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Dedicated to our teacher, Joe Harris, on the occasion of his 70th birthday.

Abstract. Using equivariant geometry, we find a universal formula that com-

putes the number of times a general cubic surface arises in a family. As sample

applications, we show that the PGL4 orbit closure of a generic cubic surface has

degree 96120, and that a general cubic surface arises 42120 times as a hyperplane

section of a general cubic 3-fold.

1. Introduction

Cubic surfaces have fascinated geometers for centuries. Ever since Cayley and

Salmon discovered the 27 lines, it has become something of a tradition to revisit the

geometry of cubic surfaces using increasingly sophisticated tools and uncover more

and more. Our contribution to this story is a universal answer to a varied collection

of enumerative questions about cubic surfaces.

The isomorphism classes of cubic surfaces form a 4-dimensional moduli space.

Therefore, we expect that in a 4-dimensional family a general isomorphism class

should appear finitely many times. We offer a method for determining this number

of occurrences. For example, one can ask: How many times does a general cubic

surface appear, up to isomorphism, as

(A) a member of a general 4-dimensional linear system of cubic surfaces in P3?

(B) a hyperplane section of a general cubic threefold in P4?

(C) a blow up of 6 points in P2 varying in a general 4-dimensional linear system

on a cubic curve?

Our universal formula answers all questions of this kind – the answers to these

specific questions are 96120, 42120, and 25920, respectively.

To state our formula, we must fix a precise moduli space of cubics. Let us denote

by M the GIT quotient of the set of semistable cubic surfaces in P3 by the action

of PGL4. By a family of cubic surfaces, we mean a flat, proper morphism whose

geometric fibers are isomorphic to cubic surfaces in P3.
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Theorem 1.0.1. Let π : X−→B be a good family of cubic surfaces over a proper

base B. Let V denote the rank 4 vector bundle π∗ (ω
−1
π ), and let vi = ci (V) be its

Chern classes. Assume that a general fiber of π is semistable, and let µ : B 99KM be

the induced moduli map. Then,

deg µ = 1080

∫
B

(
v21v2 − v1v3 + 9v4

)
. (1.1)

Definition 2.4.1 gives the precise meaning of a good family. This notion includes

any family whose fibers are GIT-semistable or have a finite automorphism group.

1.1. Degree of the orbit closure. Question (A) in § 1 fits in a broader ongoing

story. Consider a hypersurface X in a projective space PV cut out by a homogeneous

polynomial F ∈ Symd V ∨. In P Symd V ∨, consider the orbit of [F ] under the action

of GL(V ), and let Orb([F ]) be its closure. What is the degree of Orb([F ])? To our

knowledge, Enriques and Fano in 1897 were the first to address this question. They

computed the degree for simple binary forms of all degrees [16]. In a series of seminal

papers [3–5], Aluffi and Faber computed the degree of the orbit closure for all binary

and ternary forms, finishing off the cases of points in P1 and curves in P2. The

frontier case is that of cubic surfaces in P3. Theorem 1.0.1 applied to Question (A)

settles it for general cubic surfaces—the degree of the orbit closure of a general cubic

surface is 96120.

Question (A) appears as one of the “twenty-seven questions about the cubic

surface” by Ranestad and Sturmfels [24]. In 2019, Brustenga i Moncuśı, Timme, and

Weinstein gave a “numerical proof” for the number 96120. In 2020, Cazzador and

Skauli outlined an approach towards a proof by following the techniques of Aluffi and

Faber [10,12]. Our approach is completely different and novel, and the underlying

change in perspective has the potential to solve other enumerative problems of a

similar nature.

1.2. The equivariant class of the orbit closure. The key idea is to consider not

just the degree of an orbit closure, but rather the class of the orbit closure in the

equivariant Chow ring A•
GLV (Sym

d V ∨). This equivariant class contains much more

information than the degree of the orbit, yet, counter-intuitively, it is sometimes

easier to find.
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Let us explain how the equivariant class yields the degree. We have natural maps

A•
GLV (Sym

d V ∨) A•
GLV (Sym

d V ∨ \ {0})⊗Q

A•
PGLV (P Symd V ∨)⊗Q A•(P Symd V ∨)⊗Q.

Under the composite map, the class of Orb(F ) ∈ A•
GLV (Sym

d V ∨) is mapped to the

class of Orb([F ]) ∈ A•(P Symd V ∨)⊗Q, which is simply the degree of Orb([F ]).

So, what makes it possible to find the equivariant class? The ring A•
GLV (Sym

d V ∨)

is the polynomial ring in variables c1, . . . , cr, where r = dimV , and the variable

ci has degree i. The equivariant class of Orb(F ) lies in the graded component

Am(Symd V ∨), where m = dimSymd V ∨−dimGLV . As a result, it can be expressed

as a Z-linear combination of monomials in ci of total degree m. We can now use the

method of undetermined coefficients. With quite some effort, we construct maps

B−→[Symd V ∨/GLV ] where the pull-back of Orb(F ) as well as the classes ci can

be explicitly computed. Every such family gives a linear relationship between the

coefficients in the expression of Orb(F ), which are to be determined. With sufficiently

many families, we get enough information to find all the coefficients. For cubic

surfaces, we construct more than enough 4-dimensional test families—there are 5

coefficients to be determined and we construct 8 families. The redundancy serves as

extra confirmation of the end result.

Theorem 1.2.1. Let V be a 4-dimensional vector space and let F be a general

element of Sym3 V ∨. The equivariant class of the GL(V )-orbit closure Orb(F ) of F

in A•
GLV (Sym

3 V ∨) is given by

[OrbF ] = 1080(24c41 + 12c21c2 − 6c1c3 + 9c4),

where the ci = ci(V ) are the Chern classes of the tautological vector bundle V .

The formula in Theorem 1.2.1 appears to be different from the one in Theorem 1.0.1,

but they are related by a simple change of variables; see § 4.2.

The technical heart of the paper is in the construction of demonstrably good

families of cubic surfaces on which we can both calculate deg µ and the Chern classes

ci. Because these test families are 4-dimensional, we encounter significant geometric

challenges with some of the constructions. Just to give a teaser for our test families,

we list their bases B here: P4, M0,7, a Hassett-weighted variant of M0,7, a blow up

of the Hilbert scheme of two points on a quintic del Pezzo surface, and last but not

least, the stack BGm. The curious reader can skip to § 3 for detailed constructions.
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1.3. The orbit closure problem. To apply the method of undetermined coefficients,

we have to ensure that no fibers of our family lie in the orbit closure of generic cubic

surfaces. What is required is to prove statements of the form: “This particular cubic

surface is not the flat limit of an isotrivial family of generic cubic surfaces.” We

develop a range of tools to address problems of this kind. To preserve the flow of

the paper, and because these techniques are of independent interest, we assemble

these tools in a separate section (§ 5).

1.4. Further remarks. The formula in Theorem 1.0.1 has some curious conse-

quences.

Corollary 1.4.1. If π : X−→B is a good family of cubic surfaces parametrized by a

4 dimensional proper variety B, then∫
B

v21v2 − v1v3 + 9v4 ≥ 0

with equality holding if and only if a general cubic surface does not arise as a fiber.

Corollary 1.4.2. Let π : X−→B be a good family of cubic surfaces parametrized by

a 4 dimensional proper variety B. Assume that a general fiber of π is smooth and

the induced map µ : B 99KM is dominant. Then the degree of µ is divisible by 1080.

In particular, a moduli scheme of cubic surfaces that carries a good universal

family must cover M by a map of degree divisible by 1080. Interestingly, the number

1080 is also the least common multiple of the orders of the finite groups that arise

as automorphism groups of cubic surfaces. We do not know if 1080 is the minimal

positive integer realizable as deg µ as we vary across all good families of cubic surfaces.

1.5. Future directions. Theorem 1.2.1, and more importantly the method intro-

duced in its proof, promises more enumerative vistas of exploration. Each particular

cubic surface F = 0 registers its own equivariant orbit class [Orb(F )]. The methods

developed in this paper have the potential to provide a complete understanding

of how this class changes according to special changes in the geometry of F = 0,

e.g. acquiring singularities or Eckardt points. We intend to conduct this detailed

investigation in the future.

In a different direction, there should be analogous formulas counting Del Pezzo

surfaces of degrees 1, 2 and 4. We fully expect our methods to establish analogous

counting formulas in these settings, with the case of degree 1 del Pezzo’s being most

challenging.
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Finally, we add the equivariant version of a comment of Aluffi and Faber [3]: this

paper computes the equivariant orbit class of a general vector in one representation

of one group. A whole lot of work still needs to be done if we want a more general

understanding, though the new equivariant flexibility will allow for further progress.

1.6. Organization. In § 2, we recall standard facts about cubic surfaces and their

moduli. We also review the basic notions of equivariant Chow theory. The main

new ingredient in this section is the definition of a good family (Definition 2.4.1).

In § 3, we construct a number of test families of cubic surfaces and evaluate the

linear relation on the coefficients of the class of the orbit closure given by each family.

For each family, we first give an informal description. The first four families, taken

up in the first four subsections, use variations on the theme of blowing up 6 points

in P2. The next four families, taken up in the fifth subsection, are isotrivial; their

base space is the stack BGm. Altogether, we produce 8 families for 5 undetermined

coefficients. In § 4, we tie together the enumerative results and obtain the main

theorems stated in the introduction. The last section, § 5 is devoted to developing

methods to solve cases of the orbit closure problem.

1.7. Acknowledgements. We thank Radu Laza, who asked Question (B) to the

first two authors during a meeting at Oberwolfach in the summer of 2016. We thank

Hunter Spink for important discussions during the infancy of the project. We thank

Paolo Aluffi for quickly providing an enumerative reference on cuspidal cubic curves

and Jarod Alper for discussions on equivariant geometry. Anand D. thanks the

Australian Research Council for the grant DE180101360 that supported a part of

this project.

2. Preliminaries

In this chapter, we introduce the notion of a good family of cubic surfaces (Defi-

nition 2.4.1) and provide a tool (Proposition 2.5.5) to verify that a family is good.

Before we do so, we first establish notation and recall some facts about cubic surfaces

and their moduli.

2.1. Notation and conventions. Fix an algebraically closed field k of characteristic

zero. In this paper, a ‘scheme’ means ‘a scheme of finite type over k’ and a ‘point’

means a ‘k-point’, unless explicitly stated otherwise. We do not distinguish between

a vector bundle and the associated locally free sheaf of its sections.

Given a map of schemes π : X−→Y and a point y ∈ Y , we let Xy denote the

fiber scheme π−1(y). If π is proper and Gorenstein, we write ωX/Y or ωπ for the



6 ANAND DEOPURKAR, ANAND PATEL & DENNIS TSENG

dualizing line bundle. If X and Y are themselves Gorenstein and π is flat, then we

have ωX/Y = ωX ⊗ π∗ω−1
Y .

For a closed subscheme Y ⊂ X, the notation IY ⊂ OX denotes the ideal sheaf

of Y ⊂ X and if Y and X are smooth, then NY/X denotes the normal bundle of

Y ⊂ X.

Given a vector bundle W, we let PW be its projectivization. Contrary to

Grothendieck’s convention, PW parametrizes 1-dimensional subspaces in the fibers

of W. In other words, we set

PW = Proj Sym(W∨).

As a result, PW comes equipped with a line bundle O(1) whose push-forward to the

base is W∨.

Let Q ⊂ PV be a non-degenerate quadric. The bilinear form associated to Q gives

an isomorphism of PV with the dual projective space PV ∨. Given a point p ∈ PV ,

we denote by PolarQ(p) ⊂ PV the hyperplane dual to p with respect to Q. Similarly,

given a hyperplane H ⊂ PV , we denote by PoleQ(H) ∈ PV the point dual to H

with respect to Q. In almost all cases, we use these constructions when PV is P2.

2.2. Moduli of cubic surfaces. Let π : X−→B be a family of cubic surfaces. That

is, let π be a flat, proper morphism whose fibers are isomorphic to cubic hypersurfaces

in P3. Since π is flat and its fibers are Gorenstein, it is a Gorenstein morphism, and

hence admits a dualizing line bundle ωπ. By the adjunction formula, it follows that

the restriction of ω−1
π to every fiber is isomorphic to the restriction of O(1) with

respect to an embedding of the fiber as a cubic hypersurface in P3. By standard

theorems about cohomology and base-change, it follows that Riπ∗ (ω
−1
π ) vanishes for

i > 0, and is a vector bundle for i = 0. Set

V = π∗
(
ω−1
π

)
.

The natural map

π∗V−→ω−1
π

yields a closed embedding

X ⊂ PV∨. (2.1)

We know that

ωPV∨/B = O(−4)⊗ detV∨,

and hence, by adjunction,

ωX/B = O(−4)⊗ O(X)⊗ detV∨|X.
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By construction, we also have

ωX/B = O(−1)|X,

and hence we obtain that

O(X) = O(3)⊗ detV. (2.2)

In other words, X ⊂ PV∨ is the zero locus of a section of the line bundle O(3)⊗detV∨.

Consider the category C fibered in groupoids over the category of schemes whose

objects over a scheme B are families of cubic surfaces π : X−→B, and whose mor-

phisms are pull-back diagrams. Consider the category M fibered in groupoids over

the category of schemes whose objects over a scheme B are vector bundles V over

B of rank 4 along with a nowhere zero section ξ of Sym3 V∨ ⊗ detV, and whose

morphisms are pull-back diagrams. Let V be a k-vector space of dimension 4. Note

that M is simply the quotient stack

M =
[
Sym3 V ∨ ⊗ detV \ {0}/GLV

]
.

Proposition 2.2.1. The categories C and M are equivalent as categories fibered

over Schemesk.

Proof. Let π : X−→B be a family of cubic surfaces, and set V = π∗ (ω
−1
π ). Consider

the relative canonical embedding X ⊂ PV∨. In this embedding, X is cut out by a

section of O(3)⊗ detV on PV∨, or equivalently, by a section of ξ of Sym3 V ∨ ⊗ detV

on B. Since π is flat, ξ is nowhere zero on B. We thus have a natural transformation

from C to M .

To go from M to C , given a rank 4 bundle V and a nowhere section ξ of

Sym3 V∨ ⊗ detV, define X ⊂ PV∨ as the zero-locus of the corresponding section of

O(3)⊗ detV. □

We call M the moduli stack of cubic surfaces. Sometimes, it will be convenient to

add in the zero section and consider the bigger stack

M ∗ =
[
Sym3 V ∨ ⊗ detV/GLV

]
.

Note that the diagonal Gm ⊂ GLV acts by weight −1 on Sym3 V ∨ ⊗ detV . In

particular, its action is free. Therefore, the stack M is isomorphic to the quotient

stack

M =
[
P Sym3 V ∨/PGLV

]
.
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We let M denote the GIT quotient of P Sym3 V ∨ by the action of PGLV . The

semistable and stable locus of the action were computed by Mumford; see [22, Chapter

4, §2] or [23, 1.14]. The stable locus consists of surfaces with at worst A1 singularities,

and the semistable locus includes surfaces with at worst A2 singularities. The

ring of invariants was computed much earlier, in the 1860s, by Salmon [27] and

Clebsch [13, 14], and later by Beklemishev [7] using more modern methods. The

invariant ring is freely generated by polynomials of degree 8, 16, 24, 32, and 40, and

as a result, the coarse moduli space M is isomorphic to the weighted projective space

P(1, 2, 3, 4, 5).

We recall perhaps the most famous fact about cubic surfaces, discovered in 1849.

Theorem 2.2.2 (Cayley [11], Salmon [26]). Every smooth cubic surface contains

exactly 27 lines.

As we know, the 27 lines are key to understanding geometry of the cubic surface.

Each line is a (−1)-curve, and hence contractible by Castelnuovo’s theorem. A set

of lines that are pairwise skew is particularly important, because they can be blown

down simultaneously. The maximum number of such lines is 6, and they allow us to

realize the cubic surface as a blow up of P2 at 6 points.

Following Schläfli [28], we call an ordered tuple of pairwise disjoint six lines

(ℓ1, . . . , ℓ6) on a cubic surface a six. A double six is an unordered pair of sixes

{(ℓ1, . . . , ℓ6), (ℓ′1, . . . , ℓ′6)} such that

– ℓi and ℓ
′
i are disjoint for all i, and

– ℓi and ℓ
′
j meet at a point whenever i ̸= j.

Theorem 2.2.3 (Schläfli [28]). Each six on a smooth cubic surface has a unique

extension to a double-six, and every smooth cubic surface contains 36 double-sixes.

Thus, each smooth cubic surface admits 72 distinct maps to P2, up to automor-

phisms of P2, each of which blows down 6 lines.

The sixes on a cubic surface allow us to relate M to a more familiar moduli space.

Let M† denote the moduli space of pairs (S, ℓ), where S is a smooth cubic surface

and ℓ is a six on S. By Theorem 2.2.3, the natural forgetful map

σ : M†−→M

(S, ℓ) 7→ S

is dominant and quasi-finite of degree

deg σ = 72× 6! = 51840.
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On the other hand, the space M† is isomorphic to the configuration space of 6 ordered

points on P2

M† ∼−→
(
(P2)6 \Diagonals

)
/Aut(P2).

The isomorphism sends (S, (ℓi)) to (P2, (pi)), where β : S−→P2 blows down the lines

ℓi and pi = β(ℓi).

2.3. Equivariant Chow groups and equivariant orbits. The standard reference

for equivariant Chow theory is [15]. We recall a few relevant notions, mostly to set

notation.

Given an algebraic space X with an action of an algebraic group G, denote by

Ai
G(X) the G-equivariant Chow group of codimension i cycles. Given a G-invariant

subspace Y ⊂ X of pure codimension i, denote by [Y ] ∈ Ai
G(X) the fundamental

class of Y . If Y ⊂ X has codimension c and c > i, then the restriction map

Ai
G(X)−→Ai

G(X \ Y )

is an isomorphism; in general, it is surjective with kernel is Ai−c
G (Y ). A G-linearized

vector bundle V on X admits equivariant Chern classes ci(V ) ∈ Ai
G(X). The

equivariant Chow groups are homotopy invariant: if Y−→X is a G-equivariant

vector bundle, then the pull-back map Ai
G(X)−→Ai

G(Y ) is an isomorphism. If X

is smooth, then
⊕

iA
i
G(X) = A∗

G(X) is a graded ring, where the multiplication is

given by the intersection product.

The G-equivariant Chow groups of X are the same as the Chow groups of the

quotient stack [X/G]:

Ai ([X/G]) = Ai
G(X).

The equivariant Chow ring of a point with the action of G = GLn is the polynomial

ring

AGLn(•) = Z[c1, . . . , cn],

where ci has degree i and can be identified with the i-th Chern class of the stan-

dard n-dimensional representation of GLn. By homotopy invariance, for any GLn

representation W , we have

AGLn(W ) = Z[c1, . . . , cn].

If the group under consideration is GLV , where V is an n-dimensional vector space,

then we write vi for the i-th Chern class of the tautological representation V . Then

we have

AGLV (W ) = Z[v1, . . . , vn].
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Let V be a 4-dimensional vector space. Consider the GLV representation W =

Sym3 V ∨ ⊗ detV . By Proposition 2.2.1, (non-zero) GLV orbits in W correspond

canonically to cubic surfaces. Note that the action of GLV on W is generically free,

and hence the codimension of a generic orbit is 20− 16 = 4. Given a point w ∈W ,

let Orb(w) denote the closure of its GLV orbit, and let

[Orb(w)] ∈ A4
GLV (W ) = A4(M )

denote the fundamental class. By a slight abuse of notation, if X ⊂ P3 is a cubic

surface or F ∈ k[X0, . . . , X3] is a non-zero cubic form, we let Orb(X) or Orb(F )

denote the closure of the orbit in W of the corresponding point w, and [Orb(X)] or

[Orb(F )] the fundamental class. Since A4(M ) is generated by monomials in vi of

total degree 4, we have an expression

[Orb(X)] = a14 · v41 + a12·2 · v21v2 + a1·3 · v1v3 + a22 · v22 + a4 · v4, (2.3)

where the coefficients ai are integers. The coefficients (2.3) depend on X. We let

∂Orb(X) = Orb(X) \GLV ·X,

denote the boundary of the orbit closure. Note that ∂Orb(X) ⊂ W has codimension

at least 5.

2.4. Good families. Our strategy is to compute [Orb(X)] for a generic X by pulling

it back to various families B−→M . If there is a point of B that lies in every Orb(X),

then we have the issue of excess intersection. A good family is one that does not

suffer from this defect. Recall that V is a 4-dimensional k-vector space.

Definition 2.4.1 (Good family). A family of cubic surfaces π : X−→B is good if

the following holds: there exists a non-empty Zariski open subset U ⊂ Sym3 V ∨ such

that for every F ∈ U and b ∈ B, the fiber Xb does not lie in ∂Orb(F ).

Example 2.4.2 (Fibers with finite automorphism groups). Suppose every Xb has a

finite automorphism group. Then π : X−→B is good. Indeed, let U be the subset

consisting of elements with finite automorphism group. For every F ∈ U , the

boundary ∂Orb(F ) consists of elements with a positive dimensional automorphism

group, and hence it cannot contain Xb.

Example 2.4.3 (GIT semistable fibers). Suppose every fiber Xb is GIT-semistable.

Then the family π : X−→B is good. Indeed, let U be the subset consisting of GIT-

stable elements. For every F ∈ U , the orbit of F is closed in the semistable locus,

and hence ∂Orb(F ) cannot contain Xb.
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Example 2.4.4 (A combination). Suppose every fiber Xb has a finite automorphism

group or is GIT semistable. Let U be the subset corresponding to smooth cubic

surfaces. Since smooth cubic surfaces have a finite automorphism group and are GIT

stable, we see that π : X−→B is good.

Proposition 2.4.5. Let π : X−→B be a good family of cubic surfaces. Assume that

B is proper of dimension 4 and a general fiber Xb is semistable. Let µ : B−→M be

the map induced by π and m : B 99KM the rational map to the coarse moduli space.

Then

degm = deg µ∗ (Orb(F )
)

for a general cubic form F .

Proof. There exists an open W ⊂ M such that m−1(W )−→W is a finite étale

morphism. Then the degree of m is simply the number of points in m−1(u) for

u ∈ W . By shrinking W if necessary, we may assume that the map

M ss−→M

is an isomorphism over W .

Let U be as in the definition a good family. Then, for every u ∈ U , we have the

equality

X×M u = X×M u.

By shrinking U if necessary, we may assume that U consists of semistable points and

maps to W ⊂ M in the coarse space. Then, for every u ∈ U , we have

deg µ∗Orb(u) = # (X×M u)

= # (X×M u)

= degm.

□

2.5. Cubic surfaces as blow-ups. Cubic surfaces arise as blow ups of P2 at six

points, or more generally, as blow ups of del Pezzo surfaces of degree d in (d − 3)

points. Varying the center of blow up is a convenient source of families of cubic

surfaces. The following proposition identifies certain nice sub-schemes to blow up.

Definition 2.5.1 (Admissible subscheme). Let S be a smooth del Pezzo surface of

degree d ≥ 3 and let Z ⊂ S be a subscheme of length (d − 3). We say that Z is

admissible if

(1) Z is curvilinear (contained in a smooth curve),
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(2) h0
(
IZ ⊗ ω−1

S

)
= 4, and

(3) IZ ⊗ ω−1
S is generated by its global sections.

The last condition means that Z is scheme-theoretically cut out by the sections of

ω−1
S that vanish on it.

Proposition 2.5.2. Let Z ⊂ S be an admissible length (d − 3) subscheme. Set

X = BlZ S. Then the following hold.

(1) X has at worst An singularities.

(2) H0
(
X,ω−1

X

)
is 4-dimensional and base-point free.

(3) H i(X,ω−n
X ) = 0 for all n ≥ 0 and i > 0.

(4) The image of the map X−→P3 induced by ω−1
X is a cubic surface Y ; the map

X−→Y is birational.

(5) Let S =
⊕

n≥0 Sn be the homogeneous coordinate ring of Y . The pull-back

map Sn−→H0
(
X,ω−n

X

)
is an isomorphism.

(6) Y is normal and has rational double point (ADE) singularities.

Proof. Let π : X−→S be the blow-up map. Since Z is curvilinear, X has at worst An

singularities. Indeed, if Z is isomorphic to Spec k[t]/tn+1 at a point z in its support,

then X is singular at a unique point of π−1(z); this singularity is of type An. Note

that Ez := π−1(z) (taken with the reduced structure) is isomorphic to P1.

Let E ⊂ X be the exceptional divisor, namely, the Cartier divisor defined by the

ideal π−1IZ . Over the point z as above, E has multiplicity n along the component

Ez. Furthermore, we have (nEz)
2 = −n, and hence E2 = −(d− 3). Also, see that

we have

ωX = π∗ωS ⊗ OX(E), (2.4)

and therefore,

ω−1
X = π∗ω−1

S ⊗ OX(−E).
By applying π∗, we get

π∗
(
ω−1
X

)
= IZ ⊗ ω−1

S .

By our assumption, H0
(
IZ ⊗ ω−1

S

)
is 4-dimensional and its base-locus is precisely Z.

Hence H0
(
X,ω−1

X

)
is 4-dimensional and base-point free.

For the vanishing of higher cohomology, we induct on n. Since X is a rational

surface with rational singularities, we have h1(OX) = h1(ωX) = 0. Let C ⊂ X be the

zero locus of a general section of ω−1
X . By Bertini’s theorem, C is smooth and by the

adjunction formula, it has arithmetic genus 1. Taking global sections in the sequence

0−→ωX−→OX−→OC−→0
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shows that h0(OC) = 1, and hence C is connected. Twisting the above sequence by

ω−n
X gives

0−→ω−n+1
X −→ω−n

X −→ω−n
X |C−→0.

The restriction ω−n
X |C has degree 3n, which is positive if n is positive, and hence

hi
(
ω−n
X |C

)
= 0 for i > 0. By applying the long exact sequence in cohomology, we

see that if i > 0, then hi(ω−n+1
X ) = 0 implies hi(ω−n

X ) = 0. By induction on n, we

conclude hi(ω−n
X ) = 0 for all n ≥ 0 and i > 0.

To get the degree of the image of X−→P3, we compute the self-intersection

c1(ωX)
2. Using (2.4) and E2 = −(d− 3), we compute

c1(ωX)
2 = c1(ωS)

2 − d+ 3 = 3.

Thus, either the image is a hyperplane Π and the map X−→Π has degree 3, or the

image is a cubic surface Y and the map X−→Y is birational. We rule out the first

possibility since the map X−→P3 is defined by linearly independent sections, and

hence does not factor through a hyperplane.

By Riemann–Roch, we get that χ(X,ω−n
X ) = χ(Y,O(n)). We also know that

for i > 0 and n ≥ 0, both hi(X,ω−n
X ) and hi(Y,O(n)) vanish. Hence, we get

h0(X,ω−n
X ) = h0(Y,O(n)). Recall that, the n-th graded component Sn of the homo-

geneous coordinate ring of Y is precisely H0(Y,O(n)). Since X−→Y is surjective,

the natural map Sn−→H0(X,ω−n
X ) is injective. Since the dimensions of the source

and the target are equal, it must be an isomorphism.

From the isomorphism S ∼=
⊕

n≥0H
0(X,ω−n

X ), we get

Y = Proj

(⊕
n≥0

H0
(
X,ω−1

X

))
.

Since X is normal, so is Y . It is known that an irreducible, normal, rational cubic

surface, such as Y , only has rational double point (ADE) singularities [9]. □

Definition 2.5.3 (Associated cubic surface). Let S be a smooth del Pezzo surface of

degree d and let Z ⊂ S be an admissible subscheme of length d−3. The cubic surface

associated to Z ⊂ S, denoted by XZ ⊂ P3, is the image of the map BlZ S−→P3

induced by the anti-canonical linear system H0
(
BlZ S, ω

−1
BlZ S

)
.

By Proposition 2.5.2, we may equivalently define XZ as

XZ = Proj

(⊕
n≥0

H0
(
BlZ S, ω

−n
BlZ S

))
.
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Let us make the construction Z ⇝ XZ in families. Let B be a scheme, P−→B a

smooth proper family of del-Pezzo surfaces and Z ⊂ P a closed subscheme, flat

over B, whose fibers are admissible subschemes. Consider the blowup BlZ P . Note

that Z ⊂ P is a local complete intersection, and hence the blow-up is B-flat and

commutes with arbitrary base change. In particular, the fiber (BlZ P )b is the blow up

of Pb along Zb. (The statement about blow-ups and base-change must be well-known,

but we could not find a reference so we include a proof; see Proposition 2.5.4.) The

family of cubic surfaces XZ−→B associated to Z ⊂ P−→B is defined by

XZ = Proj B

(⊕
n≥0

π∗

(
BlZ P, ω

−n
BlZ P/B

))
.

By Proposition 2.5.2, we see that XZ is flat over B and its fiber over b ∈ B is the

cubic surface associated to Zb ⊂ Pb, as in Definition 2.5.3.

Proposition 2.5.4. Let π : P−→B be a smooth morphism and Z ⊂ P a closed

subscheme flat and lci over B. Then BlZ P−→B is flat and for any C−→B, the

canonical map

BlZC
PC−→ (BlZ P )C .

is an isomorphism.

Proof. The statement is local on P . After passing to a suitable affine open, we are

reduced to the following situation in algebra. We have a Noetherian ring B and a

finitely generated smooth B-algebra A. We have an ideal I ⊂ A such that A/I is

B-flat and I is generated by a regular sequence. The blow-up is the Proj of the Rees

algebra

RI(A) =
⊕
n≥0

In.

Since I ⊂ A is generated by a regular sequence, the associated graded ring grRI(A)

is a polynomial algebra over A/I, and hence flat over B. It follows that RI(A) is

flat over B, and hence its Proj is flat over SpecB.

For the statement about base-change, we show that the formation of the Rees

algebra commutes with base-change. For a B-algebra C, let J ⊂ A ⊗B C be the

image of I ⊗B C. Consider the map

i : RI(A)⊗B C−→RJ(C).

We use again that the associated graded rings are polynomial algebras, on which the

map induced by i is clearly an isomorphism. Hence i is an isomorphism. □
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Let Z ⊂ P2 be an admissible subscheme of length 6. An automorphism of the

pair (P2, Z) induces an automorphism of BlZ P2 and hence an automorphism of the

associated cubic surface XZ .

Proposition 2.5.5. Let Z ⊂ P2 be an admissible, length 6 subscheme and XZ ⊂ P3

its associated cubic surface. The map

Aut(P2, Z)−→Aut(XZ)

is injective and its image has finite index. In particular, Aut(P2, Z) is finite if and

only if Aut(XZ) is.

Proof. Since we have a birational isomorphism P2 99K XZ , a non-trivial automor-

phism of P2 cannot induce a trivial automorphism of XZ . Hence the map of

automorphism groups is injective.

To show that the image has finite index, let τ : Ỹ−→BlZ P2 be the minimal

desingularization and set Y = XZ . Since BlZ P2 has only An singularities and such

singularities are canonical, we conclude that

τ ∗ωBlZ P2 = ωỸ .

Consider the composite µ of

Ỹ
τ−→ BlZ P2 κ−→ Y.

Note that

µ∗ωY = ωỸ .

We claim that µ : Ỹ−→Y is the minimal desingularization of Y . To see this, let

Y ′−→Y be the minimal desingularization. Since Ỹ is non-singular, the birational

morphism µ : Ỹ−→Y factors as a composite

Ỹ
α−→ Y ′−→Y.

Since α is a birational morphism between non-singular surfaces, it is a composite of

blow-ups at points. In particular, if it is not an isomorphism, then there exists a

(−1)-curve E ⊂ Ỹ contracted by α. But then we have

E · ωỸ = E · µ∗ωY = 0,

which contradicts the adjunction formula(
ωỸ + E

)
· E = −2.

Thus, we deduce that α is an isomorphism, and hence Ỹ−→Y is the minimal

desingularization of Y .
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Since every automorphism of a surface lifts uniquely to its minimal desingulariza-

tion, we have an injective map

Aut(P3, XZ)−→Aut(Ỹ ).

It suffices to show that the image of Aut(P2, Z) has finite index in Aut(Ỹ ).

Let H ∈ Pic(Ỹ ) be the pullback of O(1) under the map Ỹ−→P2. We claim that

the orbit of H under Aut(Ỹ ) is finite. To see this, note that we have

ω2
Ỹ
= 3 and ωỸ ·H = −3,

and hence (ωỸ +H) is orthogonal to ωỸ under the intersection pairing. Since ωỸ

has positive self-intersection, its orthogonal complement ω⊥
Ỹ
⊂ Pic(Ỹ ) = NS(Ỹ ) is

a negative definite lattice by the Hodge index theorem. Thus, it has only finitely

many elements of a given self-intersection. Any automorphism of Ỹ preserves ωỸ

and the self-intersection number. Therefore, under Aut(Ỹ ), the orbit of ωỸ +H and

hence the orbit of H, must be finite.

Since the orbit of H is finite, its stabilizer is a finite index subgroup. We claim

that this subgroup is precisely the image of Aut(P2, Z). Let τ : Ỹ−→Ỹ be an

automorphism fixing H. The map β : Ỹ−→P2 is given by the complete linear system

|H|. Hence τ induces an automorphism τ ′ : P2−→P2. It remains to show that τ ′

preserves Z. Note that we have

β∗

(
ω−1

Ỹ

)
= O(3)⊗ IZ ,

and hence

β∗

(
ω−1

Ỹ
(−3H)

)
= IZ .

Therefore, the induced map τ ′ preserves IZ , and hence Z. □

3. Test families

3.1. The first test family. Fix a point z0 and a conic C ⊂ P2 not containing z0.

We vary 5 points z1, . . . , z5 in a general 4-dimensional linear series on C. Blowing up

the six points {z0, . . . , z5} gives a 4-parameter family of cubic surfaces; see Figure 1.

Proposition 3.1.1. Let C be a plane conic, Z ⊂ C a subscheme of length 5, and

z0 ∈ P2 a point not on C. Then the subscheme Z ∪ {z0} ⊂ P2 is admissible.

Proof. The subscheme Z ′ = Z ∪ {z0} is clearly curvilinear. Checking that IZ′ ⊗O(3)

is generated by its global sections is straightforward. □
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Cz0

z1
z2

z3

z4 z5

Figure 1. In the first test family, we blow up the plane along

{z0, . . . , z5} as z0 stays fixed and z1, . . . , z5 vary in a general 4-

dimensional series on a fixed conic C.

We now formally define the family. Let H = C [5] be the Hilbert scheme of 5 points

in C, so that H ∼= P5, and let B ∼= P4 ⊂ H ∼= P5 be a general hyperplane. Let

Z ⊂ B × C be the restriction of the universal closed subscheme. Set

Z ′ = Z ⊔ (B × {z0}) ⊂ B ×P2.

Our family

π : X−→B

is the family of cubic surfaces associated to Z ′ ⊂ B ×P2 (see Definition 2.5.3).

Proposition 3.1.2. The family π : X−→B is good.

Proof. We show that for every b ∈ B, the group Aut(Xb) is finite (see Example 2.4.2).

By Proposition 2.5.5, it suffices to show that the group Aut(P2, Z ′
b) is finite. Since

the support of Z ′
b is finite, it suffices to show that the subgroup of Aut(P2, Z ′

b) that

acts trivially on the support is finite. Let σ ∈ Aut(P2, Z ′
b) act trivially on the support.

Since C is the unique conic containing Zb, the element σ must preserve C. Since

σ(z0) = z0, and σ preserves C, it must fix the pair of points PolarC(z0) ∩ C. Since
B ⊂ Hilb5C is general, we may assume that it does not contain the finitely many

length 5 schemes supported on PolarC(z0) ∩ C. Then σ fixes at least 3 points of C,

namely the two points PolarC(z0) ∩ C and the points of Z ⊂ C. It follows that σ

fixes all points of C and hence all points of P2. □

We now compute with the Chern classes of the anti-canonical section bundle.

Proposition 3.1.3. Let V = π∗

(
ω−1
X/B

)
. Then we have∫

B

v41 = 16,

∫
B

v21v2 = 4,

∫
B

v1v3 = 0,

∫
B

v22 = 1,

∫
B

v4 = 0.
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Proof. By the construction of the cubic surface, we see that V is the rank 4 bundle

V = π∗(IZ′ ⊗ ω−1
π ),

where π : B ×P2−→B is the first projection. It contains the constant rank 2 bundle

π∗
(
IB×C ⊗ IB×z0 ⊗ ω−1

π

)
= H0

(
IC ⊗ Iz0 ⊗ ω−1

P2

)
⊗ OB, (3.1)

and the quotient is the rank 2 bundle π∗
(
IZ/B×C ⊗ ω−1

π

)
. To identify the quotient,

note that Z ⊂ B ×C is a divisor of class (1, 5) and ω−1
π |B×C is isomorphic to O(0, 6).

Hence, IZ/B×C ⊗ ω−1
π is isomorphic to O(−1, 1), and therefore

π∗
(
IZ/B×C ⊗ ω−1

π

) ∼= OB(−1)2. (3.2)

By combining (3.1) and (3.2), we see that V is an extension

0−→O2
B−→V−→OB(−1)2−→0. (3.3)

The Chern class calculation is now straightforward using the Whitney sum formula.

□

Let us find the degree of the map to moduli B 99KM.

Proposition 3.1.4. The degree of B 99KM is 4320.

Proof. Consider the space of marked cubic surfaces M†, which is isomorphic to the

configuration space of 6 ordered points on P2. We have the action of S5 on M† via

permutations of the last 5 points. The map B 99KM lifts to

B−→M† /S5, (3.4)

where b ∈ B is mapped to (z0, z1 + · · · + z5)|b. Let us compute the degree of this

map. Given a general (y0, y1 + · · ·+ y5) in M† /S5, there is a unique conic Q through

y1 + · · · + y5. Note that there exists an automorphism of P2 that takes (C, z0)

to (Q, y0), and such an automorphism is unique up to automorphisms preserving

(C, z0). Suppose, under one such automorphism, y1 + · · · + y5 ⊂ Q is taken to

z′1 + · · · + z′5 ⊂ C. We must find out how many points of B are equivalent to

z′1 + · · ·+ z′5 up to an automorphism of P2 preserving (C, z0). Let w0 + w∞ ⊂ C be

the scheme PolarC(z0) ∩ C. Then we have

Aut(P2, C, z0) = Aut(C,w0 + w∞) ∼= Gm ⋊ Z/2Z.

Choose an isomorphism C ∼= P1 such that w0 and w∞ are identified with [0 : 1]

and [1 : 0]. Then the Gm corresponds to the diagonal Gm ⊂ PGL2 and the Z/2Z

corresponds to the swapping of the two homogeneous coordinates. Write z′1+ · · ·+ z′5
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C
t

s0

s∞

s1
s2

s3

s5

s4

Figure 2. In the second test family, we blow up the plane at the

points {s1, . . . , s5, t} as the seven points {s1, . . . , s5, s0, s∞} vary freely

on a conic C.

as the vanishing locus of a binary quintic form F . It is easy to see that under the

action of the Gm, the closure of the orbit of V (F ) in C [5] ∼= P5 is a rational normal

curve. Hence, a general hyperplane B intersects the orbit in 5 points. Accounting for

the additional Z/2Z, we conclude that there are precisely 10 points of B equivalent

to z′1 + · · ·+ z′5 up to an automorphism of P2 preserving (C, z0). Thus, the degree of

the map in (3.4) is 10.

Since the degree of M†−→M is 72× 6!, the degree of B−→M is

72× 6!/5!× 10 = 4320.

□

Using Proposition 2.4.5 and the computation of the Chern classes and the degree,

we obtain the following relation on the undetermined coefficients of [Orb(X)] in (2.3)

for a general cubic surface X:

16 · a14 + 4 · a122 + a22 = 4320. (3.5)

3.2. The second test family. Forget the notation introduced in § 3.1. We take

a smooth conic C ⊂ P2 and 7 distinct marked points s0, s1, . . . , s5, s∞ on C. Let

t ∈ P2 be the pole, with respect to C, of the line joining s0 and s∞. We blow up the

six points s1, . . . , s5, t to get a cubic surface (see Figure 2). As the 7 points vary on

C, we get a 4-parameter family of cubic surfaces.

We now make the construction more precise, and show how to use it construct a

family of cubic surfaces over M0,7. Let ϕ : C−→M0,7 be the universal curve with the

universal sections denoted by σ0, σ1, . . . , σ5, σ∞. Let L be the line bundle σ∗
∞ (ωϕ)

on M0,7. As is customary, we denote its Chern class by ψ∞. Consider the rank 2
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vector bundle

A = ϕ∗OC (σ∞) .

It is easy to check that the evaluation maps yield an isomorphism

A
∼−→ σ∗

∞OC (σ∞)⊕ σ∗
0OC (σ∞)

= L−1 ⊕ OM0,7
.

Set C = PA∨ with the structure map ϕ : C−→M0,7. The evaluation map ϕ∗A−→OC (σ∞)

yields a map γ : C−→C. The effect of γ on a stable curve (C, s0, . . . , s∞) is to contract

all irreducible components of C not containing the marked point s∞. The unique

remaining P1 is identified with the corresponding fiber of ϕ. Set σi = σi ◦ γ; these
σi are sections of ϕ : C−→M0,7. They satisfy the following properties

– σ∞ is disjoint from all the other sections, and

– in each fiber of ϕ, the union of all seven sections is supported on at least

three points.

We now invoke the relative 2-Veronese embedding

ι : C−→P := P Sym2A∨.

Let ρ : P−→M0,7 be the structure morphism. Then C ⊂ P is a family of smooth

conics with 7 marked points σ0, . . . , σ∞ satisfying the two properties above.

Let τ : M0,7−→P be the section obtained by fiber-wise taking the pole with respect

to C of the line joining the points σ0 and σ∞. Here is an alternate description of τ .

The direct sum decomposition A = O⊕ L−1 gives the decomposition

Sym2A = O⊕ L−1 ⊕ L−2.

In PA∨, the sections σ0 and σ∞ correspond to the projections A−→O and A−→L−1,

respectively. Hence, in the Veronese embedding, they correspond to the projections

Sym2A−→O and Sym2A−→L−2, respectively. Using the quadratic form on Sym2A

given by the Veronese conic, it is easy to check that the section τ is given by the

third projection Sym2A−→L−1.

We let Σ ⊂ C denote the closed subscheme associated to the divisor σ1 + · · ·+ σ5

and Z ⊂ P the disjoint union Σ ⊔ τ . By Proposition 3.1.1, Z ⊂ P is a family of

admissible subschemes. We let

π : X−→M0,7

be the family of cubic surfaces associated to Z ⊂ P (see Definition 2.5.3).

Proposition 3.2.1. The family π : X−→M0,7 is good.
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Proof. All fibers have finite automorphism groups by the same proof as Proposi-

tion 3.1.2. □

We now compute the Chern classes of the anti-canonical section bundle.

Proposition 3.2.2. Let V = π∗ω
−1
π and let vi = ci(V). Then we have∫

M0,7

v41 = 625,

∫
M0,7

v21v2 = 125,

∫
M0,7

v1v3 = −25,∫
M0,7

v22 = 25,

∫
M0,7

v4 = −6.

For the proof, we use the following.

Lemma 3.2.3. Let π : P−→B be a P1-bundle with a section σ. Let D ⊂ P be a

divisor of relative degree d with respect to π with d ≥ −1. Then, in the Grothendieck

group of B, we have

[π∗O(D)] = [σ∗O(D)] + · · ·+ [σ∗O(D − (d− 1)σ)].

Proof. We induct on d. Both sides are 0 for d = −1. The exact sequence

0−→O(D − σ)−→O(D)−→O(D)|σ−→0

pushed-forward to B provides the induction step. □

Proof of Proposition 3.2.2. Recall that X−→M0,7 is the cubic surface associated to

Z ⊂ P in the P2-bundle ρ : P−→M0,7. By construction, we have

V = ρ∗(IZ ⊗ ω−1
ρ ).

Hence, in the Grothendieck group of M0,7, we have

[V] = ρ∗(ω
−1
ρ )− ρ∗(ω

−1
ρ |Z). (3.6)

By the relative Euler sequence, we see that ω−1
ρ is isomorphic to OP(3)⊗ρ∗ det(Sym2A)∨,

and hence the first term in (3.6) is

ρ∗(ω
−1
ρ ) = Sym3(Sym2A)⊗ L3. (3.7)

Since Z is the disjoint union Σ ∪ τ , the second term is a sum

ρ∗(ω
−1
ρ |Z) = ρ∗(ω

−1
ρ |τ ) + ρ∗(ω

−1
ρ |Σ).

Since τ is defined by the surjection Sym2A−→L−1, the restriction ω−1
ρ |τ is trivial.

To compute the restriction to Σ, we view Σ as a divisor in C = PA∨ and let

D = ω−1
ρ |C = O(6)⊗ ϕ

∗
L3. Thus, in the Grothendieck group, we have

ρ∗(ω
−1
ρ |Σ) = ϕ∗ (D)− ϕ∗ (D(−Σ)) . (3.8)
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We now use Lemma 3.2.3 with the section σ∞ to compute the terms on the right

hand side of (3.8). Putting this together with (3.6) and (3.7), we get

[V] = L−3 + L1 + L−1 + L−2

in the Grothendieck group. The result is now a simple computation using c1(L) = ψ∞

and
∫
M0,7

ψ4
∞ = 1. □

Having computed the Chern classes, we find the degree of the map M0,7 99KM.

Proposition 3.2.4. The degree of the map M0,7 99KM, induced by π : X−→M0,7 is

2× 72× 6!.

Proof. The map lifts to M0,7 99KM
†. Since the degree of M†−→M is 72× 6!, we

must prove that the degree of M0,7 99KM
† is 2.

Recall that M† is isomorphic to the configuration space of 6 points in P2. Given

a general 6-tuple of points (s1, . . . , s5, y) in P2, there is a unique conic C passing

through s1, . . . , s5. Let x and y be the two points of PolarC(t) ∩ C. Then the two

pre-images of (s1, . . . , s5, t) in M0,7 are (C, x, s1, . . . , s5, y) and (C, y, s1, . . . , s5, x).

The proof is thus complete. □

Using Proposition 2.4.5 and the computation of the Chern classes and the degree,

we obtain the following relation on the undetermined coefficients of [Orb(X)] in (2.3)

for a general cubic surface X:

625a14 + 125a122 − 25a13 + 25a22 − 6a4 = 2× 72× 6!. (3.9)

3.3. The third test family. We take a cuspidal plane cubic C ⊂ P2 and let t∞ be

its unique flex point. We vary 5 points {t1, . . . , t5} on C and blow up the plane at

{t1, . . . , t5, t∞} to get a cubic surface (see Figure 3). Since Aut(C) is one dimensional,

this gives us a 4-parameter family of cubic surfaces.

We now convert the above construction into a good family of cubic surfaces over a

complete base. We take our base to be M̂0,7, one of the compactifications of M0,7

constructed by Hassett [19]. Precisely, set

w = (1− ϵ, ϵ, . . . , ϵ, 1− 3ϵ) , where 0 < ϵ≪ 1,

and let M̂0,7 be the space of w-weighted stable pointed curves (C, s0, s1, . . . , s5, s∞).

Such curves are easy to describe:

– C must be a smooth rational curve,

– s0 and s∞ must be distinct,

– at most one s1, . . . , s5 can coincide with s0,
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C

t1
t2

t3

t5

t4

Figure 3. In the family B3, we blow up the points ti for i = 1, . . . , 5

and a fixed point t∞ at infinity (not shown) as the points {t1, . . . , t5}
move freely on a fixed cuspidal cubic C with a flex at t∞.

– at most three of the s1, . . . , s5 can coincide with s∞.

There are no constraints on how many of the the points s1, . . . , s5 coincide with each

other. Let ν : C−→P2 be the map which is birational onto its image, whose image

is a cuspidal cubic, and under which s0 maps to the unique cusp point and s∞ to

the unique flex point. Let Z ⊂ C be the subscheme corresponding to the divisor

s1 + · · · + s5 + s∞. Since at most one of the points s1, . . . , s5 can coincide with

s0, it follows that ν : Z−→P2 is a closed embedding and the image is a curvilinear

subscheme. It is also easy to check that the image is cut out by cubics. That

is, Z ⊂ P2 is an admissible subscheme (see Definition 2.5.1). We let XZ be the

associated cubic surface (see Definition 2.5.3).

We now formalize the construction as a family over M̂0,7. Let ϕ : C−→M̂0,7 be

the universal curve with universal sections σ0, σ1, . . . , σ5, σ∞. Observe that ϕ is a

P1-bundle. Consider the rank 2 bundle

A = ϕ∗OC(σ∞). (3.10)

As before, the evaluation maps yield an isomorphism

A
∼−→ σ∗

∞OC (σ∞)⊕ σ∗
0OC (σ∞)

= L−1 ⊕ O
M̂0,7

,

where L = σ∗
∞(ωϕ). We have a map C−→PA∨ induced by the surjection ϕ∗A−→OC(σ∞),

and since C−→M̂0,7 is a P1-bundle, this map is an isomorphism. Observe that the
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sections σ0 and σ∞ correspond to the projections A−→O and A−→L−1, respectively.

Now consider the summand

S := O
M̂0,7

⊕ L−2 ⊕ L−3 ⊂ Sym3A, (3.11)

and denote by

ν : C−→PS∨

the map induced by the surjection ϕ∗S−→OC(3σ∞). Let ρ : PS∨−→M̂0,7 be the

structure map. Thanks to our choice of S, fiber-wise the map ν maps C to cuspidal

cubics with s0 mapping to the cusp and s∞ to the flex. Let Z ⊂ C be the subscheme

corresponding to the divisor σ1 + · · ·+ σ∞. Our family

π : X−→M̂0,7

is the family of cubic surfaces associated to the family of admissible subschemes

ν : Z−→PS∨.

Proposition 3.3.1. The family π : X−→M̂0,7 is good.

Proof. We show that no fiber Xb is in the closure of the orbit of any smooth cubic

surface S without Eckardt points. Let Z ⊂ P2 be the image of ν : Zb−→PS∨
b . By

construction, Z does not have a point of multiplicity 6, and since Z lies on a cubic,

no four distinct points of Z can be collinear. Suppose Z does not have a point of

multiplicity 4. Then we use Proposition 5.2.1 and Proposition 5.2.2 to conclude that

Xb is not in the orbit closure of S.

We now treat the cases where Z has a point of multiplicity 4 or 5. We repeatedly

use the following fact about the geometry of the cuspidal cubic C: no line through

the flex point is tangent to C, except the tangent line at the flex and the line joining

the flex and the cusp.

Suppose Z = p + q + 4r ⊂ C, where p, q, r are distinct. Since r occurs with

multiplicity greater than 1 in Z, it must be distinct from the cusp point (so 4r is

unambiguous). If the tangent line TrZ = TrC does not contain p or q, we appeal

to Proposition 5.2.3 and Remark 5.2.4. Suppose TrZ contains p. Then TrZ cannot

contain q, and hence p, q, r are not collinear. By the construction of Z, one of p, q, r

must be the flex point s∞. Using the fact about tangent lines through the flex, we

see that the only possibility is q = s∞. Now Z ⊂ C is uniquely determined up to an

automorphism of (P2, C). It is easy to write down such a Z and check directly that

Aut(P2, Z) is finite. By Proposition 2.5.5, Aut(Xb) is also finite, and Xb is not in the

orbit closure of S. Alternatively, we see that the cubic surface associated to Z has

a unique singular point, which is of type D4. It is known that, up to isomorphism,
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there are exactly two cubic surfaces with singularity D4 (see [9, Lemma 4]). One has

a finite automorphism group and the other one is treated by Proposition 5.1.3.

Suppose Z = p+ 5q, where p and q are distinct. Then we must have p = s∞ and

q ̸∈ {s0, s∞}. Let Q be the unique conic containing 5q. We claim that C cannot

contain p. If it did, then we get 5(q − p) = 0 ∈ Pic(C) ∼= Ga, forcing p = q. We also

claim that the two points of PolarQ(p) ∩Q are distinct from q. This is because Q

and C share the tangent line at q; this line does not pass through p, but the tangent

lines to Q at the points of PolarQ(p) do pass through p. Now, any σ ∈ Aut(P2, Z)

must preserve C the three points PolarQ(p) ∩Q ∪ {q}. Then Aut(P2, Z) and hence

Aut(Xb) is finite, and Xb is not in the orbit closure of S. □

It is time for enumerative computations.

Proposition 3.3.2. Let V = π∗ω
−1
π and let vi = ci(V). Then on M̂0,7, we have∫

v41 = 3436,

∫
v21v2 = 1076,

∫
v1v3 = 116,∫

v22 = 316,

∫
v4 = 0.

Proof. We begin by finding the class of V in the Grothendieck group of M̂0,7. The

computation parallels the computation in the proof Proposition 3.2.2, so we will be

brief. Recall that ϕ : C−→M̂0,7 is the universal curve with sections σ0, σ1, . . . , σ∞.

Setting L = σ∗
∞ωϕ, recall the bundles

A = O⊕ L−1 from (3.10), and S = O⊕ L−2 ⊕ L−3 from (3.11). (3.12)

Recall that ρ : PS∨−→M̂0,7 is the structure map and Z ⊂ C the subscheme corre-

sponding to the divisor s1 + · · ·+ s5 + s∞. In the Grothendieck group of M̂0,7, we

have

V = ρ∗ω
−1
ρ − ϕ∗

(
ν∗ω−1

ρ |Z
)

= (Sym3 S)⊗ det S∨ − ϕ∗ (O (9σ∞)⊗ ϕ∗ det S∨|Z)

= (Sym3
(
O⊕ L−2 ⊕ L−3

)
)⊗ L5 − ϕ∗

(
O (9σ∞)⊗ ϕ∗L5

)
+ ϕ∗

(
O (9σ∞ − Z)⊗ ϕ∗L5

)
= L−1 − L4 + (L2 + L3 + L4 + L5)⊗ O (−∆0) .

(3.13)

Here ∆0 ⊂ M̂0,7 is the divisor σ∗
0O(σ1 + · · ·+ σ5). This is the locus of marked curves

where the marked point σ0 coincides with σi for some i = 1, . . . , 5. In the last step

of the computation, we have used Lemma 3.2.3 with the section σ0 and that

σ∗
0O(σ0) = σ∗

∞O(−σ∞) = L,
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which holds since σ0 and σ∞ are two disjoint sections of a P1-bundle. The rest is a

straightforward computation using the Whitney sum formula. □

Let us indicate how to carry out the Chern class computation on M̂0,7. The

boundary divisors of the Hassett spaces are products of smaller Hassett spaces. We

can use this inductive structure to break down the computation, similar to how it is

done on the usual M0,7. Alternatively, we can use the map ζ : M0,7−→M̂0,7 to pull

back the classes to M0,7, and do the computation there. Let ψ̂i = c1(σ
∗
i ωϕ) denote

the ψ-classes on M̂0,7 and ψi its analogue on M0,7. Let ∆i,j ⊂ M0,7 be the boundary

divisor whose general point corresponds to the nodal union of two smooth rational

curves with one component only containing the marked points indexed i and j. It is

easy to see that

ζ∗ψ̂0 = ψ0 −
5∑

i=1

[∆0,i], and

ζ∗[∆0] =
5∑

i=1

[∆0,i],

using which we can transport the entire Chern class computation to M0,7.

We now compute the degree of the rational map from M̂0,7 to the moduli space

M of cubic surfaces, induced by the family X−→M̂0,7.

Proposition 3.3.3. The degree of the map M̂0,7 99KM is 20× 72× 6!.

Proof. The map lifts to M̂0,7 99KM
†. The degree of this map is the answer to the

following enumerative problem: given 6 general points in P2, how many cuspidal

cubics contain the first five and have a flex point at the sixth? Fortunately for us,

this question has been answered already—the answer is 20. The answers appears

in a remarkable paper [21] of Miret and Xambó, who credit it to Schubert. The

paper contains a staggering number of enumerative results about cuspidal cubics.

Our answer is in the first column in the row labelled v2 in the second table (titled

“Order 2”) in Section 12 of [21].

We briefly explain how to read off the result from the table in [21]. The letter

v denotes the map from the (7-dimensional) space of cuspidal cubics to P2, the

symbol X0 the locus of cuspidal cubics passing through a general point in P2, and

the symbol X1 the locus of cuspidal cubics tangent to a general line in P2. The i-th

column in the row labelled v2 is the intersection number (v∗H)2 ·X6−i
0 X i−1

1 , where

H ⊂ P2 is a general line. For i = 1, this is precisely the number of cuspidal cubics

flexed at a given point and passing through 5 general points.
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Figure 4. In the fourth test family, we blow up the plane at 4 fixed

points (blue) and 2 variable points (red).

Since the degree ofM† −→M is 72×6!, the degree of M̂0,7 99KM is 20×72×6!. □

Using Proposition 2.4.5 and the computation of the Chern classes and the degree,

we obtain the following relation on the undetermined coefficients of [Orb(X)] in (2.3)

for a general cubic surface X:

3436a14 + 1076a122 + 116a13 + 316a22 = 20× 72× 6!. (3.14)

3.4. The fourth test family. Our fourth family is perhaps the most obvious one.

We blow up 6 points on P2, four of which remain fixed, and the remaining two

vary freely (see Figure 4). A complication arises, however, while formalizing this

construction. When the two varying points lie on the line joining two of the fixed

points, the resulting configuration is no longer admissible. It takes some effort to

resolve this issue.

Let S be the blow up of P2 at 4 general points. Then S is a quintic del Pezzo.

Let S[2] denote the Hilbert scheme of 2 points on S. We have 10 exceptional curves

L1, . . . , L10 on S. Consider the planes L
[2]
i ⊂ S[2]. Observe that a length 2 subscheme

Z ⊂ S is not admissible precisely when Z is contained in Li for some i. For i ≠ j, the

lines Li and Lj are either disjoint or intersect in a single (reduced) point. Therefore,

L
[2]
i and L

[2]
j are disjoint subsets of S[2]. Let Λ be the union of all L

[2]
i . The crux of

this section is to show that the blow up BlΛ S
[2] hosts a good family of cubic surfaces.

Set

S̃[2] := BlΛ S
[2], (3.15)

with β : S̃[2]−→S[2] being the blow-down map. For i = 1, . . . , 10, let Ei = β−1(L
[2]
i )

denote the components of the of the exceptional divisor of the blow-up. Consider

Fi := Ei × Li ⊂ S̃[2] × S,

and let F be the (disjoint) union F =
⋃

i Fi. Set

Y := BlF

(
S̃[2] × S

)
, (3.16)
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with η : Y−→S̃[2] × S being the blow-down map. Consider the map

π̃ : Y−→S̃[2]

obtained by composing η with the projection on to the first factor. It is easy to

check that π̃ is a flat family of surfaces, isomorphic to the constant family with fiber

S over the complement of E in S̃[2].

Let Z ⊂ S[2] × S be the universal closed subscheme of length 2. Let Z̃ ⊂ S̃[2] × S

be the fiber product

Z̃ = Z×S[2] S̃[2].

The next lemma is critical to our construction.

Lemma 3.4.1. The closed embedding i : Z̃ ↪→ S̃[2] × S lifts to a closed embedding

j : Z̃ ↪→ Y.

Proof. The subscheme (L
[2]
i × S) ∩ Z is contained in (L

[2]
i × Li). Hence, we have an

equality of schemes

(L
[2]
i × Li) ∩ Z = (L

[2]
i × S) ∩ Z.

By pulling back both sides to S̃[2] × S, we get

Fi ∩ Z̃ = (Ei × S) ∩ Z̃. (3.17)

In particular, Fi ∩ Z̃ is a Cartier divisor. By the universal property of the blow up,

we get a lift j : Z̃−→Y. Since i = β ◦ j is a closed embedding, so is j. □

The following diagram summarizes the situation so far:

Y

Z̃ S̃[2] × S S[2] × S

S̃[2] S[2].

η

i

j

β

We let F ⊂ Y denote the exceptional divisor of η. It has 10 disjoint components,

corresponding to each Fi, which in turn correspond to the ten lines Li. To ease

notation, we suppress the map j : Z̃−→Y, and write Z̃ ⊂ Y.

Let us study the family π̃ : Y−→S̃[2]. Its fiber over a point in the complement of

E is just S. The following proposition describes the fiber of Y over e ∈ Ei, along

with the fiber of Z̃ in it; see Figure 5 for a picture.

Proposition 3.4.2. Let e ∈ Ei be any point, and let Ye = π̃−1(e).
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Y

S̃[2]
e ∈ E

S
S

S

F1

Z̃

Figure 5. The family of surfaces Y−→S̃[2] and the subscheme Z̃ ⊂ Y.

The dashed lines on the central fiber represent the three exceptional

curves of S intersecting the double curve.

(1) Ye is the union of two surfaces S and Fe, where Fe is a copy of the Hirzebruch

surface F1. They meet transversely along Li ⊂ S and a smooth curve of

self-intersection 1 in F1.

(2) The subscheme Z̃e ⊂ Ye lies in Fe and is disjoint from S. It maps isomorphi-

cally onto its image in Li under η.

Proof. We study the blowup Y = BlF

(
S̃[2] × S

)
, beginning with the normal bundle

N
F/S̃[2]×S

. We focus on the component Fi = Ei × Li. Denoting by π1 : Fi−→Ei and

π2 : Fi−→Li the two projections, we have

N
Fi/S̃[2]×S

= π∗
1NEi/S̃[2] ⊕ π∗

2NLi/S.

The component of F lying above Fi is the projectivization PN
Fi/S̃[2]×S

. Restricting

the projectivization to {e}×Li ≃ Li yields P(OLi
⊕OLi

(−1)). Thus we get Fe ≃ F1.

Since ({e}×S)∩Fi = {e}×Li is a Cartier divisor on {e}×S, the proper transform

of {e} × S in Y is again a copy of S. It meets Fe = P(OLi
⊕ OLi

(−1)) ≃ F1 along

the section corresponding to the summand NLi/S = OLi
(−1). Altogether, we get the

description of Ye provided in (1).

Since the embedding i : Z̃−→S̃[2] × S is the composite

Z̃
j−→ Y

η−→ S̃[2] × S,

and F = η−1(F ), we have

Z̃ ∩ j−1 (F) = Z̃ ∩ i−1(F ).
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We have already seen in (3.17) that

F ∩ Z̃ = (E × S) ∩ Z̃.

Restricting the first coordinate of E × S to e implies Z̃e ⊂ Fe.

To see that Z̃e is disjoint from S, consider the intersection product [Z̃] · [Ye]. On

the one hand, since Z̃−→S̃[2] × S is finite, flat, and has degree 2, this intersection

product is 2. On the other hand, by part (1), it is equal to [Z̃] · ([Fe] + [S]). Since

we have Z̃e ⊂ Fe, we get [Z̃] · [S] = 0, and hence Z̃ must be disjoint from S.

The last assertion follows immediately from the fact that Z̃ ⊂ Y maps isomorphi-

cally to its image in S̃[2] × S. □

The following proposition provides one more necessary detail about the position

of Z̃e in the F1 component of Ye.

Proposition 3.4.3. Maintain the notation of Proposition 3.4.2.

(1) The length two subscheme Z̃e ⊂ F1 is not contained in the directrix of F1.

(2) Set τi = Ti ∩ F1. The subscheme Z̃e ∪ τi is an admissible subscheme of F1.

Proof. The proof follows easily from unravelling the map

j : Z̃e−→F1,

which we now do. Set Z = Z̃e and let Ne be the 1-dimensional vector space

Ne = N
Ei/S̃[2]

∣∣
e
.

From the proof of Proposition 3.4.2, we write the F1 component more canonically as

F1 = P
(
Ne ⊗ OLi

⊕NLi/S

)
.

The point e ∈ Ei gives a (non-zero) map

dβ : Ne−→N
L
[2]
i /S[2] |β(e).

The point β(e) ∈ L
[2]
i ⊂ S[2] corresponds to the length 2 subscheme Z ⊂ Li ⊂ S. It

is easy to see that we have a canonical identification

N
L
[2]
i /S[2]

∣∣
β(e)

= H0
(
Z,NLi/S|Z

)
.

We thus get a map

dβ : Ne−→H0
(
Z,NLi/S|Z

)
.

We leave it to the reader to verify that the map j : Z−→F1 is induced by the map

Ne ⊗ OZ−→Ne ⊗ OZ ⊕NLi/S|Z (3.18)
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given by (id, ϵ ◦ dβ), where

ϵ : H0
(
Z,NLi/S|Z

)
⊗ OZ−→NLi/S|Z

is the evaluation map. Since ϵ is an isomorphism and dβ is non-zero, the second

coordinate of (3.18) is non-zero. This non-vanishing equivalent to the proposition.

(Incidentally, note that the first coordinate of (3.18) is invertible. This is equivalent to

the fact that Z ⊂ F1 is disjoint from the curve where F1 meets the other component S.

In the proof of Proposition 3.4.2, we concluded this fact using intersection numbers.)

The assertion about admissibility is straightforward. □

We are now in a position to describe the family of cubic surfaces. Consider the

family

π̃ : Y−→S̃[2],

along with Z̃ ⊂ Y. Set U = S̃[2] \ E. Over U , the Z̃ is an admissible subscheme of Y,

and here our family will be the associated cubic surface as in Definition 2.5.3. We

now describe our cubic surface over a point e ∈ Ei. In the S component of Ye, we

have three exceptional curves that meet the double curve Li ⊂ S. They intersect Li

in three distinct points. Let Ti be the union of these three exceptional curves (in

Figure 5, these are indicated by the dashed lines). On the F1 component, we have a

distinguished length 5 subscheme: the union of the length two subscheme Z̃e and

the 3 points τi := Ti ∩ Li. This subscheme of length 5 is admissible, and our cubic

surface over e will be its associated cubic surface.

We construct the family that we described fiber-wise above using the linear series

associated to the line bundle

L = ω−1
π̃ ⊗ OY(−F). (3.19)

Since Y is the blow up of S̃[2] × S with exceptional divisor F, we can also write this

line bundle as

L = ω−1
S ⊗ OY(−2F). (3.20)

The following proposition describes L on the degenerate fibers of π̃.

Proposition 3.4.4. Let e ∈ Ei and Ye = S ∪Li
F1 as in Proposition 3.4.2. Let

Ti ⊂ S be the union of the three exceptional curves meeting Li and set τi = Li ∩ Ti.
Then

(1) L|S ≃ OS(Ti).

(2) L|F1 ≃ ω−1
F1
.
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(3) The restriction map

H0(Ye,L|Ye)−→H0(F1, ω
−1
F1
) (3.21)

is an isomorphism onto the 6 dimensional vector space H0
(
F1, ω

−1
F1

⊗ Iτi
)
.

(4) The base locus of the complete linear system |L| on Ye is Ti.

Proof. We have ω−1
S = O(Ti + 2Li). This and (3.20) gives L|S = OS(Ti).

Let S ⊂ Y be the proper transform of E × S ⊂ S̃[2] × S, so that the preimage in Y

of E × S is the sum F + S . Then we have

O(F)|F1 = O(−S)|F1 .

Since ω−1
S · Li = 1, the pull-back of ω−1

S to F1 is the class of a fiber. Since ω−1
F1

is the

sum of a fiber class and 2 times the class of a section of self-intersection 1, we get

L|F1 = ω−1
F1
.

The statements about the dimension and the base locus of |L| on Ye are straight-

forward. The only key point is that OS(Ti) is one-dimensional, and the vanishing

locus of its non-zero sections is Ti. □

Let

W := π̃∗
(
L⊗ I

Z̃

)
.

It follows from Grauert’s theorem that W is a vector bundle of rank 4. Consider the

rational map

κ : Y 99K PW∨

induced by the evaluation

π̃∗W−→L.

It is easy to check that for every e ∈ S̃[2], the image of κ(Ye) is contained in a unique

cubic surface in PW∨
e . Let X ⊂ PW∨ be the resulting family of cubic surfaces. More

precisely, consider the map

Sym3W−→π∗(L
3)

and verify (by looking at the fibers) that both sides are vector bundles and the map

is surjective with kernel of rank 1. The rank 1 kernel defines the cubic X ⊂ PW∨.

Let π : X−→S̃[2] be the obvious map.

The next proposition identifies the anti-canonical bundle of π.

Proposition 3.4.5. We have ω−1
π = O(1)⊗ π∗O(E).
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Proof. Let Ŷ be the blow-up of Y along Z̃ and π̂ : Ŷ−→S̃[2] the resulting map. Then

it is easy to check that the rational map κ̂ : Ŷ 99K X (induced by κ) extends to a

regular map away from the union of the curves Ti over the points of Ei. Recall that

S ⊂ Y is the proper transform of E × S, so that π̃∗O(E) = F + S. The map

κ̂ : Ŷ \ S 99K X

is an isomorphism away from a locus of codimension at least 2 on both sides. If

D̂ ⊂ Ŷ is the exceptional divisor of the blow-up, then we have

κ̂∗O(1) = L(−D̂)

= ω−1
π̃ ⊗ O(−F)⊗ OŶ (−D̂)

= ω−1
π̂ ⊗ O(−F).

We see that the line bundles κ̂∗O(1) ⊗ π̂∗O(E) and ω−1
π̃ are isomorphic on Ŷ \ S.

Hence, they are isomorphic away from a locus of codimension at least 2 on X. Since

X is a hypersurface in a smooth variety, and it is smooth in codimension 1, it is

normal. It follows that O(1)⊗ π∗O(E) and ω−1
π are isomorphic on X. □

Proposition 3.4.6. The family π : X−→S̃[2] is good.

Proof. Over e ̸∈ E, the cubic Xe is the one associated to Ze ⊂ S, and over e ∈ E,

say e ∈ Ei, the cubic Xe is the one associated to Z̃e ∪ τi ⊂ F1. In both cases, it is

easy to verify using Proposition 2.5.5 that Xe has a finite automorphism group. □

Having constructed the family π : X−→S̃[2], we take up the task of calculating the

Chern classes of

V = π∗
(
ω−1
π

)
= W⊗ O

S̃[2](E).

Let U =
(
ω−1
S

)[2]
be the rank 2 tautological bundle on S[2], defined by

U = π1∗π
∗
2

(
ω−1
S

)
,

where πi are the two projections on S[2] × S.

Proposition 3.4.7. In the Grothendieck group of S̃[2], we have

V = O(E) + O3 + O(−E)2 − U⊗ O(−E),

where O denotes O
S̃[2]

.
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Proof. We compute the class of W and obtain the class of V by tensoring by O(E).

Recall the family π̃ : Y−→S̃[2] and the line bundle L on it defined in (3.19). Set

A := π̃∗L and B := π̃∗
(
L|

Z̃

)
.

Then A and B are vector bundles of rank 6 and 2, respectively. By the definition of

W, we have the exact sequence

0−→B−→A−→W−→0,

and hence W = A−B in the Grothendieck group.

We first compute B. By the push-pull formula and the description (3.20) of L, we

get

B = U⊗ O
S̃[2](−2E). (3.22)

We now compute A. Recall that η : Y−→S̃[2]×S is the blow-up at F =
⊔

iEi×Li.

Using (3.20) again, we get

η∗L = ω−1
S ⊗ I2F .

Using the pair of sequences

0−→I2F−→O
S̃[2]×S

−→O2F−→0, and

0−→IF/I
2
F−→O2F−→OF−→0,

(3.23)

and tensoring by ω−1
S gives (in the Grothendieck group)

η∗L = ω−1
S ⊗

(
O

S̃[2]×S
− OF − IF/I

2
F

)
. (3.24)

On the component Fi of F , the conormal bundle IF/I
2
F splits as a direct sum

π∗
1OEi

(−Ei)⊕ π∗
2OLi

(1),

where πi : Fi−→Ei × Li are the two projections. After substituting in (3.24) and

pushing forward to S̃[2], we get

A = O6 − O5
E − OE(−E)2

= O+ O(−E)3 + O(−2E)2.
(3.25)

Subtracting (3.22) from (3.25) and tensoring by O(E) gives the result. □

Having computed the class of V, what remains is a computation in the Chow ring

of S̃[2]. In the computation, we suppress pull-back symbols to ease notation. We

have the following simplification.

Proposition 3.4.8. Let ui = ci(U) for i = 1, 2. Then u1 · E = u2 · E = 0.
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Proof. We show that ui ∈ Ai(S[2]) is supported on cycles disjoint from Λ =
⊔

i L
[2]
i .

For u2, fix a general C ∈ |ω−1
S |. Then C intersects each exceptional curve Li

transversely in a single point. Then u2 is the class of C [2] ⊂ S[2], which is clearly

disjoint from Λ.

For u1, fix a general pencil of curves {Ct | t ∈ P1} ⊂ |ω−1
S |. Then for every t ∈ P1,

the curve Ct intersects each exceptional curve Li transversely in a single point. Then

u1 is the class of

{[Z] ∈ S[2] | Z ⊂ Ct for some t ∈ P1},
which is clearly disjoint from Λ. □

We now compute the non-trivial degree 4 intersection numbers.

Proposition 3.4.9. On S̃[2], we have∫
u41 = 36,

∫
u21u2 = 15,

∫
u22 = 10,

∫
E4 = −30.

Proof. We know explicit cycles on S[2] that represent u1 and u2 (see the proof of

Proposition 3.4.8). Using these, we convert the intersection numbers into enumerative

problems, which we solve.

The number
∫
u41 is the answer to the following problem. Choose 4 general anti-

canonical pencils on S, and let f : S 99K (P1)4 be the rational map induced by them.

Then u41 is the number of double points of the map f (pairs of points in S that have

the same image under f). We find that the number is 36 by applying the double

point formula [17, Theorem 2] to a resolution of f .

The number
∫
u21u2 is the answer to the following problem. Fix a general anti-

canonical C ⊂ S and two general anti-canonical pencils. Then
∫
u21u2 is the number

of double points of the map C−→P1 ×P1 induced by the two pencils. Using the

genus of C, which is 1, and the arithmetic genus of f(C), which is 16, we see that

the number is 15.

The number
∫
u22 is the number of pairs of points common to two general anti-

canonical curves C1 and C2. Since there are 5 points in C1 ∩C2, the number of pairs

is
(
5
2

)
= 10.

Finally, to compute
∫
E4, observe that E is the disjoint union of Ei for i = 1, . . . , 10.

Each Ei is the P1-bundle over Li defined by

Ei = PN
L
[2]
i /S[2] ,

and the restriction of Ei to Ei is O(−1). We have L
[2]
i

∼= P2 and

N
L
[2]
i /S[2] = N

[2]
Li/S

∼= OP2(−1)⊕ OP2(−1).
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Now it is a straightforward to check that E4
i = −3, and hence E2 = −30. □

Proposition 3.4.10. Let V = π∗ (ω
−1
π ) be the anti-canonical section bundle of

π : X−→S̃[2], and let vi = ci(V). Then we have∫
B4

v41 = 6,

∫
B4

v21v2 = 21,

∫
B4

v1v3 = 6,

∫
B4

v22 = 16,

∫
B4

v4 = 1.

Proof. Follows from the expression for V in the Grothendieck group we found in

Proposition 3.4.7 and the Chern class computations we did in Proposition 3.4.9 and

Proposition 3.4.10. □

Let µ : S̃[2] 99K M be the map to the moduli space of cubic surfaces induced by

the family π : X−→S̃[2].

Proposition 3.4.11. The degree of µ : S̃[2] 99KM is 36× 6!.

Proof. Recall that the moduli space of marked cubic surfaces M† is the configuration

space of 6 ordered points in P2. The map µ clearly lifts to a birational map

S̃[2] 99KM† /S2,

where the S2 permutes the last 2 points of the configuration. Since the degree of

M†−→M is 72× 6!, the degree of µ is half of that. □

Using Proposition 2.4.5 and the computation of the Chern classes and the degree,

we obtain the following relation on the undetermined coefficients of [Orb(X)] in (2.3)

for a general cubic surface X:

6a14 + 21a122 + 6a13 + 16a22 + a4 = 36× 6!. (3.26)

3.5. Isotrivial families. In this section, we continue the theme of constructing good

families, but with a twist. Let X ⊂ P3 be a cubic surface with an automorphism

group G. We then get a family of cubic surfaces

π : [X/G]−→BG,

and hence a map from BG to the moduli stack of cubic surfaces

µ : BG−→M .

Suppose we know that the family π is good. In this case, this simply means that X

is not in the closure of a general cubic surface S. Then, we get

µ∗[Orb(S)] = 0,
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(a) 3A2 (b) A3 + 2A1 (c) A4 +A1 (d) D4

Figure 6. Some cubic surfaces with a Gm-action that are not in the

closure of the orbit of a generic cubic surface. We used the 3D grapher

SURFER for these images.

which in turn gives a linear relation among the coefficients of the expression for

[Orb(S)] pulled back to A4(BG). To get a useful relation, the group A4(BG) must

be rich. In particular, we must take G to be infinite; otherwise, A4(BG) is torsion,

and we only get a congruence relation.

If we wish to obtain a family over a schematic base instead of BG, we can easily

do so. We consider an arbitrary scheme B with the free action of G such that the

quotient B/G is a scheme, and take the family to be

π : (X ×B)/G−→B/G,

where G acts on X ×B diagonally. In particular, for G = Gm, the only group we

use, we can take B to be an arbitrary Gm-torsor (line bundle minus the zero section)

over a scheme. See § 3.10 for an example.

To implement the strategy outlined above, we need to prove that the cubic surface

X does not lie in the closure of the orbit of a general cubic surface. Following

Definition 2.4.1, say that X is good if it has this property. Proposition 5.1.3 proves

that the following cubic surfaces are good (the parenthesis describes the singularities):

(1) x0x1x3 = x32 (3A2)

(2) x3(x0x2 − x21) = x0x
2
1 (A3 + 2A1)

(3) x3(x0x2 − x21) = x20x1 (A4 + A1)

(4) x3x
2
0 = x31 + x32 (D4)

For the reader’s amusement, we include real pictures of the surfaces above in Figure 6.

https://singsurf.org/parade/Cubics.php
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Let X ⊂ P3 be a good cubic surface. Let G be the automorphism group of X and

Gm−→G a one-parameter subgroup. The family

[X/Gm]−→BGm

yields a relation

a14v
4
1 + a12·2v

2
1v2 + a1·3v1v3 + a22v

2
2 + a4v4 = 0, (3.27)

where the vi are the Chern classes of the push-forward of the anti-canonical bundle.

Let us explain how to compute the push-forward of the anti-canonical bundle in this

setting. For an integer a, let χ(a) denote the 1-dimensional Gm representation where

the Gm action is given by

t : v 7→ tav.

Suppose X ⊂ P3 is the zero-locus of a homogeneous cubic form F ∈ k[x0, x1, x2, x3].

Assume that the Gm acts on the variables xi by scaling, say t ∈ Gm acts by

t : xi 7→ twixi,

where wi ∈ Z. Since V (F ) is Gm-fixed, there exists w ∈ Z such that

F (tx0, tx1, tx2, tx3) = twF (x0, x1, x2, x3) .

Write V ∨ for the k-vector space ⟨x0, x1, x2, x3⟩. As a Gm-representation, we have

V ∨ = χ(w1)⊕ χ(w2)⊕ χ(w3)⊕ χ(w4).

The cubic F defines a Gm-invariant section of Sym3 V ∨ ⊗ χ(−w). Thus, we can

view X as the zero locus of the line bundle O(3)⊗ π∗χ(−w) in the projective bundle

π : [PV/Gm]−→BGm. By the adjunction formula, we get

ω−1
X = OPV (1)⊗ detV ⊗ π∗χ(w)|X ,

and hence

π∗
(
ω−1
X

)
= V ∨ ⊗ detV ⊗ χ(w)

∼=
(⊕

χ(wi)
)
⊗ χ

(
−
∑

wi

)
⊗ χ(w).

(3.28)
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3.6. The family 3A2. Consider

X = V (x0x1x3 − x32).

A Gm stabilizing X acts on the variables by weights (a, b, 0, c) where a, b, c ∈ Z

are any such that a+ b+ c = 0. Note that in this case, the weight w of the cubic

equation defining X is 0. Hence, from (3.28), we get

π∗
(
ω−1
X

)
= χ(a)⊕ χ(b)⊕ χ(0)⊕ χ(c).

Letting q = c1(χ(1)) ∈ A1(BGm), we get

v1 = 0, v2 = (ab+ bc+ ca) · q2, v3 = abc · q3, v4 = 0,

and hence

v41 = 0, v21v2 = 0, v1v3 = 0, v22 ̸= 0, v4 = 0.

Substituting in (3.27) yields the relation

a22 = 0. (3.29)

3.7. The family A3 + 2A1. Consider

X = V (x3(x0x2 − x21)− x0x
2
1).

A Gm stabilizing X acts on the variables by weights (−3, 1, 5,−3). The weight w of

the cubic equations defining X is −1. From (3.28), we get

π∗
(
ω−1
X

)
= χ(−4)⊕ χ(0)⊕ χ(4)⊕ χ(−4).

Setting q = c1(χ(1)) ∈ A1(BGm), we get

v1 = −4q, v2 = −16q2, v3 = 64q3, v4 = 0,

and hence

v41 = 256q4 v21v2 = −256q4, v1v3 = −256q4, v22 = 256q4, v4 = 0.

Substituting in (3.27) yields the relation

a14 − a122 − a13 + a22 = 0. (3.30)
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3.8. The family A4 + A1. Consider

X = V (x3(x0x2 − x21)− x20x1).

A Gm stabilizing X acts on the variables by weights (1,−1,−3, 3). The weight w of

the cubic defining X is 1. From (3.28), we get

π∗
(
ω−1
X

)
= χ(2)⊕ χ(0)⊕ χ(−2)⊕ χ(4).

Setting q = c1(χ(1)) ∈ A1(BGm), we get

v1 = 4q, v2 = −4q2, v3 = −16q3, v4 = 0,

and hence

v41 = 256q4 v21v2 = −64q4, v1v3 = −64q4, v22 = 16q4, v4 = 0.

Substituting in (3.27) yields the relation

16a14 − 4a122 − 4a13 + a22 = 0. (3.31)

3.9. The family D4. Consider

X = V (x3x
2
0 − x31 − x32).

A Gm stabilizing X acts on the variables by weights (5, 1, 1,−7). The weight w of

the cubic equation defining X is 3. By (3.28), we get

π∗
(
ω−1
X

)
= χ(8)⊕ χ(4)⊕ χ(4)⊕ χ(−4).

Setting q = c1(χ(1)), we get

v1 = 12q, v2 = 16q2, v3 = −192q3, v4 = −512q4,

and hence

v41 = 20736q4 v21v2 = 2304q4, v1v3 = −2304q4, v22 = 256q4, v4 = −512q4.

Substituting in (3.27) yields the relation

81a14 + 9a122 − 9a13 + a22 − 2a4 = 0. (3.32)
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3.10. Families over a base scheme. By choosing a suitable base B and a map

B−→BGm, we can construct an isotrivial family over B by pulling back one of the

families above. We describe this explicitly in an example.

Let B = P4. Set

V ∨ = O(5)⊕ O(1)⊕ O(1)⊕ O(−7).

Let x0, x1, x2, x3 be generators of the four summands on the standard A4 ⊂ P4. We

have the section (x3x
2
0 − x31 − x32) of Sym

3 V ∨ = O(3)⊕20. Note that this section has

a pole of order 3 along the hyperplane at infinity. As a result, it defines a section

ξ of Sym3 V ∨ ⊗ O(−3), which is nowhere vanishing. Equivalently, ξ is a section of

OPV (3)⊗ π∗O(−3). Our family X−→B is defined by the zero-locus of ξ in PV−→B.

4. The equivariant orbit class

We use the information provided by the test families to prove the theorems

advertised in the introduction. Let V be a 4 dimensional vector space. Recall our

notation W for the GLV representation

W = Sym3 V ∨ ⊗ detV

and

M = [W \ {0}/GLV ]

for the moduli stack of cubic surfaces.

Theorem 4.0.1. There exists a non-empty open subset U ⊂ W such that for every

cubic surface X represented by a point of U , the class of Orb(X) in A4
GLV (W ) is

given by

[Orb(X)] = 1080 ·
(
v21v2 − v1v3 + 9v4

)
,

where vi = ci(V ) are the Chern classes of the standard representation of GLV .

Proof. By excision and homotopy invariance of equivariant Chow groups, we have

A4(M ) = A4
GLV (W ) = A4

GLV (•).

The ring A∗
GLV (•) is generated by the classes vi, and hence A4

GLV (•) is a free Z-

module generated by the monomials in vi of total degree 4. Therefore, for every

cubic surface X, we have an expression

[Orb(X)] = a14v
4
1 + a12·2v

2
1v2 + a1·3v1v3 + a22v

2
2 + a4v4,
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for some coefficients ai ∈ Z. For a generic X, the families in § 3 give the following

linear relations among the coefficients

16 · a14 + 4 · a122 + a22 = 4320 from (3.5)

625a14 + 125a122 − 25a13 + 25a22 − 6a4 = 103680 from (3.9)

3436a14 + 1076a122 + 116a13 + 316a22 = 1036800 from (3.14)

6a14 + 21a122 + 6a13 + 16a22 + a4 = 25920 from (3.26)

a22 = 0 from (3.29)

a14 − a122 − a13 + a22 = 0 from (3.30)

16a14 − 4a122 − 4a13 + a22 = 0 from (3.31)

81a14 + 9a122 − 9a13 + a22 − 2a4 = 0 from (3.32).

These equations uniquely determine all the coefficients ai to be as stated. □

Corollary 4.0.2. The degree of the closure of the PGL4 orbit of a generic cubic

surface in P3 is 96120.

Proof. Let P3 = PV . Consider the universal cubic surface X ⊂ PV ×P Sym3 V ∨.

Let π : X−→P Sym3 V ∨ be the second projection and µ : P Sym3 V ∨−→M the map

induced by π. Tautologically, for any cubic surface X, the pre-image under µ of

Orb(X) is the closure of the PGL(V ) orbit of X. By adjunction, we have

ωπ = O(1)⊠ O(1),

and hence

V = π∗ωπ
∼= O(1)4.

For a generic X, we evaluate

[Orb(X)] = 1080(v21v2 − v1v3 + 9v4)

in A4(P Sym3 V ∨) and find that the answer is 96120 (times the class of a codimension

4 linear subspace). □

Corollary 4.0.3. Let X ⊂ P4 be a general cubic 3-fold, and let π : X−→P4 be the

family of hyperplane sections of X. Given a generic cubic surface S, there are 42120

fibers of π isomorphic to S.

Proof. Note that two cubic surfaces are isomorphic if and only if they are in the

same PGL4 orbit. Consider the pull-back of Orb(S) to the base P4 of the family.

By the genericity of X and S, this pull-back consists of distinct reduced points
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corresponding to the points of Orb(S) \ ∂Orb(S). The statement now follows from

Theorem 4.0.1 and an easy Chern class computation, which we omit. □

4.1. Proof of Theorem 1.0.1 from the introduction. The theorem follows

immediately from Theorem 4.0.1 and Proposition 2.4.5.

4.2. Proof of Theorem 1.2.1 from the introduction. Let V be a 4-dimensional

vector space. Set

N =
[
Sym3 V ∨ \ {0}/GLV

]
.

Let V denote the vector bundle on N corresponding to the standard representation

of GLV . The tautological non-zero section of Sym3 V ∨ on N defines a family of

cubic surfaces

π : X −→N ,

and hence a map N −→M . Under this map, the pull-back of an orbit closure is an

orbit closure. Note that X ⊂ PV is the zero locus of O(3). By adjunction, we have

ωπ = O(1)⊗ detV |X ,

and hence

π∗ωπ = V ∨ ⊗ detV.

Theorem 4.0.1 gives the class of the pull-back of a generic orbit closure in terms of

the Chern classes vi = ci(V
∨ ⊗ detV ). Writing them in terms of ci = ci(V ) yields

the result.

5. Addressing the orbit closure problem

We have repeatedly faced the problem of showing that a certain cubic surface

is not in the orbit closure of a certain (generic) cubic surface. In this section, we

develop two sets of techniques to address this question.

5.1. Using GIT. The first technique uses GIT and applies broadly to any orbit

closure problem. Let W be a quasi-projective variety with a linearized action of a

reductive group G. The basic observation is that if x ∈ W is semi-stable and s ∈ W

is stable, then x does not lie in the orbit closure of s. We prove an extension of this

idea that turns out to be highly effective.

Let G be a reductive group. Let W and H be smooth quasi-projective varieties

along with an action of G. Consider the diagonal action of G on W ×H and fix any

G-linearization of this action.
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Proposition 5.1.1. With the setup above, let x, s ∈ W be points satisfying the

following conditions:

(1) x has a reductive stabilizer T ⊂ G.

(2) for some h ∈ H fixed by the identity component of T , the point (x, h) ∈ W×H
is semi-stable.

(3) for all h ∈ H, the point (s, h) ∈ W ×H is stable.

Then x does not lie in the closure of the G-orbit of s.

The proof needs the following lemma. It is well-known to experts—it appears as a

remark in [2] (see § 1.3, Immediate consequences: 5)—but we include a proof for

completeness. Recall that k is an algebraically closed field of characteristic 0, all

schemes considered are of finite type over k, and a point means a k-point.

Lemma 5.1.2. Let U be a smooth scheme over k with an action of a linear algebraic

group G. Let x ∈ U be a point whose stabilizer group T ⊂ G is reductive. If x lies

in the closure of the G-orbit of a point s ∈ U , then there exists a one-parameter

subgroup λ : Gm−→T and a point s′ in the G-orbit of s such that

x = lim
t−→0

λ(t) · s′.

Proof. By [1, Theorem 3], there exists a T -invariant locally closed affine W ⊂ U

containing the point x such that the map

π : [W/T ]−→[U/G]

is affine and étale. (Note that this result is substantially easier than the main theorem

of [2].) Define Z as the fiber product

Z [W/T ]

Spec k [U/G].

π

s

Since π is representable, étale, and of finite type, Z is a finite disjoint of copies of

Spec k. Let z1, . . . , zn ∈ [W/T ](k) be the points of Z. Since the point x ∈ [U/G](k)

lies in the closure of s ∈ [U/G](k) and the map π is étale (and hence open), the

point x ∈ [W/T ](k) lies in the closure of the set {z1, . . . , zn}. But then x lies in

the closure of zi for some i. In other words, the point x ∈ W (k) lies in the closure

of the T -orbit of a lift si ∈ W (k) of zi ∈ [W/T ](k). By the Hilbert–Mumford

criterion [20, Theorem 1.4], there exists a one-parameter subgroup λ : Gm−→T such
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that we have the equation

x = lim
t−→0

λ(t) · si. (5.1)

Since si ∈ [W/T ](k) maps to s ∈ [U/G](k), the point si ∈ W is in the same G-orbit

as s ∈ U . The proof is now complete. □

Proof of Proposition 5.1.1. Let T0 ⊂ T be the connected component of the identity.

We prove the contrapositive. Assuming that x lies in the closure of the G-orbit of s,

we show that for any T0-fixed h ∈ H, the point (x, h) ∈ W ×H is unstable.

By Lemma 5.1.2, there exists a one parameter subgroup λ : Gm−→T0 and a point

s′ ∈ W in the same G-orbit as s such that

x = lim
t−→0

λ(t) · s′.

For any T0-fixed h ∈ H we have

(x, h) = lim
t−→0

λ(t) · (s′, h).

Since (s′, h) is G-stable, (x, h) must be G-unstable. □

We immediately get an application to cubic surfaces.

Proposition 5.1.3. The following singular cubic surfaces are not in the closure of

the PGL4-orbit of any smooth cubic surface without an Eckardt point (the parenthesis

describes the singularities):

(1) x0x1x3 = x32 (3A2)

(2) x3(x0x2 − x21) = x0x
2
1 (A3 + 2A1)

(3) x3(x0x2 − x21) = x20x1 (A4 + A1)

(4) x3x
2
0 = x31 + x32 (D4)

Proof. Let V be a 4-dimensional vector space. Set W = P Sym3 V ∨ and H = PV ∨;

both have natural linearized actions of PGL(V ). The product W ×H parametrizes

cubic surfaces along with a hyperplane. We use the GIT analysis for this space

carried out by Gallardo and Martinez-Garcia [18]. We have a 1-parameter choice of

linearizations on W × V indexed by a positive rational number t. The G-linearized

line bundle corresponding to t is O(a)⊠O(b), where a and b are (sufficiently divisible)

positive integers satisfying b/a = t.

From [25, Theorem 3], we see that the listed cubic surfaces have a reductive

stabilizer group. In fact, in all cases the connected component of the identity is a

torus.

Let S be a smooth cubic surface without an Eckardt point corresponding to a

point s ∈ W . Suppose we have 0 < t < 5/9. From [18, Theorem 2], we see that for
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any h ∈ H, the point (s, h) is t-stable. On the other hand, from [18, Table 2], we

see that for some t in the range 0 < t < 5/9, there exists a choice of h ∈ H, fixed

by the connected component of the identity of the stabilizer of s, such that (s, h) is

t-semistable. We now apply Proposition 5.1.1.

In the following table, we list the automorphism groups, the hyperplane h, and

the value of t for which (s, h) is t-semistable. We denote the symmetric group on n

letters by Σn. The automorphism groups are from [25] and the GIT semi-stability

assertions are from [18].

X Singularities of X Aut(X) h t

x0x1x3 = x32 3A2 G2
m ⋊ Σ3 x2 = 0 All t ∈ (0, 1)

x3(x0x2 − x21) = x0x
2
1 A3 + 2A1 Gm ⋊ Σ2 x2 = 0 1/5

x3(x0x2 − x21) = x20x1 A4 + A1 Gm x2 = 0 1/3

x3x
2
0 = x31 + x32 D4 Gm ⋊ Σ3 x3 = 0 3/7

□

5.2. Using 6 points in P2. The second technique is specific to cubic surfaces. We

first reduce to the case of 6 points in P2, and then use the geometry of 1-parameter

families of automorphisms of P2. This method can show, for example, that the cubic

with the A5 singularity does not lie in the closure of the orbit of a generic cubic.

(This particular surface had been immune to all our previous strategies.)

Proposition 5.2.1. Let W ⊂ P2 be an admissible length 6 subscheme and let

X = XW be the cubic surface associated to W . Let S ⊂ P2 be a smooth cubic surface,

and suppose X lies in the PGL4-orbit closure of S. Then W lies in the PGL3 orbit

closure of a length 6 scheme Z ⊂ P2 such that BlZ P2 is isomorphic to S.

Proof. Since W is in the orbit closure of S, there exists a k-algebra DVR R with

fraction field K and residue field k with a family of cubic surfaces π : X−→ SpecR

whose central fiber X0 is isomorphic to X and whose general fiber XK is isomorphic

to SK = S×kK. We know that X has only ADE singularities (Proposition 2.5.2) and

hence we can resolve the singularities ofX in the family. That is, there exists a smooth

and projective π′ : X′−→ SpecR and β : X′−→X such that βK is an isomorphism and

β0 is the minimal resolution of singularities; see [8] or [29].

Set X ′ = X′
0. We know from the proof of Proposition 2.5.5 that X ′ is also the mini-

mal desingularization of BlZ P2. Let X ′−→P2 be the composite X ′−→BlZ P2−→P2,

and let L′ be pullback of O(1) to X′
0. It is easy to see that hi(X ′, L′) = 0 for i > 0

and h0(X ′, L′) = 3. Since H2(X ′,OX′) = 0, there are no obstructions to deforming
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L′—it extends to compatible family of line bundles on X′ ×R SpecR/tn for every n,

where t ∈ R is the uniformizer. By Artin’s approximation theorem [6] applied to the

relative Picard functor of π′, we deduce that L′ extends to a line bundle L on X′,

after possibly replacing R by a finite étale cover. By cohomology and base change,

we see that π′
∗L is a free R-module of rank 3. It is also easy to see that the evaluation

map π′∗π′
∗L−→L is surjective. After choosing an isomorphism π′

∗L
∼= R3, we get a

map α : X′−→P2
R, which restricts to the original map X ′−→P2 on the central fiber.

Recall that X′
K = XK = S ×k K. Since H1(S,OS) = 0, it follows that the line

bundle L on S ×k K is constant, that is, isomorphic to L⊗k K for some line bundle

L on S. The complete linear system |L| gives a map a : S−→P2. It is easy to check

that the map α : X′
K−→P2

K and aK : X′
K−→P2

K are equal, up to an automorphism

of P2
K .

The natural map α∗ωP2
R/R−→ωX′/R gives a map ω−1

X′/R−→α∗ω−1
P2

R/R
and hence an

evaluation map

π′
∗
(
ωX′/R

)
⊗R OP2

R
−→ω−1

P2
R/R

.

Tensor by ωP2
R/R to get

π′
∗
(
ωX′/R

)
⊗R ωP2

R/R−→OP2
R
.

Then the cokernel is OZ for a closed subscheme Z ⊂ P2
R. Note that both the general

and the special fiber of Z−→ SpecR have length 6, and hence Z−→ SpecR is flat.

The central fiber is the subscheme W ⊂ P2 and, up to an automorphism of P2
K , the

general fiber is Z ×k K ⊂ P2
K , where Z ⊂ P2 is such that S ∼= BlZ P2. The proof is

now complete. □

5.2.1. The anatomy of linear rational maps P2
t 99K P

2
t . To study orbit closures of col-

lections of points in P2, we must understand one parameter families of automorphisms

of P2.

Let R be a k-algebra DVR with residue field k, fraction field K, and uniformizer t.

For an R-module M , we set MK =M ⊗R K and M0 =M ⊗R k. Let ϕ : P
2
K−→P2

K

be an isomorphism. We analyze the corresponding rational map P2
R 99K P

2
R. The

analysis should hold for Pn for any n; we stick to n = 2 to keep us focused.

Let M and N be free R-modules of rank 3, and suppose ϕ : MK−→NK is a K-

linear isomorphism. By scaling ϕ by the correct power of the uniformizer, assume

that ϕ induces a map ϕ : M−→N such that ϕ0 : M0−→N0 is non-zero. By the rank

of ϕ, we mean the rank of ϕ0.
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By making a change of basis on M and N , we may assume that ϕ is given by a

diagonal matrix

ϕ ≡

1

ta

tb

 ,

where 0 ≤ a ≤ b are integers.

If a = b = 0, then there is nothing to analyze.

Suppose a = 0 and b > 0, or equivalently, rkϕ0 = 2. In this case, the rational map

ϕ is defined away from the point [0 : 0 : 1] in PM0. It sends the point [a : b : c] to the

point [a : b : 0], which lies on the line Z = 0. Said in a coordinate free manner, the

rational map ϕ is defined away from a particular point p ∈ PM0. For q ∈ PM0 \ {0},
the image ϕ(q) lies on a particular line L ⊂ PN0, and the map

ϕ : PM0 \ {p}−→L (5.2)

is the linear projection from p followed by an isomorphism.

Suppose a > 0, or equivalently rkϕ0 = 1. In this case, the rational map ϕ is

defined away from the line X = 0 in PM0. It sends the point [a : b : c] to the point

[1 : 0 : 0]. Said in a coordinate free manner, the rational map ϕ is defined away from

a particular line L ⊂ PM0 and the map

ϕ : PM0 \ L−→PN0 (5.3)

is constant.

Using the matrix of ϕ, we can explicitly construct a resolution of the rational

map ϕ : P2
R 99K P

2
R using a sequence of elementary transformations. We get the

description of the maps (5.2) and (5.3) also from this resolution. Let L ⊂ P2 be the

locus of indeterminacy of ϕ (with the reduced scheme structure). Let P̃−→P2
R be the

blow up of L. Then the central fiber of P̃ is the union of BlL P
2 and the exceptional

divisor E. If ϕ has rank 1, then L is a line, and these two components are P2 and

the Hirzebruch surface F1, respectively, meeting along L ⊂ P2 and the unique (−1)

curve on F1. If ϕ has rank 2, then L is a point, and these two components are F1 and

P2, respectively, meeting along the (−1)-curve on F1 and a line in P2. In both cases,

the first component can be contracted: to a point in the rank 1 case and to a line in

the rank 2 case. The resulting threefold is again isomorphic to P2
R. The rational

map P2
R 99K P

2
R after this operation corresponds to the diagonal matrix with entries

(1, ta−1, tb−1) in the rank 1 case and (1, 1, tb−1) in the rank 2 case. Observe that the

new locus of indeterminacy is disjoint from the image of the contracted component.
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P2

P0

P1

...

Pn−1

Pn

P2

Figure 7. A family of surfaces with an accordion like central fiber

arises while resolving a linear rational map P2
R 99K P

2
R.

We repeat the procedure until we reach the identity matrix. Alternatively, we can

do all the blow-ups first, and then all the contractions. We then get a diagram

P̂

P2
R P2

R

ϕ

The central fiber of P̂ has an accordion like structure P0 ∪ · · · ∪ Pn (see Figure 7),

where each Pi is a copy of F1 for i = 1, . . . , n− 1, meeting the previous surface along

the (−1)-curve and the next one along a (+1)-curve. The first surface P0 is F1 if

a = 0 (that is, ϕ has rank 2) or P2 if a > 0 (that is, ϕ has rank 1). Likewise, the

last surface Pn is F1 if a = b or P2 if b > a.

5.2.2. Orbit closure of 6 general points in P2. We use the analysis in § 5.2.1 to

understand limits of a general set of six points in P2 under a one-parameter family

of automorphisms. Let Z ⊂ P2 be a configuration of 6 distinct points, with no three

collinear. A point p ∈ P2\Z is a star point if, for some ordering {z1, . . . , z6} of Z, the

lines ⟨z1, z2⟩ and ⟨z3, z4⟩ and ⟨z5, z6⟩ are concurrent at p. A star-free configuration

is one without any star points.

Proposition 5.2.2. Let Z ⊂ P2 be a set of 6 points forming a star-free configuration.

Suppose W ⊂ P2 is in the PGL3 orbit closure of Z. Then there exists a line in P2
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containing at least 4 distinct points of W or there exists a point in P2 at which W

has multiplicity at least 4.

Proof. There exists a k-algebra DVR R with fraction field K and ϕ ∈ Aut(P2
K) such

that W is the flat limit of ϕ(ZK). Consider the rational map

ϕ : P2
R 99K P

2
R.

We use ϕ to understand W as a cycle. For z ∈ Z, let zK denote the constant section

z ×k K of P2
K , and let ϕ(z)0 be the flat limit of ϕ(zK). Then the cycle [W ] of W is

simply

[W ] =
∑
z∈Z

ϕ(z)0.

Suppose ϕ has rank 2. Then the indeterminacy locus of ϕ consists of a single point

p in the central fiber, and the map ϕ0 : P
2 99K P2 is the linear projection with center

p onto a line L ⊂ P2 (see (5.2)). If p ̸∈ Z, then ϕ0 is defined for every z ∈ Z, and

ϕ(z)0 is simply ϕ0(z). Since Z is star-free, the linear projection from p can identify

at most 2 pairs of points from Z. As a result, the set {ϕ0(z) | z ∈ Z} consists of at

least 4 distinct points on L. If p ∈ Z, consider Z ′ = Z \ {p}. Then ϕ0 is defined on

Z ′, and ϕ(z)0 is simply ϕ0(z) for z ∈ Z ′. Since no 3 points of Z are collinear, the

linear projection from p maps the points of Z ′ to distinct points. As a result, the set

{ϕ0(z) | z ∈ Z} actually consists of 5 distinct points on L.

Suppose ϕ has rank 1. Then the indeterminacy locus of ϕ0 is a line L ⊂ P2 and

ϕ0 is constant on P2 \ L. Let Z ′ = Z \ L. Since no three points of Z are collinear,

L contains at most 2 points of Z, and hence Z ′ contains at least 4 points. By

construction, ϕ0 is defined on Z ′, and hence ϕ(z)0 = ϕ0(z) for z ∈ Z ′. Since ϕ0 is

constant, we conclude that W contains a point of multiplicity at least 4. □

Proposition 5.2.3. Let W ⊂ P2 be a curvilinear scheme of length 6 whose cycle is

p+ q + 4r, where p, q, r are distinct and TrW does not contain p or q. Then W does

not lie in the PGL3 orbit closure of a star-free configuration Z.

Proof. We prove the contrapositive. Let ϕ ∈ Aut(P2
K) be an automorphism such

that W is the flat limit of ϕ(ZK). We show that TrW contains p or q. The key idea

is to consider flat limits of lines in P2 under the action of ϕ. To do so, we use the

same analysis as before but for the map between dual projective spaces

ϕ∨ : (P2)∨R 99K (P
2)∨R.

If A is the 3× 3 matrix defining ϕ, then the matrix defining ϕ∨ is (AT )−1.
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If ϕ∨
0 is defined for a line ℓ ∈ (P2)∨, then the flat limit of the family of lines

ϕ(ℓK) ⊂ P2
K is the line corresponding to ϕ∨

0 (ℓ). The statements (5.2) and (5.3) for

the dual projective space say the following. If ϕ∨ has rank 1, then the indeterminacy

locus of ϕ∨
0 consists of a particular Λ ∈ (P2)∨. For ℓ ≠ Λ, the map ϕ∨

0 is the composite

of ℓ 7→ ℓ ∩ Λ and a linear inclusion Λ−→(P2)∨. In this case, a fiber of ϕ∨
0 consists of

a collection of concurrent lines, with the point of concurrency on Λ. If ϕ∨ has rank

1, then the indeterminacy locus of ϕ∨
0 consists of lines through a particular point

p ∈ P2. For ℓ ∈ (P2)∨ not containing p, the map ϕ∨
0 is constant.

Consider a line ℓ joining pairs of points of Z. By semi-continuity, the flat limit

of ϕ(ℓK) must intersect W in a scheme of length at least 2. There are at most four

lines in P2 that intersect W in a scheme of length at least 2: the lines pq, pr, qr, and

TrW . In particular, if ϕ∨
0 is defined at ℓ, then ϕ∨

0 (ℓ) must be one of these 4. This

immediately implies that ϕ∨ cannot have rank 1. To see this, suppose it has rank 1.

Consider the
(
6
2

)
= 15 lines joining pairs of points of Z. If ϕ∨

0 takes only 4 values

on these lines (or may be undefined on one of them), we would be able to partition

them into 4 collections of concurrent lines, such that the points of concurrency are

collinear. But it is easy to check that this is impossible for a star-free configuration

Z.

We have now concluded that ϕ∨ has rank 2, and hence ϕ∨
0 is constant on its domain.

Suppose the constant value of ϕ∨
0 corresponds to the line L ⊂ P2. Suppose z1 ∈ Z

(resp. z2 ∈ Z) is such that the flat limit of ϕ(z1K) is p (resp. q). Consider the 8 lines

ziz for i = 1, 2 and z ∈ Z \ {z1, z2}. Since these lines are not all concurrent, ϕ∨
0 is

defined for at least one of them, say ℓ = z1z. Then ϕ
∨
0 (ℓ) corresponds to the line L.

Since ℓ contains z1, the flat limit L of ϕ(ℓK) contains the flat limit p of ϕ(z1K).

Now consider the
(
4
2

)
= 6 lines joining pairs of points of Z \ {z1, z2}. Since the 6

lines are not all concurrent, ϕ∨
0 is defined on at least one of them, say ℓ. Then the

flat limit of ϕ(ℓK) is also L. Since the flat limit of a point of Z \ {z1, z2} is r, by

semi-continuity, we have

multr(L ∩W ) ≥ 2.

In other words, L = TrW . But then TrW contains p. □

Remark 5.2.4. The same conclusion holds for a curvilinear W with cycle structure

2p+ 4r such that TrW does not contain p. The same proof works with p = q.

5.2.3. Applications. Let X ⊂ P3 denote the cubic surface defined in homogeneous

coordinates (x0, x1, x2, x3) by the equation

x3f2 − f3 = 0,
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Figure 8. The unique cubic surface X with an A5 singularity

where f2 = x0x1 and f3 = x30+x
3
1−x1x

2
2. This is the unique cubic surface possessing

a single A5 singularity, up to projective equivalence. For the reader’s amusement, we

include a real picture of X in Figure 8.

The surface X is the cubic surface associated to the length 6 subscheme W ⊂ P2

defined by f2 = 0 and f3 = 0. The scheme W has the cycle p+ q + 4r, where p, q,

r are distinct but collinear, and the tangent line TrW is distinct from the line pqr.

The identity component of the automorphism group of X is Ga.

Proposition 5.2.5. Let S be a smooth cubic surface without an Eckardt point. Then

X is not in the PGL4 orbit closure of S.

Proof. We know that S is isomorphic to BlZ P2, where Z ⊂ P2 is a star-free

configuration. The result now follows from Proposition 5.2.1 and Proposition 5.2.3.

□

References

[1] Jarod Alper. On the local quotient structure of Artin stacks. J. Pure Appl. Algebra, 214(9):1576–

1591, 2010.

[2] Jarod Alper, Jack Hall, and David Rydh. A Luna étale slice theorem for algebraic stacks. Ann.

of Math. (2), 191(3):675–738, 2020.

[3] Paolo Aluffi and Carel Faber. Linear orbits of smooth plane curves. J. Algebraic Geom.,

2(1):155–184, 1993.

[4] Paolo Aluffi and Carel Faber. Linear orbits of arbitrary plane curves. volume 48, pages 1–37.

2000. Dedicated to William Fulton on the occasion of his 60th birthday.

[5] Paolo Aluffi and Carol Faber. Linear orbits of d-tuples of points in P1. Journal für die reine

und angewandte Mathematik, 445:205–220, 1993.

[6] M. Artin. Algebraic approximation of structures over complete local rings. Publ. Math., Inst.

Hautes Étud. Sci., 36:23–58, 1969.

[7] N. D. Beklemishev. Invariants of cubic forms in four variables. Mosc. Univ. Math. Bull.,

37(2):54–62, 1982.



A UNIVERSAL FORMULA FOR COUNTING CUBIC SURFACES 53

[8] Egbert Brieskorn. Singular elements of semi-simple algebraic groups. In Actes du Congres

International des Mathématiciens (Nice, 1970), volume 2, pages 279–284, 1970.

[9] J. W. Bruce and C. T. C. Wall. On the classification of cubic surfaces. J. Lond. Math. Soc., II.

Ser., 19:245–256, 1979.
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