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Abstract. We compute equivariant fundamental classes of all orbits in ar-
bitrary GL(2)-representations. As applications, we find degrees of the orbit
closures corresponding to elliptic fibrations and self-maps of the projective
line.

1. Introduction

If we fix a hypersurface in projective space, how complicated is the set of all
hypersurfaces obtained from the fixed one by changes of coordinates? Similarly, if
we fix a self-map of the projective space, how complicated is the set of all self-maps
obtained from the fixed one by changes of coordinates? These questions, and many
others, generalise as follows. Given a representation W of an algebraic group G,
how complicated is the G-orbit of a fixed w ∈ W? One measure of complexity is the
degree of the orbit closure in PW . A more refined measure is the G-equivariant
fundamental class. Our main theorem (Theorem 1.3) completely describes the
equivariant fundamental classes (and hence degrees) of orbits in representations
of G = GL(2). The case where W is irreducible was already known. The new
contribution is treating reducible W ; this presents new challenges, but also has
new applications. A key technical tool we use is stacky weighted blowups, encoded
by rational Newton polyhedra. The case of G = GL(1), or more generally, any
torus, is straightforward. We treat it in Section A.

The question of finding equivariant classes of orbit closures has been well stud-
ied, especially in cases where the orbits have a geometric interpretation. For the
GL(2) representation Symn C2, where the orbits represent divisors of degree n on
P1 modulo changes of coordinates, the degree of the orbit closure was computed
by Enriques–Fano [8] for the generic case and Aluffi–Faber in general [1]. The
equivariant class was computed by Lee–Patel–Spink–Tseng ( [14, Theorem 12.5]
or [15, Appendix B]). For the GL(3) representation Symn C3, where the orbits
represent plane curves of degree n, the degree of the orbit closure was computed by
Aluffi–Faber [2,3]. For the GL(4) representation Sym3 C4, where the orbits repre-
sent cubic surfaces, the equivariant class of a generic orbit closure was computed
in [7]. Local analogues of equivariant orbit classes are Thom polynomials, which
have been studied by Buch, Fehér, Rimányi, and Weber among others [10,11,20].
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In all these cases, the equivariant class yields a counting formula—the equivariant
orbit/Thom class of w gives the number of times w appears, up to isomorphism, in
a given family. We expect the equivariant class to reflect the geometry of w. This
is indeed the case for divisors on P1, where the class depends on the multiplicities
in the divisor, and for curves in P2, where the class depends on the singularities
and flexes of the curve.

As a direct application of the main theorem, we compute the degrees of orbit
closures in two (reducible) representations of geometric significance. The first
is the GL(2)-representation Sym4n(C2) ⊕ Sym6n(C2), where the orbits represent
isomorphism classes of elliptic fibrations over P1. In this case, the degree depends
on the Kodaira types of the singular fibers. The second is the GL(2)-representation
Hom(C2, Symn C2), where most orbits represent isomorphism classes of self-maps
P1 → P1 of degree n. (The space of degree n maps P1 → P1 and its quotient
by changes of coordinates are important objects of study in complex dynamics,
where they are usually denoted by Ratn and Mn [16,19,21,22]). In this case, the
degree is (surprisingly) independent of the orbit.

We first give these two applications in Section 1.1 and Section 1.2, respectively,
before stating the main theorem in Section 1.3.

1.1. Elliptic fibrations. Fix a positive integer n, and let W = Sym4n(C2) ⊕
Sym6n(C2). A non-zero (A,B) ∈ W determines an elliptic fibration over P1

defined by the Weierstrass equation

y2 = x3 +Ax+B.

The GL(2)-orbits in W thus represent Weierstrass elliptic fibrations over P1, up
to isomorphism.

Let h be the class of the Weil divisor O(1) on the weighted projective space
PW = (W − 0)

/
Gm, where Gm acts by weight 2 on Sym4n(C2) and by weight 3

on Sym6n(C2). Given (A,B) ∈ W and u ∈ P1, let ord(A)u and ord(B)u be the
orders of vanishing of A and B at u. Set

c(u) = min

(
1

2
ord(A)u,

1

3
ord(B)u

)
.

Theorem 1.1. Fix a non-zero w = (A,B) ∈ W = Sym4n(C2)⊕ Sym6n(C2), and
let π : E → P1 be the Weierstrass fibration defined by w. Let D ⊂ P1 be a finite
set such that π is smooth on P1 −D. Let Γ ⊂ GL(2) be the stabiliser of w ∈ W
and let Orb([w]) be the closure of the PGL(2)-orbit of [w] ∈ PW . Then

|Γ|[Orb([w])] = 24n+336n+1 · n ·

(
4n3 −

∑
u∈D

c(u)2(3n− c(u))

)
h10n−2.

If π is a minimal Weierstrass fibration as in [17, III.3], then c(u) < 2 and c(u)
determines the Kodaira fiber type over u (see [17, IV.3.1]). See Table 1 for the
Kodaira types and their contribution to the formula above. The main theorem in
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fact gives the equivariant class, of which the degree is a particular specialisation.
See Section 7.1 for the proof.

c(u) Type Description Contribution to the de-
gree c(u)2(3n− c(u))

0 IN Smooth elliptic curve, nodal ratio-
nal curve, or cycle of smooth ratio-
nal curves

0

1 I∗N D̃4+N -configuration of rational
curves

3n− 1

1/3 II Cuspidal rational curve 1/27 · (9n− 1)
1/2 III Two tangent rational curves 1/8 · (6n− 1)
2/3 IV Three concurrent rational curves 4/27 · (9n− 2)

4/3 IV ∗ Ẽ6-configuration of rational curves 16/27 · (9n− 4)

3/2 III∗ Ẽ7-configuration of rational curves 27/8 · (2n− 1)

5/3 II∗ Ẽ8-configuration of rational curves 25/27 · (9n− 5)

Table 1. Contributions from the singular fibers in a minimal
Weierstrass fibration y2 = x3 +Ax+B towards the degree of the
orbit closure of (A,B) ∈ P

(
Sym4n(C2)⊕ Sym6n(C2)

)
.

1.2. Rational self maps. Fix a positive integer n and set W = Hom(C2, Symn C2).
An element f ∈ W is equivalent to a map

(1) C2 ⊗OP1 → OP1(n).

For f in a Zariski open subset, the map (1) is surjective, and hence defines a map
P1 → P1 of degree n. Conversely, every map P1 → P1 of degree n arises from an
f ∈ W , which is unique up to a scalar. Thus, most GL(2)-orbits in W represent
maps P1 → P1 of degree n modulo changes of coordinates.

Theorem 1.2. Suppose f ∈ Hom(C2, Symn C2) defines a map P1 → P1 of degree
n. Let Γ ⊂ PGL(2) be the stabiliser of [f ] ∈ PHom(C2, Symn C2), and Orb([f ])
the closure of the PGL(2)-orbit of [f ]. Then

|Γ| · deg(Orb([f ])) = n(n+ 1)(n− 1).

Again, the main theorem gives the equivariant class, of which the degree is a
particular specialisation. See Section 7.2 for the proof.

We highlight that Theorem 1.2 does not hold for all f ∈ Hom(C2, Symn C2).
For the f whose associated map (1) is not surjective—f with base-points—the
stabiliser-weighted degree can be different. It is remarkable that for the f without
base-points, it is constant. This is in contrast to the case of divisors on P1, where
the multiplicities in the divisor matter.
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1.3. Main theorem. Fix a 2-dimensional vector space V over an algebraically
closed field k of characteristic 0. Fix a finite dimensional GLV representation

W = W1 ⊕ · · · ⊕Wn, where Wi = Symai−bi V ⊗ detV bi .

Set di = ai + bi, and assume that di > 0 for all i. Fix a maximal torus T ⊂ GLV .
We then have an isomorphism between the equivariant (rational) Chow ring AGLV

and the symmetric polynomials in AT = Q[v1, v2].
We must now introduce some notation. Fix a non-zero w = (w1, . . . , wn) ∈ W ,

and write wi = fi ⊗ δbi for some fi ∈ Symai−bi V and δ ∈ detV . Given u ∈ P1,
let rui be the order of vanishing of fi at u. Let Λu ⊂ R2 be the convex hull of the
union of the shifted quadrants

1

di
(rui + bi, bi) +R2

≥0.

Let λu(0), . . . , λu(ku) be the vertices of Λu arranged from the bottom right to the
top left. For a p ∈ R2, use p1 and p2 to denote the first and the second coordinates.
Set

b = min (bi/di | wi ̸= 0) , rugen = λu(0)1 − b, ru = min ((rui + bi)/di) , and

su =

{
1− λu(0)1−λu(1)1

λu(0)2−λu(1)2
, if ku ≥ 1,

1, otherwise.

For j = 1, . . . , ku, let ηu(j) and ζu(j) be the smallest integral normal vectors to
the rays of Λu at the vertex λu(j). Set Nu(j) = det(ηu(j), ζu(j)). Let A ⊂ P1 be
a finite set that includes the common zero locus of {fi | bi/di = b}.

Given F ∈ Q(v1, v2), denote by Fsym its symmetrisation

Fsym = F (v1, v2) + F (v2, v1).

Let N = dimW and observe that in AT = Q[v1, v2], we have the top Chern class

cN (W ) =

n∏
i=1

ai−bi∏
j=0

((bi + j)v1 + (ai − j)v2) .

Let Γ ⊂ GL(V ) be the stabiliser of w ∈ W ; assume that it is finite.

Theorem 1.3. In the notation above, the GLV -equivariant class of the orbit
closure of w ∈ W in AGLV (W ) ⊂ Q[v1, v2] is given by

(2) |Γ|[Orb(w)] = cN (W ) ·

Fsym +
∑
u∈A

Gu
sym +

∑
u∈A

ku∑
j=1

Hu(j)sym

 ,
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where

F = 2((1− b)v1 + bv2)
−1(v1 − v2)

−3

− (2b− 1)((1− b)v1 + v2)
−2(v1 − v2)

−2

Gu = ((1− ru)v1 + ruv2)
−1(v1 − v2)

−3

− su((1− b)v1 + bv2)
−1(v1 − v2)

−3

− rugen((1− b)v1 + v2)
−2(v1 − v2)

−2, and

Hu(j) = |Nu(j)|ηu(j)−1
1 ζu(j)−1

1 ((1− λu(j)2)v1 + λu(j)2v2)
−1(v1 − v2)

−3.

Note that in the sum of Hu(j)sym, the bottom right vertex (j = 0) is omitted.

Remark 1.4. It is not obvious that the expression in Theorem 1.3 is a polynomial.
But it must be, as a consequence of the theorem.

1.4. Negative or mixed weights. Our main theorem applies to representations
W whose direct summands have positive weights di. The theorem can also be used
for W whose direct summands have negative weights by dualising or by twisting
by a large negative n as described in Section 4.

The cases where W has summands of weight 0 or some summands of positive
weights and some of negative weights are a bit strange. In these cases, a generic
w ∈ W does not contain the origin in its orbit closure. Therefore, its equivariant
class of a generic orbit closure is 0, as can be seen by pulling back to the equivariant
Chow ring of the origin.

1.5. Ideas in the proof. Let PW be the weighted projective space (W −0)
/
Gm

for the central Gm ⊂ GL(2). Given a w ∈ W , the key idea is to find a complete
orbit parametrisation for Orb([w]), namely a proper PGL(2)-variety X and an
equivariant finite map X → PW whose image is Orb([w]). Then the class of
Orb([w]) is the push-forward of [X], up to a constant factor. The push-forward
also gives GL(2)-equivariant class of Orb(w) (see Proposition 3.4).

To find X, we start with M = PHom(k2,k2), and the rational map M 99K PW

given by m 7→ mw. We find an explicit resolution M̃ → PW , which serves as our
complete orbit parametrisation. We then compute the push-forward as an integral
on M̃ using Atiyah–Bott localisation.

The resolution M̃ → M is a weighted blow-up. It is much more convenient to
take the weighted blow-up in a stacky sense. The stacky blow-up is smooth and
maps to the weighted projective stack P W . We can then write the push-forward
as an integral and evaluate it using localisation. The stacky blow-up is toroidal,
and is completely described by the combinatorial data of the Newton polygons Λu.

1.6. Conventions and organisation. We work over an algebraically closed field
k of characteristic 0. A stack means an algebraic stack over k. All schemes and
stacks are of finite type over k. Given a vector space/bundle V , the projectivisation
PV refers to the space of one-dimensional sub-spaces/bundles of V , consistent with
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the convention in [12] and OPV (−1) denotes the universal sub-bundle. All Chow
groups are with rational coefficients.

In Section 2, we recall stacky weighted blow-ups in preparation for our main
construction. In Section 3, we describe how to find the equivariant class of an orbit
using a complete parametrisation. Both of these sections are general (not specific
to GL(2)). In Section 4, we observe that the main theorem is invariant under a
twist operation, which allows some simplification. In Section 5, we construct a
complete parametrisation of a GL(2)-orbit using a stacky blow-up. In Section 6,
we evaluate the equivariant orbit class using localisation. In Section 7, we deduce
the applications to elliptic fibrations and rational self maps. In Section A, we
explain the case of G a torus.

Acknowledgements. The project arose from conversations with Anand Patel, to
whom I am deeply grateful. I thank Ming Hao Quek for sharing his expertise on
stacky blow-ups. I was supported by the grant DE180101360 from the Australian
Research Council.

2. Rational Newton polyhedra and weighted blow-ups

The material in this section should be well-known to experts (see, for example,
[18, § 2]).

Set M = Zn and N = Hom(M,Z). Let M≥0 be the set of vectors with non-
negative coordinates in M ⊗R = Rn, and similarly for N≥0. A rational Newton
polyhedron is a closed convex polyhedron Λ ⊂ M whose recession cone is M≥0

and whose vertices have rational coordinates. Such a Λ gives a fan Λ⊥ in N ⊗R
supported on N≥0, called the normal fan of Γ. There is an inclusion reversing
bijection between the faces of Λ and the cones of Λ⊥. To a face F of Λ, we
associate the cone F⊥ of Λ⊥ defined by

F⊥ = {f ∈ N | f is constant on F and this constant is the minimum of f on Λ}.

Since the recession cone of Λ is M≥0, and f achieves a minimum on Λ, it must lie
in N≥0.

Let F be a maximal face of Λ, that is, of dimension (n − 1). Then F⊥ is a
ray. For every F , choose a non-zero vector βF ∈ F⊥ with integer coordinates.
Let r be the number of maximal faces of Λ. Then the collection {βF } gives a
homomorphism β : Zr → N with finite cokernel. Let XΛ,β be the toric stack
defined by the data (N,Λ⊥, β) in the sense of [4]. It comes with a canonical map
XΛ,β → An, which we call the stacky blow-up of An defined by (Λ, β).

Let us describe XΛ,β → An in charts, following [4, Proposition 4.3]. Assume
that Λ is simplicial, that is, every vertex of Λ has exactly n incident rays. Let v
be a vertex of Λ. Denote the rays incident to v by R1, . . . , Rn and the maximal
faces incident to v by F1, . . . , Fn such that Ri is the only ray not contained in Fi.
Set βi = βFi and let ri ∈ Ri be the unique vector such that ⟨βi, ri⟩ = 1. Then
r1, . . . , rn is a basis of M ⊗Q dual to the basis β1, . . . , βn of N ⊗Q. Let Mv ⊃ M
be the dual lattice of the sub-lattice of N spanned by β1, . . . , βn. Then Mv/M is
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a finite abelian group. Set µv = Hom(Mv/M,Gm). The chart of XΛ,β defined by
v is

(3) [Speck[u1, . . . , un]/µv],

with the action given as follows. A ζ ∈ µv acts by

ζ : ui 7→ ζ(ri)ui.

In particular, note that XΛ,β is a smooth Deligne–Mumford stack.
Let e1, . . . , en be the standard basis vectors in M . In the chart above, the map

to An = Speck[x1, . . . , xn] is defined by

(4) xi 7→ u
⟨β1,ei⟩
1 · · ·u⟨βn,ei⟩

n .

Note that ζ ∈ µv multiplies the image of xi by ζ(e) where

e = r1⟨β1, ei⟩+ · · ·+ rn⟨βn, ei⟩.
Since r1, . . . , rn and β1, . . . , βn are dual bases, we see that e = ei ∈ M and hence
ζ(e) = 1. So the map (4) is indeed µv-invariant. Write ri = (a1, . . . , an) in
standard coordinates with ai ∈ Q. Informally, it is helpful to think of ui as
xa1
1 · · ·xan

n .
Let XΛ be the toric variety associated to (N,Λ⊥). Then we have a map XΛ,β →

XΛ which is the coarse space map [4, Proposition 3.7].

Remark 2.1. Let (N,Λ⊥, β) be the stacky fan given by a rational Newton polyhe-
dron as above. Let r be the number of rays of Λ⊥. In [4], the stack associated to
(N,Λ⊥, β) is defined as the quotient of an open subset Z ⊂ Ar by the action of
a group G that acts on Ar through a homomorphism G → Gr

m. In our case, N
is a free Z-module. From the construction of G → Gr

m in [4, § 2], it follows that
G → Gr

m is injective. Let X = [Z/G] and X = [Z/Gr
m]. It is easy to see that

we have the pull-back diagram

X X

An [An/Gn
m].

Given Λ, we use two natural choices of β. For the first, denoted by βcan, we let
βF be the shortest vector with integer coordinates on the ray F⊥. For the second,
denoted by βres, we let βF be the shortest vector with integer coordinates on the
ray F⊥ such that the value of βF on F is an integer. Then we have a map

XΛ,βres → XΛ,βcan ,

which is a sequence of root stacks along the divisors defined by the rays. Pre-
cisely, it is the root stack of order βres

F /βcan
F along the divisor defined by the ray

F⊥. The map XΛ,βcan → XΛ is called the canonical desingularisation. The map
XΛ,βcan → An is an isomorphism away from the origin. The map XΛ,βres → An

is an isomorphism away from the union of the coordinate hyperplanes.
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Let x1, . . . , xn be variables. For p = (p1, . . . , pn) ∈ Zn
≥0, we write xp for the

monomial xp1

1 · · ·xpn
n . A weighted monomial is a pair (xp, d), where d is a positive

integer. Let L be a set of weighted monomials. Let Λ be the rational Newton
polyhedron defined by the points 1

dp for (p, d) ∈ L, that is, the convex hull of the
union of 1

dp + Rn
≥0 for (xp, d) ∈ L. Assume that Λ is simplicial. Then we have

the stacky blow-ups XΛ,βres and XΛ,βcan . We call XΛ,βcan the canonical weighted
blow-up in the set of weighted monomials L, and XΛ,βres the resolving weighted
blow-up. The following two propositions justify the name.

Proposition 2.2. In the setup above, let v = 1
dp be a vertex of Λ. Consider the

chart
Speck[u1, . . . , un] → XΛ,βres

defined by v. The image of xp in k[u1, . . . , un] is the d-th power of a monomial u.
Furthermore, for every (xq, e) ∈ L, the monomial ue divides the image of xq.

Proof. Set βi = βres
Fi

. Using (4), we see that

xp 7→
∏
i

∏
j

u
pi⟨βj ,ei⟩
j =

∏
j

u
⟨βj ,p⟩
j .

By the choice of βj , the quantity ⟨βj , p/d⟩ is a non-negative integer. Thus, xp

maps to the d-th power of the monomial

u =
∏
j

u
⟨βj ,p/d⟩
j .

Consider (xq, e) ∈ L. Let r1, . . . , rn be the rays of Λ incident to v. Then the point
q/e is in the cone defined by the vertex v and the rays spanned by r1, . . . , rn. That
is, we can write

q/e = p/d+ a1r1 + · · ·+ anrn

for some non-negative rational numbers ai. By applying βi to both sides, we see
that e · ai is a non-negative integer. Using (4) again, we get

xq 7→ ue
∏

ue·ai
i .

□

Let d1, . . . , dm be positive integers and let P(d1, . . . , dm) be the weighted pro-
jective stack

P(d1, . . . , dm) = [(Am − 0)
/
Gm],

where Gm acts coordinate-wise by weights d1, . . . , dm. Consider the rational map

An 99K P(d1, . . . , dm)

defined by the monomials xp1 , . . . , xpm ; that is,

(5) (x1, . . . , xn) 7→ [xp1 : · · · : xpm ].

Let Λ be the Newton polyhedron defined by the weighted monomials (xp1 , d1), . . . , (x
pm , dm).

Assume that Λ is simplicial.
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Proposition 2.3. The map (5) extends uniquely to a morphism

XΛ,βres → P(d1, . . . , dm).

Proof. The domain is normal and the co-domain is separated. Therefore, if the
map extends, it extends uniquely [9, Appendix A]. To see that it extends, we may
work locally on charts. Let v be a vertex of Λ, say v = pi/di. By Proposition 2.2,
on the chart Speck[u1, . . . , un], the pull-back of xpi is udi for a monomial u, and
the pull-back of xpj is divisible by udj . The extension of (5) on Speck[u1, . . . , un]
is given by

[xp1u−d1 : · · · : xpi−1u−di−1 : 1 : xpi+1u−di+1 : · · · : xpmu−dm ].

□

We reformulate (2.3) to suit our setting.

Corollary 2.4. Let W1, . . . ,Wm be finite dimensional k-vector spaces and set
W =

⊕
i Wi. Let P W be the weighted projective stack where Wi has weight

di > 0. Let f : An 99K P W be the rational map defined by fi ∈ Wi⊗A[x1, . . . , xn]
and assume that the coordinates of fi generate the monomial ideal ⟨xpi⟩. Let Λ be
the Newton polyhedron defined by the weighted monomials (xp1 , d1), . . . , (x

pm , dm).
Then the rational map f extends uniquely to a morphism

XΛ,βres → P W.

Proof. We follow the proof of Proposition 2.3. Let v be a vertex of Λ, say v = pi/di.
Let udi be the pull-back of xpi to the chart defined by v. Then for all j, the element
u−djfj ∈ Wj ⊗ k[u1, . . . , um] has polynomial coordinates. Furthermore, for j = i,
the coordinates generate the unit ideal. On this chart, the extension of the rational
map f is given by [u−d1f1 : · · · : u−dmfm]. □

3. Class of an orbit using a complete parametrisation

Let W be a finite dimensional representation of GL(m). Consider the central
Gm ⊂ GL(m), and assume that it acts on W by positive weights. We denote by
P W the weighted projective stack

P W = [W − 0
/
Gm].

Fix a non-zero vector w ∈ W , and let

[w] : Speck → P W

be the corresponding point of P W . By the stabiliser Γ of w, we mean the fiber
product

(6)
Γ PGL(m)

Speck P W.

a7→a·w
[w]
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We have the diagram

Γ GL(m) PGLm

Speck W P W

a7→a·w a7→a·w

in which the right square and the outer square are cartesian. Therefore, the left
square is also cartesian. Therefore, Γ is simply the stabiliser of w in GL(m).

A complete orbit parametrisation of [w] is a proper morphism

i : X → P W,

where X is a Deligne–Mumford stack together with the action of PGL(m) and i
is a PGL(m)-equivariant map such that there exists an open subscheme U ⊂ X
isomorphic to PGL(m) as a PGL(m)-scheme and a point x ∈ U whose image
is [w]. The orbit of [w], denoted by Orb([w]), is the Zariski closure in P W of
PGL(m) · [w], with the reduced scheme structure.

Proposition 3.1. Let i : X → P W be a complete parametrisation of the orbit
of w. Assume that the stabiliser Γ ⊂ GL(m) of w is finite. Then, we have the
equality of cycles

i∗[X] = |Γ|[Orb([w])].

Proof. We have the fiber product

(7)
Γ PGL(m)

Speck Orb([w]).
[w]

Consider the open inclusion PGL(m) → X that sends a to a ·x. The image of this
inclusion is U . The points of X in the complement of U are stabilised by a positive
dimensional subgroup of PGL(m) and hence they map to points in Orb([w]) that
are stabilised by a positive dimensional subgroup. In particular, they do not map
to [w]. As a result, the fiber product (7) gives the fiber product

Γ X

Speck Orb([w]).
[w]

We see that the map X → Orb([w]) is generically finite of degree |Γ|. The propo-
sition follows. □

We now give a cohomological formula for the push-forward. We first need a
lemma, adapted from [6, Proposition 2.1]. Let U be a vector space of dimension
N with the action of an algebraic group G. Set U∗ = U − 0 and let π : U∗ → PU
be the projection.
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Lemma 3.2. Let Y be a Deligne–Mumford stack with a G-action and a G-
equivariant map ϕ : Y → PU . Then, in AG(U

∗), we have the equality

π∗ϕ∗[Y ] =

∫
Y

cN (U)

ϕ∗c1O(−1)
.

The integral on the right is the push-forward AG(Y ) → AG, considered as an
element of AG(U

∗) via the pull-back AG → AG(U
∗).

Proof. Let Q be the cokernel of ϕ∗O(−1) → U ⊗ OY . On Y × PU , let πi for
i = 1, 2 be the two projections. The vanishing locus of the composite map

π∗
2O(−1) → U ⊗OY×PU → π∗

1Q

is precisely the graph Z of ϕ : Y → PU . Therefore, we have

(8) [Z] = cN−1(π
∗
1Q⊗ π∗

2O(1))[Y ×PU ].

Consider the fiber square

X × U∗ U∗

X ×PU PU.

π̃2

π̃ π

π2

By the push-pull formula, we have

(9) π̃2∗π̃
∗[Z] = π∗π2∗[Z].

The right-hand side of (9) is π∗ϕ∗[X]. Since the pull-back of OPU (1) to U∗ is
trivial, (8) shows that

π̃∗[Z] = cN−1(π
∗
1Q)[Y × U∗].

The statement follows by applying π̃2∗ to the above equation. □

We need an analogue of Lemma 3.2 for weighted projective spaces. Let W be
a vector space of dimension N with an action of a torus T . Set W ∗ = W − 0
and P W = [W ∗/Gm], where Gm acts on W by positive weights and this action
commutes with the action of T . Let π : W ∗ → P W be the projection.

Lemma 3.3. Let X be a Deligne–Mumford stack with a T -action and a T -
equivariant map ϕ : X → P W . Then, in AT (W

∗), we have the equality

π∗ϕ∗[X] =

∫
X

cN (W )

ϕ∗c1OP W (−1)
.

We understand the right-hand side in the same sense as in Lemma 3.2.

Proof. It suffices to prove the equality in AT̃ (W
∗) where T̃ → T is a finite cover

by another torus. Choose a basis ⟨wi⟩ of W compatible with the action of T and
Gm. Suppose T acts on wi by the character χi ∈ Hom(T,Gm) and Gm acts on
wi by weight di. Let T̃ → T be a finite cover by a torus such that the image of χi

in Hom(T̃ ,Gm) is divisible by di. Let U be the k-span of the symbols ui. Equip
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U with a T̃ action so that T̃ acts on ui by the character 1
di
χi and with the Gm

action by weight 1. Then the map

µ : U → W

defined by
∑

xiui 7→
∑

xdi
i wi is equivariant for the T̃ and Gm actions and finite

of degree

deg µ =
∏

di.

Under the induced map µ : PU → P W , the pull-back of OP W (−1) is OPU (−1).
Define Y by the pull-back diagram

Y PU

X P W.

ϕ̃

µ̃ µ

ϕ

Set U∗ = U − 0 and denote by π̃ : U∗ → PU the projection. By Lemma 3.2, in
AT̃ (U

∗) we have

(10) π̃∗ϕ̃∗[Y ] =

∫
Y

cN (U)

ϕ∗c1OPU (−1)
.

Note that cN (U) =
∏

d−1
i cN (W ). Since Y → X is of degree

∏
di, the integral on

the right-hand side of (10) is equal to∫
X

cN (W )

ϕ∗c1OP W (−1)
.

Now the statement follows by applying µ∗ : AT̃ (U
∗) → AT̃ (W

∗) to both sides of
(10). □

Let Orb(w) ⊂ W be the closure of the GL(m)-orbit of w, with the reduced
scheme structure. Let N = dimW .

Proposition 3.4. Let i : X → P W be a complete parametrisation of the orbit
of w ∈ W . Assume that the stabiliser Γ ⊂ GL(m) of w is finite. Then, in
AG(W ) = AG, we have

|Γ| · [Orb(w)] =

∫
X

cN (W )

i∗c1OP W (−1)
.

The integral on the right is the push-forward AG(X) → AG.

Proof. Let T ⊂ GL(m) be a maximal torus. It suffices to prove the equal-
ity in AT (W ). Proposition 3.1 and Lemma 3.3 together give the equality in
AT (W

∗). But then the equality also holds in AT (W ) since Ai
T (U) = Ai

T (U
∗)

for i = codimOrb(w). □
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4. Twist invariance

Consider a representation W of GL(2) defined by

ρ : GL(2) → GL(W ).

For n ∈ Z, we have the surjective homomorphism

Tn : GL(2) → GL(2), M 7→ M · (detM)n,

whose kernel is the diagonally embedded µn+2 ⊂ GL(2). The composite ρ ◦ Tn

gives a new representation GL(2) → GL(W ) which we call W (n). Note that

(11) if W ∼= Syma−b V ⊗ detV b, then W (n) ∼= Syma−b V ⊗ det b+n(a+b)V.

Observe that the identity map W (n) → W together with Tn : GL(2) → GL(2)
induces a map

en : [W (n)/GL(2)] → [W/GL(2)].

Given w ∈ W , the GL(2)-orbit closure of w in W under ρ is equal to that of
w in W (n). But to distinguish the ambient representations, we denote them by
Orb(w) and Orb(w)(n), respectively. Then

Orb(w)(n) = e−1
n (Orb(w)),

and hence
[Orb(w)(n)] = e∗n([Orb(w)]) ∈ AGL(2).

The map
e∗n : AGL(2) → AGL(2)

is easy to describe. Thinking of AGL(2) as the subring of Q[v1, v2] consisting of
symmetric polynomials, it is given by

(12) e∗n : v1 7→ v1 + n(v1 + v2) and v2 7→ v2 + n(v1 + v2).

Let Γ and Γ(n) be the stabilisers of w under ρ and ρ ◦ Tn, respectively. Then
we have the sequence

1 → µn+2 → Γ(n) → Γ → 1.

In particular, we have |Γ(n)| = (n+ 2)|Γ|.
Given u ∈ P1, let Λu be the Newton polygon associated to w ∈ W and Λu(n) the

Newton polygon associated to w ∈ W (n). Using (11), it follows that Λu(n) ⊂ R2

is obtained from Λu ⊂ R2 by applying the transformation

(13) (x, y) 7→ 1

n+ 2
(x+ 1, y + 1).

Let Q be the polynomial on the right-hand side of (2) in the main theorem for
w ∈ W and Q(n) the corresponding polynomial for w ∈ W (n). Using (12) and
(13), it is easy to check that

e∗n(Q) = Q(n)/(n+ 2).

Since we also have

e∗n(|Γ|[Orb(w)]) = |Γ(n)|[Orb(w)(n)]/(n+ 2),
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the main theorem holds for w ∈ W if and only if it holds for w ∈ W (n). Thus, in
the proof, we are free to replace W by W (n) for any n. In particular, by choosing
a sufficiently large n, we may assume without loss of generality that

(14) W ∼=
⊕

Symai−bi V ⊗ det biV with ai ≥ bi ≥ 0.

5. Complete orbit parametrisations of GL(2)-orbits

Recall that we have a 2-dimensional vector space V and

W = W1 ⊕ · · · ⊕Wn, where Wi = Symai−bi V ⊗ detV bi .

We set di = ai + bi, which we call the weight of Wi, and assume di > 0 for all i.
Also assume that bi ≥ 0; this can be achieved after twisting W as in Section 4.
Consider the central Gm → GLV given by t 7→ t · I. Observe that t ∈ Gm scales
the elements of Wi by tdi . If U is another 2-dimensional vector space, then by
Wi(U) we mean the representation

Wi(U) = Symai−bi U ⊗ det biU,

and by W (U) the direct sum

W (U) =
⊕
i

Wi(U).

Let P W be the weighted projective stack

P W =
[
W − 0

/
Gm

]
Let U be another two-dimensional vector space and set

M = PHom(U, V ).

Fix a non-zero w ∈ W (U). Let wi ∈ Wi(U) be the i-th component of w.
Let I = {i | wi ̸= 0} and J = {1, . . . , n}−I. Set WI = ⊕i∈IWi and similarly for

WJ . Let wI be the projection of w to WI . Plainly, we have Orb(w) = Orb(wI)×
{0} ⊂ WI ⊕WJ , and hence

[Orb(w)] = cdimWJ
(WJ)[Orb(wI)].

Using this, we see that it suffices to prove the main theorem when J = ∅. So,
assume that wi ̸= 0 for all i.

We have a rational map

(15) M 99K P W

defined by
m 7→ [m · w].

It is defined on the locus of m such that m · w ̸= 0. More formally, on M =
PHom(U, V ), we have the universal homomorphism

e : U ⊗OM (−1) → V ⊗OM ,

which induces
Wi(U)⊗OM (−di) → Wi(V )⊗OM .
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Figure 1. The scheme theoretic zero locus of the map (16) is cut
out locally by an ideal of the form IrKu

· Ib∆, where ∆ ⊂ M is the
determinant quadric and Ku ⊂ ∆ are certain lines on it.

By pre-composing with the section

wi : OM → Wi(Ui)⊗OM ,

we get the map

(16) OM (−di) → Wi(V )⊗OM .

The maps in (16) define a morphism to P W on the open subset of M where at
least one of the maps is non-zero. Observe that this open subset includes all points
of M corresponding to invertible homomorphisms.

We now describe the scheme theoretic zero locus of the map (16). It is supported
on the determinant quadric

∆ = {m ∈ M | detm = 0},

and it has embedded primes supported on lines of one ruling of this quadric (see
Proposition 5.1 and Figure 1). Given a point u ∈ PU , let Ku ⊂ M be the line
defined by

Ku = {m ∈ M | mu = 0}.
Observe that as u varies in PU ∼= P1, the lines Ku sweep out one of the two rulings
of ∆.

Proposition 5.1. Suppose wi = f ⊗ δbi , where f ∈ Symai−bi(U) and δ ∈ detU
are non-zero. Take m ∈ ∆ ⊂ M and let u ∈ PU be the kernel of m. Suppose
f vanishes to order r at u. Then, in a neighbourhood of m, the scheme theoretic
zero locus of the map

e : OM (−di) → Wi(V )⊗OM ,

defined in (16), is cut out by the ideal IrKu
· Ibi∆ .

Proof. Since i is fixed, we omit it from the subscript in ai, bi, and di, and do a local
calculation. Denote by u2 ∈ U a lift of u ∈ PU . We choose a linearly independent
vector u1 ∈ U and take (u1, u2) as a basis of U . In this basis, the point u ∈ PU
is given by [0 : 1].
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Choose a basis (v1, v2) of V and suppose that in the chosen bases, the map
m : U → V is given by

m =

(
1 0
0 0

)
.

We can take δ = u1 ∧ u2. Consider the affine neighbourhood of m ∈ M given by
matrices of the form (

1 x
z y + xz

)
.

Up to multiplication by a non-zero scalar, the element f = f(u1, u2) has the form

(17) f(u1, u2) = ua−b−r
1 ur

2 + ∗ · ua−b−r−1
1 ur+1

2 + · · · .
Substituting u1 7→ v1 + zv2 and u2 7→ xv1 + (y + xz)v2 yields

(Mf)(v1, v2) = (v1 + zv2)
a−b−r(xv1 + (y + xz)v2)

r

+ ∗ · (v1 + zv2)
a−b−r−1(xv1 + (y + xz)v2)

r+1 + · · · ,
(18)

and,

(19) (Mδ)(v1, v2) = y(v1 ∧ v2).

Observe that the ideal generated by the coefficients of Mf is ⟨x, y⟩r. The ideal
⟨x, y⟩ is precisely the ideal IKu

and the ideal ⟨y⟩ is precisely the ideal I∆. So the
ideal generated by the coefficients of M(f ⊗ δb) is IrKu

· Ib∆, as required. □

We now resolve the rational map M 99K P W using a stacky blow-up. Let the
components of w be wi = fi ⊗ δbi . Let A ⊂ PU be any finite set that includes the
common zeros of fi for i that realise the minimum mini bi/di. Let BlA M → M
be the blow-up of M along the lines Ku for u ∈ A. Let Eu ⊂ BlA M be the
exceptional divisor over Ku and D ⊂ BlA M the proper transform of ∆ ⊂ M . Let
rui be the order of vanishing of fi at u. Let

e : OBlA M (−di) → Wi(V )⊗OBlA M

be the pull-back of (16). By Proposition 5.1, the ideal generated by the compo-
nents of this map is I

rui +bi
Eu

IbiD .
Fix u ∈ A ⊂ PU . Let Λ = Λu ⊂ R2 be the Newton polygon defined by the

set of weighted monomials {(xrui +biybi , di) | i = 1, . . . , n}. Let X Λ,β → [A2/G2
m]

be the blow-up defined in Section 2 (see Remark 2.1) for β = βcan and β = βres.
Let BlA M → [A2/G2

m] be the map defined by the divisors Eu and D and let
M res

u → BlA M and M can
u → BlA M be the pullbacks of X Λ,βres → [A2/G2

m]

and X Λ,βcan → [A2/G2
m]. Since Eu and D are smooth, normal crossings divisors,

the map BlA M → [A2/G2
m] is smooth, and therefore both M res

u and M can
u are

smooth. See Figure 2 for an example of Λu with βcan and βres.
We can write local charts for M res

u and M can
u by simply substituting local equa-

tions of Eu and D in the local charts described in Section 2. Let λ = (λ1, λ2) be
the vertex of the Newton polyhedron Λ = Λu with the smallest second coordi-
nate. Then λ2 = mini(bi/di). Suppose λ2 = b/d where gcd(b, d) = 1. Note that
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1
3 (2, 0)

1
4 (1, 1)

(1, 0)
(4, 0)

(0, 1)

(0, 3)
(3, 5)

Figure 2. For W = Sym3 V ⊕ Sym2 V ⊗ detV , the Newton
polygon Λu at u ∈ P1 with the vanishing orders r1 = 2 and
r2 = 0. The short normal vectors (dashed) represent βcan and the
longer ones (dotted) represent βres.

λ+R≥0 × 0 is a ray of Λ. Its associated divisor is the vanishing locus of y, which
pulls back to D ⊂ BlA M . The functional βcan

1 associated to this ray is the pro-
jection p2 : (a, b) 7→ b. On the other hand, the functional βres

1 is d · p2. As a result,
M res

u → BlA M over the complement of Eu is the root stack along D of order d.
Note that d is independent of u ∈ A.

Let M res → BlA M and M can → BlA M be the blow-ups as above carried out
for all u ∈ A at once. That is, for all u ∈ A, in a neighbourhood of Eu, the map
M res → BlA M is the blow-up M res

u → BlA M , and similarly for M can → BlA M .
We have maps

M res → M can → BlA M.

The map M can → BlA M is an isomorphism away from the union of the lines
Eu ∩ D for u ∈ A. The map M res → BlA M is an isomorphism away from the
union of the divisors Eu for u ∈ A and D. Over the complement of the union of
Eu for u ∈ A, it is the root stack of order d along D.

Let M be M can or M res. For every g ∈ GLV , it is easy to check that the
action map g : M → M lifts to a morphism g : M → M . For g, h ∈ GLV , the
two morphisms h ◦ g and gh agree on a dense open subscheme in M . Since M
is normal and separated, [9, Appendix A] implies that there exists a unique 2-
morphism h ◦ g =⇒ gh. As a result, the maps g : M → M for g ∈ GLV give an
action of GLV on M .

Proposition 5.2. The rational map

M 99K P W

extends to a regular map
ι : M res → P W,

which is a complete orbit parametrisation of the orbit of [w] ∈ P W .
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Proof. The extension exists due to Proposition 2.3 (see Corollary 2.4). It is im-
mediate that ι gives a complete orbit parametrisation. □

6. Atiyah–Bott localisation

Proposition 3.1 gives a formula for [Orb(w)] as an integral. We compute the
integral in Proposition 3.1 using the Atiyah–Bott localisation formula for stacks
[13, § 5.3]. In this section, we use M to denote either M res or M can. A claim
about M is understood to hold for both M res and M can. Most such claims will
be on the level of points or rational Chow groups, both of which are identical for
the two stacks.

Fix a basis (v1, v2) of V . Let T ⊂ GLV be the diagonal torus with respect to
the chosen basis. The T -fixed locus in M is the disjoint union of the two lines Li

for i = 1, 2 defined by

Li = {m | Image(m) ⊂ ⟨vi⟩} .

These are lines on ∆ of the opposite ruling compared to the lines Ku (see Figure 1).

6.1. Fixed points of the T -action on M . Let L res
i ⊂ M res and L can

i ⊂ M can

be the proper transforms of Li ⊂ M (with the reduced scheme structure). We use
Li ⊂ M to refer to either one of these.

Fix a u ∈ A ⊂ PU . Choose a basis u1, u2 of U such that u = [u2]. Consider
the affine open chart A3

x,y,z ⊂ M consisting of matrices of the form(
1 x
z y + xz

)
.

In this basis, the line L1, the line Ku, and the determinant ∆ are cut out by

L1 : z = y = 0,

Ku : x = y = 0,

∆ : y = 0.

The line L2 is absent from this chart. Thinking of x, y, z as regular functions on
this chart, we see that the T -action is given by

(20) (t1, t2) : (x, y, z) 7→ (x, t1t
−1
2 y, t1t

−1
2 z).

The blow-up BlKu
M has the local description

{(x, y, z, [X : Y ]) | Xy = xY } ⊂ Speck[x, y, z]×P1.

On the blow-up, the proper transform of L1 is cut out by z = 0 and Y = 0. The
only T -fixed points on the blow-up are the points of the proper transform of L1

and the point pu1 with coordinates ((0, 0, 0), [0 : 1]).
The proper transform of ∆ is defined by Y = 0, and is thus contained in the

affine chart of the blow-up given by X ̸= 0. This chart is given by

{(x, y, z, [1 : Y ]) | y = xY } ∼= Speck[x, Y, z].
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The T -action is given by

(t1, t2) : (x, Y, z) 7→ (x, t−1
1 t2Y, t

−1
1 t2z).

The stacky blow-up of this chart is defined by the weighted monomials (xrui +biY bi , di).
Let Λu be the Newton polyhedron defined by these weighted monomials (see Sec-
tion 2). Since z is absent from the monomials, we may think of Λu as a subset of
R2. Let λ(0), . . . , λ(k) be the vertices of Λu arranged from the bottom-right to
the top-left. That is, using subscripts to denote first and second coordinates, we
have

λ(0)1 > · · · > λ(k)1 and λ(0)2 < · · · < λ(k)2.

Note that the point corresponding to the bottom-right vertex λ(0) lies on the
proper transform of L1. It is easy to check that the only T -fixed points on the
stacky blow-up of this chart are:

(1) points of the proper transform of L1,
(2) points corresponding to the vertices λ(1), . . . , λ(k).

For j = 1, . . . , k, we label the point corresponding to λ(j) as pu1,j .
We have analogous points pu2 and pu2,j over the line L2 ⊂ M .
Summarising the discussion above, we see that the T -fixed locus of M is the

disjoint union of
(1) L1 ⊔ L2

(2) {pu1 , pu2} for u ∈ A.
(3) {pu1,j , pu2,j | j = 1, . . . , k = ku} for u ∈ A.

6.2. Ingredients of the localisation formula. Recall that we have the map

ι : M res → P W,

which is the complete orbit parametrisation of [w]. We describe the pull-back of
O(−1) and the normal bundles to the components of the fixed locus of the T -action
as elements of the corresponding (rational) T -equivariant Grothendieck groups.

Let MT = Hom(T,Gm)⊗Q and KT = Z[MT ]. We use ⊕ to denote the formal
sums in KT . By a rational T -representation, we mean a representation of a finite
cover of T . Every rational T -representation has a class in KT . In particular, for
m,n ∈ Q, we have classes χ(m,n) ∈ KT of rational characters. See the discussion
before [13, Proposition 5.3.4] for the need to accommodate rational representations.

Proposition 6.1. Fix u ∈ A ⊂ PU . Suppose i realises the minimum mini(
1
di
(rui +

bi)). Then the map

(21) ι∗O(−di) → Wi ⊗OM res

is non-zero at pu1 and its image is spanned by vai−bi−ri
1 vri2 ⊗ (v1 ∧ v2)

bi .

Proof. In the local coordinates introduced in Section 6.1, the point pu1 lies in the
chart

{(x, y, z, [X : 1]) | x = yX} ∼= Speck[X, y, z]
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of the blow-up BlKu
M . The stacky blow-up M res of this chart is defined by

the weighted monomials (yr
u
i +bi , di). Suppose the minimum in the statement is

c/d, where gcd(c, d) = 1. From (3) and (4), we get the following local chart of
M res → BlKu M at pu1 :

[Speck[u1, u2, u3]/µd] → Speck[X, y, z],

where the map is defined by

X 7→ u1, y 7→ ud
2, z 7→ u3.

Let r = rui and b = bi. From the proof of Corollary 2.4, we know that on
Speck[u1, u2, u3], the map (21) is y−r−b times the original map e studied in Propo-
sition 5.1. From (18) and (19) , we see that the map e is given by

yb
(
(v1 + zv2)

a−b−ryr(Xv1 + (1 +Xz)v2)
r + · · ·

)
⊗ (v1 ∧ v2)

b.

Multiplying by y−r−b and setting u1 = u2 = u3 = 0 yields the result. □

Let O(−1)pu
1

be the class in KT of the fiber of ι∗O(−1) at pu1 . Similarly, let Npu
1

be the class in KT of the normal bundle of pu1 in M can. Let ru = mini(r
u
i + bi)/di.

Proposition 6.2. With the notation above, we have

O(−1)pu
1
= χ(1− ru, ru), and

Npu
1
= χ(1,−1)⊕ χ(−1, 1)⊕ χ(−1, 1).

Proof. Suppose i realises the minimum mini(r
u
i + bi)/di. Proposition 6.1 identifies

the fiber of ι∗O(−di) at pu1 with the span of vai−ri
1 vri2 ⊗ (v1 ∧ v2)

bi , on which T
acts by weights ai− ri and bi+ ri. Dividing through by di yields the first equality.

The map M can → BlA M is an isomorphism near pu1 . The normal space at pu1
is spanned by ∂

∂X , ∂
∂y , and ∂

∂z , on which the T acts by weights (1,−1), (−1, 1),
and (−1, 1), respectively.

□

Proposition 6.3. Fix u ∈ A ⊂ PU . Let λ be a vertex of Λu, say λ = 1
di
(rui +

bi, bi). Then the map

(22) ι∗O(−di) → Wi ⊗OM res

is non-zero at pu1,j and its image is spanned by vai−bi
1 ⊗ (v1 ∧ v2)

bi .

Proof. The proof is parallel to the proof of Proposition 6.1. In the local coordinates
introduced in Section 6.1, consider the chart of BlKu

M given by

{(x, y, z, [1 : Y ]) | y = xY } ∼= Speck[x, Y, z].

Consider the chart of M res → BlA M given by (3) and (4):

[k[u1, u2, u3]/µ] → k[x, Y, z].
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Let r = rui and b = bi. From the proof of Corollary 2.4, we know that on
Speck[u1, u2, u3], the map (22) is x−r−bY −b times the original map e studied
in Proposition 5.1. From (18) and (19), we see that the map e is given by

xbY b((v1 + zv2)
a−b−rxr(v1 + (1 + Y z)v2)

r + · · · )⊗ (v1 ∧ v2)
b.

Multiplying by x−r−bY −b and setting u1 = u2 = u3 = 0 yields the result. □

Let O(−1)pu
ℓ,j

be the class in KT of the fiber of ι∗O(−1) at pu1,j . Similarly, let
Npu

1,j
be the class in KT of the normal bundle of pu1,j in M can. Let η and ζ be

the shortest integral normal vectors to the two rays of Λu at the vertex λ(j). Let
N = det(η, ζ), so that |N | is the index of the sub-lattice ⟨η, ζ⟩ ⊂ Z2.

Proposition 6.4. With the notation above, we have

O(−1)pu
1,j

= χ(1− λ(j)2, λ(j)2), and

Npu
1,j

= χ(ζ1/N,−ζ1/N)⊕ χ(−η1/N, η1/N)⊕ χ(−1, 1).

Proof. We use the notation in Proposition 6.3. In particular, we let i be such that
λ(j) = 1

di
(ai + rui , bi). Proposition 6.3 shows that O(−1)pu

1,j
= 1

di
χ(ai, bi), by the

same argument as Proposition 6.2. Since di = ai + bi, we can re-write this as
χ(1− λ(j)2, λ(j)2).

For the second equality, we write M can → BlA M in charts at pu1,j using (3)
and (4):

[Speck[u1, u2, u3]/µ] → Speck[x, Y, z],

where the map is given by

x 7→ uη1

1 uζ1
2 , Y 7→ uη2

1 uζ2
2 , z 7→ u3.

The torus T acts on x, Y , and z by weights (0, 0), (1,−1), and (1,−1), respectively.
It follows that it must act on u1, u2, and u3 by weights 1

N (−ζ1, ζ1), 1
N (η1,−η1),

and (1,−1), respectively. Since the normal space to pu1,j is spanned by ∂
∂u1

, ∂
∂u2

,
and ∂

∂u3
, the second equality follows. □

Remark 6.5. In Proposition 6.4, suppose λ = λ(0) is the bottom right vertex of Λu.
Then one of the two rays incident at λ is λ+R≥0, so we may choose η = (0, 1). In
that case, we have a trivial summand χ(0, 0) in Npu

1,0
. This summand corresponds

to the normal direction in L1, which is fixed by T .

We have now described all the ingredients of the localisation formula for the
isolated fixed points. We now turn to the T -fixed lines Li. Note that the coarse
space of Li is P1. Use K to denote the rational numerical Grothendieck group
(two classes considered equal if they have the same Chern character). For a finite
cover T̃ → T , a T̃ -equivariant bundle on Li has a class in KT ⊗K(L1). Observe
that the pull-back map induces an isomorphism K(P1) → K(Li). We identify
the two groups via this map. For a ∈ Q, the notation O(a) denotes the class in
K(Li) of Chern character ch0 = 1 and ch1 = a.
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For u ∈ A, we denote by λu(j) the j-th vertex of Λu ⊂ R2 with the con-
vention that the vertices are arranged from the bottom-right to the top-left (in
the increasing order by the second coordinate). Recall that b = mini(bi/di) and
rugen = λu(0)1 − b and rgen =

∑
u∈A rugen.

Proposition 6.6. The class of ι∗O(−1) restricted to L1 in KT ⊗K(L1) is given
by

ι∗O(−1)|L1
= χ(1− b, b)⊗O(−1 + 2b+ rgen).

Proof. Recall that the points pu1,0 lie on L1. Proposition 6.4 applied to j = 0 shows
that the fiber of ι∗O(−1) at pu1,0, as a rational T -representation, is χ(1− b, b). So,
the class of ι∗O(−1) restricted to L1 is χ(1− b, b)⊗O(a) for some a ∈ Q.

Let π : M res → M be the natural map. Then

ι∗O(−1) = π∗OM (−1)⊗O(E),

where E ⊂ M res is an effective divisor. The divisor is characterised by the property
that in a neighbourhood of a point p ∈ M res at which the map ι∗O(−di) → Wi ⊗
OM res is non-zero, the divisor diE is the vanishing locus of e : π∗OM (−di) → Wi⊗
OM res . We use this characterisation at pu1,0 for every u ∈ A ⊂ PU . Given u ∈ A,
let i be such that λu(0) = 1

di
(rui +bi, bi). By Proposition 6.3, the map ι∗O(−di) →

Wi ⊗ OM res is non-zero. The proof of Proposition 6.3 shows that the vanishing
locus of e : π∗OM (−di) → Wi ⊗ OM res is cut out in the local coordinates by
xrui +biY bi = xrui ybi . The divisor cut out by y is the pre-image of the determinant
∆ ⊂ M . The divisor cut out by x is the pre-image of the exceptional divisor
Eu ⊂ BlA M . Therefore, in a neighbourhood of pu1,0, we have

E =
bi
di
∆+

rui
di

Eu

= b∆+ rugenEu

Considering all u ∈ A ⊂ PU , we see that in a neighbourhood of L1, we have

E = b∆+
∑
u∈A

rugenEu.

On L1, we have ch1(∆) = 2 and ch1(Eu) = 1. The result follows. □

Let N1 ∈ KT ⊗K(L1) be the class of the normal bundle of L can
1 ⊂ M can. For

u ∈ A ⊂ PU , if Λu has at least two vertices, set

su = 1− λu(0)1 − λu(1)1
λu(0)2 − λu(1)2

.

Otherwise, set su = 1. Let s =
∑

u∈A su.

Proposition 6.7. With the notation above, the class of the normal bundle N1 is
equal to

χ(−1, 1)⊗ (O ⊕O(2− s))) .
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Proof. For simplicity, we drop the superscript “can”, but alert the reader that
it is important that we are working with Mcan and not Mres. We use the local
coordinates introduced in Section 6.1. At a generic point (x, 0, 0) ∈ L1, the normal
bundle is spanned by ∂

∂y and ∂
∂z on which T acts by weights (−1, 1). Therefore,

the class of N1 is χ(−1, 1) times the class in K(L1) of the normal bundle. We
simply need to find the degree of N1.

Let π : M → BlA M be the natural map. Let L̃1 ⊂ BlA M be the proper
transform of L1. Consider the sequence

0 → N1
dπ−→ π∗NL̃1/BlA M → Q → 0,

so that Q is supported on {pu1,0 | u ∈ A}. Let η = (0, 1) and ζ be the shortest
integer normal vectors to the two rays of Λu at λ(0). Then, in a neighbourhood
of pu1,0, the map π is

[Speck[u1, u2, u3]/µ] → Speck[x, Y, z],

where
x 7→ uζ1

2 , Y 7→ u1u
ζ2
2 , z 7→ u3,

and µ is a cyclic group of order ζ1. At pu1,0, the dual of NL̃1/BlA M is spanned by
dY and dz, whereas the dual of N1 is spanned by du1 and du3. On L1, which is
cut out by u1 = u3 = 0, we have

dY = uζ2
2 du1 and dz = du3.

Therefore, the pull-back of Q to k[u1, u2, u3] has length ζ2. But since the order of
µ is ζ1, the degree of Q at pu1,0 is ζ2/ζ1. If Λu has only one vertex, then ζ = (1, 0),
so ζ2 = 0. Otherwise, ζ2/ζ1 is the negative of the reciprocal of the slope of the
line joining λ(0) and λ(1), which is precisely su − 1. Therefore, we conclude that

degN1 = degNL̃1/BlA M −
∑
u∈A

(su − 1).

But we also know that

degNL̃1/BlA M = degNL1/M −
∑
u∈A

1 = 2−
∑
u∈A

1.

Combining the two yields the proposition. □

6.3. Proof of the main theorem. We now have the tools to prove Theorem 1.3.
Let T ⊂ GL(V ) be a maximal torus. Let N = dimW . By Proposition 3.1, we
have

|Γ| · [Orb(w)] =

∫
M res

cN (W )

ι∗c1OP W (−1)
.

The pull-back along M res → M can identifies the rational Chow groups, and the
push-forward of the fundamental class of M res is the fundamental class of M can.
Therefore, we may replace M res in the integral by M can.

From Section 6.1, recall that the T -fixed points of Mcan consist of the line
L can

1 , the points pu1 for u ∈ A, the points pu1,j for u ∈ A and j = 1, . . . , ku, where
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ku is the number of vertices of the Newton polygon Λu, and their analogues where
the subscript 1 is replaced by 2. For ℓ = 1, 2, we denote by Nℓ the normal bundle
of L can

ℓ , by Npu
ℓ

the normal space of puℓ , and by Npu
ℓ,j

the normal space of puℓ,j .
Let us write ξ = cN (W )/ι∗c1OP W (−1). By the localisation formula, we have the
equality of T -equivariant classes∫

M can

ξ =

∫
L can

1

ξ

c2(N1)
+
∑
u∈A

∫
pu
1

ξ

c3(Npu
1
)
+
∑
u∈A

ku∑
j=1

∫
pu
1,j

ξ

c3(Npu
1,j
)
+ · · ·(23)

where · · · denotes the sum of analogous integrals over L can
2 and pu2 and pu2,j .

Let us now evaluate each term in (23), starting with the integral over L can
1 . De-

note by h ∈ A1(P1) the class of a point. Using Proposition 6.6 and Proposition 6.7
(and the notation there), we have

1

cN (W )

∫
L can

1

ξ

c2(N1)
=

∫
1

c1(O(−1)) · c2(N1)

=

∫
((1− b)v1 + bv2 + (2b+ rgen − 1)h)−1(v2 − v1)

−1(v2 − v1 + (2− s)h)−1.

The integral is the coefficient of h in the expansion of the integrand as a power
series in h. To find it, we formally differentiate with respect to h and set h = 0 to
obtain

1

cN (W )

∫
L can

1

ξ

c2(N1)
= (2− s)((1− b)v1 + bv2)

−1(v1 − v2)
−3

− (2b+ rgen − 1)((1− b)v1 + bv2)
−2(v1 − v2)

−2.

(24)

The analogous integral over L can
2 is obtained by switching v1 and v2.

Let us turn to the integral over pu1 . By Proposition 6.2 (and the notation there),
we have

1

cN (W )

∫
pu
1

ξ

c3(N1)
=

∫
((1− ru)v1 + ruv2)

−1(v1 − v2)
−3

= ((1− ru)v1 + ruv2)
−1(v1 − v2)

−3

(25)

The analogous integral over pu2 is obtained by switching v1 and v2.
Finally, let us compute the integral over pu1,j . By Proposition 6.4 (and the

notation there), we have
1

cN (W )

∫
pu
1,j

ξ

c3(N1)
=

∫
N2((1− λ(j)2)v1 + λ(j)2v2)

−1(v1 − v2)
−3ζ−1

1 η−1
1

= |N |ζ−1
1 η−1

1 ((1− λ(j)2)v1 + λ(j)2v2)
−1(v1 − v2)

−3.

(26)

In the last equality, we have used that pu1,j ∈ M can has a stabiliser of order |N |,
and hence the integral divides the integrand by |N |. The analogous integral over
pu2,j is obtained by switching v1 and v2.

The expression in Theorem 1.3 is the sum of the contributions from (24), (25),
(26), and their analogues with v1 and v2 switched.



EQUIVARIANT CLASSES OF ORBITS IN GL(2)-REPRESENTATIONS 25

7. Applications

7.1. Orbits of elliptic fibrations. Recall that an element (A,B) ∈ Sym4n(V )⊕
Sym6n(V ) gives rise to an elliptic fibration

π : E → P1

defined locally by the Weierstrass equation

y2 = x3 +Ax+B.

Given u ∈ P1, recall that ru1 is the order of vanishing of A at u and ru2 is the order
of vanishing of B at u. We are now ready to prove Theorem 1.1, which computes
the degree of the orbit closure of (A,B).

Proof of Theorem 1.1. Let w = (A,B) ∈ W = Sym4n(V )⊕Sym6n(V ) be non-zero.
In the notation of Theorem 1.3, we have b = 0. For every u ∈ P1, the Newton
polygon Λu has only one possible shape. It is a translated quadrant λ+R≥0 whose
vertex λ is

λ =

(
min

(
1

4n
ru1 ,

1

6n
ru2

)
, 0

)
=

(
c(u)

2n
, 0

)
.

In the notation of Theorem 1.3, we have ru = rugen = c(u)/2n and su = 1.
Note that PW is the quotient of W−0 by the Gm acting by weights 2 and 3. The

central Gm ⊂ GLV acts by weights 4n and 6n. Therefore, the equivariant class for
the first Gm is obtained from the GLV -equivariant class by the specialisation v1 =
v2 = h

2n . With these substitutions, Theorem 1.1 follows from Theorem 1.3. □

7.2. Orbits of rational self maps. Recall that elements in a Zariski open subset
of Hom(V, Symn V ) give rise to maps f : PV → PV of degree n. We have an
isomorphism of GLV -representations

(27) Hom(V, Symn V ) = Symn−1 V ⊕ Symn+1 V ⊗ detV −1.

The first projection Hom(V,Symn V ) → Symn−1 V is the contraction. The second
projection arises as the composite

Hom(V,Symn V )⊗ detV = V ⊗ Symn V → Symn+1 V

where the first map arises from the isomorphism V ∗ ⊗ detV = V and the second
map is the multiplication. The element in Symn+1 V in the second projection
defines the scheme theoretic fixed locus of f . I do not know a similar geometric
interpretation of the first projection.

Fix a basis x, y of V with the dual basis x∗, y∗ of V ∗.

Proposition 7.1. Let f = x∗ ⊗ F (x, y) + y∗ ⊗ G(x, y), where F,G ∈ Symn V
are polynomials of degree n. Let f correspond to (I, J ⊗ x∗ ∧ y∗) ∈ Symn−1 V ⊗
Symn V ⊗ detV −1. Then, up to non-zero scalar multiples, we have

I =
∂

∂x
F (x, y) +

∂

∂y
G(x, y) and J = yF (x, y)− xG(x, y).
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In the other direction, we have
1

n+ 1
F =

∂J

∂y
+ xI and

1

n+ 1
G = yI − ∂J

∂x
.

Proof. It is enough to check that the construction of I and J is GL(2)-equivariant.
We leave this to the reader. The other direction follows from the first using Euler’s
formula

x
∂∗
∂x

+ y
∂∗
∂y

= deg(∗) · ∗.

□

Fix a non-zero δ ∈ detV .

Proposition 7.2. Suppose f ∈ Hom(V, Symn V ) defines a rational map PV →
PV of degree n and corresponds to (I, J ⊗ δ−1) under an isomorphism (27). If J
vanishes to order at least 2 at u ∈ PV , then I does not vanish at u.

Proof. Write f = x∗⊗F (x, y)+y∗⊗G(x, y) in coordinates. Since f defines a map
of degree n, the polynomials F and G have no common factor. If J vanishes to
order at least 2 at u, then both partials of J vanish to order at least 1 at u. Since
at least one of F or G does not vanish at u, we see from Proposition 7.1 that I
cannot vanish at u. □

We are now ready to prove Theorem 1.2, which computes the equivariant orbit
class of a rational map.

Proof of Theorem 1.2. Let f ∈ Hom(V, Symn V ) define a rational map PV → PV
of degree n. Let f correspond to (I, J ⊗ δ−1) under an isomorphism (27). We
apply Theorem 1.3, taking A = V (J) to be the set of fixed points of PV → PV .
We have b = −1/(n− 1). By Proposition 7.2, for u ∈ A, the Newton polygon Λu

has two possible shapes (see Figure 3). If u is a simple fixed point, then its only

1
n−1 (0,−1)

(0, 0)

1
n−1 (j − 1,−1)

Figure 3. Λu for a simple fixed point u (left) and a fixed point
of order j ≥ 2 (right)

vertex is
λu(0) =

1

d2
(ru2 + b2, b2) =

1

n− 1
(0,−1).
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In this case, rugen = 1/(n− 1) and ru = 0 and su = 1. If u is a fixed point of order
ju ≥ 2, then the vertices of Λu are

λu(0) =
1

d2
(ru2 + b2, b2) =

1

n− 1
(ju − 1,−1) and

λu(1) =
1

d1
(b1, b1) = (0, 0).

In this case, rugen = ju/(n − 1) and ru = 0 and su = ju. In the notation of
Theorem 1.3, we have

F = 2(n− 1)(nv1 − v2)
−1(v1 − v2)

−3 + (n+ 1)(nv1 − v2)
−2(v1 − v2)

−2, and

Gu = v−1
1 (v1 − v2)

−3 − ju(n− 1)(nv1 − v2)
−1(v1 − v2)

−3 − ju(nv1 − v2)
−2(v1 − v2)

−2,

and for a higher order fixed point u,

Hu(1) = (ju − 1)v−1
1 (v1 − v2)

−3.

Summing up and multiplying by cN (W ) yields the class

n(n+ 1)(n− 1)2
n−2∏
j=1

(jv1 + (n− 1− j)v2)

n∏
j=1

((j − 1)v1 + (n− j)v2).

Note that PHom(V,Symn V ) is the quotient of Hom(V,Symn V )−0 by Gm acting
by weight one. The central Gm ⊂ GLV acts by weight n − 1. Therefore, the
weight one Gm equivariant class is obtained from the GLV -equivariant class by
specialising to v1 = v2 = 1/(n−1). The stabiliser group Γ ⊂ GLV in Theorem 1.3
and the stabiliser group Γ ⊂ PGLV in Theorem 1.2 are related by the exact
sequence

1 → µn−1 → Γ → Γ → 1.

So we must divide the class given by Theorem 1.3 by (n − 1). Specialising to
v1 = v2 = 1/(n− 1) and dividing by (n− 1) gives n(n+ 1)(n− 1). □

Appendix A. Equivariant classes of torus orbits

Fix an algebraic torus T = Gd
m. We compute T -equivariant fundamental classes

of orbits in T -representations. Let M = Hom(T,Gm) be the character group of
M and set N = Hom(M,Z). Identify AT = Sym(MQ).

Fix a T -representation W and a w ∈ W . Write W =
⊕n

i=1 Wi, where Wi

is one-dimensional on which T acts by the character χi ∈ M . Fix a non-zero
w = (w1, . . . , wn) ∈ W .

We recall the notion of equivariant multiplicity from [5]. Given a polyhedral
rational pointed cone σ ⊂ MR, denote by σ∨ ⊂ NR the dual cone. Since σ is
pointed, σ∨ has non-empty interior. Given λ in the interior of σ∨, let Pσ(λ) be
the convex polytope

Pσ(λ) = {x ∈ σ | ⟨x, λ⟩ ≤ 1}.
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There exists a unique rational function eσ ∈ frac Sym(MQ) such that for every λ

in the interior of σ∨, we have

eσ(λ) = d! ·VolPσ(λ).

The function eσ is called the equivariant multiplicity associated to σ (see [5, § 5.2]).
Let σ ⊂ MR be the closed convex cone spanned by {χi | wi ̸= 0}. Let

Orb(w) ⊂ W be the closure of the T -orbit of w and [Orb(w)] its fundamental
class in AT (W ) = AT . Let Γ ⊂ T be the stabiliser of w, and assume that it is
finite.

Theorem A.1. In the setup above, if σ contains a line, then [Orb(w)] = 0.
Otherwise,

|Γ| · [Orb(w)] = eσ · cn(W ).

Proof. If σ contains a line, then 0 ∈ W is not in Orb(w). As a result, the pull-
back of [Orb(w)] to AT (0) vanishes. But the pull-back AT (W ) → AT (0) is an
isomorphism, so [Orb(w)] vanishes.

Assume that σ contains no line, that is, it is pointed. Let X be the affine toric
variety

X = Speck[M ∩ σ].

It is easy to check that the map T → W that sends t ∈ T to t · w extends to a
proper morphism i : X → W of degree |Γ|. Then |Γ| · [Orb(w)] = i∗[X].

To compute the push-forward, we use localisation [5, § 4.2 Corollary]. Let
0X ∈ X and 0W ∈ W be the origins. Then we have

[X] = eσ · [0X ],

and hence
i∗[X] = eσ · [0W ].

Since [0W ] = cn(W )[W ] ∈ AT (W ), the theorem follows. □

Example A.2. Let T = G3
m act on W = C4 by the characters (0, 0, 1), (0, 1, 1), (1, 0, 1),

and (1, 1, 1). Take w = (1, 1, 1, 1). Let x, y, z be the standard basis vectors of
M = Hom(T,Gm). Let σ ⊂ MR be the cone spanned by the four characters.
Given λ = (a, b, c) ∈ σ∨ ⊂ NR, we compute

3! · vol(Pσ(a, b, c)) =
1

c(b+ c)(a+ b+ c)
+

1

c(a+ c)(a+ b+ c)
.

Since a = ⟨x, λ⟩ and b = ⟨y, λ⟩ and c = ⟨z, λ⟩, the equivariant multiplicity function
is

eσ =
1

z(y + z)(x+ y + z)
+

1

z(x+ z)(x+ y + z)

=
x+ y + 2z

z(x+ z)(y + z)(x+ y + z)
.
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By Theorem A.1, the equivariant fundamental class of Orb(w) is x+y+2z. Indeed,
in this case, Orb(w) ⊂ W is the quadric hypersurface cut out by w1w4 − w2w3, a
polynomial with character (1, 1, 2).
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