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ABSTRACT. Motivated by the problem of finding algebraic constructions of finite coverings in com-
mutative algebra, the Steinitz realization problem in number theory, and the study of Hurwitz
spaces in algebraic geometry, we investigate the vector bundles underlying the structure sheaf of a
finite flat branched covering. We prove that, up to a twist, every vector bundle on a smooth pro-
jective curve arises from the direct image of the structure sheaf of a smooth, connected branched
cover.

1. INTRODUCTION

Associated to a finite flat morphism φ : X → Y is the vector bundle φ∗OX on Y . This is the
bundle whose fiber over y ∈ Y is the vector space of functions on φ−1(y). In this paper, we
address the following basic question: which vector bundles on a given Y arise in this way? We
are particularly interested in cases where X and Y are smooth projective varieties.

Our main result is that, up to a twist, every vector bundle on a smooth projective curve Y arises
from a branched cover X → Y with smooth projective X . Let d be a positive integer and let k be
an algebraically closed field with char k = 0 or char k > d.

Theorem 1.1 (Main). Let Y be a smooth projective curve over k and let E be a vector bundle of rank
(d − 1) on Y . There exists an integer n (depending on E) such that for any line bundle L on Y of
degree at least n, there exists a smooth curve X and a finite map φ : X → Y of degree d such that
φ∗OX is isomorphic to OY ⊕ E∨ ⊗ L∨.

The reason for the OY summand is as follows. Pull-back of functions gives a map OY → φ∗OX ,
which admits a splitting by 1/d times the trace map. Therefore, every bundle of the form φ∗OX
contains OY as a direct summand. The dual of the remaining direct summand is called the Tschirn-
hausen bundle and is denoted by E = Eφ (the dual is taken as a convention.) Theorem 1.1 says that
on a smooth projective curve, a sufficiently positive twist of every vector bundle is Tschirnhausen.

The reason for needing the twist is a bit more subtle, and arises from some geometric restric-
tions on Tschirnhausen bundles. For Y = Pn and a smooth X , the Tschirnhausen bundle E is
ample by a result of Lazarsfeld [24]. For more general Y and smooth X , it enjoys several posi-
tivity properties as shown in [29, 30]. The precise necessary and sufficient conditions for being
Tschirnhausen (without the twist) are unknown, and seem to be delicate even when Y = P1.

The attempt at extending Theorem 1.1 to higher dimensional varieties Y presents interesting
new challenges. We discuss them through some examples in § 4. As it stands, the analogue of
Theorem 1.1 for higher dimensional varieties Y is false. We end the paper by posing modifications
for which we are unable to find counterexamples.

1.1. Motivation and related work. The question of understanding the vector bundles associated
to finite covers arises in many different contexts. We explain three main motivations below.

1.1.1. The realization problem for finite covers. Given a space Y and a positive integer d, a basic
question in algebraic geometry is to find algebraic constructions of all possible degree d branched
coverings of Y . The prototypical example occurs when d = 2. A double cover X → Y is given as
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X = Spec(OY⊕L∨)where L is a line bundle on Y , and the algebra structure on OY⊕L∨ is specified
by a map L⊗−2→ OY of OY -modules. In other words, the data of a double cover consists of a line
bundle L and a section of L⊗2. In general, a degree d cover X → Y is given as X = Spec(OY ⊕ E∨)
where E is a vector bundle on Y of rank (d − 1). The specification of the algebra structure,
however, is much less obvious. For higher d, it is far from clear that simple linear algebraic
data determines an algebra structure. In fact, given an E it is not clear whether there exists a
(regular/normal/Cohen-Macaulay) OY -algebra structure on OY ⊕ E∨, that is, whether E can be
realized as the Tschirnhausen bundle of a cover φ : X → Y for some (regular/normal/Cohen-
Macaulay) X . We call this the realization problem for Tschirnhausen bundles.

For d = 3,4, and 5, theorems of Miranda, Casnati, and Ekedahl provide a linear algebraic
description of degree d coverings of Y in terms of vector bundles on Y [11,25]. These descriptions
give a direct method for attacking the realization problem for d up to 5. For d ≥ 6, however, no
such description is known, and finding one is a difficult open problem. Theorem 1.1 solves the
realization problem for all d up to twisting by a line bundle, circumventing the lack of effective
structure theorems.

The realization problem has attracted the attention of several mathematicians, even in the
simplest non-trivial case, namely where Y = P1 [3, 13, 27, 32]. Historically, this problem for
Y = P1 is known as the problem of classifying scrollar invariants. Recall that every vector bundle
on P1 splits as a direct sum of line bundles. Suppose φ : X → Y = P1 is a branched cover with
X smooth and connected. Writing Eφ = O(a1) ⊕ · · · ⊕ O(ad−1), the scrollar invariants of φ are
the integers a1, . . . , ad−1. For d = 2, any positive integer a1 is realized as a scrollar invariant of
a smooth double cover. For d = 3, a pair of positive integers (a1, a2) with a1 ≤ a2 is realized as
scrollar invariants of smooth triple coverings if and only if a2 ≤ 2a1 [25, § 9]. Though it may
be possible to use the structure theorems to settle the cases of d = 4 and 5, such direct attacks
are infeasible for d ≥ 6. Nevertheless, the picture emerging from the collective work of several
authors [13,27], and visible in the d = 3 case, indicates that if the ai are too far apart, then they
cannot be scrollar invariants.

Theorem 1.1 specialized to Y = P1 says that the picture is the cleanest possible if we allow
twisting by a line bundle.

Corollary 1.2. Let a1, . . . , ad−1 be integers. For every sufficiently large c, the integers a1+c, . . . , ad−1+
c can be realized as scrollar invariants of φ : X → P1 where X is a smooth projective curve.

Before our work, the work of Ballico [3] came closest to a characterization of scrollar invariants
up to a shift. He showed that one can arbitrarily specify the smallest d/2 of the (d − 1) scrollar
invariants. Corollary 1.2 answers the question completely: one can in fact arbitrarily specify all
of them.

1.1.2. Arithmetic analogues. The realization problem of Tschirnhausen bundles is a well-studied
and difficult open problem in number theory. When φ : SpecOL → SpecOK is the map corre-
sponding to the extension of rings of integers of number fields L/K , the isomorphism class of
Eφ is encoded by its Steinitz class, which is the ideal class det E ∈ Cl(K). Indeed, the structure
theorem of projective modules over a Dedekind domain [34] says that every projective module E
of rank (d−1) is isomorphic to Od−2

K ⊕det E as an OK -module. A long-standing unsolved problem
in number theory is to prove that, for each fixed degree d ≥ 2, every element of the class group
is realized as the Steinitz class of some degree d extension of K . The first cases (d ≤ 5) of this
problem follow from the work of Bhargava, Shankar, and Wang [8, Theorem 4]. In general, the
realization problem for Steinitz classes is open, with progress under various conditions on the
Galois group; see [9] and the references therein.
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Theorem 1.1 completely answers the complex function field analogue of the realization prob-
lem for Steinitz classes.

Corollary 1.3. Suppose Y is a smooth affine curve, and I ∈ Pic(Y ). Then I is realized as the Steinitz
class of a degree d covering φ : X → Y , with X smooth and connected. That is, there exists φ : X → Y
with X smooth and connected such that

Eφ ∼= Od−2
Y ⊕ I .

Proof. Extend E to a vector bundle E′ on the smooth projective compactification Y ′ of Y . Apply
Theorem 1.1 to E′, twisting by a sufficiently positive line bundle L on Y ′ whose divisor class is
supported on the complement Y ′ \Y . We obtain a smooth curve X ′ and a map φ : X ′→ Y ′ whose
Tschirnhausen bundle is E′ ⊗ L; letting X = φ−1(Y ), we obtain the corollary. �

We note that the affine covers in the above corollary have full (Sd) monodromy groups, as can
easily be deduced from the method of proof of Theorem 1.1.

The analogy between the arithmetic and the geometric realization problems discussed above
for affine curves extends further to projective curves, provided we interpret the projective closure
of an arithmetic curve like SpecOK in the sense of Arakelov geometry [36]. For simplicity, take
K = Q and Y = P1. A vector bundle on a “projective closure” of SpecZ in the Arakelov sense is
a free Z-module E with a Hermitian form on its complex fiber E ⊗ C. Let L/Q be an extension
of degree d. The Tschirnhausen bundle Eφ of φ : SpecOL → SpecOK is naturally an Arakelov
bundle, where the Hermitian form is induced by the trace. Thus, the realization problem has a
natural interpretation in the Arakelov sense. An Arakelov bundle over SpecZ of rank r is just a
lattice of rank r, and the set of such lattices (up to isomorphism and scaling) forms an orbifold (a
double quotient space), denoted by Sr . A theorem of Bhargava and Harron says that for d ≤ 5,
the (Arakelov) Tschirnhausen bundles are equidistributed in Sd−1 [7, Theorem 1]. Again, one
crucial ingredient in their proof is provided by the structure theorems for finite covers. We may
view Corollary 1.2 as a (complex) function field analogue, but for all d.

1.1.3. Geometry of Hurwitz spaces. Another source of motivation for Theorem 1.1 concerns the
geometry of moduli spaces of coverings, known as Hurwitz spaces. For simplicity, take k = C
and let Y be a smooth projective curve over k. Denote by Hd,g(Y ) the coarse moduli space that
parametrizes primitive covers φ : X → Y where φ is a map of degree d and X is a smooth curve
of genus g (the cover φ is primitive if φ∗ : π1(X )→ π1(Y ) is surjective). The space Hd,g(Y ) is an
irreducible algebraic variety [17, Theorem 9.2].

The association φ   Eφ gives rise to interesting cycles on Hd,g(Y ), called the Maroni loci.
For a vector bundle E on Y , define the Maroni locus M(E) ⊂ Hd,g(Y ) as the locally closed subset
that parametrizes covers with Tschirnhausen bundle isomorphic to E. This notion generalizes
the classical Maroni loci for Y = P1, which play a key role in describing the cones of various
cycles classes on Hd,g(Y ) in [14] and [28]. It would be interesting to know if the cycle of M(E)
has similar distinguishing properties, such as rigidity or extremality, more generally than for Y =
P1. A first step towards this study is to determine when these cycles are non-empty and of the
expected dimension. As a consequence of the method of proof of the main theorem, we obtain
the following.

Theorem 1.4. Set b = g − 1 − d(gY − 1). Let E be a vector bundle on Y of rank (d − 1) and
degree e. If g is sufficiently large (depending on Y and E), then for every line bundle L of degree
b− e, the Maroni locus M(E⊗ L) ⊂ Hd,g(Y ) contains an irreducible component having the expected
codimension h1(End E).
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Theorem 1.4 is Theorem 3.13 in the main text. Going further, it would be valuable to know
whether all the components of M(E⊗L) are of the expected dimension or, even better, if M(E⊗L)
is irreducible. The results of [15, § 2] imply irreducibility for Y = P1 and some vector bundles E.
But the question remains open in general.

More broadly, the association φ   Eφ allows us to relate Hd,g(Y ) to the moduli space of
vector bundles on Y . Denote by Mr,k(Y ) the moduli space of semi-stable vector bundles of rank
r and degree k on Y . It is well-known that Mr,k(Y ) is an irreducible algebraic variety [35]. Note
that the Tschirnhausen bundle of a degree d and genus g cover of Y has rank d − 1 and degree
b = g − 1− d(gY − 1). One would like to say that φ  Eφ yields a rational map

Hd,g(Y ) ¹¹Ë Md−1,b,

but to say so we must know the basic fact that a general element φ : X → Y of Hd,g(Y ) gives a
semi-stable vector bundle Eφ . We obtain this as a consequence of our methods.

Theorem 1.5. Suppose gY ≥ 2, and set b = g − 1− d(gY − 1). If g is sufficiently large (depending
on Y and d), then the Tschirnhausen bundle of a general degree d and genus g branched cover of Y
is stable. Moreover, the rational map Hd,g(Y ) ¹¹Ë Md−1,b(Y ) defined by φ 7→ Eφ is dominant.

The same statement holds for gY = 1, with “stable” replaced with “regular poly-stable.”

Theorem 1.5 is Theorem 3.11 in the main text.
The low degree cases (d ≤ 5) of Theorem 1.5 were proved by Kanev [21, 22, 23] using the

structure theorems. The crucial new ingredient in our approach is the use of deformation the-
ory to circumvent such direct attacks. The validity of Theorem 1.5 for low g is an interesting
open problem. It would be nice to know whether φ 7→ Eφ is dominant as soon as we have
dim Hd,g(Y )≥ dim Md−1,b(Y ).

We also draw the reader’s attention to results, similar in spirit to Theorem 1.5, proved by
Beauville, Narasimhan, and Ramanan [4]. Motivated by the study of the Hitchin fibration, they
study not the pushforward of OX itself but the pushforwards of general line bundles on X .

1.2. Strategy of proof. The proof of Theorem 1.1 proceeds by degeneration. To help the reader,
we first outline our approach to a weaker version of Theorem 1.1. In the weaker version, we
consider not the vector bundle E itself, but its projectivization PE, which we call the Tschirnhausen
scroll. A branched cover with Gorenstein fibers φ : X → Y with Tschirnhausen bundle E factors
through a relative canonical embedding ι : X ,→ PE by the main theorem in [10].

Theorem 1.6. Let E be any vector bundle on a smooth projective curve Y . Then the scroll PE is the
Tschirnhausen scroll of a finite cover φ : X → Y with X smooth.

The following steps outline a proof of Theorem 1.6 which parallels the proof of the stronger
Theorem 1.1. We omit the details, since they are subsumed by the results in the paper.

(1) First consider the case

E = L1 ⊕ · · · ⊕ Ld−1,

where the Li are line bundles on Y whose degrees satisfy

deg Li � deg Li+1.

For such E, we construct a nodal cover ψ: X → Y such that PEψ = PE. For example, we
may take X to be a nodal union of d copies of Y , each mapping isomorphically to Y under
ψ, where the ith copy meets the (i+1)th copy along nodes lying in the linear series |Li|.
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(2) Consider X ⊂ PE, where X is the nodal curve constructed above. We now attempt to
find a smoothing of X in PE. However, the normal bundle NX/PE may be quite negative.
Fixing this negativity is the most crucial step.

To overcome the negativity, we draw motivation from Mori’s idea of making curves
flexible by attaching free rational tails. If we view a cover X → Y as a map from Y to
the classifying stack BSd as done in [1], then attaching rational tails can be interpreted
as attaching general rational normal curves to X in the fibers of PE → Y . Of course, the
classifying stack BSd is not a projective variety, so the above only serves as an inspiration.

(3) Given a general point y ∈ Y , the d points ψ−1(y) ⊂ PEy ' Pd−2 are in linear general
position, and therefore they lie on many smooth rational normal curves R y ⊂ PEy . Choose
a large subset S ⊂ Y , and attach general rational normal curves R y for each y ∈ S to X ,
obtaining a new nodal curve Z ⊂ PE.

(4) The key technical step is showing that the new normal bundle NZ/PE is sufficiently posi-
tive. Using this positivity, we get that Z is the flat limit of a family of smooth, relatively-
canonically embedded curves X t ⊂ PE. The generic cover φ : X t → Y in this family
satisfies Eφ ∼= L1 ⊕ · · · ⊕ Ld−1.

(5) We tackle the case of an arbitrary bundle E as follows.
(a) We note that every vector bundle E degenerates isotrivially to a bundle of the form

E0 = L1 ⊕ · · · ⊕ Ld−1 treated in the previous steps.
(b) We take a cover X0 → Y with Tschirnhausen bundle E0 constructed above. Using

the abundant positivity of NX0/PE0
, we show that X0 ⊂ PE0 deforms to X ⊂ PE. The

cover φ : X → Y satisfies PEφ ∼= PE.

We need to refine the strategy above to handle the vector bundle E itself, and not just its pro-
jectivization. Therefore, we work with the canonical affine embedding of X in the total space of
E. The proof of Theorem 1.1 involves carrying out the steps outlined above for the embedding
X ⊂ E relative to the divisor of hyperplanes at infinity in a projective completion of E.

1.3. Acknowledgements. We thank Rob Lazarsfeld for asking us a question that motivated this
paper. This paper originated during the Classical Algebraic Geometry Oberwolfach Meeting in the
summer of 2016, where the authors had several useful conversations with Christian Bopp. We
also benefited from conversations with Vassil Kanev and Gabriel Bujokas. We thank an anonymous
referee for catching a mistake in an earlier draft of this paper.

1.4. Conventions. We work over an algebraically closed field k. All schemes are of finite type
over k. Unless specified otherwise, a point is a k-point. The projectivization PV of a vector
bundle V refers to the space of 1-dimensional quotients of V . We identify vector bundles with
their sheaves of sections. An injection is understood as an injection of sheaves. Given a quasi-
coherent sheaf F on a scheme X and a point p of X , we use F |p to denote the fiber of F at p. As
a convention, we use = to denote canonical isomorphisms and ∼= to denote non-canonical ones.

2. VECTOR BUNDLES, THEIR INFLATIONS, AND DEGENERATIONS

This section contains standard results about vector bundles, their degenerations, and finite
covers. The only new ingredient is a careful but straightforward study of elementary transfor-
mations (“inflations”) that decrease higher cohomology (Proposition 2.5). Throughout, Y is a
smooth, projective, connected curve over k, an algebraically closed field of arbitrary characteris-
tic.
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2.1. Inflations. Let E be a vector bundle on Y . A degree n inflation of E is a vector bundle E+

along with an injective map of sheaves E→ E+ whose cokernel is finite of length n. If the cokernel
is supported on a subscheme S ⊂ Y , then we say that E→ E+ is an inflation of E at S.

Remark 2.1. Let E→ E+ be a degree one inflation. In standard parlance, E and E+ are said to be
related by an elementary transformation. We use “inflation” only to emphasize the asymmetry in
the relationship.

Fix a point y ∈ Y . Consider an inflation E → E+ whose cokernel is supported (scheme-
theoretically) at y . Then we have an exact sequence

(2.1) 0→ E→ E+→ B→ 0,

where the cokernel is annihilated by the maximal ideal my ⊂ OY .
The dual of (2.1) is the sequence

0→ E+∨→ E∨→ A→ 0,

where the cokernel is supported at y . Note that we have a canonical identification

A= Ext1
OY
(B,OY ) = B∨ ⊗ Ny/Y .

The inflation E→ E+ is determined by the surjection

(2.2) E∨|y → A.

We call (2.2) the defining quotient of the inflation E→ E+.

2.2. Inflations and higher cohomology. We now study how inflations increase positivity.

Proposition 2.2. Let E→ E+ be an inflation. Then h1(Y, E+)≤ h1(Y, E). In particular, if H1(Y, E) =
0, then H1(Y, E+) = 0. If, furthermore, E is globally generated, then so is E+.

Proof. For the statement about h1, apply the long exact sequence on cohomology to

0→ E→ E+→ E+/E→ 0,

and use that E+/E has zero-dimensional support. For global generation, consider the sequence

(2.3) 0→ E(−y)→ E→ E|y → 0,

and the associated long exact sequence on cohomology. It follows that if E is globally generated
and H1(Y, E) = 0, then H1(Y, E(−y)) = 0 for every y ∈ Y . But then we also have H1(Y, E+) = 0
and H1(Y, E+(−y)) = 0 for every y ∈ Y . From the sequence (2.3) for E+, we conclude that E+ is
also globally generated. �

Let V ⊂ E∨ ⊗ΩY |y be the image of the evaluation map

H0
�

E∨ ⊗ΩY

�

→ E∨ ⊗ΩY |y .

Let q : E∨|y → kn be a surjection and let E→ E+q be the inflation with q as its defining quotient.

Proposition 2.3. With the notation above, let qV : V → kn ⊗ ΩY |y be the restriction of q ⊗ id to
V ⊂ E∨ ⊗ΩY |y . Then we have

h0(Y, E+q ) = h0(Y, E) + n− rk qV , and

h1(Y, E+q ) = h1(Y, E)− rk qV .
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Proof. We have the exact sequence 0→ E+q
∨ → E∨

q
−→ kn → 0, where the cokernel is supported

at y . Tensoring by ΩY , taking the long exact sequence in cohomology, and using Serre duality
yields the proposition. �

Proposition 2.4. Suppose E is such that h1(Y, E) 6= 0. Let E → E+ be a degree 1 inflation at a
general point of Y with a general defining quotient. Then

h1(Y, E+) = h1(Y, E)− 1 and h0(Y, E+) = h0(Y, E).

Proof. If h1(E) = h0(E∨⊗ΩY ) 6= 0, the space V ⊂ E∨⊗ΩY |y defined above is non-zero if y ∈ Y is
general. Then, for a general choice of q : E∨q → k, we have rk qV = 1. The statement now follows
from Proposition 2.3. �

The following sharpens the meaning of “general” in Proposition 2.4.

Proposition 2.5. Let y ∈ Y be such that the image V of the evaluation map

H0(E∨ ⊗ΩY )→ E∨ ⊗ΩY |y
is non-zero. Suppose we have a set Q of surjections E∨y → k such that the linear span of Q is the
entire projective space PE∨|y . Then for some q ∈Q we have

h1(Y, E+q )≤ h1(Y, E)− 1

Proof. Since V 6= 0 and Q spans PE∨|y , we must have qV 6= 0 for some q ∈Q. Then the statement
follows from Proposition 2.3. �

Corollary 2.6. Let n ≥ h1(Y, E) be a non-negative integer. Choose n general points y1, . . . , yn ∈ Y
and general surjections qi : E∨|yi

→ k. Let E → E+ be the inflation at y1, . . . , yn whose defining
quotients are q1, . . . , qn. Then

(1) H1(Y, E+) = 0,
(2) furthermore, if n≥ 2h1(Y, E(−y)) for all y ∈ Y , then E+ is also globally generated.

Proof. For the first part, apply Proposition 2.4 repeatedly. For the second part, take an arbi-
trary y ∈ Y . Let E′ be obtained from E by n/2 general inflations, as in the first part. Then
H1(Y, E′(−y)) = 0. By upper semi-continuity, there are only finitely many z ∈ Y for which
H1(Y, E′(−z)) 6= 0. Let E+ be obtained from E′ by n/2 more general inflations. Then we have
H1(Y, E+(−z)) = 0 for all z ∈ Y , which implies that E+ is globally generated. �

Proposition 2.2 and Corollary 2.6 together imply the following.

Corollary 2.7. Let E be a vector bundle on Y and let n be large enough. Suppose E′ is a coherent
sheaf of the same generic rank as E and E′ contains an inflation of E at n general points with n
general defining quotients. Then H1(Y, E′) = 0 and E′ is globally generated.

Remark 2.8. The generality requirement on the quotients qi in Corollary 2.6 and Corollary 2.7 is
only in the sense of not satisfying any linear equations. That is, it is satisfied as long as the qi are
chosen from a set that linearly spans the space of quotients (see Proposition 2.5).

2.3. Nodal curves and inflations of the normal bundle. A common setting for inflations in
the paper is the following. Let P be a smooth variety. Let X and R be smooth curves in P that
intersect at a point p so that their union Z has a node at p. We analyze the relationship of the
normal bundle NZ/P with NX/P and NR/P , following a similar analysis in [18].

We first recall a natural map

(2.4) NZ/P |p→ Np/X ⊗ Np/R.
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To define (2.4), consider the multiplication map

IR/P ⊗OP
IX/P → IZ/P .

The restriction maps OP → OX and OP → OR yield surjections IR/P → Ip/X and IX/P → Ip/R. The
multiplication map above induces a map a : Ip/X ⊗OP

Ip/R→ IZ/P |p fitting in the diagram

IR/P ⊗OP
IX/P IZ/P

Ip/X ⊗OP
Ip/R IZ/P |p.a

To describe a explicitly, suppose we are given f ∈ Ip/X and g ∈ Ip/R. Then we have

(2.5) a : f ⊗ g 7→ ef · eg,

where ef ∈ IR/P is a lift of f and eg ∈ IX/P is a lift of g. The product ef · eg ∈ IZ/P depends on the
chosen lifts, but it is easy to check that its image in IZ/P |p depends only on f and g. The source
and target of the map a are supported at p, and hence can be treated as k = OP/mp vector spaces.
The map in (2.4) is the k-linear dual of the map a.

Together with the natural map TP |Z → NZ/P , the map in (2.4) yields a right exact sequence

(2.6) TP |Z → NZ/P → Np/X ⊗ Np/R→ 0.

The sequence in (2.6) identical to the sequence considered before Proposition 1.1 in [18]. In
[18], the cokernel of TP |Z → NZ/P is identified with the sheaf T1

Z , which is indeed isomorphic to
Np/X ⊗Np/R [2, Chapter XI, equation (3.8)]. Observe that the kernel of the map TP |p→ NZ/P |p is
the two dimensional space spanned by the subspaces TX |p and TR|p of TP |p.

Let us restrict the exact sequence (2.6) to X . We see that the composite TX → TP |X → NZ/P |X
is zero, and hence the map TP |X → NZ/P |X factors as

TP |X → NX/P → NZ/P |X .

As a result, we obtain the diagram

(2.7)

TP |X

0 NX/P NZ/P |X Np/X ⊗ Np/R 0.

The exact row in (2.7) exhibits NZ/P |X as a degree 1 inflation of NX/P at p.
Let us understand the defining quotient of the inflation in (2.7). To do so, we dualize—apply

HomX (−,OX )—to the exact sequence in (2.7). The sheaves NX/P and NZ/P |X are locally free on
X with duals IX/P |X and IZ/P |X , respectively. Since the cokernel Np/X ⊗ Np/R is supported at p, it
vanishes under HomX (−,OX ), but contributes an Ext1

X (−,OX ) term. To identify this Ext1 term,
recall that for a vector space A considered as an OX -module supported at p, we have

(2.8) Ext1
OX
(A,OX ) = Np/X ⊗ A∨,

where A∨ = Homk(A, k) is the k-linear dual of A. Applying (2.8) to A= Np/X ⊗ Np/R yields

Ext1
OX
(Np/X ⊗ Np/R,OX ) = Np/X ⊗ Ip/X ⊗ Ip/R|p = Ip/R|p.
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Thus, the result of applying HomX (−,OX ) to (2.7) is the short exact sequence

(2.9) 0 Ip/R|p IX/P |X IZ/P |X 0.

In the exact sequence (2.9), the map IZ/P |X → IX/P |X is induced by the inclusion IZ/P ⊂ IX/P and
the map IX/P |X → Ip/R|p is induced by the map IX/P → Ip/R given by restriction of functions from
P to R. From (2.9), we see that the defining quotient of the inflation in (2.7) is the restriction
map

(2.10) IX/P |p→ Ip/R|p.

Observe that Ip/R|p is a one-dimensional k-vector space.
Restricting the exact sequence (2.6) to R yields an analogous picture. We may write the two

inflations obtained in this way together as

(2.11)

0 NX/P NZ/P |X Np/X ⊗ Np/R 0

0 NR/P NZ/P |R Np/X ⊗ Np/R 0.

α

β

By construction, the maps α and β are induced from the same map NZ/P → Np/X ⊗ Np/R.
Finally, note that the discussion above extends naturally to the case of two smooth curves

attached nodally at a finite set of points instead of a single point.

2.4. Isotrivial degenerations. We say that a bundle E isotrivially degenerates to a bundle E0 if
there exists a pointed smooth curve (∆, 0) and a bundle E on Y ×∆ such that EY×{0}

∼= E0 and
E
�

�

Y×{t}
∼= E for every t ∈∆ \ {0}.

Proposition 2.9. Let E be a vector bundle on Y , and let N be a non-negative integer. Then E
isotrivially degenerates to a vector bundle E0 of the form

E0 = L1 ⊕ · · · ⊕ Lr ,

where the Li are line bundles and deg Li + N ≤ deg Li+1 for all i = 1, . . . , r − 1.

For the proof of Proposition 2.9, we need a lemma.

Lemma 2.10. There exists a filtration

E = F0 ⊃ F1 ⊃ · · · ⊃ Fr−1 ⊃ Fr = 0,

satisfying the following properties.
(1) For every i ∈ {0, . . . , r − 1}, the sub-quotient Fi/Fi+1 is a line bundle.
(2) Set Li = Fi/Fi+1 for i ∈ {1, . . . , r−1} and Lr = F0/F1. For every i ∈ {1, . . . , r−1}, we have

deg Li + N ≤ deg Li+1.

Proof. The statement is vacuous for r = 0 and 1. So assume r ≥ 2. Note that if F• is a filtration
of E satisfying the two conditions, and if L is a line bundle, then F• ⊗ L is such a filtration of
E ⊗ L. Therefore, by twisting by a line bundle of large degree if necessary, we may assume that
deg E ≥ 0.

Let us construct the filtration from right to left. Let Lr−1 ⊂ E be a line bundle with deg Lr−1 ≤
−N and with a locally free quotient. Set Fr−1 = Lr−1. Next, let Lr−2 ⊂ E/Fr−1 be a line bundle
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with deg Lr−2 ≤ deg Lr−1 − N and with a locally free quotient. Let Fr−2 ⊂ E be the preimage of
Lr−2. Continue in this way. More precisely, suppose that we have constructed

F j ⊃ F j+1 ⊃ · · · ⊃ Fr−1 ⊃ Fr = 0

such that Li = Fi/Fi+1 satisfy
deg Li ≤ deg Li+1 − N ,

and suppose j ≥ 2. Then let L j−1 ⊂ E/F j be a line bundle with deg L j−1 ≤ deg L j − N with a
locally free quotient. Let F j−1 ⊂ E be the preimage of L j−1. Finally, set F0 = E.

Condition 1 is true by design. Condition 2 is true by design for i ∈ {1, . . . , r −2}. For i = r −1,
note that deg Lr−1 ≤ −N by construction. On the other hand, we must have deg Lr ≥ 0. Indeed,
we have deg E ≥ 0 but every sub-quotient of F• except F0/F1 has negative degree. Therefore,
condition 2 holds for i = r − 1 as well. �

Proof of Proposition 2.9. Let F• be a filtration of E satisfying the conclusions of Lemma 2.10. It
is standard that a coherent sheaf degenerates isotrivially to the associated graded sheaf of its
filtration. The construction goes as follows. Consider the OY [t]-module

⊕

n∈Z

t−nFn,

where Fn = 0 for n > r and Fn = E for n < 0. The corresponding sheaf E on Y ×A1 is coherent,
k[t]-flat, satisfies EY×{t}

∼= E for t 6= 0, and EY×{0}
∼= L1 ⊕ · · · ⊕ Lr . �

2.5. The canonical affine embedding. We end the section with a basic construction that relates
finite covers and their Tschirnhausen bundles. Let d be a positive integer and assume that char k =
0 or char k > d.

Let X be a curve of arithmetic genus gX ; letφ : X → Y be a finite flat morphism of degree d; and
let E be the associated Tschirnhausen bundle. Then we have a decomposition φ∗OX = OY ⊕ E∨.
The map E∨ → φ∗OX induces a surjection Sym∗ E∨ → φ∗OX . Taking the relative spectrum gives
an embedding of X in the total space Tot(E) of the vector bundle associated to E; we often denote
Tot(E) by E if no confusion is likely. We call X ⊂ E the canonical affine embedding. Note that the
degree of E is half of degree of the branch divisor of φ, namely

deg E = gX − 1− d(gY − 1).

For all y ∈ Y , the subscheme X y ⊂ Ey is in affine general position (not contained in a translate
of a strict linear subspace of Ey).

The canonical affine embedding is characterized by the properties above.

Proposition 2.11. Retain the notation above. Let F be a vector bundle on Y of the same rank and
degree as E, and let ι : X → F be an embedding over Y such that for a general y ∈ Y , the scheme
ι(X y) ⊂ Fy

∼= Ad−1 is in affine general position. Then we have F ∼= E, and up to an affine linear
automorphism of F/Y , the embedding ι is the canonical affine embedding.

Proof. The restriction map Sym∗ F∨→ φ∗OX = OY ⊕ E∨ induces a map

λ: F∨→ E∨.

Since a general fiber X y ⊂ Fy is in affine general position, the map λ is an injective map of
sheaves. But the source and the target are locally free of the same degree and rank. Therefore, λ
is an isomorphism.

Recall that the affine canonical embedding is induced by the map

(0, id): E∨→ OY ⊕ E∨ = φ∗OX .
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Suppose ι induces the map
(α,λ): F∨→ OY ⊕ E∨.

Compose ι with the affine linear isomorphism of Tα : Tot(F)→ Tot(F) over Y defined by the map
Sym∗ F∨→ Sym∗ F∨ induced by

(−α, id): F∨→ OY ⊕ F∨.

Then Tα ◦ ι : X → F is the affine canonical embedding, as desired. �

3. PROOF OF THE MAIN THEOREM

Let d be a positive integer, and assume that char k = 0 or char k > d. Throughout, Y is a
smooth, projective, connected curve over k.

3.1. The split case with singular covers. As a first step, we treat the case of a suitable direct
sum of line bundles and allow the source curve X to be singular.

Proposition 3.1. Let E = L1⊕· · ·⊕ Ld−1, where the Li are line bundles on Y with deg L1 ≥ 2gY −1
and deg Li+1 ≥ deg Li + (2gY − 1) for i ∈ {1, . . . , d − 2}. There exists a nodal curve X and a finite
flat map φ : X → Y of degree d such that Eφ ∼= E.

The proof is inductive, based on the following “pinching” construction. Let ψ: Z → Y be a
finite cover of degree r. Let X be the reducible nodal curve Z ∪ Y , where Z and Y are attached
nodally at distinct points (see Figure 1). More explicitly, let yi ∈ Y and zi ∈ Z be points such that
ψ(zi) = yi . Define R as the kernel of the map

ψ∗OZ ⊕OY →
⊕

i

kyi
,

defined around yi by
( f , g) 7→ f (zi)− g(yi).

Then R ⊂ ψ∗OZ ⊕OY is an OY -subalgebra and X := SpecY R is a nodal curve. Let φ : X → Y be
the natural finite flat map. Set D =

∑

yi .

Z

Y

Y

FIGURE 1. The pinching construction, in which pairs of points indicated by dotted
lines are identified to form nodes.

Lemma 3.2. In the setup above, we have an exact sequence

0→ Eψ→ Eφ → OY (D)→ 0.

Proof. The closed embedding Z → X gives a surjection

φ∗OX →ψ∗OZ

whose kernel is OY (−D). Factoring out the OY summand from both sides and taking duals yields
the claimed exact sequence. �
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X

H

R
P0

D

FIGURE 2. Attaching rational normal curves to X to make the normal bundle positive

Proof of Proposition 3.1. We use induction on d, starting with the base case d = 1, which is vac-
uous.

By the inductive hypothesis, we may assume that there exists a nodal curve Z and a finite cover
ψ: Z → Y of degree (d − 1) such that Eψ ∼= L2 ⊕ · · · ⊕ Ld−1. Let X = Z ∪ Y → Y be a cover of
degree d obtained from Z → Y by a pinching construction such that OY (D) = L1. By Lemma 3.2,
we get an exact sequence

(3.1) 0→ L2 ⊕ · · · ⊕ Ld−1→ Eφ → L1→ 0.

But we have Ext1(L1, Li) = H1(Li⊗L∨1 ) = 0 since deg(Li⊗L∨1 )≥ 2gY −1. Therefore, the sequence
(3.1) is split, and we get Eφ = L1 ⊕ · · · ⊕ Ld−1. The induction step is then complete. �

3.2. Attaching rational curves. We now describe a procedure to make a finite cover more flex-
ible, so that it can be deformed easily. The procedure is local on Y , so we zoom in to a cleaner
local situation.

Let Y be a smooth curve and 0 ∈ Y an arbitrary point. Set P = Pd−1 × Y , and let H ⊂ P be
a divisor, flat over Y , which restricts to hyperplanes on the fibers. Let X ⊂ P be finite and étale
of degree d over Y and disjoint from H. Assume that the fibers of X → Y are in linear general
position in Pd−1. Use the subscript 0 to denote the fiber over 0.

Let R ⊂ P0 be a rational normal curve that contains X0 and is transverse to H0. Let eP → P be
the blow-up along H0. We use the same notation to denote the proper transforms of R, H, X , and
P0 in eP (these are isomorphic copies). Denote by D the exceptional divisor of the blow-up. Let Z
be the nodal curve Z = X ∪R. Set δ = X ∩R= X0. See Figure 2 for a sketch of the setup. Denote
by φ the projection to Y .

Our goal is to establish Z ⊂ eP as a more flexible replacement of X ⊂ P. (The reason for the blow
up is to keep the curve away from the divisor H). For this goal, we must relate the normal bundle
NZ/eP with NX/P . Establishing this relationship takes some effort; the upshot is Corollary 3.7,
which is the only statement we use in the later sections.

The following identifies the restriction of NZ/eP to R.
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Lemma 3.3. We have the following diagram with exact rows and columns

0 NR/P0
NR/eP NP0/eP

�

�

R 0

0 O(d + 1)d−2 NZ/eP

�

�

R F 0

Nδ/X ⊗ Nδ/R Nδ/X ⊗ Nδ/R

'

where the maps in the first row and middle column are standard, and the others are induced from
them. The sheaf F is canonically isomorphic toφ∗N0/Y⊗O

eP
OR(δ−D), and thus isomorphic to OR(1).

Proof. The first row is standard. Augment it by considering the natural map NR/eP → NZ/eP

�

�

R
recalled in § 2.3. Since R ⊂ P0 = Pd−1 is a rational normal curve, we have an isomorphism
NR/P0

∼= O(d+1)d−2 (see [31, II] or [33, Example 4.6.6]). A local calculation shows that the map
NR/P0

→ NZ/eP

�

�

R remains an injection when restricted to any point of R, and hence its cokernel F
is locally free, and plainly, of rank 1. From § 2.3, we know that the cokernel of the natural map
NR/eP → NZ/eP

�

�

R is Nδ/X ⊗ Nδ/R. By the snake lemma, the cokernel of the map NP0/eP

�

�

R → F is the

same. Since both NP0/eP

�

�

R and F are line bundles, and the map between them degenerates exactly
at δ, we obtain an isomorphism

F = NP0/eP

�

�

R(δ).

Combined with the isomorphism
NP0/eP

= NP0/P(−D),

and the isomorphism NP0/P = φ
∗N0/Y , we get the canonical isomorphism F = φ∗N0/Y⊗OR(δ−D),

as claimed. Since the degree of δ is d and that of D|R is d − 1, we see that F ∼= OR(1). �

Let us describe the three maps in (3.3) involving the bundle F . For all three, it is easier to
describe the duals.

The OR-dual of NP0/eP
|R→ F is the map

(3.2) φ∗ I0/Y ⊗O
eP
OR(D−δ)→ IP0/eP

|R
given as follows. Let t be a section of I0/Y and let f be a section of OR(D − δ) on some open
subset of eP, interpreted as a rational function on R vanishing along δ with at most simple poles
along D. On this open subset, let ef be any section of O

eP(D) that restricts to f on R. Then the
map (3.2) sends the section represented by t⊗ f to the section represented by t · ef . Observe that
the possible poles of ef along D are cancelled by the vanishing of t along D. Since t vanishes on
P0, so does the product t · ef , and represents a section of IP0/eP

. It is easy to check that its image in
IP0/eP
|R depends only on f , and not on the lift.

The OR-dual of NZ/eP |R→ F is the map

(3.3) φ∗ I0/Y ⊗O
eP
OR(D−δ)→ IZ/eP |R

given as follows. Let t be a section of I0/Y and f be a section of OR(D−δ) on some open subset
of eP. On this open subset, let ef be any section of IX/eP ⊗O

eP(D) that restricts to f on R. Then the

map (3.3) sends the section represented by t ⊗ f to the section represented by t · ef . As before,
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observe that t · ef has no poles, it vanishes along Z , and its image in IZ/eP |R does not depend on
the lift.

The Oδ-dual of F |δ→ Nδ/X ⊗ Nδ/R is the map

(3.4) Iδ/X ⊗O
eP

Iδ/R = φ
∗ I0/Y ⊗O

eP
Iδ/R|δ→ φ∗ I0/Y ⊗O

eP
OR(D−δ)|δ,

given as follows. Let t be a section of I0/Y and f a section of Iδ/R on some open subset of eP.
On this open set, lift f to a section bf of OR(D − δ). Then the map in (3.4) sends the element
represented by t ⊗ f to the element represented by t ⊗ bf . Dually, the map

(3.5) F = φ∗N0/Y ⊗O
eP
OR(δ− D)→ Nδ/X ⊗ Nδ/R = φ

∗N0/Y ⊗ Nδ/R

is simply id⊗res, where
res: OR(D−δ)→ OR(D−δ)|δ = Nδ/R

is the restriction map.
To see why the map in (3.4) is as claimed above, consider the following diagram, obtained by

restricting the bottom-right sqaure in the diagram in Lemma 3.3 to δ and taking Oδ-duals:

IZ/eP |δ F∨|δ = Iδ/X ⊗OR(D−δ)|δ

Iδ/X ⊗ Iδ/R Iδ/X ⊗ Iδ/R.

b

a c

Let t ∈ I0/Y , and f ∈ Iδ/R, and bf ∈ OR(D−δ) be as in the definition of (3.5). To see that c indeed
maps t ⊗ f to t ⊗ bf , it suffices to observe that

b(t ⊗ bf ) = a(t ⊗ f ).

To compute the left hand side, we use the description of b from (3.3). We choose a lift ef ∈
IX/eP ⊗ O

eP(D) of bf ∈ OR(D − δ). Then b(t ⊗ bf ) ∈ IZ/eP |δ is the element represented by t ef . To
compute the right hand side, we use the description of a from (2.5). We choose the lift t ∈ IR/eP of

t ∈ Iδ/X and ef ∈ IX/eP(D) of f ∈ Iδ/R, observing that ef is indeed a section of IX/eP in a neighorbood

of δ. Then a(t ⊗ f ) ∈ IZ/eP |δ is also the element represented by t ef .
Lemma 3.3 and the discussion following it gives us a good understanding of the relationship

between NZ/eP and NR/P . Next, we must relate NZ/eP and NX/P . For this purpose, we need an
auxiliary bundle M , which we now define. Set N+ = NZ/eP and N = NX/P . Consider the diagram

N+
�

�

R

N+
�

�

X N+
�

�

δ
0.

Define M by the sequence

(3.6) 0 M φ∗
�

N+|X
�

coker
�

φ∗
�

N+|R
�

→ φ∗
�

N+|δ
��

→ 0.

The following explains how M is related to N+ = NZ/eP .

Lemma 3.4. We have R1φ∗N
+ = 0, and an isomorphism of sheaves on Y

M = φ∗N
+/torsion.
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Proof. By Lemma 3.3, we see that H1(R, N+|R) = 0. Since Z is the union X ∪ R and X → Y is
finite, H1(R, N+|R) = 0 implies that R1φ∗N

+ = 0.
To see the isomorphism M = φ∗N+/torsion, consider the sequence on Z

0→ N+→ N+|X ⊕ N+|R→ N+|δ→ 0,

where the last map sends ( f , g) to f |δ − g|δ. Its push-forward to Y and the defining sequence of
M fit in the diagram

φ∗
�

N+|R
�

0 φ∗N
+ φ∗

�

N+|X
�

⊕φ∗
�

N+|R
�

φ∗
�

N+|δ
�

0

0 M φ∗
�

N+|X
�

coker(p) 0

p

,

where the middle vertical map is the projection on the first coordinate. (In the diagram, the
dashed arrow is induced from the others.) By the snake lemma, we see that the map φ∗N

+→ M
is surjective. Since M is torsion free, and of the same generic rank as φ∗N

+, we conclude that

M = φ∗N
+/torsion.

�

Having related M and N+ = NZ/eP , we now relate M and N = NX/P .

Lemma 3.5. The bundle M is an inflation of φ∗N of degree 2 at 0 ∈ Y . More precisely, we have an
exact sequence

0→ φ∗N → M → φ∗F → 0.

Proof. The proof involves some standard diagram chases. From Lemma 3.3, we obtain the dia-
gram

0 NR/P0
N+|R F 0

0 NR/P0

�

�

δ
N+|δ Nδ/X ⊗ Nδ/R 0.

From the isomorphism NR/P0
∼= O(d + 1)d−2 in Lemma 3.3, we get that the map NR/P0

→ NR/P0

�

�

δ
is surjective on global sections. By the snake lemma, we get

coker
�

φ∗
�

N+|R
�

→ φ∗
�

N+|δ
��

= coker
�

φ∗F
e
−→ φ∗

�

Nδ/X ⊗ Nδ/R
�

�

.

Substituting in the defining sequence (3.6) of M , we obtain

(3.7) 0 M φ∗
�

N+|X
�

coker(e) 0.

Recall from (2.11) in § 2.3 the sequence of sheaves on X

0→ N → N+|X → Nδ/X ⊗ Nδ/R→ 0.
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Since X → Y is finite, the sequence remains exact after applying φ∗. We thus have the diagram

(3.8)

φ∗F

0 φ∗N φ∗
�

N+|X
�

φ∗
�

Nδ/X ⊗ Nδ/R
�

0

0 M φ∗
�

N+|X
�

coker(e) 0,

e

where the dashed arrow is induced from the others. By the snake lemma, we get

(3.9) 0→ φ∗N → M → φ∗F → 0,

as asserted. �

Let us explicitly compute the defining quotient of the inflation φ∗N → M . We dualize—apply
HomY (−,OY )—to the diagram (3.8). The first two columns consist of locally free sheaves on Y .
The last column consists of skyscraper sheaves supported at 0 ∈ Y , which contribute only Ext1

terms. Recall that for a vector space A considered as a sheaf supported at 0, we have

(3.10) Ext1
OY
(A,OY ) = Ext1

OY
(k,OY )⊗ A∨ = N0/Y ⊗ A∨.

By applying (3.10) to A= φ∗F = N0/Y ⊗φ∗OR(δ− D), we get

Ext1
OY
(φ∗F,OY ) = H0(OR(δ− D))∨ supported at 0 ∈ Y .

By applying (3.10) to A= φ∗
�

Nδ/X ⊗ Nδ/R
�

= N0/Y ⊗φ∗Nδ/R, we get

Ext1
OY
(φ∗

�

Nδ/X ⊗ Nδ/R
�

,OY ) = H0(Nδ/R)
∨ supported at 0 ∈ Y .

Thus, the dual of (3.8) gives the following diagram (unimportant details suppressed)

(3.11)

H0(OR(δ− D))∨

0 H0
�

Nδ/R
�∨

(φ∗N)
∨ �

φ∗
�

N+|X
��∨

0

0 · · · M∨ · · · 0.

e∨

In this diagram, the vector spaces in the leftmost column should be thought of as skyscraper
sheaves at 0 ∈ Y . The defining quotient we seek is thus the composite

(3.12) (φ∗N)
∨|0→ H0

�

Nδ/R
�∨ e∨
−→ H0(OR(δ−H))∨.

Observe that the first term in (3.12) is equal to H0(NX0/P0
)∨ = H0(Nδ/P0

)∨, since X0 = δ. The
first map in (3.12), namely the map H0(Nδ/P0

)∨ → H0(Nδ/R)∨ is just H0 applied to the defining
quotient of the inflation N → N+|X . We have studied this map in § 2.3 (see (2.10)). To recall it,
write

H0(Nδ/P0
)∨ = H0(Iδ/P0

�

�

δ
), and

H0(Nδ/R)
∨ = H0(Iδ/R

�

�

δ
).
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Then the first map in (3.12) is H0 applied to the natural restriction map

IX/eP |δ = Iδ/P0
|δ→ Iδ/R|δ.

The second map in (3.12) is dual to the map

e : H0(F)→ H0(Nδ/X ⊗ Nδ/R)

obtained by applying H0 to the map F → Nδ/X ⊗ Nδ/R, which we identified as id⊗res in (3.5).
Hence, we can explicitly describe the composite map in (3.12)

(3.13) α: H0(Iδ/P0
|δ)→ H0(OR(δ− D))∨

as follows. Consider an element g ∈ H0(Iδ/P0
|δ). In a neighorhood of δ, choose a lift eg ∈ Iδ/P0

of
g. Then α(g) is the function H0(OR(δ− D))→ k defined by

α(g): f 7→
∑

x∈δ

( f · eg)|x .

Here ( f · eg)|x is the evaluation at x of the function ( f · eg). Observe that f · eg is a regular function
on R in a neighorbood of δ, and its evaluation at x ∈ δ depends only on g, and not on the lift eg.

The following proposition shows that a general R gives an M that contains a general degree 1
inflation of φ∗N .

Proposition 3.6. Let Q ⊂ PH0
�

Iδ/P0
|δ
�

be the set consisting of projections q : H0
�

Iδ/P0
|δ
�

→ k that
factor through the map α: H0

�

Iδ/P0
|δ
�

→ H0(OR(δ− D))∨ for some rational normal curve R ⊂ P0

containing δ. Then Q spans PH0
�

Iδ/P0
|δ
�

.

Proof. We begin by explicitly writing the curves R. Without loss of generality, δ ⊂ P0 = Pd−1

consists of the d coordinate points, and the hyperplane H0 ⊂ Pd−1 is cut out by the equation
∑

X i = 0. We can write rational curves R ⊂ P0 that contain δ as follows. Let b1, . . . , bd ∈ k× and
a1, . . . , ad ∈ k be arbitrary constants with ai 6= a j for i 6= j. Let x be a variable and let Π be the
product (x − a1) · · · (x − ad). Consider the map A1→ P0 = Pd−1 defined by

(3.14) x 7→
�

b1Π

x − a1
: · · · :

bdΠ

x − ad

�

.

Let R ⊂ P0 be the closure of the image; this is a rational normal curve. To see that R contains δ,
simply observe that the map(3.14) sends ai to the ith coordinate point. The divisor D ⊂ R is cut
out by

∑

X i , which pulls back under (3.14) to the polynomial

Γ =
∑

bi
Π

x − ai
.

We now choose a basis of H0
�

Iδ/P0
|δ
�

. Let Y1, . . . , Yd be homogeneous coordinates on P0 = Pd−1

and let δ j ∈ δ be the jth coordinate point (where only Yj 6= 0). For i, j ∈ {1, . . . , d} with i 6= j,
define g(i, j) ∈ H0

�

Iδ/P0
|δ
�

by

g(i, j)
�

�

δ`
=

�

Yi/Yj if `= j,
0 if ` 6= j.

Plainly, 〈g(i, j)〉 forms a basis of H0
�

Iδ/P0
|δ
�

.
The parametrization of R in (3.14) gives a basis of H0(OR(δ − D)) as follows. Identifying

H0(OR(δ− D)) with the set of rational functions with zeros along D = H0 ∩ R and possible poles
along δ, we get a basis of H0(OR(δ− D)) given by 〈Γ/Π, xΓ/Π〉. Let 〈u, v〉 be the dual basis.
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Let us use the description of α after (3.13) to compute the map

α: 〈g(i, j)〉 → 〈u, v〉.

We see that α(g(i, j)) is the functional on 〈Γ/Π, xΓ/Π〉 given by

Γ

Π
7→
�

Yi

Yj
·
Γ

Π

�

�

�

a j

=

�

bi(x − a j)

b j(x − ai)
·
∑

`

b`
x − a`

�

�

�

a j

=
bi

a j − ai
, and

xΓ
Π
7→
�

Yi

Yj
·

xΓ
Π

�

�

�

a j

=
a j bi

a j − ai
.

Thus, the map α is

(3.15) g(i, j) 7→
bi

a j − ai
· u+

a j bi

a j − ai
· v.

The maps q : 〈g(i, j)〉 → k in Q are precisely the maps (3.15) with u and v replaced by arbitrary
elements of k. It is easy to verify that, as rational functions in the variables a1, . . . , ad , b1, . . . , bd ,

u, and v, the d(d − 1) functions
bi(u+a j v)

a j−ai
are k-linearly independent. In other words, there is no

k-linear equation that is satisfied by the maps q for all values of the a’s, the b’s, u, and v. The
proposition follows. �

Corollary 3.7. We have R1φ∗NZ/eP = 0, and if R is general, then the sheaf φ∗NZ/eP contains an
inflation of φ∗NX/P with a general defining quotient (away from any prescribed linear subspace).

Proof. The vanishing of R1φ∗NZ/eP is from Lemma 3.4. Let Λ ⊂ PH0(NX0/P0
) = PH0(Iδ/P0

|δ)
be any proper linear subspace. Choose q : H0(Iδ/P0

|δ) → k that is not contained in Λ and that
factors through the map α: H0(Iδ/P0

|δ)→ H0(OR(δ−D))∨ for some rational normal curve R ⊂ P0

containing X0. Such a q exists by Proposition 3.6. Let N † be the inflation of φ∗NX/P with defining
quotient q, namely

N † = ker(φ∗NX/P
q
−→ k),

where the k is supported at 0. By the exact sequence in Lemma 3.5, we see that N † is a subsheaf
of φ∗NZ/eP/torsion and hence of φ∗NZ/eP . �

3.3. Smoothing out.

Proposition 3.8 (Key). Let X be a nodal curve with a finite map φ : X → Y of degree d. Let E be
the Tschirnhausen bundle of φ. There exists a finite set S ⊂ Y , a smooth curve X ′, and a finite map
X ′→ Y of degree d such that the following hold.

(1) The Tschirnhausen bundle of X ′→ Y is E′ = E ⊗OY (S).
(2) Consider X ′ as embedded in (the total space of) E′ by the canonical affine embedding. Then

we have H1(X ′, NX ′/E′) = 0.
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Furthermore, if n is large enough (determined by X → Y ), we may take S to have size n and an
arbitrary divisor class of degree n.

Proof. Consider X embedded in the total space of E by the canonical affine embedding. Compact-
ify the total space of E to the projective bundle P = P

�

E∨ ⊕OY

�

, and let H ⊂ P be the hyperplane
at infinity. Then we have X ⊂ P, disjoint from H, and NX/E = NX/P .

Set N = max{h1(NX/P(−y)), y ∈ Y } and let n ≥ 2N . Choose a general S ⊂ Y of size n and
over every y ∈ S, perform the surgery described in § 3.2. Explicitly, let eP → P be the blow-up at
ty∈SH y ⊂ P and let R y be a rational normal curve in the proper transform of Py passing through
X y . Let Z ⊂ eP be the curve

Z = X
⋃

∪y∈SR y .

Note that Z is a connected nodal curve with arithmetic genus

ρa(Z) = ρa(X ) + (d − 1)n.

Thanks to Corollary 3.7, if we choose the rational curves R y generically, then φ∗NZ/eP contains a
degree n inflation of φ∗NX/P at S with general defining quotients. By Corollary 2.7, we conclude
that H1(NZ/eP) = 0 and NZ/eP is globally generated.

Consider the Hilbert scheme of curves in eP. Since H1(NZ/eP) = 0, the Hilbert scheme is smooth

at [Z ⊂ eP] (see [33, Theorem 3.2.12]). Furthermore, since NZ/eP is globally generated, for every
node z ∈ Z , the surjective map

NZ/eP →Ext1
OZ
(ΩZ ,OZ)

�

�

z

is also surjective surjective on global sections. As a result, Z is the flat limit of a family of smooth
curves in eP (see [18, Proposition 1.1]). Let X ′ ⊂ eP be a general member of such a family. By
semi-continuity, the vanishing of H1 and global generation continues to hold for NX ′/eP .

Let π: eP → P ′ be the blow-down of all the Py ⊂ eP (it is helpful to refer to Figure 2 again). We
now check that X ′ ⊂ eP maps isomorphically to its image in P ′. Indeed, see that Py · Z = 1, and
hence Py ·X ′ = 1. Since X ′ is smooth and connected, Py ∩ X ′ consists of a single (reduced) point,
and hence, the blow-down of Py does not change X ′.

Let H ′ ⊂ P ′ be the proper transform of H ⊂ P. Plainly, X ′ ⊂ P ′ stays away from H ′.
We claim that P ′ \H ′ is the total space of E′ = E ⊗OY (S). Granting this claim, it is easy to see

that X ′ ⊂ E′ is the canonical affine embedding and H1(NX ′/E′) = 0. Indeed, E′ has the correct
degree:

deg E′ = deg E + n(d − 1)

= ρa(X ) + d − 1+ n(d − 1)

= ρa(X
′) + d − 1,

and a general fiber of X ′ → Y is in affine general position in E′, so Proposition 2.11 applies. To
see the vanishing of H1, observe that we have an injection

NX ′/eP
dπ
−→ NX ′/P ′ .

Since H1(NX ′/eP) = 0, we get H1(NX ′/P ′) = H1(NX ′/E′) = 0.
The claim that E′ = P ′ \ H ′ remains to be proved. Plainly, P ′ \ H ′ → Y is an Ad -bundle. If we

produce a sectionσ′ : Y → P ′\H ′, then we can conclude that it is a vector bundle; the section acts
as the zero section. Start with the zero section σ : Y → E ⊂ P and let σ′ : Y → P ′ be its proper
transform. Then σ′ stays away from H ′ and gives a section σ′ : Y → P ′ \ H ′. So we have proved
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that P ′ \H ′→ Y is a vector bundle. To identify which vector bundle it is, it suffices to identify the
normal bundle of the zero section σ′. By construction, we have Nσ/P = E and hence also have
Nσ/eP = E. A simple local calculation shows that the map dπ: Nσ/eP → Nσ′/P ′ degenerates fully
(becomes 0) at every y ∈ S, and gives an isomorphism

Nσ/eP = Nσ′/P ′ ⊗OY (−S).

We deduce that Nσ′/P ′ = E ⊗OY (S), as required.
Finally, instead of n ≥ 2N , if we take n ≥ 2N + g(Y ), then the additional freedom to choose

the g(Y ) points allows us to put S in any prescribed divisor class of degree n. �

3.4. The general case. We now use the results of § 3.1 and § 3.3 to deduce the main theorem.
Recall that Y is a connected, projective, and smooth curve over k, an algebraically closed field
with char k = 0 or char k > d.

Theorem 3.9. Let E be a vector bundle on Y of rank (d − 1). There exists an n (depending on E)
such that for any line bundle L of degree at least n, there exists a smooth curve X and a finite flat
morphism φ : X → Y of degree d such that Eφ ∼= E ⊗ L. Furthermore, we have H1(X , NX/E⊗L) = 0,
where X ⊂ E ⊗ L is the canonical affine embedding.

Proof. Choose an isotrivial degeneration E0 of E of the form

E0 = L1 ⊕ · · · ⊕ Ld−1,

where the Li ’s are line bundles with deg Li+(2gY −1)≤ deg Li+1. That is, let (∆, 0) be a pointed
curve and E a vector bundle on Y ×∆ such that E|0 = E0 and E|t ∼= E for all t ∈∆ \ {0}. Such a
degeneration exists by Proposition 2.9. Let π: Y ×∆→ Y be the first projection. After replacing
E by E⊗π∗λ for a line bundle λ on Y of large degree, we may also assume that deg L1 ≥ 2gY −1.

By Proposition 3.1, there exists a nodal curve W and a finite flat morphism W → Y with
Tschirnhausen bundle E0. By the key proposition (Proposition 3.8), there exists an n such that
for any line bundle L of degree at least n, we can find a smooth curve X0 and a finite map X0→ Y
with Tschirnhausen bundle E′0 = E0 ⊗ L. Furthermore, we can make X0 satisfy H1(NX0/E

′
0
) =

0. Set E′ = E ⊗ π∗L. Let H be the component of the relative Hilbert scheme of Tot(E′) → ∆
containing the point [X0 ⊂ E′0]. Since H1(NX0/E

′
0
) = 0, the map H → ∆ is smooth at [X0 ⊂ E′0]

by [33, Theorem 3.2.12]. In particular, H → ∆ is dominant. As a result, there exists a point
[X ⊂ E′t] ∈H, where X is smooth and t ∈ ∆ is generic. By the choice of E, we have E′t = E ⊗ L.
Since H1(NX0/E0⊗L) = 0, get that H1(NX/E⊗L) = 0 by semi-continuity. Let φ : X → Y be the
projection. Since X0 ⊂ E0 ⊗ L is the canonical affine embedding, Proposition 2.11 implies that
X ⊂ E ⊗ L is also the canonical affine embedding. The proof is now complete. �

Remark 3.10. Theorem 3.9 can be stated in terms of moduli stacks of covers and bundles in the
following way. Denote by Hd(Y ) the stack whose S points are finite flat degree d morphisms
φ : C → Y × S, where C → S is a smooth curve. Let Vecd−1(Y ) be the stack whose S points are
vector bundles of rank (d − 1) on Y × S. Both Hd(Y ) and Vecd−1(Y ) are algebraic stacks, locally
of finite type, and smooth over k. The rule

τ: φ 7→ Eφ

defines a morphism τ: Hd(Y ) → Vecd−1(Y ). Then Theorem 3.9 says that given E ∈ Vecd−1(Y )
and given any line bundle L on Y of large enough degree, there exists a point [φ : X → Y ] of
Hd(Y ) such that τ(φ) = E ⊗ L, and furthermore, such that the map τ is smooth at [φ].
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3.5. Hurwitz spaces and Maroni loci. We turn to the proof of Theorem 1.5 stated in the in-
troduction. First we establish notation and conventions regarding the various Hurwitz spaces.
Throughout § 3.5, take the base field k = C.

Let Hall
d,g(Y ) be the stack whose objects over S are S-morphisms φ : C → Y ×S, where C → S is

a smooth, proper, connected curve of genus g, and φ is a finite morphism of degree d. Observe
that Hall

d,g(Y ) is an open substack of the Kontsevich stack of stable maps Mg(Y, d[Y ]) constructed,

for example, in [16] or in [5]. As a result, Hall
d,g(Y ) is a separated Deligne–Mumford stack of

finite type over k. Using the deformation theory of maps [33, Example 3.4.14], it follows that
Hall

d,g(Y ) is smooth and equidimensional of dimension 2b = (2g − 2) − d(2gY − 2). Denote by

H
simple
d,g (Y ) ⊂ Hall

d,g(Y ) the open substack of simply branched maps, namely the substack whose
S-points correspond to maps φ : C → Y × S whose branch divisor brφ ⊂ Y × S is étale over S
(the branch divisor is defined as the vanishing locus of the discriminant [37, Tag 0BVH]). The
transformation φ 7→ brφ gives a morphism

Hall
d,g(Y )→ Sym2b Y

with finite fibers. Since the source is equidimensional of the same dimension as the target and
the map is quasi-finite, each component of Hall

d,g(Y ) maps dominantly on Sym2b(Y ). In partic-

ular, Hsimple
d,g (Y ) is dense in Hall

d,g(Y ). By a celebrated theorem of Clebsch [12], if gY = 0, then

H
simple
d,g (Y ) is connected (equivalently, irreducible). More generally, by [17, Theorem 9.2], the

connected (= irreducible) components of Hall
d,g(Y ) are classified by the subgroup φ∗π1(C) of

π1(Y ). Recall that φ is called primitive if φ∗π1(C) = π1(Y ), or equivalently, if φ does not factor
through an étale covering eY → Y . Denote by H

primitive
d,g (Y ) ⊂ Hall

d,g(Y ) the connected (= irre-
ducible) component whose points correspond to primitive covers.

The connection between primitive and simply branched covers is the following. By [6, Propo-
sition 2.5], if φ : C → Y is a simply branched covering, then φ is primitive if and only if the
monodromy map

π1(Y \ brφ)→ Sd

is surjective. Therefore, we can view H
primitive
d,g (Y ) as a partial compactification of the stack of

simply branched covers of Y with full monodromy group Sd . By convention, Hd,g(Y ) (without

any superscript) denotes the component Hprimitive
d,g (Y ) of Hall

d,g(Y ).
Being open substacks of the Kontsevich stack, the Hurwitz stacks described above admit quasi-

projective coarse moduli spaces, which we denote by the roman equivalent Hd,g of Hd,g . Denote
by Mr,k(Y ) the moduli space of vector bundles of rank r and degree k on Y . Let U ⊂Hd,g(Y ) be
the (possibly empty) open substack consisting of points [φ] ∈Hd,g(Y ) such that Eφ is semi-stable.
We have a morphism U → Md−1,b(Y ) defined functorially as follows. An object φ : C → Y × S
of U maps to the unique morphism S → Md−1,b(Y ) induced by the bundle Eφ on Y × S. Let
U ⊂ Hd,g(Y ) be the coarse space of U. By the universal property of coarse spaces, the morphism
U→ Md−1,b(Y ) descends to a morphism U → Md−1,b(Y ). If U is non-empty, then we can think
of U → Md−1,b(Y ) as a rational map Hd,g(Y ) ¹¹Ë Md−1,b(Y ).

Recall that Y is a smooth, projective, connected curve over C.

Theorem 3.11. Let gY ≥ 2. If g is sufficiently large (depending on Y and d), then the Tschirnhausen
bundle associated to a general point of Hd,g(Y ) is stable. Moreover, the rational map

Hd,g(Y ) ¹¹Ë Md−1,b(Y )

http://stacks.math.columbia.edu/tag/0BVH
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given by [φ] 7→ Eφ is dominant.
The same statement holds for gY = 1 with “stable” replaced by “regular poly-stable.”

Proof. Let gY ≥ 2; the proof for gY = 1 is identical with “stable” replaced by “regular poly-stable.”
Let φ0 : X0 → Y be an element of the primitive Hurwitz space Hd,g0

(Y ) with Tschirnhausen
bundle E0. For some line bundle L of sufficiently large degree, there exists φ : X → Y with
Tschirnhausen bundle E = E0 ⊗ L with H1(NX/E) = 0 by Proposition 3.8. From the proof of
Proposition 3.8, we know that X → Y is obtained as a deformation of the singular curve formed
by attaching vertical rational curves to X0. Recall that in a deformation, the π1 of a general
fiber surjects on to the π1 of the special fiber. Hence, since π1(X0) → π1(Y ) is surjective, so is
π1(X )→ π1(Y ). That is, X → Y is primitive.

We know that the moduli stack of vector bundles on Y is irreducible [20, Appendix A] and
therefore, the locus of stable bundles forms a dense open substack. So, we can find a vector
bundle E on Y ×∆ such that EY×{0} = E and EY×{t} is stable for t ∈ ∆ \ {0}. As H1(NX/E) = 0,
the curve X ⊂ E deforms to the generic fiber of E → ∆, by the same relative Hilbert scheme
argument as used in the proof of Theorem 3.9. Let X t ⊂ Et be such a deformation. Then X t → Y
is a primitive cover with a stable Tschirnhausen bundle. We conclude that for sufficiently large
g, the Tschirnhausen bundle of a general element of Hd,g(Y ) is stable.

Letφ : X → Y be an element of Hd,g(Y )with stable Tschirnhausen bundle E such that H1(NX/E) =
0. The above argument shows that such coverings exist if g is sufficiently large. Let S be a versal
deformation space for E and E a versal vector bundle on Y × S. See [26, Lemma 2.1] for a con-
struction of S in the analytic category. In the algebraic category, we can take S to be a suitable
Quot scheme (see, for example, [20, Proposition A.1]). Let H be the component of the relative
Hilbert scheme of Tot(E)/S containing the point [X ⊂ E], and let Hsm ⊂ H be the open subset
parametrizing [X t ⊂ Et] with smooth X t . Since H1(NX/E) = 0, the map Hsm → S is smooth at
[X ⊂ E] by [33, Theorem 3.2.12]. In particular, it is dominant. By Proposition 2.11, we know that
for [X t ⊂ Et] ∈Hsm, the bundle Et is indeed the Tschirnhausen bundle of X t → Y . We conclude
that the map Hd,g(Y ) ¹¹Ë Md−1,b(Y ) is dominant. �

Remark 3.12. It is natural to ask for an effective lower bound on g in Theorem 3.11. By studying
our proof, we get lower bounds of order d3 gY . It may be interesting to obtain sharper results.

Recall that the Maroni locus M(E) is the locally closed subset of Hd,g(Y ) defined by

M(E) =
�

[φ] ∈ Hd,g(Y ) | Eφ ∼= E
	

.

Theorem 3.13. Let E be a vector bundle on Y of rank (d −1) and degree e. If g is sufficiently large
(depending on Y and E), then for every line bundle L on Y of degree b−e, the Maroni locus M(E⊗ L)
contains an irreducible component of the expected codimension h1(Y, End E).

Proof. Set E′ = E ⊗ L. Let Hsm be the open subset of the Hilbert scheme of curves in Tot(E′)
parametrizing [X ⊂ E′] with X smooth of genus g embedded so that for all y ∈ Y , the scheme
X y ⊂ E′y is in affine general position. By Proposition 2.11, the Tschirnhausen bundle map

τ: Hsm→ M(E′)

is a surjection. Furthermore, the fibers of τ are orbits under the group A of affine linear transfor-
mations of E′ over Y . Plainly, the action of the group is faithful.

By Proposition 3.8, there exists [X ⊂ E′] ∈ Hsm with H1(NX/E′) = 0. We can now do a dimen-
sion count. Note that NX/E′ is a vector bundle on X of rank (d − 1) and degree (d + 2)b, where
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b = gX − 1− d(gY − 1). Then the dimension of Hsm at [X ⊂ E′] is given by

dim[X ]H
sm = χ(NX/E′)

= (d + 2)b− (gX − 1)(d − 1)

= 3b− d(d − 1)(gY − 1)

The dimension of the fiber of τ is given by

dim A= hom(E′∨,OY ⊕ E′∨)

= b− d(d − 1)(gY − 1) + h1(End E).

As a result, the dimension of M(E′) at [φ] is given by

dim[φ]M(E′) = dim[X ]H
sm − dim A

= 2b− h1(End E).

Since dim Hd,g(Y ) = 2b, the proof is complete. �

4. HIGHER DIMENSIONS

In this section, we discuss the possibility of having an analogue of Theorem 1.1 for higher
dimensional Y . For simplicity, take k = C.

Let us begin with the following question.

Question 4.1. Let Y be a smooth projective variety, L an ample line bundle on Y , and E a vector
bundle of rank (d − 1) on Y . Is E ⊗ Ln a Tschirnhausen bundle for all sufficiently large n?

The answer to Question 4.1 is “No”, at least without additional hypotheses.

Example 4.2. Take Y = P4, and E = O(a)⊕O(b). Then a sufficiently positive twist E′ of E cannot
be the Tschirnhausen bundle of a smooth branched cover X .

To see this, recall that the data of a Gorenstein triple cover X → Y with Tschirnhausen bundle
E′ is equivalent to the data of a nowhere vanishing global section of Sym3 E′⊗ (det E′)∨ (see [25]
or [11]). For E′ = E⊗ Ln with large n, the rank 4 vector bundle Sym3 E′⊗(det E′)∨ is very ample.
Thus, its fourth Chern class is nonzero. Therefore, a general global section must vanish at some
points.

In fact, it is easy to see by direct calculation that the fourth Chern class of Sym3 E ⊗ (det E)∨

can vanish if and only if E = O(a) ⊕ O(b) where b = 2a. Conversely, E = O(a) ⊕ O(2a) is the
Tschirnhausen bundle of a cyclic triple cover of P4. Thus, E = O(a)⊕O(b) can be a Tschirnhausen
bundle of a smooth triple cover of P4 if and only if b = 2a.

Example 4.2 illustrating the failure of Theorem 1.1 can be generalized to all degrees ≥ 3,
provided the base Y is allowed to be high dimensional.

Proposition 4.3. Let d ≥ 3. The answer to Question 4.1 is “No” for all Y of dimension at least d
�d

2

�

.

Proof. Letφ : X → Y be a finite, flat, degree d map. Then the sheafφ∗OX is a sheaf ofOY -algebras,
and it splits as φ∗ = OY ⊕ E∨.

Suppose over some point y ∈ Y , the multiplication map

m : Sym2 E∨→ φ∗OX

is identically zero. Then, we have a k-algebra isomorphism

(φ∗OX )|y ∼= k[x1, . . . , xd−1]/(x1, . . . , xd−1)
2.
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That is, φ−1(y) is isomorphic to the length d “fat point”, defined by the square of the maximal
ideal of the origin in an affine space. When d ≥ 3, these fat points are not Gorenstein. Since Y is
smooth, this implies X can not even be Gorenstein, let alone smooth.

Now, if E is a vector bundle on Y and L is a sufficiently positive line bundle, then the bundle

M := Hom(Sym2(E ⊗ L)∨,OY ⊕ (E ⊗ L)∨)

is very ample. A general global section m ∈ H0(Y, M) will vanish identically at some points y ∈ Y
provided

dim Y ≥ rk M = d
�

d
2

�

.

We conclude that if dim Y ≥ d
�d

2

�

, then Question 4.1 has a negative answer. �

Observe that Proposition 4.3 remains true even if we relax the requirement that X be smooth
to X be Gorenstein.

The following result due to Lazarsfeld suggests the possibility that Proposition 4.3 may be true
with a much better lower bound than d

�d
2

�

.

Proposition 4.4. Let E be a vector bundle of rank (d −1) on Pr , where r ≥ d +1. Then E(n) is not
a Tschirnhausen bundle of a smooth, connected cover for sufficiently large n.

Proof. The proof relies on [24, Proposition 3.1] which states that for a branched cover φ : X → Pr

of degree d ≤ r − 1 with X smooth and connected, the pullback map

φ∗ : Pic(Pr)→ Pic X

is an isomorphism. In particular, the dualizing sheafωφ is isomorphic to φ∗O(l) for some l. Note
that ωφ is represented by an effective divisor (the ramification divisor), so l > 0. Therefore, we
get

OPr ⊕ E = φ∗ωφ = φ∗O(l) = OPr (l)⊕ E∨(l).
Since X is connected, E∨ has no global sections. Using this, it is easy to conclude from the above
sequence that OPr (l) is a summand of E.

Suppose E(n) is a Tschirnhausen bundle of a smooth connected cover for infinitely many n.
Applying the reasoning above with E replaced by E(n) shows that E must have line bundle sum-
mands of infinitely many degrees. Since this is impossible, the proposition follows. �

The reasoning in Example 4.2 implies the following.

Proposition 4.5. For degree 3, Question 4.1 has an affirmative answer if and only if dim Y < 4.

Proof. Let φ : X → Y be a Gorenstein finite covering of degree 3 with Tschirnhausen bundle E.
Then by the structure theorem of triple covers in [25] or [11], we get an embedding X ⊂ PE as
a divisor of class OPE(3). Thus, X is given by a global section on PE of OPE(3), or equivalently
a global section on Y of Sym3 E ⊗ det E∨. Note that since X → Y is flat, the global section of
Sym3 E ⊗ det E∨ is nowhere vanishing.

Suppose we are given an arbitrary rank 2 vector bundle E on Y . Set D = OPE(3) and V =
Sym3 E ⊗ det E∨. If we twist E by Ln, then PE is unchanged but D changes to D + 3nL and V
changes to V ⊗ Ln. For sufficiently large n, the bundle V ⊗ Ln is ample. If dim Y < 4, then a
general section of V ⊗ Ln is nowhere zero on Y . Furthermore, the divisor X ⊂ PE cut out by
the corresponding section of O(D + 3nL) is smooth by Bertini’s theorem. By construction, the
resulting X → Y has Tschirnhausen bundle E ⊗ Ln.

On the other hand, if dim Y ≥ 4, then every global section of V ⊗ Ln must vanish at some point
in Y . Thus, E ⊗ Ln cannot arise as a Tschirnhausen bundle. �
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4.1. Modifications of the original question. Following the discussion in the previous section,
natural modified versions of Question 4.1 emerge. The first obvious question is the following.

Question 4.6. Is the analogue of Theorem 1.1 true for all Y with dim Y ≤ d?

We can also relax the finiteness assumption on φ.

Question 4.7. Let Y be a smooth projective variety, E a vector bundle in Y . Is E isomorphic to
(φ∗OX/OY )∨, up to a twist, for a generically finite map φ : X → Y with smooth X?

Remark 4.8. A similar question is addressed in work of Hirschowitz and Narasimhan [19], where
it is shown that any vector bundle on Y is the direct image of some line bundle on a smooth
variety X under a generically finite morphism.

Alternatively, we can keep the finiteness requirement on φ in exchange for the smoothness of
X . We end the paper with the following open-ended question.

Question 4.9. What singularity assumptions on X (or the fibers of φ) yield a positive answer to
Question 4.1?
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