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1. Introduction

Consider a polynomial equation, say

x4 + y4 = 31xy + 1,

or

xyz(x+ y + z) = 1.

What can we say about its solutions—values of the variables that satisfy the equation?
The answer, of course, depends on where we take the values. If we take the values in C,
the set of complex numbers, then there are infinitely many solutions. The same is true if we
take the values in R, the set of real numbers. Figure 1 shows the real solutions to the two
equations above. If we restrict to number systems that are more algebraically constrained,
like Q, the set of rational numbers, then the question becomes much more difficult.

A fascinating observed phenomenon is that the geometry of the space of solutions over
an algebraically unconstrained field like C influences the existence of solutions over an
algebraically constrained field like Q. For example, the complex solutions to the first
equation x4 + y4 = 31xy + 1 define a surface of genus 3—an example of a hyperbolic
surface. A famous theorem of Faltings, conjectured by Mordell, says that equations that
define a hyperbolic surface over C can only have finitely many rational solutions.

Figure 1. Real solutions of x4 + y4 = 31xy + 1 and xyz(x+ y + z) = 1
.
1



2 ANAND DEOPURKAR

Faltings theorem applies to equations whose complex solutions have one complex dimen-
sion. For equations that have solutions with dimension 2 or more, the precise connection
between the geometry and arithmetic is still conjectural. If the space of solutions over C
is hyperbolic in a certain sense (the precise condition is called “of general type”), then a
conjecture of Bombieri and Lang predicts that the rational solutions are sparse [7, § F.5.2].
For other kinds of solution spaces over C, our understanding of the rational points remains
limited. For example, the complex solutions to the second equation xyz(x + y + z) = 1
define a 4-manifold called a K3 surface. We still do not completely understand in complete
generality the rational solutions of equations that define a K3 surface.

The goal of this article is to demonstrate an example of the connection between geometry
and arithmetic sketched above. More precisely, we prove the following.

Theorem 1.1 (Darmon and Granville). Let p, q, r be positive integers and let A,B,C be
non-zero integers. If

1

p
+

1

q
+

1

r
< 1,

then the equation
Axp +Byq = Czr

has finitely many integral solutions (x, y, z) with gcd(x, y, z) = 1.

Since we have one equation in 3 variables, the set of complex solutions to Axp +Byq =
Czr has dimension two—it is a complex algebraic surface. However, the equation is quasi-
homogeneous. That is, it remains essentially unchanged if take any scalar t and multiply
x, y, and z by tqr, tpr, and tpq, respectively. The quotient of the solution space modulo this
symmetry is an algebraic curve. Theorem 1.1 is essentially proved by applying Faltings’
theorem to this quotient curve.

To handle the quotient curve above, we use a cover of the projective line P1 branched
at three points. The crucial fact we need is that such covers can be defined by equations
whose coefficients lie in a number field. There is a famous theorem due to Belyi that says
that the converse is also true.

Theorem 1.2 (Belyi). Let X be a compact Riemann surface. The following two conditions
are equivalent.

(1) There exists a finite map f : X → P1 that is unbranched on the complement of 3
points in P1.

(2) X is defined over Q, that is, by a system of equations whose coefficients are algebraic
over Q.

Although we do not strictly need the full strength of Theorem 1.2 for Theorem 1.1, we
give include a complete treatment because Theorem 1.2 is interesting in its own right.

The deepest result we use, without any indication of its proof, is Faltings’s theorem on
the finiteness of rational points of a hyperbolic curve. Modulo this result, everything should
be accessible to a reader with a foundational knowledge of algebraic geometry, on par with
Chapter 1 and 2 of Hartshorne’s book [6]. Some of the further remarks in Section 4 assume
more background.
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2. Belyi’s theorem

Belyi’s theorem is remarkable because it faithfully translates a purely topological condi-
tion into a purely algebraic condition.

Let us call covers f : X → P1 unbranched away from three points Belyi covers. Let us
analyse such covers using topology. First, recall that by a fractional linear transformation,
any three points on P1 may be taken to any other three points, say {0, 1,∞}. Thus, we
may assume without loss of generality, that f is unbranched outside {0, 1,∞}. Set

X◦ = X − f−1({0, 1,∞}).

Then X◦ → P1−{0, 1,∞} is a finite covering space. Conversely, by the Riemann existence
theorem, any finite covering space of P1−{0, 1,∞} may be completed to a branched cover
of f : X → P1. Covering spaces of P1 − {0, 1,∞} of degree d are defined by index d
subgroups of π1(P

1 − {0, 1,∞}), which is the free group on two generators.
More explicitly, let

U → P1 − {0, 1,∞}
be the universal cover. Then U is biholomorphic to the upper half plane. We can identify
the fundamental group of P1 − {0, 1,∞} with the congruence subgroup Γ(2) ⊂ PSL2(Z),
consisting of invertible integral matrices up to ±1 which reduce to the identity modulo 2.
The action of Γ(2) on U is by fractional linear transformations(

a b
c d

)
: z 7→ az + b

cz + d
,

and P1 − {0, 1,∞} is the quotient. We obtain connected covering spaces X◦ → P1 −
{0, 1,∞} of degree d as quotients U/G, where G ⊂ Γ(2) is a subgroup of index d. Particular
examples of such finite index subgroups G are the congruence subgroups G = Γ(2n),
consisting of matrices that reduce to the identity modulo 2n. The quotients U/Γ(2n) are
modular curves. These are particular examples of Riemann surfaces that can be expressed
as Belyi covers.

2.1. Belyi’s theorem: (1) =⇒ (2). Let us prove the “easy half” of Belyi’s theorem.
This follows from a general principle.

Proposition 2.1. Let M be a variety defined over Q, which has a finite number of C
points. Then every C-point of M is defined over a finite extension of Q.

Proof. Without loss of generality, assume that M is affine (otherwise, pass to an affine
cover). Say M = SpecA, where A is a finitely generated Q-algebra. Since M has finitely
many points over C, it follows that A ⊗Q C is a finite dimensional C vector space. But
then A is a finite dimensional Q vector space.

A C point of M is a homomorphism ϕ : A → C. Let K ⊂ C be the image of ϕ. Since A
is a finite dimensional Q vector space, so is K, and therefore Q → K is a finite extension.
The C-point defined by ϕ is defined over K. □
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Fix a positive integer d. For a field K of characteristic 0, let M(K) denote the set of
isomorphism classes of Belyi covers defined over K. It turns out that there is a natural
bijection between M(K) and the set of K-points of a space M , of finite type over Q. If
K = C, then our topological reformulation of Belyi covers shows that M(K) is finite. By
Proposition 2.1, it follows that every C-point of M is defined over a finite extension of Q.
Thanks to the natural isomorphism between K-points of M and elements of M(K), we
conclude that every Belyi cover is defined over a finite extension of Q.

The argument above is correct in spirit, but not in the details. The “space” M in-
voked above is not a variety, as required in Proposition 2.1, but a Deligne–Mumford stack.
Nevertheless, Proposition 2.1 remains true for Deligne–Mumford stacks.

We now give a direct proof of (1) =⇒ (2) that avoids stacks, but retains the spirit of
the proof above. In fact, let us prove the following more general statement.

Proposition 2.2. Fix a positive integer d. Let K be a number field and B ⊂ P1
K a divisor

defined over K. Let f : Y → P1
C be a finite cover of degree d whose branch divisor is B.

Then Y and f are defined over a finite extension of K.

Proof. It suffices to prove that Y and f are defined over Q. Let E = f∗OY . Then E is a
vector bundle on P1. All vector bundles on P1 are direct sums of line bundles, and hence
are defined over Q.

An algebra structure on E consists of OP1-linear maps m : E ⊗E → E and i : OP1 → E
such that with m as the multiplication and i as the structure map, E becomes a commuta-
tive and associative OP1-algebra. An algebra structure on E yields a finite flat morphism
ϕ : SpecE → P1. Associated to ϕ, we have the trace map tr : E → OP1 . We also have
the branch divisor br(m, i), defined as the determinant of the map E → E∨ adjoint to
tr ◦m : E ⊗ E → OP1 .

The conditions that (m, i) define an algebra structure are polynomial equations on the
affine space Hom(E ⊗E,E)×Hom(OP1 , E) The branch divisor br(m, i) is also defined by
a polynomial expression in (m, i). So there exists a scheme of finite type over Q whose
points represent algebra structures on E with branch divisor B. It has an open subscheme
M whose points represent E such that SpecE is non-singular.

The algebraic group G = Aut(E) acts onM . Every point ofM has a finite stabiliser, and
therefore all orbits are closed. Over C, using topology we know that up to isomorphism,
there are finitely many covers of degree d with branch divisor B. So M has finitely many
G-orbits, and hence each G-orbit is open and closed.

The given cover f : Y → P1
C represents a C-point of M . The connected component of

M containing this point must also contain a Q-point. This gives a cover of P1 defined over
Q isomorphic to f over C. □

2.2. Belyi’s theorem: (2) =⇒ (1). Let X be a projective algebraic curve defined over
Q. We must show that there exists a Belyi map f : X → P1. The existence of such a map
does not follow from any general principles. In fact, when it was discovered, it came as a
surprise to the experts.

We construct f in three steps, following [8].
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Step 1: Pick any f : X → P1. Since X is defined over Q, it can be expressed as a finite
cover of P1 over Q. Indeed, take any line bundle L on X defined over Q of sufficiently
high degree so that it has at least two linearly independent global sections, say F and G.
Then [F : G] defines a finite map X → P1.

Step 2: Modify f so that its branch points are rational. Take an f : X → P1 defined over
Q. Let S ⊂ P1(Q) be the set of branch points of f . Then f is unramified over P1 − S.

Proposition 2.3. There exists g : P1 → P1 defined over Q such that all the branch points
of g ◦ f : X → P1 are rational (contained in P1(Q)).

Proof. We prove a slightly stronger statement. Let a finite set S ⊂ P1(Q) be given. Then
there exists a finite map g : P1 → P1, defined over Q, such that the branch points of g and
the images under g of all points of S are all points of P1(Q). To deduce the proposition,
we apply this to the S which is the set of branch points of f .

To prove the stronger statement, we first assume that S is invariant under the Galois
group Gal(Q/Q) (if not, enlarge S to make it so). Let Sirr ⊂ S be the subset consisting
of the points of S that are not rational. We induct on the size of Sirr. The base case,
when the size is 0, is vacuous. Otherwise, consider the map p : P1 → P1 on A1 by the
polynomial

p(x) =
∏

s∈Sirr

(x− s).

Since Sirr is preserved by Gal(Q/Q), the polynomial p has rational coefficients. By con-
struction, it maps Sirr to 0. Let R ⊂ A1(Q) be the set of roots of p′(x). Then the branch
points of p : P1 → P1 that are not rational are contained in p(R). By construction, the
size of R, and hence the size of p(R) is less that the size of Sirr. Also, R, and hence p(R),
is preserved by Gal(Q/Q). We now proceed by induction. □

Arrange the branch set to be {0, 1,∞}. By the preceding two steps, we have f : X → P1

whose branch set is contained in P1(Q).

Proposition 2.4. There exists a finite map g : P1 → P1, defined over Q, such that the
branch points of g ◦ f : X → P1 are contained in {0, 1,∞}.

Proof. Again, we prove something slightly stronger. Given any finite set S ⊂ P1(Q), we
construct a finite map g : P1 → P1, defined over Q, such that the union of g(S) and the
branch set of g is contained in {0, 1,∞}.

The magic ingredient is the fuction q : P1 → P1 defined by the polynomial

q(x) = c · xm(1− x)n,

where m,n are positive integers and c ∈ Q is a constant. The branch points of q are
{0, 1,∞, m

m+n}. The map q sends 0 and 1 to 0 and ∞ to ∞. By choosing an appropriate
c, we can ensure that it sends m

m+n to 1. Then the branch points of q lie in 0, 1,∞.
Now, we may assume that S contains at least 3 points. After applying a fractional linear

transformation, we may assume that S contains {0, 1,∞}. Write S = {0, 1,∞}∪ T , where
T is disjoint from {0, 1,∞}. We induct on the size of T . If T is empty, there is nothing
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to prove. Otherwise, pick a t ∈ T . Using a combination of z 7→ 1 − z and z 7→ 1/z, both
of which preserve the triplet {0, 1,∞}, we may assume that t ∈ Q satisfies 0 < t < 1.
Then t = m

m+n for some positive integers m,n. Let q : P1 → P1 be defined as above. Set

S′ = q(T )∪ {0, 1,∞}. Then S′ = {0, 1,∞}∪ T ′, where T ′ ⊂ q(T −{t}) has fewer elements
than T . By the inductive hypothesis, there is a g : P1 → P1, defined over Q, such that the
union of g(q(S′)) and the branch set of g is contained in {0, 1,∞}. Then f = g ◦ q achieves
the desired property. □

3. Fermat like equations

Recall that we have positive integers p,q, r and integers A, B, and C. We want to prove
that the equation

(1) Axp +Byq = Czr

has finitely many integer solutions (x, y, z) with gcd(x, y, z) = 1. We call tuples of integers
with no common divisor primitive. So we want to prove that (1) has finitely many primitive
integer solutions.

We first describe the main idea and then dive into the detials.

3.1. Main idea. Let X be a projective algebraic curve defined over Z. Suppose XC is
a smooth algebraic curve, that is, a compact a Riemann surface. Whether X has finitely
many or infinitely many rational solutions depends on the genus of XC. If the genus of XC

is zero, then X has infinitely many points, perhaps not over Q, but certainly over some
finite extension K/Q. (To see why a finite extension is necessary, consider the curve defined
by x2+y2+z2 = 0 in P2. To see why a finite extension is sufficient, see Section 4.1.) If the
genus of XC is one, then the same holds—X has infinitely many points over some finite
extension K/Q (but this is much less obvious than the genus zero case; see Section 4.2).
But if the genus of XC is 2 or more, then we have the following.

Theorem 3.1 (Faltings’ theorem, Mordell’s conjecture). Let X be a smooth projective
curve over a number field K of genus ≥ 2. Then X has finitely many K-points.

Let Z ⊂ A3 be the the algebraic variety defined by

Axp +Byq = Czr,

excluding the point (0, 0, 0). Note that Z is a surface, not a curve, and hence Faltings’
theorem does not apply directly. For simplicity, assume that p, q, r are pairwise relatively
prime. The surface Z admits an action of the multiplicative group Gm given by

t · (x, y, z) 7→ (tqr, tpr, tpq).

The quotient of Z by Gm turns out to be the projective line P1. But if the quotient is P1,
then Faltings’ theorem does not apply!

On closer inspection, we see that the “correct” quotient is not P1, but something slightly
different. The action of Gm on Z is not free. It has non-trivial stabilisers on precisely
three orbits: the orbit corresponding to x = 0, where the stabiliser group is µp, the orbit
corresponding to y = 0, where the stabiliser group is µq, and the orbit corresponding to
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z = 0, where the stabiliser group is µr. A more refined quotient of Z by Gm that takes
into account the non-freeness of the action exists in the category of orbifolds, or Deligne–
Mumford stacks. The Deligne–Mumford stack quotient P agrees with the usual quotient
P1 at all points except the three points, but not at the three points. But at the three
points, it “remembers” the non-trivial stabilisers.

A proper introduction to Deligne–Mumford stacks will lead us too far astray, so we stop
at the informal picture. Let KP be the canonical bundle of P . It turns out that

degKP = 1−
(
1

p
+

1

q
+

1

r

)
.

If the quantity in parentheses is less than 1, then the degree of the canonical bundle is
positive, just like an algebraic curve of genus ≥ 2. As a result, we would like say that by
Faltings’ theorem (more precisely, its analogue for orbifold curves), P has finitely many
rational points, and hence finitely many integral points.

There is an additional wrinkle that we must address. For smooth proper curves, there
is no distinction between rational points and integral points. For smooth proper orbifold
curves, however, there is a distinction. It is not true that a smooth, proper, orbifold curve
with negative canonical bundle has finitely many rational points; see Section 4.3 for an
example. Nevertheless, it is true that such a curve has finitely many integral points. See
Section 4.4 for the sketch of proof.

3.2. Proof of Theorem 1.1. We now give a self-contained proof of Theorem 1.1, without
appealing to orbifolds. The proof follows Darmon and Granville [3].

We use a general principle encoded in the following lemma. First, let us set up some
notation. For a number field K, denote by OK ⊂ K the ring of integers. Given a K-scheme
X, separated and of finite type, a model over OK is an OK-scheme X , separated and of
finite type, such that XK = X.

Lemma 3.2. Let K be a number field and X → W a finite étale morphism of separated
K-schemes of finite type. Fix an OK-model W of W . There exists a field extension K ⊂ L
such that every OK-point of W is the image of an L-point of X.

Proof. Choose an OK-model X of X with a finite map X → W. Since XK → WK is étale,
there exists a finite set of primes S of OK such that

X ⊗OK [S−1] → W ⊗OK [S−1]

is étale. Given p : SpecOK → W, the fiber product SpecOK ×W X is the spectrum of
a finite OK-algebra A. Observe that A ⊗K is a product of extensions of K of degree at
most d = deg(X → W ), and each extension in this product is unramified over S. There
are finitely many such extensions. We take L to be their compositum. □

For now, we work overC. Consider the vanishing locus L of the homogeneous polynomial
X + Y − Z in P2. The map

[X : Y : Z] 7→ [X : Z]
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gives an isomorphism L → P1. Let us represent the point [x : z] ∈ P1 by the value x/z,
including ∞. Then our isomorphism sends the points [0 : 1 : 1], [1 : 0 : 1], and [1 : −1 : 0]
to 0, 1, and ∞, respectively. From now on, we identify L with P1 by this isomorphism.

Recall that Z ⊂ A3−{0} is the algebraic variety defined by Axp+Byq = Czr. We have
a map π : Z → P1 given by (x, y, z) 7→ (Axp : Byq : Czr). We have an action of Gm on Z
defined so that t ∈ Gm acts by

t : (x, y, z) 7→ (xtqr, ytpr, ztpq).

Observe that π is invariant with respect to this action. That is, we have

π(t · (x, y, z)) = π(x, y, z).

Also observe that π is a smooth map over P1 − {0, 1,∞}.
Let f : Y → P1 be a branched cover of connected Riemann surfaces satisfying the

following properties:

(1) f is unramified over the complement of {0, 1,∞};
(2) the monodromy of f around 0, 1, and ∞ is a product of disjoint p-cycles, disjoint

q-cycles, and disjoint r-cycles, respectively.

We say that such a cover has signature (p, q, r). It is not obvious whether such a cover
exists. Indeed, it exists if and only if the equation αβγ = 1 has a solution for α, β, γ in
the symmetric group Sd where α, β, γ are products of disjoint p, q, r-cycles, respectively. It
can be proved that this is possible for all (p, q, r) with p, q, r > 1; see Section 4.5. By the
Riemann–Hurwitz formula, it follows that Y has positive genus.

Let W be the normalisation of the fiber product Z×P1 Y . Also denote by π the induced
map π : W → Y . The Gm action on Z induces a Gm action on W such that the map
π : W → Y is Gm-invariant.

Lemma 3.3. The map W → Z is finite and étale.

Proof. Let U = P1 − {0, 1,∞} and V = f−1(U) ⊂ Y . Then, W |V → V is the pull-back of
the smooth map Z|U → U . In particular, W |V is non-singular. Also, the map W |V → Z|U
is the pull-back of the étale map V → U . So W |V → Z|U is étale.

We need to check the statement in a neighborhood of a point in the complement of V .
Since we are working over C, we may rescale our variables so that A = B = C = 1; this
will make the equations simpler. Let y ∈ Y − V lie over 0 ∈ P1; the case of points lying
over 1 and ∞ is similar. We work in the analytic topology. Using u as a local coordinate
around 0 for P1, the map Z → P1 is given by (x, y, z) 7→ u = xp/zr. So we can write Z as

uzr + yq = zr and uzr = xp.

In a suitable local coordinate v around y for Y , the map Y → P1 is given by u = vp. Then
the fiber product Z ×P1 Y is defined by

vpzr + yq = zr and vpzr = xp.

Observe that w = x/v lies in the integral closure, and adjoining it leads to the equations

vpzr + yq = zr and zr = wp.
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It is easy to check that these equations define a non-singular space, and hence must be the
equations of the normalisation.

The normalisation map W → Z ×P1 Y and the map Z ×P1 Y → Z are both finite, so
W → Z is finite. Since both W and Z are non-singular, W → Z is étale if the pre-image
of every point of Z is a finite union of reduced points of W . In coordinates, W → Z is
given by

(v, w, y, z) 7→ (x, y, z) = (wv, y, z)

We already know that W → Z is étale in the complement of u = 0. The points of Z over
u = 0 are (0, y0, z0) with yq0 = zr0. The pre-image of such a point in W is defined by

wv = 0, y = y0, z = z0, wp = zr0,

which is a union of p reduced points. □

Having discussed the geometry over C, we now pay closer attention to the fields of
definition. By Belyi’s theorem (Theorem 1.2), f : Y → P1 is defined over a number field
K. (This is the only place where we use Theorem 1.2, and observe that this is the “easy”
direction of the theorem). Then W is also defined over K. We have the following diagram
of varieties over K

W Z

Y.

étale

ϕ

π Gm-invariant

Denote by 0 the 0-section of A3
Z → SpecZ. Let Z ⊂ A3

Z − {0} be the scheme defined by

Axp +Byq = Czr.

Our goal is to prove that Z has finitely many Z-points. By Lemma 3.2, there exists a
number field L such that every Z-point of Z is the image of an L-point of W . Although W
may have infinitely many L-points, this infinitude is essentially due to the Gm-action. The
curve Y is of genus greater than 1, so by Faltings’ theorem, has finitely many L points.
The finiteness of Y (L) implies the finiteness of Z(Z), as we now show.

First of all, consider two Z-points of Z, say (x1, y1, z1) and (x2, y2, z2). Considered as
Q-points of Z, they lie in the same Gm(Q)-orbit if and only if x1 = ±x2 and y1 = ±y2 and
z1 = ±z2. So it suffices to show that, up to the action of Gm(Q), we have finitely many
integer points on Z. Let n be the maximum number of Gm orbits in the geometric fibers
of W → Y . Then the maximum number of L-points of W such that no two lie in the same
Gm(Q)-orbit is n|Y (L)|. But every Z-point of Z is the image of an L-point of W . So, up
to the action of Gm(Q), we have at most n|Y (L)| integer points on Z.

4. Further remarks

4.1. Rational points on curves of genus 0. LetX be a smooth geometrically connected
curve of genus 0 over a number field K. Then XC is isomorphic to P1. However, it is
possible that X is not isomorphic to P1 over K. For example, the curve defined by the
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homogeneous equation X2 + Y 2 +Z2 = 0 is isomorphic to P1 over C but it does not even
have a point defined over Q, and hence cannot be isomorphic to P1 over Q.

Nevertheless, the following statements are equivalent:

(1) X has a point over K,
(2) X is isomorphic to P1 over K,
(3) X has infinitely many points over K.

Indeed, the only non-trivial assertion is that if X has a point over K, then X ∼= P1 over
K. Let p ∈ X(K). Consider the line bundle L = OX(p), defined over K. Observe that
LC

∼= O(1). So H0(X,L) is a two dimensional vector space. Its two sections yield an
isomorphism X → P1 over K.

Even if X has no K points, there exist degree 2 extensions K ⊂ L such that X has L
points (and hence XL

∼= P1
L). To see this, consider M = K∨

X , the dual of the sheaf of
Kähler differentials on X. Then MC

∼= O(2), and hence H0(X,M) is 3-dimensional vector
space. The zero locus of a global section of M is a subscheme of X of length 2. Being of
length 2, this subscheme necessarily has a point over a quadratic extension of K.

4.2. Rational points on curves of genus 1. LetX be a smooth geometrically connected
curve of genus 1 over a number field K. Then X(K) is an abelian group. If it contains a
point of infinite order, then it must be infinite. For any given n, there are finitely many
points on X of order n. So, there are countably many points finite order on X. Over an
uncountable field, we readily conclude that X must have a point of infinite order. Over a
countable field, however, this is much less clear. It is not obvious, for example, that X has
a point of infinite order over Q, and therefore a point of infinite order over any number
field. If it does not, then for any number field K, the group X(K) will be finitely generated
and torsion, and hence finite.

It turns out that X always has a point over Q of infinite order. As a result, there exists
an extension L of K such that X(L) is infinite. See, for example, [5, Theorem 10.1].

4.3. A hyperbolic orbifold curve with infinitely many rational points. Let Z ⊂
A3 − {0} be defined by x2 + y3 = z7. Let Gm act on Z by t · (x, y, z) 7→ (t15x, t10y, t6z),
and let X = [Z/Gm] be the stacky quotient. Then the canonical bundle of X has degree
1− 1/2− 1/3− 1/7 > 0, so X is hyperbolic. Nevertheless, we claim that X has infinitely
many Q-points.

For any x ∈ Q and y ∈ Q, consider w = x2 + y3. We want to make w a perfect seventh
power. For a prime p, let valp(w) be the p-adic valuation of w. Then w is a perfect fifth
power if and only if for all p, the integer valp(w) is divisible by 7. For all but finitely many
p, we have valp(w) = 0. If p is such that valp(w) ̸= 0, then let n ∈ Z be divisible by 6

and congruent to − valp(w) modulo 7. Replace x and y by pn/2x and pn/3y. Repeat for all
primes such that valp(w) is non-zero. The result is a Q-point of Z and hence a Q-point of
X. In this way, we can produce infinitely many Q-points of X.
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4.4. Hyperbolic orbifold curves have finitely many integral points. Let K be a
number field with ring of integers OK . Let X be a smooth proper 1-dimensional Deligne–
Mumford stack over K with trivial generic stabiliser such that degKX > 0. Let X be a
model of X over OK . Then X has finitely many OK-points.

The proof is similar to the proof sketched in Section 3.2. There exists a Riemann surface
Y with a finite étale map Y → XC (see [1]). This Y must be defined over a finite extension
of K. By an argument similar to Lemma 3.2, there exists a finite extension K ⊂ L such
that every OK-point of X is the image of an L point of Y . Since degKX > 0 and Y → XC
is étale, we have degKY > 0. By Faltings’ theorem, Y has finitely many L points.

4.5. Triangle groups and Fenchel’s conjecture. Given any integers p, q, r all greater
than 1, there exists an n and permutations α, β, γ ∈ Sn such that A has order p, and B
has order q, and C has order r, with ABC = 1. This is proved in [4] (also see [2] for a
correction in the proof). Re-embed Sn in Sn! as in the proof of Cayley’s theorem—g maps
to the permutation given by right-multiplication by g. Let α, β, γ be images of A,B,C,
respectively. Then α, β, γ are products of disjoint p, q, r cycles, respectively, and αβγ = 1.
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