. Secondly, at this
point, the coefficient ring can be arbitrary. However, in later sections, we do not
hesitate to take coefficients in a field of characteristic zero. For simplicity, we often
drop R from the notation.

Having defined simplicial chains, we turn to perverse chains. We let X be a
stratified pl pseudomanifold, T a triangulation on X, and p a perversity.

Definition 3.2. The group IC−ip (X) of perverse i-chains on X is a subgroup of
C−i(X) consisting of chains ξ ∈ C−i(X) satisfying

(1) dim |ξ| ∩Xn−k ≤ i− k + p(k),

(2) dim |∂ξ| ∩Xn−k ≤ i− 1− k + p(k).

The subcomplex IC �
p(X) of C �(X) is called the perverse chain complex (or more

respectably the intersection chain complex) for the perversity p. The intersection
homology groups are defined by

IHp
i (X) = H−iIC �

p(X).

Since we are dealing with simplicial chains, the notion of dimension is straight-
forward. We take a triangulation of X with respect to which |ξ| and Xn−k are
subcomplexes. Then dim |ξ| ∩Xn−k is the largest j such that both |ξ| and Xn−k
have a common j-simplex.

The second condition ensures that ∂−i : C−i(X) → C−i+1(X) restricts to a
differential ∂−i : IC−ip (X) → IC−i+1

p (X). We sometimes use IC−ip,T (X) to denote
IC−ip (X)∩C−iT (X) — these are the perverse i chains that can be defined using the
triangulation T .

To decode the restrictions in Definition 3.2 (referred to as perversity restrictions),
note that if ξ intersects Xn−k\Xn−k−1 ‘transversely’, then the intersection has
dimension i − k. Thus, p(k) can be thought of as the ‘excess intersection’ allowed
for codimension k. Also, see that if Xn−k\Xn−k−1 = ∅, then the value of p(k)
is irrelevant. In particular, for a complex quasi projective variety, only the even
perversities p(2i) are relevant. Thus, in this context, the perversities m1 and m2

are both denoted by m, given by m(2i) = i− 1. Note that m is complimentary to
itself.

One can restrict to finite linear combinations and obtain a subcomplex IC �
p(X)c

of C �(X)c. The resulting homology groups are denoted by IH �
p(X)c. As before, if

X is compact, then they coincide with IH �
p(X).

Perhaps the best way to get acquainted with the definitions is to look at some
simple examples. Consider a manifold X stratified as Xn = X, and Xn−1 = · · · =
X0 = ∅. We clearly have IHp

i (X) = Hi(X) for any perversity p.
The next computationally simplest case is the case of an X with an isolated

singularity x. We take the stratification Xn = X and Xn−1 = · · · = X0 = {x}.
The only relevant value in the perversity is p(n). In this case, Definition 3.2 says

IC−ip (X) =


{ξ ∈ C−i(X) | x 6∈ |ξ| and x 6∈ |∂ξ|} if i− n+ p(n) < 0,
{ξ ∈ C−i(X) | x 6∈ |∂ξ|} if i− n+ p(n) = 0,
C−i(X) if i− n+ p(n) > 0.
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This immediately gives

IHp
i (X) =


Hi(X\{x}) if i < n− p(n)− 1,
im (Hi(X\{x})→ Hi(X)) if i = n− p(n)− 1,
Hi(X) if i > n− p(n)− 1.

Of course, we have analogous results for IHp
i (X)c. In particular, the groups

IHp
� (X)c are not homotopy invariant unlike the groups H �(X)c. One can have a

contractable X with an isolated singularity such that IHp
i (X)c is nonzero for small

i.

4. The complex IC�
p

Let X be a stratified pl pseudomanifold and p a perversity. In this section, we
construct a complex of sheaves IC�

p(X) whose global sections form the complex of
perverse chains IC �

p(X).
Observe that an open subset U of X is naturally a stratified pl pseudomanifold

with the stratification obtained by intersecting the strata of X with U . Thus, we
have a complex of perverse chains IC �

p(U) on every open subset of X. An inclusion
of open sets U ↪→ V gives a map of chain complexes IC �

p(V )→ IC �
p(U), which we

now describe. Consider a chain ξ ∈ C−i(V ) defined using a triangulation T of V .
Say ξ =

∑
aττ , where τ ranges over the i-simplices of T . We take a triangulation

S of U such that every simplex σ of S is contained in a simplex t(σ) of T . We set
i∗(ξ) =

∑
at(σ)σ, where the sum is taken over i-simplices of S. It may happen that

t(σ) is not an i-simplex of T , but a j-simplex for some j > i. In that case, at(σ) is
understood to be zero.

It can be checked that this gives a well defined map i∗ : C−i(V ) → C−i(U).
Observe that it is essential that we allow infinite chains for this to work.. We often
denote restriction of an element ξ to U by ξ|U . See that |i∗ξ| = |ξ| ∩ U .

The restriction maps give us a presheaf C−i on X of modules over the coeffi-
cient ring. It is not hard to see that it is actually a sheaf. The boundary maps
∂−i : C−i(U)→ C−i+1(U) commute with the restrictions and give us a complex of
sheaves C�(X).

We define a subcomplex IC�
p(X) of C�(X) by the same recipe as that in Def-

inition 3.2. Recall that IC �
p(U) ⊂ C �(U) consists of the chains ξ that obey the

perversity restrictions:

dim |ξ| ∩Xn−k ≤ i− k + p(k),(4.1)

dim |∂ξ| ∩Xn−k ≤ i− 1− k + p(k).(4.2)

Consider an inclusion of open sets i : U ↪→ V . Since |i∗ξ| = |ξ| ∩ U , the map
i∗ : C−i(U)→ C−i(V ) sends IC−ip (U) to IC−ip (V ) and gives us a subsheaf IC−ip (X)
of C−i(X). The condition (4.2) implies that the boundary ∂−i : C−i → C−i+1

restricts to a boundary ∂−i : IC−ip → IC−i+1, making IC�
p(X) a chain complex.

We recover the complex IC �
p(X) by taking global sections:

IC �
p(X) = ΓIC�

p(X).

We abbreviate IC�
p(X) by IC�

p.
The following proposition is the key that lets us reduce the study of IC �

p(X) to
that of IC�

p.
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Proposition 4.1. For all i ≥ 0, the sheaf IC−ip is soft.

Proof. [Hab84, §5] Let Z be a closed subset of X and ξ ∈ Γ(IC−ip , Z). We want
to show that ξ is the restriction of an i-chain ξ̃ ∈ Γ(IC−ip , X). Suppose ξ is in
IC−ip (U) for some open set U containing Z. More precisely, say ξ ∈ IC−ip,T (U) for
some triangulation T of U in which the strata Xn−k ∩ U are subcomplexes. We
want to produce a global chain that restricts to ξ|Z on Z.

The idea of the proof is as follows. We would like to extend ξ by zero. However,
the support |ξ|, although closed in U , may not be closed in X. The idea is to ‘clip
off’ parts of ξ that are ‘away from Z’ to obtain a chain that restricts to ξ|Z with
support that is closed in X. We then extend this new chain by zero. The ‘clipping
off’ is achieved by barycentric subdivision. The details follow.

Assume that the union of all simplices in T that intersect Z forms a closed set
in X. This can be achieved by replacing T by a finer triangulation, if necessary.
Let T ′ be the first barycentric subdivision of T . For a point v ∈ X, denote by T ′v
the star of v in T ′ — the union of all simplices of T ′ containing v. Clearly, T ′v is a
closed subset of X.

Write ξ =
∑
aτ ′τ

′, where τ ′ ranges over the i-simplices of T ′. Denote by ξv the
chain

∑
v∈τ ′ aτ ′τ

′. It has support T ′v ∩ |ξ|.

Claim 1. The chain ξv belongs to IC−ip (U).

Proof. We need to check the perversity restrictions. Since |ξv| ⊂ |ξ|, the perversity
condition (4.1) is automatically satisfied. It remains to check (4.2).

The idea is to decompose the boundary ∂ξv in two parts: one that is contained
in ∂ξ and a residual one. We then analyze the parts separately. It is most helpful
to have a picture of the barycentric subdivision in mind.

Write ∂ξv =
∑
bσ′σ

′+
∑
bπ′π

′, where {σ′} are the (i−1) faces of T ′ that contain
v and {π′} are those which do not. Here bσ′ and bτ ′ are nonzero. See that |σ′| is
contained in |∂ξ|. On the other hand, each π′ has the property that no j-face of it
is contained in a j-simplex in T . These two crucial observations yield the result.
In detail, we have

(4.3) dim |σ′| ∩Xn−k ≤ dim |∂ξ| ∩Xn−k ≤ i− 1− k + p(k).

In the other case, recall that

dim |π′| ∩Xn−k = max{j such that |π′| and Xn−k share a j-simplex}.

However, no j-face of π′ is contained in a j-simplex in T . Since Xn−k ∩ U and |ξ|
are complexes in the triangulation T and |π′| ⊂ |ξ|, we conclude that if |π′| and
Xn−k ∩ U share a j-simplex, then |ξ| and Xn−k ∩ U must share a (j + 1)-simplex.
This gives

(4.4) dim
∣∣∣∑ bπ′π

′
∣∣∣ ∩Xn−k ≤ (dim |ξ| ∩Xn−k)− 1 ≤ i− 1− k + p(k).

The assertions (4.3) and (4.4) show that ξv obeys the perversity condition (4.2),
finishing the proof of the claim. �

Continuing the proof of the proposition, consider the simplices in T that intersect
Z. Let Σ denote union of the vertices of such simplices. Set T ′Z =

⋃
v∈Σ T

′
v. See

that T ′Z is a subcomplex of the union of all simplices in T that intersect Z. Since the
latter set is closed in X, we conclude that T ′Z is closed in X. Thus we can extend
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the triangulation of T ′Z (given by T ′) to a triangulation S of X. Denote by T ′◦v the
open star of T ′ at v — the union of the interiors of simplices in T ′ containing v.
The chain

∑
v∈Σ ξv is an element of IC−ip,S(X) that agrees with ξ on the open set⋃

T ′◦v∈Σ containing Z. Thus, the proof of the proposition is complete. �

Kirwan gives another proof, using a generalization of partitions of unity [Kir88,
§5.2].

As a corollary, we obtain the following result.

Corollary 4.2. The global sections map induces an isomorphism

H−iIC�
p
∼→ IHp

i (X).

Proof. Since ΓIC�
p = IC �

p(X), and the sheaves IC�
p are soft, this is a standard result

in homological algebra. �

5. Computation of local cohomology

Thanks to Corollary 4.2, we focus on the complex of sheaves IC�
p for the rest of

the paper. Since the hypercohomology depends on the complex only up to quasi
isomorphism2, our aim will be to characterize IC�

p up to quasi isomorphism. The
natural step in this direction is to compute the cohomology sheaves H−iIC�

p. By
definition, H−iIC�

p is the sheaf associated to the presheaf

U 7→ IHp
i (U).

Hence, we must compute the homology groups IHp
i (U) for small open subsets U

of X. Thankfully, since X is a stratified pl pseudomanifold, we have good control
over its local geometry — sufficiently small neighborhoods of points of X look like
Rn−k × coL. This suggests that we investigate how the operations of coning and
taking the product with R alter the intersection homology groups.

We first treat the case of taking the product with R. Let X = Xn ⊃ · · · ⊃ X0

be a stratified pl pseudomanifold. The product X × R is naturally a stratified pl
pseudomanifold with the stratification

X × R = Xn × R ⊃ · · · ⊃ X0 × R ⊃ ∅.

A chain ξ ∈ IC−ip (X) gives a chain ξ × R in IC−i−1
p (X × R). In fact, ξ 7→ ξ × R

gives a chain map IC �
p(X)→ IC �−1

p (X × R), called the suspension.

Proposition 5.1. The suspension IC �
p(X)→ IC �−1

p (X×R) induces isomorphisms
IHp

i (X) ∼→ IHp
i+1(X × R) for all i.

First we prove a small lemma.

Lemma 5.2. Let i ≥ 0 and ξ ∈ IC−ip (X × R) be a cycle supported on X × [0,∞).
Then ξ is a boundary.

Proof. The idea is to observe that ξ is the boundary of the (i+1)-chain obtained by
‘translating ξ infinitely towards the right.’ To make this precise, see that we have

2an isomorphism in the derived category of complexes



AN INTRODUCTION TO INTERSECTION HOMOLOGY 11

a proper pl map φ : X × [0,∞)2 → X × [0,∞) that sends (x, r1, r2) to (x, r1 + r2).
Consider the chain ξ × [0,∞) on X × [0,∞)2. We have,

∂φ∗(ξ × [0,∞)) = φ∗∂(ξ × [0,∞))

= φ∗(ξ × {0}) + φ∗(∂ξ × [0,∞))
= ξ.

This exhibits ξ as a boundary. �

Proof of the proposition. Without loss of generality, X is connected. Otherwise, we
work on individual connected components.

We first prove surjectivity. Let T be a triangulation of X × R and ξ a cycle in
IC−ip,T (X ×R). By second countability, T has countably many vertices. Therefore,
there is a t ∈ R such that X × {t} contains no vertices of T . Let ξt be the chain
ξ∩X×{t}. The condition on t guarantees that X×{t} intersects every j-simplex of
T in a (j−1)-simplex, and therefore dim ξt = i−1. Set ξ+ = ξ∩ (X× [t,+∞)) and
ξ− = ξ ∩ (X × (−∞, t]). Then ξ+ and ξ− are chains in IC−ip (X) and ξ = ξ+ + ξ−.
Also, we have ∂ξ+ = −∂ξ− = ξt.

Now, ξ+ − ξt × [t,+∞) is a cycle in IC−ip (X) supported on X × [t,+∞). By
Lemma 5.2, we get that ξ+ − ξt × [t,+∞) is homologous to zero. Similarly, the
cycle ξ− − ξt × (−∞, t] is homologous to zero. In other words, ξ is homologous to
ξt × R.

For injectivity, let η be a cycle in IC
−(i−1)
p (X) such that η × R = ∂γ for some

γ ∈ IC−(i+1)
p (X×R). We must show that η is the boundary of a chain in IC−ip (X).

Let η ×R and γ be defined in a triangulation T of X ×R. As before, let t be such
that X ×{t} does not contain any vertex of T . Then we have γt ∈ IC−ip (X). Since
η × R = ∂γ, we obtain η = ∂γt by taking intersections with X × {t}. �

Having taken care of products with R, we turn to coning. Consider a compact
(k − 1)-dimensional stratified pl pseudomanifold L = Lk−1 ⊃ · · · ⊃ L0. Take
the open cone coL and denote its vertex by v. The cone coL is a stratified pl
pseudomanifold with the stratification

coL = coLk−1 ⊃ · · · ⊃ coL0 ⊃ {v}.

A chain ξ in IC−(i−1)
p (L) gives a chain coξ in C−i(coL). Although coξ obeys all

perversity restrictions on coL\{v}, it may not do so at v. We find out when it does.
See that coξ always contains v, and so does ∂(coξ) unless ξ is a cycle. Hence, we
have

coξ ∈ IC−ip (coL) if

{
i− k + p(k) > 0 or
∂ξ = 0 and i− k + p(k) ≥ 0.

In other words, the map ξ 7→ coξ gives a map of complexes

(5.1) tr�≤p(k)−kIC
�+1
p (L) co

→ IC �
p(c

oL).

Proposition 5.3. The map in (5.1) induces isomorphisms on cohomology for all i

H−i(tr�≤p(k)−kIC
�
p(L)) ∼→ H−(i+1)(IC �

p(c
oL)).
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Proof. The proof has the same flavor as the proof of Proposition 5.1. Recall the
definition coL = L× [0,∞)/L× {0}.

First, we make an observation similar to Lemma 5.2. If ξ ∈ IC−ip (coL) is a cycle
supported ‘away from v’ (i.e. v 6∈ |ξ|), then it is a boundary. Indeed, if v 6∈ |ξ|
then |ξ| is contained in the image of L × [ε,∞) for some ε > 0. Now, ξ is the
boundary of the chain obtained by translating ξ ‘infinitely to the right’ along the
cone coordinate. This is made rigorous exactly as in the proof of Proposition 5.1.

We first prove surjectivity. Let T be a triangulation of coL and ξ a cycle in
IC−ip,T (coL). For ε > 0, call the image of L× [0, ε)→ coL the conical neighborhood
Nε of v. Take ε be so small that Nε contains only the vertex v of T . Let ξε be the
cycle on L given by ξε = ξ ∩ (L × {ε}). Then ξε lies in IC

−(i−1)
p (L) and coξε in

IC−ip (coL). Moreover, coξε − ξ is supported away from v, and hence a boundary.
Thus, ξ = coξε in homology. This completes the proof of surjectivity.

The proof of injectivity parallels the one in Proposition 5.1. Consider a chain
η ∈ tr�≤p(k)−kIC

−(i−1)
p (L) such that coη = dγ for some γ ∈ IC−ip . As before, let γ

and coη be defined in a triangulation T and ε > 0 such that Nε only contains the
vertex v of T . Setting γε = L× {ε} ∩ γ, we see that γε ∈ IC−ip and ∂γε = η. This
completes the proof of injectivity. �

Fix a stratified pl pseudomanifold X = Xn ⊃ Xn−2 ⊃ · · · ⊃ X0. We are ready
to describe locally the complex IC.p.

Proposition 5.4. Let x ∈ Xn−k\Xn−k−1 be a point of X with a neighborhood U
that is pl isomorphic to Rn−k × coL as in Definition 2.1. We have

H−i(IC�
p)x =

{
0 if i > n− p(k)
IHp

i−1+k−n(L) otherwise.

Moreover, for all i and k ≥ 2, the restriction H−i(IC�
p)|Xn−k\Xn−k−1 is a locally

constant sheaf on Xn−k\Xn−k−1.

Proof. We have the chain maps

tr�≤p(k)−nIC
�+1+(n−k)
p (L)→ IC �

p(U)→ (IC�
p)x.

The first map is obtained by coning followed by (n − k) suspensions and hence
induces isomorphisms on cohomology by Proposition 5.1 and Proposition 5.3.

To see that the second map also induces isomorphism on cohomology, recall that
(IC�

p)x = lim−→V
IC �

p(V ), where V ranges over all open neighborhoods of x. Recall
that Nε denotes a conical neighborhood of the vertex of coL. For ε, δ > 0, the
inclusion

(−δ, δ)n−k ×Nε ↪→ Rn−k × coL = U

induces isomorphisms IHp
� (U) ∼→ IHp

� ((−δ, δ)n−k × coL). Furthermore, open sets
of the form (−δ, δ)n−k× coL are cofinal in the direct system of open neighborhoods
of x. Therefore IC �

p(U)→ (IC�
p)x induces isomorphisms in cohomology.

Thus, the composite tr�≤p(k)−nIC
�+1+(n−k)
p (L)→ (IC�

p)x induces isomorphisms
on cohomology. This implies the first part of the proposition. Finally, the map
H−i(IC �

p(U)) → H−i(IC�
p)x is an isomorphism for all x ∈ U ∩ (Xn−k\Xn−k−1).

Hence the cohomology sheaves H−i(IC�
p)|Xn−k\Xn−k−1 are locally constant. �
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Definition 5.5. A complex of sheaves S� on a stratified pseudomanifold X is called
cohomologically constructible (with respect to the stratification) if the cohomology
sheaves Hi(S�) are locally constant on the open strata Xn−k\Xn−k−1 and have
finitely generated stalks.

There is a more general notion of cohomological constructibility, independent of
the stratification, which we do not consider. See [Bor84b, §3] for more details.

Proposition 5.6. Let X be a stratified pl pseudomanifold. The complex IC�
p is

cohomologically constructible with respect to the given stratification on X.

Proof. By Proposition 5.4, we know that the cohomology sheaves of IC�
p are locally

constant on the open strata Xn−k\Xn−k−1. It remains to prove that the stalks are
finitely generated.

We proceed by induction on the dimension of X. If the dimension is zero, then
the result is trivial. Otherwise, by Proposition 5.4, it suffices to prove that the
groups IHp

i (L) are finitely generated, for various links L. However, the links L are
compact and of a smaller dimension than that of X. Hence, the intersection chain
complex IC�

p(L) is cohomologically constructible. Now, the cohomology groups of
a compact stratified space with coefficients in a cohomologically constructible sheaf
are finitely generated [Bor84b, §3]. This completes the induction step. �

Having computed the stalks of the complex IC�
p, we study how it varies ‘stratum

by stratum.’ Before we begin, we introduce notation that will be used throughout.
For k ≥ 2, set

Uk = X\Xn−k,

Zn−k = Uk+1\Uk = Xn−k\Xn−k−1.

We have an increasing chain of open sets

U2 ⊂ U3 ⊂ · · · ⊂ Un+1 = X.

Let ik : Uk ↪→ Uk+1 be the inclusion. We look at how the complex IC�
p changes as

we move from Uk to Uk+1. More precisely, we study the natural inclusion

IC�
p|Uk+1 → ik∗(IC�

p|Uk
).

The map is an isomorphism over Uk. Consider a point x in Zn−k and let U be its
neighborhood such that U ∼→ Rn−k × coL as in Definition 2.1. By Proposition 5.4,
we have

H−i(IC�
p)x = IHp

i (Rn−k × coL).

On the other hand, we have

H−i(ik∗(IC�
p|Uk

))x = lim−→
V

IHp
i (V ∩ Uk)

= lim−→
V

IHp
i (V \Zn−k)

= IHp
i (Rn−k × (coL\{v})).

In the last step, we use that the system of neighborhoods of x contains the system
of distinguished neighborhoods (of the form (−δ, δ)n−k × coL) as a cofinal system.

Thus, we see that the map on stalk cohomology induced by the natural map
IC�

p|Uk+1 → ik∗(IC�
p|Uk

) fits in the diagram



14 ANAND DEOPURKAR

H−i(IC�
p|Uk+1)x IHp

i (Rn−k × coL)

H−i(ik∗(IC�
p|Uk

))x IHp
i (Rn−k × (coL\{v}))

∼

∼

Hence, we need to understand the map IHp
i (coL)→ IHp

i (coL\{v}), induced by the
inclusion coL\{v} ↪→ coL. We begin by computing the cohomology of coL− {v}.

We have a map of complexes

(5.2) IC �
p(L) co

→ C �−1(coL)→ IC �−1
p (coL\{v}).

The first map is obtained by coning and the second by restriction.

Proposition 5.7. For all i, the map of coning followed by restriction induces
isomorphisms

IHp
i (L)→ IHp

i+1(coL\{v}).

Proof. Since we have a homeomorphism φ : coL\{v} → L×R that commutes with
the projection to L and R, it is tempting to use Proposition 5.1. However φ is not
piecewise linear, and hence Proposition 5.1 does not apply.

A correct proof is not difficult, however. Since it is skipped in [Hab84], we outline
it here. The details are almost exactly as in the proof of Proposition 5.1.

Denote by i the inclusion coL\{v} ↪→ coL. Observe that the projection map
π : coL\{v} → (0,∞) is pl. By an argument similar to Lemma 5.2, we see that if
a cycle in IC−ip (coL\{v}) is supported on π−1[t,∞) for some t > 0, then it is a
boundary. Similarly, a cycle supported in π−1(0, t] is a boundary.

To prove surjectivity, consider an arbitrary cycle ξ ∈ IC−(i+1)
p (coL\{v}), defined

in a triangulation T , say. Let ξt = ξ ∩ π−1(t) be a slice that contains no vertex of
T . Then ξ is homologous to i∗(coξt).

To prove injectivity, consider η ∈ IC−ip (L) and γ ∈ IC−(i+1)
p (coL\{v}) such that

i∗(coη) = ∂γ. Let γ and η be defined in a triangulation T . Taking a t such that
π−1(t) contains no vertex of T , we get η = ∂(γ ∩ π−1(t)). �

Combining Proposition 5.1, Proposition 5.3 and Proposition 5.7, we have the
following corollary.

Corollary 5.8. Let L be a compact k−1 dimensional stratified pl pseudomanifold.
The inclusion i : coL→ coL\{v} induces isomorphisms

i∗ : IHp
j (coL)→ IHp

j (coL\{v}) for j ≥ k − p(k).

Proof. We have the following commutative diagram:

IC �+1
p (L)

IC �
p(c

oL\{v})

tr�≤k−p(k)IC
�+1
p (L)

IC �
p(c

oL) i∗
co i∗ ◦ co

The vertical arrows are isomorphisms on cohomology by Proposition 5.3 and Propo-
sition 5.7. Hence, the lower arrow is an isomorphism on IHp

j for −j ≤ p(k)−k. �



AN INTRODUCTION TO INTERSECTION HOMOLOGY 15

Now we are ready to analyze IC�
p stratum by stratum, as promised.

Proposition 5.9. The natural map

IC�
p|Uk+1 → ik∗(IC�

p|Uk
)

induces isomorphisms on cohomology sheaves Hi(IC�
p|Uk+1) ∼→ Hi(ik∗(IC�

p|Uk
)) for

i ≤ p(k)− n).

Proof. We already have the essential ingredients of the proof. Since we are testing
a map between sheaves to be an isomorphism, it is enough to do so on stalks. Over
Uk, the map IC�

p|Uk+1 → ik∗IC�
p|Uk

is an isomorphism. Therefore, we only need to
check the statement for the stalks at x ∈ Zn−k.

Take x ∈ Zn−k and let a neighborhood of x be pl isomorphic to coL× Rn−k as
in Definition 2.1. We have the following commutative diagram

IC �
p(c

oL× Rn−k) IC �
p((c

oL\{v})× Rn−k)

IC �+n−k
p (coL) IC �+n−k

p (coL\{v})

(IC�
p|Uk+1)x (ik∗IC�

p|Uk
)x

restrict

suspend

restrict

suspend

The vertical maps are isomorphisms on cohomology. The map at the top induces
isomorphisms Hi(IC �+n−k

p (coL))→ Hi(IC �+n−k
p (coL\{v}) for i+n− k ≤ p(k)− k

by Corollary 5.8. We conclude that the lower-most arrow induces isomorphisms
Hi(IC�

p|Uk+1)x → Hi(ik∗IC�
p|Uk

)x for i ≤ p(k)− n. �

6. Axiomatic characterization and Deligne’s complex

We have enough information about the complex IC�
p to characterize it up to

quasi isomorphism. We begin by collecting the scattered information about it in a
list of axioms. We then prove that any complex of sheaves satisfying those axioms
is quasi isomorphic to IC�

p. Finally, we construct a particularly simple complex
that satisfies the axioms by design.

For simplicity, we restrict ourselves to orientable X. That is, we assume that
X\Xn−2 is orientable. This restriction is not essential — one can work with the
orientation sheaf, or even a system of local coefficients — but we put it for simplicity.
For concreteness, we fix our coefficient field to be R. We denote by RU the constant
sheaf R on U .

We say that a complex S� of sheaves on X satisfies (AX) for a perversity p if

(AX1) S� is bounded and Hi(S�) = 0 for i < −n. (boundedness)
(AX2) S�|U2

∼= RU2 [n]. (normalization)
(AX3) For k ≥ 2, we have Hi(S�|Uk+1) = 0 for i > p(k)− n. (vanishing)
(AX4) For k ≥ 2 the map Hi(S�|Uk+1) → Hi(Rik∗S�|Uk

) is an isomorphism for
i ≤ p(k)− n (attaching).

Theorem 6.1. The intersection chain complex IC�
p satisfies (AX).
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Proof. (AX1) is clear from the construction. For (AX2), observe that on U2 the
complex IC�

p is the complex of ordinary homology with closed supports. Since U2

is orientable, (AX2) follows. The vanishing condition (AX3) is a consequence of
Proposition 5.4. The attaching condition (AX4) follows from Proposition 5.9 once
we note that ik∗IC�

p|Uk
= Rik∗IC�

p|Uk
, because the sheaves IC�

p are soft. �

Although the construction of IC�
p is somewhat intricate, the conditions (AX) are

enough to determine its quasi isomorphism class. We have the following theorem.

Theorem 6.2. Let S� and T � be a complexes of sheaves on X that satisfy (AX) and
φ : S�|U2 → T �|U2 a quasi isomorphism. Then φ extends to a quasi isomorphism
φ̃ : S� → T �.

The proof will be immediate after we prove a little lemma.

Lemma 6.3. Let S� be a complex of sheaves on X satisfying (AX). For all k ≥ 2,
the complexes S�|Uk+1 and tr�≤p(k)−nRik∗(S�|Uk

) are quasi isomorphic.

Proof. We have the commutative diagram:

S�|Uk+1tr�≤p(k)−nS
�|Uk+1

Rik∗(S�|Uk
)tr�≤p(k)−nRik∗(S�|Uk

)

The top horizontal map is a quasi isomorphism by (AX3). The left vertical map is
a quasi isomorphism by (AX4). Hence S�|Uk+1 and tr�≤p(k)−nRik∗(S�|Uk

) are quasi
isomorphic. �

Proof of the theorem. The proof is a straightforward induction. Assume that we
have a quasi isomorphism φk : S�|Uk

→ T �|Uk
. We have the diagram

tr�≤p(k)−nRik∗(S�|Uk
) tr�≤p(k)−nRik∗(T �|Uk

)

S�
Uk+1

T �
Uk+1

φk+1

The top map is induced by φk and hence a quasi isomorphism. The two verti-
cal maps are quasi isomorphisms given by Lemma 6.3. Hence we obtain a quasi
isomorphism φk+1 : S�

Uk+1
→ T �

Uk+1
. �

As Deligne observed, one can construct much more directly a complex that
satisfies (AX). We now describe his construction. We proceed by induction on the
codimension. Set

P2 = DU2 = RU2 [n] on U2

Pk+1 = tr�≤p(k)−nRik∗Pk for 2 ≤ k ≤ n.
The complex P = Pn+1, defined on X, is called Deligne’s complex.

Theorem 6.4. The complex P satisfies (AX). Consequently, a quasi isomorphism
IC�

p|U2 → RU2 [n] gives a quasi isomorphism IC�
p → P. In particular, we have

IHp
i (X) ∼= H−i(P).
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Proof. It is easy to see that P satisfies (AX) — it does so by design. The sec-
ond statement is a consequence of Theorem 6.1 and Theorem 6.2. Lastly, a quasi
isomorphism IC�

p → P induces isomorphisms

IHp
i (X) = H−i(IC�

p)
∼→ H−i(P).

�

An immediate corollary is the pl-independence of IH.

Corollary 6.5. The intersection homology groups IHp
� (X) are independent of the

piecewise linear structure of X.

Proof. We have IHp
i = H−i(P) and P does not depend on the pl structure. �

The simplicity of the construction of P makes it very useful in proving theorems
about intersection homology. More importantly, and rather surprisingly, it gives a
definition of intersection homology groups in settings where we have a notion of
stratification and a category of sheaves, but no rich underlying topological structure,
the quintessential example being varieties in positive characteristic. Intersection
homology turns out to be a powerful tool even in this setting, providing a proof
of the Weil conjectures for singular varieties and leading to the resolution of the
so-called Kazhdan-Lusztig conjecture in representation theory. See [Kir88] for more
details.

As an application, we prove a result mentioned in the introduction.

Definition 6.6. A stratified pl pseudomanifold X = Xn ⊃ Xn−2 ⊃ · · · ⊃ X0 is
called normal if every x ∈ X has a neighborhood U in X such that U\Xn−2 is
connected.

It can be shown that normal algebraic varieties are normal in this sense.

Proposition 6.7. Let X be a normal stratified pl pseudomanifold. Then

IH0
i (X,R) = Hn−i(X,R).

Proof. We use the complex P to compute the intersection homology. We have

P = tr�≤−nRin∗tr�≤−nRin−1∗ . . . tr�≤−nRi2∗RU2 [n].

Therefore P = i∗RU2 [n], where i : U2 ↪→ X is the inclusion. Since X is normal, we
have i∗R = R and hence P = RX [n]. Thus, we conclude that

IH0
i (X,R) = H−i(RX [n]) = Hn−i(X,R).

�

The reader may jump to Section 8 to see the complex P used to compute some
concrete examples.

7. Poincaré-Verdier duality

In this section, we outline the proof of Poincaré duality for intersection homology
using the machinery of Verdier duality. The proof is not self-contained — we accept
several results about cohomological constructibility. We give references for the
unproved assertions.
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As in Section 6, fix an n-dimensional orientable stratified pseudomanifold X.
Let p and q be complimentary perversities, i.e. p(k) + q(k) = t(k) = k − 2. We fix
our ring of coefficient to be R.

Denote by DX the dualizing sheaf on X. For a bounded complex of sheaves A�,
let DXA� be the complex RH om(A�,DX). We prove that IC�

p is isomorphic to
DXIC�

q[n]. Taking hypercohomology, this translates into

H−i(IC�
p) ∼= H−i(DXIC�

q[n]) = Hn−i(DXIC�
q)

∼= Hom(Hi−n
c (IC�

q),R).

Therefore, for a compact X, we obtain

IHq
n−i(X) ∼= Hom(IHp

i (X),R).

In other words, we have a non-degenerate pairing, called the ‘intersection pairing’

IHq
n−i(X)⊗ IHp

i (X)→ R.

In particular, for a complex projective X we get self dual homology groups for the
middle perversity m(2k) = k − 1.

The idea of the proof is to show that the complex DXIC�
q satisfies the axioms

(AX) characterizing IC�
p. Our treatment is based loosely on [Ban00, §4.4].

Before we begin the proof, we replace (AX) by an equivalent set of axioms,
which is better suited for our purposes. Recall that Uk = X\Xn−k and Zn−k =
Xn−k\Xn−k−1 for k ≥ 2. We have the open and closed inclusions

Uk
i
↪→ Uk+1

j
←↩ Zn−k.

We begin by noting that the vanishing condition (AX3) can be replaced by

(AX3’) Hi(S�)x = 0 for k ≥ 2, for i > p(k)− n and x ∈ Zn−k.

Proposition 7.1. The pair {(AX2), (AX3)} is equivalent to {(AX2), (AX3’)}.

Proof. By (AX3), we have Hi(S�|Uk+1) = 0 for all k ≥ 2. Since Zn−k ⊂ Uk+1, this
implies that the stalk Hi(S�|Uk+1)x = 0, for all x ∈ Zn−k. Hence (AX3) implies
(AX3’).

For the converse, consider a point x ∈ Uk+1. If x ∈ U2, then by (AX2), we have
Hi(S�)x = Hi(R[n])x = 0, for all i > −n and hence for all i > p(k)−n. Otherwise,
x ∈ Xn−j\Xn−j−1 for some j ≤ k. By (AX3’), we have Hi(S�)x = 0 for i > p(j)−n
and hence, for i > p(k)− n. �

Next, we reformulate (AX4). For a point x ∈ Zn−k, denote by jx the inclusion
{x} ↪→ Zn−k. Consider the following replacement.

(AX4’) Hi(j!
xS

�) = 0 for k ≥ 2, for i ≤ p(k)− k + 1, and x ∈ Zn−k.

Proposition 7.2. For a complex S� that is cohomologically constructible with re-
spect to the stratification of X, the conditions {(AX1-3),(AX4)} are equivalent to
{(AX1-3),(AX4’)}.

We use the following result in the proof. Recall that a complex A� is cohomo-
logically locally constant if the cohomology sheaves Hi(A�) are locally constant.
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Proposition 7.3. Let M be a k-dimensional manifold, jx : {x} → M be the in-
clusion of a point, and A� a cohomologically locally constant complex of sheaves on
M . Then, j!

xA
� = j∗xA

�[−k].

This is a consequence of Poincaré-Verdier duality on M . For a proof, see [Bor84b,
3.7(b)].

Proof of the proposition. By (B.5), we have the distinguished triangle:

(7.1)

j∗j
!S� S�|Uk+1

Ri∗(S�|Uk
)

[1]

.

By the attaching condition (AX4), the map Hi(S�|Uk+1) → Hi(Ri∗(S�|Uk
)) is an

isomorphism for i ≤ p(k) − n. Therefore, the long exact sequence in cohomology
gives Hi(j!S�) = 0 for i ≤ p(k) − n and Hp(k)−n+1(j!S�) ↪→ Hp(k)−n+1(S�|Uk+1) is
an injection. By the vanishing condition (AX3), we have Hp(k)−n+1(S�|Uk+1) = 0.
Thus, Hi(j!S�) = 0 for i ≤ p(k) − n + 1. Conversely, if we have Hi(j!S�) = 0 for
i ≤ p(k) − n + 1, then the attaching condition (AX4) follows by the long exact
sequence in cohomology associated to the triangle (7.1).

Hence, in the presence of (AX1-3), the condition (AX4) is equivalent to

(7.2) Hi(j!S�) = 0 for k ≥ 2, for and i < p(k)− n.

This condition can be checked by checking it on the stalks of all points of Zn−k.
In other words, (7.2) is equivalent to the following: For all k ≥ 2 and x ∈ Zn−k, we
have

(7.3) Hi(j∗xj
!S�) = 0 for i ≤ p(k)− n+ 1.

Since S� is cohomologically constructible with respect to the stratification of X,
the complex j!S� is cohomologically locally constant on Zn−k [Bor84b, 3.10(b)].
Therefore, by Proposition 7.3, the equation (7.3) is equivalent to

Hi(j!
xj

!S�[n− k]) = 0 for i ≤ p(k)− n+ 1.

In other words,
Hi(j!

xS
�) = 0 for i ≤ p(k)− k + 1.

The proof is now complete. �

Consolidating Proposition 7.1 and Proposition 7.2, we see that for a cohomolog-
ically constructible S�, the set of axioms (AX) is equivalent to the following.
(AX1’) S� is bounded and Hi(S�) = 0 for i < −n.
(AX2’) S�|U2

∼= RU2 [n].
(AX3’) Hi(S�)x = 0 for k ≥ 2, for i > p(k)− n and x ∈ Zn−k.
(AX4’) Hi(j!

xS
�) = 0 for k ≥ 2, for i ≤ p(k)− k + 1, and x ∈ Zn−k.

The stage is now set for duality. We state the theorem at once.

Theorem 7.4 (Poincaré duality). Let X be an orientable stratified pl pseudoman-
ifold and p, q complimentary perversities. We have a quasi isomorphism

IC�
p
∼= DXIC�

q[n].

We need a preparatory lemma, whose proof we skip.
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Lemma 7.5. [Ban00, 4.4] Let A� be a cohomologically constructible complex of
sheaves on X and i an integer. There exist arbitrarily small open sets U around a
point x ∈ X, such that we have isomorphisms:

Hi(A�)x ∼= Hi(A�|U ),

Hi(j!
xA

�) ∼= Hi
c(A

�|U ).

Proof of the theorem. The dual DXIC�
q[n] is cohomologically constructible with re-

spect to the stratification on X ([Bor84b, 8.6]). Hence, it suffices to check that
DXIC�

q[n] satisfies the axioms (AX’).
We begin by checking (AX1’). Boundedness is clear, since both DX and IC�

q are
bounded. For x ∈ X and a small open set U around it, we have

Hi(DXIC�
q[n])x = Hi+n(DXIC�

q|U )

= Hom(H−i−nc (IC�
q|U ),R)

= Hom(H−i−n(j!
xIC

�
q),R).

Now, IC�
q is a complex of soft sheaves which is zero for � > 0. Hence, we get

H−i−n(j!
xIC

�
q) = 0 for −i− n > 0, or, equivalently, for i < −n.

For the rest of the proof, consider a point x ∈ Zn−k and an open set U around
it for which Lemma 7.5 is true.

For (AX2’), we observe

(DXIC�
q)|U2 [n] = DU2(IC�

q|U2)[n]
∼= (DU2R[n])[n] = R[n].

For (AX3’), we have

Hi(DXIC�
q[n])x = Hi+n(DXIC�

q|U )

= Hom(H−i−nc (IC�
q|U ),R)

= Hom(H−i−n(j!
xIC

�
q),R).

By (AX4’) applied to IC�
q, we see that H−i−n(j!

xIC
�
q) = 0 for −i−n ≤ q(k)−k+1,

or, equivalently, for i > −n+ (k − 2)− q(k) = p(k)− n.
Finally, for (AX4’), we compute

Hi(j!
xDXIC

�
q[n]) = Hi+n

c (DXIC�
q|U )

= Hom(H−i−n(IC�
q|U ),R)

= Hom(H−i−n(IC�
q)x,R).

By (AX3’) applied to IC�
q, we have H−i−n(IC�

q)x = 0 for −i − n > q(k) − n, or,
equivalently, for i ≤ −1− q(k) = p(k)− k + 1. The proof is thus complete. �

8. Computational examples

Let us use Deligne’s complex P to do some calculations. In particular, let us
compute the intersection homology groups of some Schubert varieties.

Our first example is the subvariety of the grassmannian of lines in CP3 consisting
of those that intersect a fixed line l ⊂ CP3. In symbols,

X = {m ∈ G(1, 3) | m ∩ l 6= ∅}.
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The variety X has complex dimension 3. Set U = X\[l]; let i : U ↪→ X and
j : {[l]} → X be the inclusions. The stabilizer of l in PGl(4) acts transitively on
U , and hence U is nonsingular. Using local coordinates on the grassmannian, we
see that a neighborhood of [l] in X is isomorphic to the cone C in C4 described by
xy − zw = 0. We denote by 0 the point (0, 0, 0, 0) on C.

We use the stratification of X given by X6 = X and X0 = {[l]}. Recall that
P2 = DU = RU [6] and

P = P7 = tr�≤p(6)−6Ri∗P2.

The intersection homology of X is simply the hypercohomology of P. To compute
the hypercohomology, we use the spectral sequence

(8.1) Hi(X,Hj(P)) =⇒ Hi+j(P).

To calculate the cohomology sheaves Hj(P), we take the de Rham resolution
RU [6] → Ω�

U [6] on U . Since the sheaves of differential forms Ω� are soft, we have
Ri∗P2 = Ri∗RU [6] = i∗Ω�

U [6]. Let us forget the shift by 6 for a moment and look
at the complex i∗Ω�

U . We have H0(i∗Ω�
U ) = i∗RU = RU (since C\0 is connected).

For j > 0 the cohomology sheaf Hj(i∗Ω�
U ) is supported at the point [l] with the

stalk Hj(C\0). In other words, Hj(i∗Ω�
U ) = j∗H

j(C\0) for j > 0. Using this (and
remembering the shift by 6), we can write out the E2 page of the spectral sequence
(8.1) as follows (the group j∗H

j(C\0) is abbreviated as j∗Hj , and Hi(X,R) as
HiX.).

0 2 4 6

−6

−4

−2

0

R

j∗H
1

j∗H
2

j∗H
3

j∗H
4

j∗H
5

j∗H
6

H1X H2X H3X H4X H5X H6X

As such, this spectral sequence computes the hypercohomology of Ri∗RU [6], and
not of P. However, P is simply Ri∗RU [6] truncated at p(6) − 6. Therefore, the
spectral sequence for the hypercohomology of P is obtained by erasing the rows
above p(6) − 6. In particular, the differentials in the spectral sequence for P are
exactly the differentials in the spectral sequence for Ri∗(RU [6]) that originate in
rows with index at most p(6)− 6.

Observe that

Hi(X,Ri∗RU [6]) = Hi(RΓ ◦Ri∗RU [6])

= Hi(RΓRU [6]) = Hi+6(U,R)

This can be used to recover the differentials in the spectral sequence if we already
know H �(X,R), H �(C\0,R) and H �(U,R). To focus on intersection homology, we
are going to suppress the details about singular cohomology by only saying a few
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words in the footnotes about their computation. Computing the cohomology of
C\0, U and X, we obtain 3:

H �(C\0,R) = (R, 0,R,R, 0,R),

H �(U,R) = (R, 0,R2, 0,R),

H �(X,R) = (R, 0,R, 0,R2, 0,R).

Thus, the E2 page of the spectral sequence is:

0 2 4 6
−6

−4

−2

0

R

R

R

R

R R2 R

Since the spectral sequence abuts to the cohomology H �(U,R), we see that the only
nonzero differentials are the ones shown in the diagram.

This is all the information we need to compute IHp
� (X) for any perversity p: we

simply forget the rows above p(6)−6 and then read off the diagonals. For example,
for the middle perversity (p(6) = 2), we only keep the rows indexed −6, −5 and
−4 to obtain:

IH0(X) = H0(P) = R,
IH2(X) = H−2(P) = R2,

IH4(X) = H−4(P) = R2,

IH6(X) = H−6(P) = R.

Observe that IHi(X) ∼= IH6−i(X) as expected by Poincaré duality.
Now we are in a position to do a more complicated example. The basic ideas are

the same, but the computation is a bit more involved. We consider the set of lines
in CP4 meeting a fixed plane Π. In symbols,

X = {m ∈ G(1, 4) | m ∩Π 6= ∅}.
See that X has complex dimension 5. We let U be the subset of X consisting
of lines meeting Π in a point and Z the subset consisting of lines contained in
Π. We have an open inclusion i : U → X and a closed inclusion j : Z → X, with
X = U ∪ Z. Both U and Z are nonsingular — the respective stabilizers in PGl(5)
act transitively on them. In fact, Z is isomorphic to CP2. For a point x ∈ Z, we
find that a neighborhood in X is isomorphic to C2 ×C, where C is the cone in C4

described by xy − zw = 0.
Using the stratification X10 = X and X4 = Z, we write Deligne’s sheaf on X:

P = tr�≤p(6)−10Ri∗DU = tr�≤p(6)−10Ri∗RU [10].

3The space C\0 is a nontrivial C∗ bundle on CP1 × CP1. The space X has a Schubert cell

decomposition. The open set U is a CP2\{pt} bundle on CP1.
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As before, we use the spectral sequence Hi(X,Hj(P)) =⇒ Hi+j(P) to compute
the hypercohomology of P. We forget the shift by 6 and the truncation for a
moment and identify the cohomology sheaves Hj(P). If x is a point of Z then we
can find its neighborhood U in X such that U\x is connected (take U ∼= C2 × C).
Hence H0(Ri∗RU ) = i∗RU is the constant sheaf RX on X. Next, for j > 0, the
sheaf Hj(Ri∗RU ) is supported on Z with stalks lim−→U

Hj(U\x) = Hj(C\0) (one
can see this, as we did before, by looking at the de Rham resolution of RU on U).
Furthermore, one can see that Hj(Ri∗RU )|Z is the constant sheaf H1(C\0). This
follows by observing that Hj(Ri∗RU )|Z is locally constant, and hence constant,
since Z is simply connected. Thus, we have

Hj(Ri∗RU ) = j∗H
j(C\0), for j > 0.

With this information, we can write out the E2 page of the spectral sequence
Hi(X,Hj(P)) =⇒ Hi+j(P). To get our hands on the differentials, we observe
that Hi(X, j∗Hj(C\0)) = Hi(Z,Hj(C\0)) and Hi(Ri∗RU ) = Hi(U,R). Thus,
knowledge of H �(Z,R), H �(X,R), H �(C\0,R) and H �(U,R) lets us deduce, up to a
large extent, which differentials are nonzero. We compute 4

H �(Z,R) = (R, 0,R, 0,R),

H �(X,R) = (R, 0,R, 0,R2, 0,R2, 0,R2, 0,R),

H �(C\0,R) = (R, 0,R,R, 0,R),

H �(U,R) = (R, 0,R2, 0,R2, 0,R).

This lets us write the E2 page of the spectral sequence as

0 2 4 6 8 10
−10

−8

−6

R R R2 R2 R2 R

R R R

R R R

R R R

To identify the nonzero differentials from the many possible ones, we use that the
sequence (up to a shift by 10 on the Y axis) abuts to H �(U,R). This lets us deduce
that the differentials depicted by solid arrows are nonzero, and out of the two
depicted by dashed arrows from a common source, exactly one is nonzero.

This is enough information to be able to compute IH�
p(X) for any perversity.

For example, to compute the middle perversity groups (p(6) = 2), we erase the top

4The space Z is isomorphic to CP2. The space X has a Schubert cell decomposition. The
open subset U is a CP3\CP1 bundle on CP1 × CP1.
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3 rows and obtain:

IH0(X) = H0(P) = R,
IH2(X) = H−2(P) = R2,

IH4(X) = H−4(P) = R3,

IH6(X) = H−6(P) = R3,

IH8(X) = H−8(P) = R2,

IH10(X) = H−10(P) = R.

The symmetry is a manifestation of Poincaré duality.
For the top perversity (p(6) = 4), we get:

IHt
� (X) = (R, 0,R, 0,R2, 0,R2, 0,R2, 0,R).

These groups are dual to the ones for the zero perversity (p(6) = 0):

IH0
� (X) = (R, 0,R2, 0,R2, 0,R2, 0,R, 0,R).

Appendix A. Homological algebra

We give an overview of the necessary background from homological algebra.
We summarize the basic definitions and state the main theorems. This is, by no
means, a sufficient introduction to the subject. A detailed exposition can be found
in [KS90]. Nocolaescu’s notes [Noc] are also quite helpful.

Let A be an additive category. A complex in A is a sequence {Cn | n ∈ Z}
of objects of A along with maps dn : Cn → Cn+1 such that dn+1 ◦ dn = 0. The
maps dn are called differentials. We almost always drop the differentials from the
notation and denote the complex by C �. A complex C � is bounded below (resp.
bounded above) if Cn = 0 for all n < N (resp. for all n > N) for some integer N ; it
is bounded if it is both bounded below and bounded above.

Let A� and B� be complexes. A map of complexes f : A� → B� is a sequence of
maps fn : An → Bn which commute with the differentials:

An An+1

Bn Bn+1

dnA

dnB

fn fn+1

.

One can form the category C(A), whose objects are complexes in A and mor-
phisms are maps of complexes. We denote by C+(A), C−(A) and Cb(A) the full
subcategories of bounded below, bounded above and bounded complexes, respec-
tively.

Definition A.1. Let k be an integer. The kth cohomology functor Hk : C(A)→ A
is defined by

Hk(C �) =
ker dk

im dk+1
.

We define two simple operations on complexes: shift and truncation.



AN INTRODUCTION TO INTERSECTION HOMOLOGY 25

Definition A.2. Let C � be a complex and k an integer. The shift of C by k is the
complex denoted by C[k] and defined by

C[k]n = Ck+n,

dnC[k] = (−1)kdk+n
C .

We frequently denote the shifted complex C[k] by C �+k.

See that Hn(C[k]) = Hn+k(C).

Definition A.3. We define the truncation of C � at k, denoted by tr�≤kC
�, as

follows:

(tr�≤kC)n =


Cn if n < k,
ker dn : Cn → Cn+1 if n = k,
0 if n > k.

The differentials in the truncation are the ones induced from those in the original
complex. Clearly, tr�≤kC

� is bounded above. Furthermore, we have

Hn(tr�≤kC
�) =

{
Hn(C �) if k ≤ n
0 if k > n.

In fact, the natural map tr�≤kC
� → C � induces isomorphism on the nth cohomology

for n ≤ k.
Let A� and B� be two complexes and f and g two morphisms between then. We

say that f and g are homotopic if there is a sequence of maps Hn : An → Bn−1:

· · · An An+1 · · ·dn

Bn−1· · · Bn · · ·dn−1

Hn

Hn+1
f − g

,

such that fn− gn = Hn+1 ◦dn +dn−1 ◦Hn. Homotopic maps f and g induce equal
maps on cohomology:

(A.1) f∗ = g∗ : Hn(A�)→ Hn(B�) for homotopic f and g.

We denote by Ht(A�, B�) the subgroup of Hom(A�, B�) consisting of maps homo-
topic to zero. It is easy to see that the composition

Hom(A�, B�)×Hom(B�, C�)→ Hom(A�, C�)

sends Ht(A�, B�)×Hom(B�, C�) and Hom(A�, B�)×Ht(B�, C�) to Ht(A�, C�). This
lets us define the homotopy category K(A) of complexes as a quotient category
of C(A). The objects of K(A) are the same as the objects of C(A), namely the
complexes in A. The maps HomK(A)(A�, B�) are the homotopy classes of maps in
HomC(A)(A�, B�). In other words, we set

Ob(K(A)) = Ob(C(A))

HomK(A)(A�, B�) = HomC(A)(A�, B�)/Ht(A�, B�).

The hom group HomK(A)(A�, B�) is denoted more succinctly by [A�, B�]. The com-
position law in K(A) is induced from that in C(A), and thus we have a natural
quotient functor from C(A) to K(A). We have full subcategories K+(A), K−(A)
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and Kb(A) consisting of bounded below, bounded above and bounded complexes.
By observation (A.1), we see that the functors Hk descend to Hk : K(A)→ A.

The category K(A) is an additive category. It is, in general, not an abelian
category even if A is one. However, it is more than just an additive category —
it is a triangulated category. It has distinguished triangles, which are somewhat
analogous to exact sequences. We now describe what these are.

We begin with the idea of the mapping cone. Let A� and B� be two objects and
f : A� → B� a morphism in C(A). Construct a complex M(f), called the mapping
cone of f by

M(f)n = An+1 ⊕Bn,
dnM(f) : (a, b) 7→ (−dAa, dBb+ fa).

We have the morphism α(f) : B → M(f) given by the inclusion into the second
factor and β(f) : M(f) → A[1] given by the projection on the second factor. The
sequence of maps A→ B →M(f)→ A[1] is often pictured as a triangle

A B

M(f)
[1]

.

A triangle in K(A) is a sequence of morphisms A → B → C → A[1]. A map
between two triangles A → B → C → A[1] and X → Y → Z → X[1] is a triad of
maps A→ X, B → Y and C → Z commuting with the maps in the two triangles.

Definition A.4. A triangle in K(A) is called distinguished if it is isomorphic (in
K(A)) to a triangle A→ B →M(f)→ A[1] for some f : A→ B in C(A).

Proposition A.5. A distinguished triangle X
f→ Y

g→ Z
h→ Z induces an exact

sequence in cohomology

· · · → Hi(X)
f→ Hi(Y )

g→ Hi(Z) h→ Hi+1(X)→ · · · .

The collection of distinguished triangles inK(A) satisfies the following properties
([KS90, 1.4.4]):

(TR1) A triangle isomorphic to a distinguished triangle is distinguished.
(TR2) For any object X, the triangle X → id→ X → 0→ X[1] is distinguished.

(TR3) Any morphism f : X → Y can be extended to a distinguished triangle X
f→

Y → Z → X[1].

(TR4) A triangle X
f→ Y → Z → X[1] is distinguished if and only if the triangle

Y → Z → X[1]
f [1]→ Y [1] is.

(TR5) Given two distinguished triangles A α→ B → C → A[1] and X
ξ→ Y → Z →

X[1], and morphisms f : A → X and g : B → Y such that g ◦ α = ξ ◦ f ,
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there exists a map h : C → Z such that (f, g, h) gives a map of triangles:

A B C A[1]

X Y Z X[1]

α

ξ

f g h f [1]

It turns out that the properties (TR1)–(TR5), along with another axiom called
the octahedral axiom (which is too cumbersome to state), capture the essential
properties of the class of distinguished triangles.

Definition A.6. [KS90, 1.5.1] A triangulated category C is an additive category
with an automorphism T : C → C and a class of distinguished triangles satisfying
the axioms (TR1)–(TR5) and the octahedral axiom (with the shift [1] replaced by
T ). A functor between two triangulated categories is called a functor of triangulated
categories if it sends distinguished triangles to distinguished triangles.

We are much more interested in the cohomology of complexes than the complexes
themselves. Thus, we prefer K(A) to C(A) because we realize that what matters
for cohomology is the homotopy classes of maps and not the maps themselves.
However, it is advantageous to go one step further. To describe what that step is,
we first introduce the notion of quasi isomorphisms.

Definition A.7. We say that a map f : A� → B� (in C(A) or K(A)) is a quasi
isomorphism if the induced maps on cohomology f : Hi(A�)→ Hi(B�) are isomor-
phisms for all i.

It is easy to check that if f : A → B is a homotopy equivalence (i.e. an isomor-
phism in K(A)), then f is a quasi isomorphism. Not all quasi isomorphisms are
homotopy equivalences.

From now on, let A denote an abelian category. One can construct from K(A) a
category D(A) ‘by adding the inverses of all quasi isomorphisms.’ The construction
is an instance of a general categorical operation called localization ([KS90, 1.6]).
We will not go into the details of the construction of D(A), but only say a few
words about it. The objects of D(A) are the same as objects of C(A) and K(A),
namely the complexes in A. A morphism in D(A) from A to B is an equivalence
class of diagrams (called ‘roofs’) of the form

A
q← C → B,

where q is a quasi isomorphism. Two roofs A ← C → B and A ← C ′ → B are
equivalent if there is a third roof A← C ′′ → B such that the following commutes

A C ′′ B

C

C ′ .

The salient properties of D(A) are summarized in the following proposition.
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Proposition A.8. The derived category D(A) is a triangulated category with a
functor of triangulated categories Q : K(A) → D(A) satisfying the following uni-
versal property: For all additive categories B and additive functors F : K(A)→ B,
if F sends all quasi isomorphisms in K(A) to isomorphisms in B, then there exists
a unique functor QF : D(A)→ B such that F = QF ◦Q.

The universal property implies that the cohomology functors Hi : K(A) → A
factor through D(A).

Isomorphisms in the derived category are sometimes called weak isomorphisms.
We often abuse the term quasi isomorphisms to also mean weak isomorphisms.
With this usage, a quasi isomorphism A� → B� need not come from an actual map
of complexes A� → B�.

One can construct the derived categories D∗(A) from K∗(A) for ∗ ∈ {+,−, b}.
It turns out that D∗(A) is equivalent to the full subcategory of D(A) consisting of
objects from K∗(A). Furthermore, A is equivalent to the full subcategory of D(A)
consisting of complexes A such that An = 0 for n 6= 0. In other words, we have

HomA(X,Y ) = HomD(A)(· · · 0→ X → 0→ · · · , · · · 0→ Y → 0 · · · ).

The derived category D+(A) takes a particularly simple form when A has
‘enough injectives.’ An object I of A is called injective if the functor Hom(−, I) is
exact. The category A is said to have enough injectives if every object of A injects
into an injective object.

Proposition A.9. [KS90, 1.7.10] Let A be an abelian category with enough injec-
tives and I be the full subcategory of A consisting of injective objects. Then, the
natural functor K+(I)→ D+(A) is an equivalence of categories.

It is convenient to have an analogous assertion in a more general setting. Let C
be an abelian category and J a full additive subcategory such that

(1) every object in C injects into an object in J;
(2) if 0→ A→ B → C → 0 is an exact sequence in C and A, B lie in J, then

C lies in J .

We call such a subcategory a generating subcategory. If J is a generating subcate-
gory, then the map D+(J)→ D+(C) is an equivalence of categories [Noc, 1.4].

Having described derived categories, we come to derived functors. We focus on
left exact functors and complexes bounded below. Let A and B be abelian cate-
gories and F : A→ B an additive functor between them. Then F naturally induces
a functor of triangulated categories K+(F ) : K+(A) → K+(B). However, it need
not do so between the derived categories. One can define a universal extension of
it (in a precise sense, see [KS90, 1.8.1]) denoted by RF : D+(A) → D+(B). The
functor RF is called the derived functor of F . We do not go into the details of the
universal property of the derived functor or its existence in general. We describe
its construction in some special cases.

Assume that A is an abelian category with enough injectives, B an abelian cat-
egory and F : A→ B an additive, left exact functor. Let I be the full subcategory
of A consisting of injective objects. Choose a quasi-inverse q : D+(A) → K+(I).
Define the right derived functor RF : D+(A)→ D+(B) as the composition

D+(A)
q→ K+(I)

K+(F )−→ K+(B)→ D+(B).
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Concretely, the steps to compute RF of a complex A� are the following. Choose
a quasi isomorphism A� → I �, where I � is a complex of injectives. This is called
taking an injective resolution. Then, we have RF (A�) ∼= F (I �).

One can define the derived functors in a more general setting. We say that F
admits enough F -injectives if there is a generating subcategory J of A such that F
restricted to J is exact. In such a case, the functor K+(F ) : K+(J)→ D+(B) sends
quasi-isomorphisms to isomorphisms. Thus, it induces a functor D+(J)→ D+(B).
The derived functor RF can now be constructed as the composition

(A.2) D+(A)
q→ D+(J)→ D+(B),

where q : D+(A)→ D+(J) is a quasi-inverse of the equivalence D+(J)→ D+(A).

Definition A.10. Let F : A → B be a left exact functor between abelian cate-
gories that admits enough F -injectives. Then, the nth hypercohomology functor
RnF : D+(A)→ B is defined by

RnF (A�) = Hn(RF (A�)).

An object A of A is called F -acyclic if RnF (A) = 0 for n > 0. Suppose that
F admits enough F -injectives. Let J be the full subcategory of A consisting of
F -acyclic objects. Then J is a generating subcategory and F restricted to it is
exact. Hence, we can use resolutions in J to compute the derived functors of F as
described above.

Proposition A.11. [KS90, 1.8.7] Let A, B, C be abelian categories and F : A→ B
and G : B → C left exact, additive functors. Suppose both F and G admit enough
injective objects and F sends F -injective objects to G-acyclic objects. Then G ◦ F
admits enough injectives and we have

R(G ◦ F ) = RG ◦RF.

For every object A in A, there is a spectral sequence with Ep,q2 = RpG(RqF (A))
that abuts to Rp+q(G ◦ F )(A):

RpG(RqF (A)) =⇒ Rp+q(G ◦ F )(A).

The spectral sequence in the proposition is called the Grothendieck spectral
sequence.

We close this section with a brief discussion of bifunctors and their derived
functors. Let C1, C2 and C be three categories.

Definition A.12. A bifunctor F : C1 ×C2 → C consists of the following data

(1) A map of objects F : Ob(C1)×Ob(C2)→ Ob(C),
(2) for a pair of objects Xi, Yi of Ci (for i = 1, 2), a map

F : HomC1(X1, Y1)×HomC2(X2, Y2)→ HomC(F (X1, X2), F (Y1, Y2)),

such that for each object X in C1 (resp. Y in C2), the assignment F (X,−) (resp.

F (−, Y )) is a functor and the following commutes for all X1
f1→ Y1 in C1 and
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X2
f2→ Y2 in C2:

F (X1, X2)

F (X1, Y2)F (Y1, X2)

F (Y1, Y2)

F (X1,−)f2F (−, X2)f1

F (−, Y2)f1F (Y1,−)f2

.

For example, the functor Hom(−,−) : Co × C → Set is a bifunctor. Other
common example is ⊗ : Ab ×Ab → Ab. A bifunctor F is called exact (resp. left
exact, right exact), if F (X,−) and F (−, Y ) are exact (resp. left exact, right exact)
for all objects X in C1 and Y in C2.

Let C1, C2 and C be abelian categories and F : C1 ×C2 → C a bifunctor. Let
A�
i be bounded below complexes in K+(Ci). We construct the double complex

F (A�
1, A

�
2), given by

F (A�
1, A

�
.)
i,j = F (Ai1, A

j
2).

From the double complex, we construct the total complex F (A�
1, A

�
2) given by

Tot(F (A.1, A
�
2))n = ⊕i+j=nF (A�

1, A
�
2)i,j .

One can check that this gives a functor K+(F ) : K+(C1)×K+(C2)→ K+(C). Un-
der suitable conditions, one can construct a derived functor (satisfying a universal
property, see [KS90, 1.10.4])

RF : D+(C1)×D+(C2)→ D+(C).

One set of sufficient conditions is the following ([KS90, 1.10.8]):
(1) F is left exact;
(2) C1 has enough injectives;
(3) F (I,−) is exact if I ∈ Ob(C1) is injective.

Appendix B. Sheaf theory

In this section, we review some aspects of the theory of sheaves on a topological
space. Most of the material can be found in [KS90]. A more simplified and concrete
treatment is in [Ive86].

B.1. Operations on sheaves. Let X be a topological space. Denote by Sh(X)
the category of sheaves of abelian groups on X. More generally, let R be a (com-
mutative) ring and denote by Sh(X,R) the category of sheaves of R-modules on
X. Then Sh(X,R) is an abelian category with enough injectives ([Ive86, II, 7.3].
We abbreviate D+(Sh(X,R)) by D+(X,R) and D+(Sh(X)) by D+(X). Although
most of the definitions apply to an arbitrary ring R, we will sometimes specialize
to the case of a field to avoid dealing with issues of flatness.

Let X and Y be topological spaces and f : X → Y a continuous map. For a
sheaf F of R modules on X, the direct image or pushforward f∗F is a sheaf on Y
given by

f∗F (U) = F (f−1(U)).
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The pushforward is a left exact functor f∗ : Sh(X,R) → Sh(Y,R). The global
sections functor Γ is the special case of the pushforward where Y is a point.

For a sheaf G of R modules on Y , the inverse image or pullback is the sheaf f∗G
on X associated to the presheaf

f∗G (U) = lim−→
V⊃f(U)

G (V ).

The pullback is an exact functor f∗ : Sh(Y,R)→ Sh(X,R).
The functors f∗ is left adjoint to f∗. In other words, for a sheaf F on X and G

on Y we have a natural identification

Hom(f∗G ,F ) = Hom(G , f∗F ).

Let i : Z ↪→ X be the inclusion of a subspace and F a sheaf on X. We abbreviate
i∗F by F |Z and Γ(Z, i∗F ) by Γ(Z,F ). It is easily checked that this agrees with
the existing notation in case of an open subset Z. If X is paracompact and Z ⊂ X
a closed subset then we have ([KS90, 2.5.1])

lim−→
U⊃Z

F (U) = Γ(Z,F ).

From now on, we restrict all the topological spaces to be Hausdorff, paracompact
and locally compact. All the spaces considered in this paper satisfy these properties.
In this case, we define an additional important functor called direct image with
proper support.

Let X and Y be Hausdorff, paracompact and locally compact and f : X → Y be
a continuous map. Recall that f is called proper if the inverse image under f of a
compact subset of Y is compact. For a sheaf F on X, we define a subsheaf of f∗F
called the direct image with proper support and denoted by f!F as follows. For an
open subset U of Y , we set

f!F (U) = {s ∈ Γ(f−1(U),F ) | f |Supp(s) → Y is proper.}.
It can be checked that this assignment is a sheaf. Thus, we obtain a functor
f! : Sh(X,R) → Sh(Y,R), which is checked to be left exact. In the special case
where Y is a point, f! is denoted by Γc. Note that Γc(F ) is simply the group of
global sections of F that have compact support.

Let Z ⊂ X be a closed subspace. Define the sections of F supported on Z as
follows. For an open set U ⊂ X, set

ΓZ(U,F ) = {s ∈ Γ(U,F ) | Supp(s) ⊂ Z}.
The assignment U → ΓZ(U,F ) defines as subsheaf of F denoted by ΓZ(F ). The
functor ΓZ : Sh(X,R)→ Sh(X,R) is left exact.

Let F and G be sheaves of R-modules on X. The tensor product F ⊗R G is
defined as the sheaf associated to the presheaf

U 7→ F (U)⊗R G (U).

The hom sheaf H om(F ,G ) is defined by

U 7→ HomSh(U,R)(F |U ,G |U ).

H om is a left exact bifunctor Sh(X,R)o×Sh(X,R)→ Sh(X,R). Likewise, ⊗R is
a right exact bifunctor Sh(X,R)×Sh(X,R)→ Sh(X,R). They satisfy the adjoint
property

Hom(F ⊗R G ,H ) = Hom(F ,H om(G ,H )).
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Since Sh(X,R) has enough injectives, one can construct the derived functors of
all the left exact functors. Also, the category Sh(X,R) satisfies the conditions at
the end of Appendix B, and hence we have the derived bifunctor

RH om : D−(X,R)×D+(X,R)→ D+(X,R).

The existence of the right derived functors of ⊗R depends on the behavior of R.
However, in the case that R is a field, the functor ⊗R is exact, and hence readily
descends to the derived category ⊗R : D+(X,R)×D+(X,R)→ D+(X,R).

Definition B.1. The derived functors RiΓ on D+(X,R) are called the hyperco-
homology functors and are denoted by Hi.

The derived functors RiΓc on D+(X,R) are called the hypercohomology functors
with compact support and are denoted by Hi

c.

For a sheaf F on X, we denote by Hi(X,F ) the hypercohomology Hi(F )
and by Hi

c(X,F ) the hypercohomology Hi
c(X,F ). Here F is seen as a complex

concentrated in degree 0.
The Grothendieck spectral sequence (Proposition A.11) applied to the identity

on D+(X,R) and Γ, gives the often used spectral sequence

(B.1) Hp(X,Hq(A �)) =⇒ Hp+q(A �).

Let f : X → Y be a continuous map of topological spaces. For a sheaf F on X,
we have Γ(X,F ) = Γ(Y, f∗F ). Hence, we have

(B.2) RΓ(X,−) = RΓ(Y,−) ◦Rf∗.

In particular, for the inclusion j : Z ↪→ X, we have

Hi(X, j∗F �) = Hi(Z,F �).

Analogous results hold for f! and Γc.

Definition B.2. A sheaf F on X is called soft if the natural map

Γ(X,F )→ Γ(Z,F )

is surjective for all closed subsets Z ⊂ X.

The soft sheaves are acyclic with respect to the functors Γ, Γc, f∗ and f!.

Proposition B.3. Let A� be a bounded above complex of soft sheaves. Let F be
one of the functors Γ, Γc, f∗ or f!. Then we have

RiF (A�) = Hi(FA�).

This follows either from the more general construction of the derived functors
given in (A.2) or from the degeneration of the spectral sequence

Eij1 = RjF (Ai) =⇒ Ri+jF (A�).

B.2. Poincaré-Verdier duality. The sheaf theoretic machinery lets us generalize
Poincaré duality for manifolds to a more general duality for finite dimensional
locally compact spaces. Before we state the theorem, let us define what dimension
means in this context.
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Definition B.4. ([Ive86, III,9.4]) Let X be a locally compact space. The dimension
of X, denoted by dimX, is the smallest integer n for which

Hn+1
c (X,F ) = 0,

for all sheaves F on X.

One can check that dim Rn = n and the (topological) dimension of a manifold
is the same as the one in Definition B.4.

Let X be an n-dimensional locally compact space and k a field. Denote by D+(k)
be the derived category of bounded below complexes of k-vector spaces5.

Theorem B.5 (Verdier duality I). ([Ive86, V.2]) Let X be a locally compact finite
dimensional space and k a field. The functor RΓc : D+(Sh(X, k))→ D+(k) admits
a right adjoint: There exists a complex DX in D+(Sh(X, k)) such that for all
complexes A � in D+(X, k), we have

HomD+(X,k)(A �,DX) = HomD+(k)(RΓc(A �), k).

The complex DX is called the dualizing complex. It can be represented by a
complex of injective sheaves concentrated in degrees −dimX to 0. For a complex
of sheaves A � in Db(X, k), the complex RH om(A �,DX) is called the Verdier dual
of A � and denoted by DXA �. As a consequence of Verdier duality, we have the
following.

Theorem B.6. Let A � be an object of Db(X, k). We have

Hi(DXA �) ∼= Hom(H−ic (A �), k).

The cohomology sheaves of DX can be readily described.

Proposition B.7. Let X be a finite dimensional locally compact space and DX

the dualizing complex on X. The cohomology sheaf Hp(DX) is the sheaf associated
to the presheaf

U 7→ Hom(Hp
c (U, kU ), k).

In particular, if X is an oriented n dimensional manifold, then DX
∼= kX [n].

Therefore, we have DXkX = kX [n]. Taking A � = kX in Theorem B.6, we obtain
the classical Poincaré duality:

Hn−i(X, k) = H−i(kX [n]) ∼= Hom(Hi
c(kX), k) = Hom(Hi

c(X, k), k).

Theorem B.5 can be generalized to a relative situation.

Theorem B.8 (Verdier duality II). Let f : X → Y be a continuous map of finite
dimensional locally compact spaces. Then Rf! : D+(X, k) → D+(Y, k) admits a
right adjoint f !. In other words, for an object F � of D+(X, k) and G � of D+(Y, k)
we have an isomorphism (natural in F �, G �):

HomD+(X,k)(F �, f !G �) ∼= HomD+(Y,k)(Rf!F
�,G �).

The upper shriek functor can be described easily in the case of the inclusion
j : Z ↪→ X of closed subset. In this case, we have j! = j∗RΓZ .

We close the section by describing a distinguished triangle in D+(Sh(X,R)) that
is used frequently. Let j : Z ↪→ X be the inclusion of a closed subset and F a sheaf

5This is just the homotopy category of bounded below complexes of k-vector spaces
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on X. Set U = X\Z and let i : U ↪→ X be the inclusion. We have an exact sequence
of sheaves on X:

(B.3) 0→ ΓZ(F )→ F → i∗i
∗F .

The map F → i∗i
∗F is surjective if F is an injective sheaf. Therefore, for a

complex F � in D+(X,R), we have a distinguished triangle

(B.4)

RΓZ(F �) F �

Ri∗i
∗F �

[1]

.

Using j∗RΓZ = j!, the distinguished triangle above can be written as

(B.5)

j∗j
!F � F �

Ri∗i
∗F �

[1]

.
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