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ABSTRACT. We study the syzygies of the canonical embedding of a ribbon C̃ on a curve C of genus
g ≥ 1. We show that the linear series Clifford index and the resolution Clifford index are equal for a
general ribbon of arithmetic genus pa on a general curve of genus g with pa ≥ max{3g +7,6g −4}.
Among non-general ribbons, the case of split ribbons is particularly interesting. Equality of the
two Clifford indices for a split ribbon is related to the gonality conjecture for C and it implies
Green’s conjecture for all double covers C ′ of C with g (C ′) ≥ max{3g +2,6g −4}. We reduce it to
the vanishing of certain Koszul cohomology groups of an auxiliary module of syzygies associated
to C , which may be of independent interest.

1. INTRODUCTION

Let X ⊂ PN be a projective variety. Let I ⊂ k[X0, . . . , XN ] =: S be its homogeneous ideal,
R := S/I the homogeneous coordinate ring, and L =OX (1). A fundamental problem is to under-
stand the connection between geometric properties of (X ,L) and homological/algebraic prop-
erties of R as an S module. In the mid 1980’s, Mark Green used the Koszul cohomology groups
Kp,q (X ,L) to formulate such a connection [G84, G84b]. Out of this work arose his conjecture
about the Clifford index of a smooth projective curve C and the shape of the minimal free reso-
lution of the homogeneous coordinate ring of its canonical embedding [G84, GL86]. This con-
jecture states that the Clifford index of C , a geometric quantity defined using linear series on
C , is equal to its resolution Clifford index, an algebraic quantity related to the vanishing of the
Koszul cohomology groups. In [BE95] and [EG95], the authors laid out an approach to prove
Green’s conjecture for a general curve by proving it for an everywhere non-reduced curve called
a ribbon. We recall the definition.

Definition 1.1. A ribbon Ỹ on a reduced connected scheme Y is a non-reduced scheme with
Ỹred = Y such that

(1) the ideal sheaf IY /Ỹ ⊂OỸ satisfies I 2
Y /Ỹ

= 0 and
(2) viewed as an OY module, IY /Ỹ is a locally free sheaf L of rank one (called the conormal

bundle of Ỹ ).

The canonical ribbon conjecture, formulated in [BE95] and [EG95], states that the analogue
of Green’s conjecture holds for a rational ribbon, that is, a ribbon C̃ with C̃red � P

1. By semi-
continuity, it implies Green’s conjecture for a general curve. In a series of pioneering papers,
Voisin proved Green’s conjecture for a general curve using different methods [V02], [V05]. Using
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the results of Voisin and Hirschowitz–Ramanan [HR98], the first author proved the canonical
ribbon conjecture for rational ribbons [D18]. Eventually, Raicu–Sam [RS19] and Park [P22] gave
independent proofs of the canonical ribbon conjecture, without using the results of Voisin and
Hirschowitz–Ramanan, obtaining a proof of Green’s conjecture for general curves via ribbons.

In this context, we study the minimal free resolutions of canonical ribbons over higher genus
curves. It has been shown in [Gon06] and [GGP08], that in almost all cases such ribbons arise as
flat limits of smooth curves. We see many compelling reasons to take up this study.

First, the canonical ribbon conjecture for ribbons is interesting for the same reasons as it is for
smooth curves. We have a geometric notion of linear series on ribbons, formulated in [EG95]. By
the same argument as for smooth curves, presence of linear series produces non-linear syzygies,
or equivalently, non-vanishing Kp,2’s. It is natural to ask whether there are other reasons for non-
linear syzygies, whose origins we do not understand. It is worthwhile to understand the answer
in as many situations as we can. Ribbons on higher genus curves is one such setting.

Second, by semi-continuity Green’s conjecture for split ribbons on C imply Green’s conjecture
for all double covers of C . Thus, understanding the minimal free resolution of the split ribbon
has immediate payoff.

Third, ribbons provide one of the few ways of producing higher genus curves from lower
genus ones–a kind of “induction”. A ribbon C̃ on a smooth curve C is given purely in terms of
linear algebraic data: a rank 2 bundle obtained as an extension of ΩC by the conormal bundle.
Thus, ribbons allow us to connect questions about higher genus curves to questions about bun-
dles on lower genus curves. The geometry of bundles on higher genus curves is much richer
than that on P1. It is natural to ask if it leads to a richer connection.

Finally, the geography of the moduli space of ribbons over higher genus curves is much more
interesting. In genus 0, the space of ribbons is naturally the ambient space of a rational normal
curve. This space has many different statifications: (1) the stratification by the secant varieties
of the rational normal curve, (2) the stratification by the blow-up index of the ribbon, (3) the
stratification by the splitting type of the rank 2 bundle defining the ribbon, and (4) the strat-
ification by the shape of the minimal free resolution of the canonically embedded ribbon. A
consequence of the canonical ribbon conjecture is that all these stratifications agree. All strati-
fications have analogues for ribbons on higher genus curves. Understanding whether and how
they differ is an intrinsically interesting question.

1.1. Results. Our first result is the canonical ribbon conjecture for a general ribbon of large
genus on a general curve

Theorem 1.2 (Theorem 6.5, Theorem 6.6, Theorem 6.7 in the main text). Let C be a general
curve of genus g . Fix a line bundle L on C . Let C̃ be a general ribbon with conormal bundle L. Let
pa(C̃ ) be the arithmetic genus, gon(C̃ ) the gonality, LCliff(C̃ ) the linear series Clifford index, and
RCliff(C̃ ) the resolution Clifford index of C̃ . If pa(C̃ ) ≥ max{3g +7,6g −4}, then we have

LCliff(C̃ ) = gon(C̃ )−2 = RCliff(C̃ ) =
⌊

pa(C̃ )−1

2

⌋
.

To prove Theorem 1.2, we study two stratifications on the space P(H 0(2KC −L)∗) of ribbons
on C with conormal bundle L. The first is the stratification by the blow-up index of the ribbon,
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and the second is the stratification by gonality. These two stratifications coincide with the se-
cant stratification in the case when C � P1. In higher genus, the blow-up index stratification
coincides with the secant stratification, but the gonality stratification is different and more in-
teresting. Let Seck (C ) denote the kth secant variety of C in the embedding C ,→PH 0(2KC −L)∗.

Theorem 1.3 (Theorem 5.1 and Theorem 5.2). Let C be a smooth curve of genus g and gonality
m. Then the subvariety Wd of P(H 0(2KC −L)∗) parameterizing ribbons C̃ with conormal bundle
L containing a g 1

d is the subvariety of Secd+2g−2(C ) given by

Wd = ⋃
e≤d/2

{
Secant planes spanned by divisors of length d +2g −2 that contain
a ramification divisor of a degree e map C →P1

}
.

In particular, we have

Secd−2m(C ) ⊂Wd ⊂ Secd+2g−2(C ).

We turn next to the split ribbon. This is a particularly interesting case—all smooth double
covers isotrivially degenerate to a split ribbon, and hence, a proof of equality of the linear series
and resolution Clifford index for a split ribbon establishes Green’s conjecture for a smooth dou-
ble cover. We first show that the linear series Clifford index of a split ribbon is 2m−2, where m is
the gonality of the underlying curve (Theorem 7.1). The rest of the section is devoted to proving
that the following statements are equivalent to the fact that the resolution Clifford index of a
split ribbon is 2m −2. We prove the following.

Theorem 1.4. (see Theorem 7.5, Theorem 7.3) Let C̃ be a split ribbon on a curve C of genus g and
gonality m with conormal bundle L.

(1) The linear series Clifford index of C̃ is LCliff(C̃ ) = 2m −2.
(2) If pa(C̃ ) ≥ max{2g +2m −1,6g −4}, then the following are equivalent

(a) The resolution Clifford index RCliff(C̃ ) = 2m −2.

(b) For all i , j with i , j ≥ 0 and i + j = 2m −3, the map

Φi , j :
i+1∧

H 0(KC )⊗K j ,1(C ,KC −L) −→
i∧

H 0(KC )⊗K j ,1(C ,KC ,KC −L)

is surjective.

(c) Set M j =⊕
q K j ,1(C , qKC ,KC −L). For all i , j with i , j ≥ 0 and i + j = 2m−3, we have

Ki ,1(M j , H 0(KC )) = 0.

(3) If any of the equivalent conditions of part (2) holds, then any smooth curve C ′ which is a
double cover of C branched along −2L satisfies Green’s conjecture.

We believe that it is interesting to study whether the equivalent statements are true for any
smooth curve C (see Theorem 7.6). We show that the question has a positive answer when the
curve is either elliptic or hyperelliptic. We end with Theorem 7.8, where we give an example of
a split ribbon of low arithmetic genus, i.e, arithmetic genus 9 over a general curve of genus 3,
which does not satisfy Green’s conjecture.
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1.2. Organization and conventions. In Section 2, we recall basic results about the canonical
embedding of a ribbon. In Section 3, we recall and establish the basic properties of the Clifford
index for ribbons. In Section 4 and Section 5, we study the blow-up index and gonality stratifica-
tion of the space of ribbons. In Section 6, we use these stratifications to prove Green’s conjecture
for a general ribbon. In Section 7, we treat the case of a split ribbon.

All schemes are of finite type over an algebraically closed field of characteristic zero. For us,
the projectivisation of V is PV = ProjSym∗(V ∗), which is the space of one-dimensional sub-
spaces of V . Unless stated otherwise, a curve is a projective connected scheme of pure dimen-
sion 1.

Acknowledgements. The second author thanks Purnaprajna Bangere and Debaditya Raychaud-
hury for motivating discussions on syzygies of K 3 carpets. The second author also thanks the
Australian National University for its hospitality.

2. CANONICAL EMBEDDING OF RIBBONS ON CURVES OF HIGHER GENUS

In this section, we study the canonical map of a ribbon on a higher genus curve. Let C be a
smooth curve, L a line bundle on C , and C̃ a ribbon on C with conormal bundle L.

We begin by analyzing sections of positive line bundles on C̃ .

Proposition 2.1. In the setup above, let M̃ be a line bundle on C̃ and set M := M̃ |C .

(1) Assume that M is very ample, M⊗L is base point free and H 0(M̃) → H 0(M) surjects. Then
M̃ is very ample.

(2) Assume that M is projectively normal and for all k ≥ 1, the maps

H 0(kM̃) → H 0(kM) and H 0(M ⊗L)⊗H 0(kM) → H 0((k +1)M ⊗L)

are surjective. Then the multiplication map H 0(kM̃)⊗H 0(M̃) → H 0((k+1)M̃) is surjective
for all k ≥ 1.

Proof. Assuming (1), we have an exact sequence,

0 → H 0(M ⊗L) → H 0(M̃) → H 0(M) → 0

Let ζ̃ be a length two subscheme of C̃ . We must show that the restriction H 0(M̃) → H 0(M̃ |ζ̃)

surjects. Let ζ be the intersection of ζ̃ with C , so that Oζ = Oζ̃|C . Then ζ is a subscheme of C of

length one or two. If it is of length two, then ζ̃ is a subscheme of C . Since M is very ample, and
H 0(M̃) → H 0(M) surjects, we conclude that H 0(M̃) → H 0(M̃ |ζ̃) surjects. we get a section of M̃
separating Oζ̃. On the other hand, if Oζ is of length one, then we have the exact sequence

0 →Oζ→Oζ̃→Oζ→ 0

Tensoring by M̃ and taking global sections gives

0 → H 0(M ⊗L⊗Oζ) → H 0(M̃ ⊗Oζ̃) → H 0(M ⊗Oζ) → 0,
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and a commutative diagram of exact rows as follows

0 H 0(M ⊗L) H 0(M̃) H 0(M) 0

0 H 0(M ⊗L⊗Oζ) H 0(M̃ ⊗Oζ̃) H 0(M ⊗Oζ) 0.

Since both M and M ⊗L are base point free, the flanking vertical maps surject and hence the
middle vertical map surjects.

Assuming (2), we need to show that H 0(kM̃)⊗H 0(M̃) → H 0((k +1)M̃) surjects. We have the
following commutative diagram

0 H 0(M ⊗L)⊗H 0(kM̃) H 0(M̃)⊗H 0(kM̃) H 0(M)⊗H 0(kM̃) 0

0 H 0((k +1)M ⊗L)) H 0((k +1)M̃) H 0((k +1)M) 0

The conditions in (2) imply that the two flanking vertical maps surject, and hence the middle
vertical map also surjects. □

We now apply the previous analysis to the canonical bundle.

Proposition 2.2. Let C̃ be a ribbon on a smooth irreducible curve C of genus g ≥ 1 with conormal
bundle L.

(1) If pa ≥ 2g +2, then KC̃ is very ample.
(2) If pa ≥ 2g +2 and either g = 1 or h0(KC +L) ≤ g −2, then the map

H 0(kKC̃ )⊗H 0(KC̃ ) → H 0((k +1)KC̃ )

is surjective for all k ≥ 1. In particular if g ≥ 2, the above surjectivity holds if pa ≥ 4g −2.

Proof. The canonical bundle KC̃ of a ribbon sits in an exact sequence

0 → KC → KC̃ → KC̃ |C → 0,

and we have KC̃ |C = KC ⊗L−1. For k ≥ 2, the space H 1(k(KC ⊗L−1)⊗L) vanishes while for k = 1,
the map H 1(KC ) → H 1(KC̃ ) is injective. Hence H 0(kKC̃ ) → H 0(k(KC ⊗L−1)) is surjective for all
k ≥ 1. Observe that KC is base point free and KC ⊗L−1 is very ample if −degL ≥ 3. So (1) follows
from Theorem 2.1. Further, under the conditions of (2) the map

H 0(KC )⊗H 0(k(KC ⊗L−1)) → H 0((k +1)(KC ⊗L−1)⊗L)

is surjective by [G84, Theorem 4.e.1] Hence part (2) follows from the part (2) of Theorem 2.1. □

3. LINEAR SERIES CLIFFORD INDEX AND RESOLUTION CLIFFORD INDEX OF A RIBBON

Let C be a smooth curve of genus g and let C̃ be a ribbon on C of arithmetic genus pa and
conormal bundle L. The exact sequence

0 → L →OC̃ →OC → 0



6 A. DEOPURKAR AND J. MUKHERJEE

implies
χ

(
OC̃

)=χ(OC )+χ(L),

and hence
pa = (2g −1)−degL.

We recall some defintions as introduced in [EG95, Section 1]. A generalized line bundle on
C̃ is a torsion free coherent sheaf which is generically free of rank 1. We define the degree of a
generalized line bundle M̃ by

deg(M̃) =χ(M̃)−χ(OC̃ ).

The restriction of M̃ to C may have torsion; let τ ⊂ M̃ |C be the torsion subsheaf. We set M =
(M̃ |C /τ).

Sections of M̃ are of two kinds, those that yield a non-zero section of M and those that do not.
The sections of the first kind define an injective map OC̃ → M̃ . The scheme-theoretic vanishing
locus of such a section is a Cartier divisor on C̃ . We call such sections Cartier sections. The
sections of the second kind do not give an injective map OC̃ → M̃ . The entire reduced curve C is
contained in their scheme-theoretic zero locus.

Let M̃ be a generalised line bundle on C̃ . By [EG95, Theorem 1.1], there exists a unique divisor
β ⊂ C and a line bundle M̃ ′ on the blow up C̃ ′ of C̃ along β such that M̃ is the push-forward of
M̃ ′. Then M = M̃ ′|C .

A generalized linear series of rank r and degree d , or simply a g r
d , on C̃ is pairΦ= (V , M̃) where

M̃ is a generalized line bundle and V ⊂ H 0(M̃) is of dimension r +1, such that the restriction
map V → H 0(M) is injective. The Clifford index of Φ is d −2r . The linear series Clifford index of
C̃ , denoted by LCliff(C̃ ), is the minimum of the Clifford indices of all generalized linear series g r

d
such that r ≥ 1 and d ≤ pa −1. The gonality of C̃ , denoted by gon(C̃ ), is the smallest d such that
there exists a g 1

d on C̃ .

For a line bundle H̃ on C̃ , we let Kp,q (C̃ , H̃) be the Koszul cohomology group as defined in
[G84]. For H̃ = KC̃ , we know that Kp,q (C̃ ,KC̃ ) is possibly non-zero only for 0 ≤ p ≤ pa −2 and
0 ≤ q3. Within this range, the group vanishes for (p > 0, q = 0) and (p < pa −2, q = 3). So the
most interesting cases are q = 1 and q = 2. Owing to the duality,

Kp,q (C̃ ,KC̃ ) = Kpa−p−2,3−q (C̃ ,KC̃ )∨,

understanding Kp,1’s is equivalent to understanding Kp,2’s. We also know that if Kp,2(C̃ ,KC̃ ) = 0
then for all i ≥ p, we have Ki ,2(C̃ ,KC̃ ) = 0. So it is important to understand the smallest p such
that Kp,2(C̃ ,KC̃ ), 0. This p is called the resolution Clifford index of C̃ . We denote it by RCliff(C̃ ).
By duality, it is the smallest p such that Kpa−2−p,1(C̃ ,KC̃ ), 0.

3.1. Semicontinuity of gonality and Clifford index. The resolution Clifford index is lower semi-
continuous by the semi-continuity of cohomology. We now establish the lower semicontinuity
of gonality and linear series Clifford index.

Fix a smooth curve C of genus g and a ribbon C̃ on C of arithmetic genus pa . Let (T,0) be a
smooth pointed curve and C → T a flat proper morphism of relative dimension 1. Suppose for
all t ∈ T with t , 0, the fiber Ct is a smooth curve of genus pa and the fiber C0 is C̃ .

The following proposition constructs a limiting generalized g r
d .
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Proposition 3.1. In the setup above, assume that for all t , 0, the curve Ct has a g r
d . Assume that

pa > d +2g −1 and r ≥ 1. Then C̃ has a generalised g r
d ′ with d ′ ≤ d.

Proof. We follow the proof of [EG95, Theorem 2.1], replacing ωC /T by a more suitable line bun-
dle.

Let η be the generic point of T . After a finite base change, we may assume that we have a line
bundle Gη on Cη and an (r +1)-dimensional subspace Vη ⊂ H 0(Cη). Choose a line bundle E on
C of relative degree 2g −4, for example, by starting with a line bundle of degree 2g −4 on C̃ and
deforming it. Then E |C is a line bundle of degree g −2. Assume that it is a general line bundle of
this degree.

Set F =ωC /T ⊗E−1.

deg
(
Fη⊗G−1

η

)
= (2pa −2)− (2g −4)−d

≥ pa .

The last inequality follows from our assumption pa > d + (2g − 1). In particular, Fη ⊗G−1
η is

effective. One of its section gives an inclusion Gη ⊂Fη. Via this inclusion, we may think of Vη as
a subspace of H 0(Fη).

By the theorem on cohomology and base change [Mum70, Section 5], there exists a map
K 0 → K 1 of locally free OT modules of finite rank such that for every S → T , we have a canonical
isomorphism

π∗(CT ×S,F ×S) = ker(K 0
S → K 1

S ).

We have the subspace Vη ⊂ K 0
η of dimension r +1. It extends to a locally free OT module of the

same rank V ⊂ K 0 such that the map V |0 → K 0|0 remains injective. Since

Vη ⊂ ker(K 0
η → K 1

η ) = H 0(Fη),

we have
V ⊂ ker(K 0 → K 1) =π∗(F )

and
V |0 ⊂ ker(K 0|0 → K 1|0) = H 0(F |0)

by continuity.
We have the exact sequence

0 → KC → KC̃ → KC̃ |C → 0.

Tensoring by E−1 yields the exact sequence

(3.1) 0 → KC ⊗E−1 →F |0 →F |C → 0.

We have
deg(KC ⊗E−1) = (2g −2)− (g −2) = g .

Since E |C is general, so is KC ⊗E−1, and hence h0(KC ⊗E−1|C ) = 1. By the long exact sequence,
we see that

(3.2) dimker
(
H 0(F |0) → H 0(F |C )

)= 1.
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Let G be the subsheaf of F generated by V and let G0 ⊂F |0 be the image of G . Equivalently,
G0 is the subsheaf of F |0 generated by V0. Then G0 is torsion free. Since dimV0 = (r+1) is greater
than the dimension 1 of the kernel of H 0(F |0) → H 0(F |C ), the restriction map V0 → H 0(F |C )
is non-zero. Then it follows that the map G0 ⊂ F |0 is an isomorphism at the generic point.
Therefore, G0 is a generalized line bundle. Since we have a surjection G |0 →G0, and degG |0 = d ,
we conclude that degG0 ≤ d .

Set G =G0|C /torsion. We know that the map V0 → H 0(G) is non-zero, so degG ≥ 0. It remains
to check that the map V0 → H 0(G) is injective. Let β⊂C be the divisor such that G0 is the push-
forward of a line bundle from the blow-up of C̃ along β. Let L be the conormal bundle of C̃ .
Then we have the exact sequence

0 →G ⊗L(β) →G0 →G → 0;

see [EG95, § 1]. Let d ′ = degG0. Then

degG +degβ≤ 2degG +degβ= d ′,

so
deg(G ⊗L(β)) ≤ d ′+degL = d ′+ (2g −1)−pa ≤ d + (2g −1)−pa < 0,

where the last inequality follows from pa > d + (2g −1). As a result, H 0(G ⊗L(β)) = 0, and hence
the map H 0(G0) → H 0(G) is injective. Therefore, the composite V0 ⊂ H 0(G0) → H 0(G) is injec-
tive. □

Corollary 3.2. In the setup of Theorem 3.1, suppose the generic fibers Ct have gonality d. If
pa > d +2g −1, then C has gonality at most d. In particular, if pa > 4g +1, then C has gonality
at most d.

Proof. The first statement follows directly from Proposition3.1. For the second statement, ob-
serve that d ≤ (pa +3)/2. So pa > 4g +1 implies pa > d +2g −1. □

In Theorem 3.2, the condition pa > d +2g −1 is indeed necessary. See Theorem 5.5 for the
failure of the existence of a limiting g 1

3 without this condition.

Corollary 3.3. In the setup of Theorem 3.1, suppose the generic fibers Ct have Clifford index c and
Clifford dimension r . If pa > c +2r + (2g −1), then LCliff(C̃ ) ≤ c. In particular, if pa > 4g −3+4r ,
then LCliff(C̃ ) ≤ c.

Proof. The first statement follows directly from Proposition3.1. For the second statement, ob-
serve that c ≤ (pa −1)/2. So pa > 4g −3+4r implies pa > c +2r + (2g −1). □

Using the results of [ELMS89], we eliminate the dependence of pa on the Clifford dimension
r in Corollary 3.3.

Corollary 3.4. In the setup of Theorem 3.1, assume that the fibers Ct have Clifford index c and
Clifford dimension r . Then LCliff(C̃ ) ≤ c holds under any of the following hypotheses:

(1) r = 1 and pa > 4g +1,
(2) pa is odd and pa > 8g +1,
(3) pa is even, (pa ,c,d), (4r −2,2r −3,4r −3), and pa > 8g +1.
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Proof. Under the first hypothesis, the conclusion is Corollary3.2. Under the second or third
hypothesis, [ELMS89, Corollary 3.5] says that pa ≥ 8r −7. Then pa > 8g +1 implies pa > 4g −3+
4r . Therefore, the conclusion follows from Corollary 3.3. □

3.2. Green-Lazarsfeld non-vanishing theorem for ribbons. In this section, we relate the linear
series Clifford index and the resolution Clifford index of a ribbon. We show that, for pa large
compared to g , we have the inequality RCliff ≤ LCliff.

Theorem 3.5. Let C̃ be a ribbon of arithmetic genus pa on smooth curve C of genus g with
h0(OC̃ ) = 1. Let M̃1 and M̃2 be line bundles on C̃ and set

M̃ = M̃1 ⊗ M̃2.

For i = 1,2, let H 0(M̃i ) be of dimension ri +1, with ri ≥ 1. Assume that

(1) M̃1 is base point free, and
(2) the zero locus of a general element of H 0(M̃2) is zero dimensional.

Then

Kr1+r2−1,1(C̃ , M̃), 0

Proof. Let s1 ∈ H 0(M̃2) be a section whose scheme-theoretic zero locus D1 is zero dimensional.
Let s2 ∈ H 0(M̃1) be a section whose scheme-theoretic zero locus D2 is disjoint from D1. Note
that both D1 and D2 are Cartier diviors on C̃ . Then, up to scaling, there is a unique section s0 of
H 0(M̃) that vanishes on both D1 and D2; it is the section whose scheme-theoretic zero locus is
D1 +D2.

The rest of the proof follows verbatim from [G84, Appendix]. We sketch it for the conve-
nience of the reader. Recall that a Cartier section of a line bundle on C̃ is a section that defines
an injection from OC . The scheme theoretic zero locus of a Cartier section is a Cartier divi-
sor. Since s ∈ H 0(M̃) is Cartier, a general element of H 0(M̃) is Cartier. Consider H 0(M̃(−D1))
(resp. H 0(M̃(−D2))) seen as subspaces of H 0(M̃). These two subspaces intersect along the one-
dimensional subspace spanned by s. These subspaces contain Cartier sections s2 and s1, re-
spectively, so their general section is Cartier. Choose bases of these subspaces consisting of
Cartier sections as follows. Let

s0, s1, ..., sr2

be a basis of H 0(M̃(−D2)), and

s0, sr−r1+1, ..., sr

a basis of H 0(M̃(−D1)). Extend to a basis of H 0(M̃) by adding Cartier sections

sr2+1, ..., sr−r1 .

Let {e0, . . . ,er } be the dual basis of H 0(M̃)∗. Let ι=∑r−r1
i=1 ei ⊗ si and s =∑r

i=0 ei ⊗ si . Let

α= ι∧er2+1 ∧ ...∧er−r1
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Then α ∈∧r−r1−r2+1 H 0(M̃)∗⊗H 0(M̃(−D2)). Consider s ∧α. We have that

s ∧α ∈
r−r1−r2+2∧

H 0(M̃)∗⊗H 0(M̃(−D2)⊗ M̃(−D1))

=
r−r1−r2+2∧

H 0(M̃)∗⊗H 0(M̃)

=
r1+r2−1∧

H 0(M̃)⊗H 0(M̃).

Since s ∧ s ∧α= 0, we see that s defines a Koszul cocycle, that is, an element of Kr1+r2−1,1(C̃ , M̃).
The fact that this element is non-zero follows exactly as in [G84, Appendix]. □

We now examine when line bundles residual to the canonical carry Cartier sections.

Lemma 3.6. Let C̃ be a ribbon of arithmetic genus pa on a smooth curve C of genus g . Let M̃1 be a
line bundle on C̃ with h0(M̃1) ≥ r +1 and r ≥ 1. Set d = deg M̃1 and c = d−2r . Let M̃2 = KC̃ ⊗M̃−1

1 .
Assume that d ≤ pa−1 and H 0(M̃1) contains a Cartier section. If pa > 3g−2+c then h0(M̃2) ≥ r+1
and H 0(M̃2) contains a Cartier section.

Proof. By Riemann–Roch, we have

h0(M̃2) = pa −d −1+h0(M̃1).

Since d ≤ pa −1 and h0(M̃1) ≥ r +1, we have h0(M̃2) ≥ r +1.
Set M̃2|C = M2. Let the conormal bundle of C̃ be L. We have the exact sequence

0 → M2 ⊗L → M̃2 → M2 → 0,

and hence

deg(M2 ⊗L) = 1

2
deg(M̃2)+deg(L) = 1

2
(2pa −2−d)− (pa −2g +1) = 2g −2− d

2
.

If d > 4g −4, then every section of H 0(M̃2) is Cartier. Assume that d ≤ 4g −4. Then

r = 1

2
(d −c) ≤ 2g −2.

Multiplication by a Cartier section of M̃1 gives an injection

M̃2 ,→ KC̃ .

Recall the short exact sequence

0 → H 0(KC ) → H 0(KC̃ ) → H 0(KC ⊗L−1).

The inclusion M̃2 ,→ KC̃ induces an injection

H 0(M2 ⊗L) → H 0(KC ).

In particular, h0(M2 ⊗L) ≤ g . On the other hand, we know that

h0(M̃2) = pa −d −1+h0(M̃1) ≥ pa −d + r.

From pa > 3g −2+c and d ≤ 4g −4, it follows that pa −d +r > g and hence h0(M̃2) > h0(M2⊗L).
So there exists a Cartier section of M̃2. □
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We combine Theorem 3.5 and Theorem 3.6 to obtain the following non-vanishing result.

Theorem 3.7. Let C̃ be a ribbon of arithmetic genus pa on a smooth curve C of genus g and linear
series Clifford index LCliff(C̃ ). If pa > 3g −2+LCliff(C̃ ), then RCliff(C̃ ) ≤ LCliff(C̃ ), that is,

Kpa−2−LCliff(C̃ ),1(C̃ ,KC̃ ), 0.

In particular, the non-vanishing holds if pa > 6g −5.

Proof. Let L be the conormal bundle of C̃ . Since pa > 2g −1, we have degL =−(pa −2g +1) < 0,
so h0(OC̃ ) = 1.

Let g r
d be a generalized linear series on C̃ with d ≤ pa − 1 and r ≥ 1 and d − 2r = c. Recall

that this is a pair (V , M̃1) where M̃1 is a generalized line bundle of degree d and V ⊂ H 0(M̃1) is
an (r +1) dimensional vector subspace of global sections which injects into H 0(M1). We may
assume that M̃1 is globally generated by V . Otherwise, we simply replace M̃1 by the subsheaf
generated by V (see [EG95, Lemma 1.3]).

By [EG95, Theorem 1.1], there exists a divisor β⊂C of degree b, such that after blowing up C̃
along β we have a line bundle M̃ ′

1 of degree d ′ = d −b whose pushforward is M̃1. The blown up
ribbon C̃ ′ has conormal bundle L(β) and arithmetic genus p ′

a = pa−b. Since H 0(M̃ ′
1) = H 0(M̃1),

we may treat V as a subspace of H 0(M̃ ′
1). Since d ≤ pa − 1, we also have d ′ ≤ p ′

a − 1. Since
H 0(M̃ ′

1) contains V of dimension r +1, we have h0(M̃ ′
1) ≥ r +1. Since V ⊂ H 0(M̃1) generates M̃1,

it follows that V ⊂ H 0(M̃ ′
1) generates M̃ ′

1.
Set c ′ = d ′−2r = c −b. Since pa > 3g −2+ c, we have p ′

a > 3g −2+ c ′. Set M̃ ′
2 = KC̃ ′ ⊗ (M̃ ′

1)−1.
By Theorem 3.6, H 0(M̃ ′

2) contains a Cartier section. Write h0(M̃ ′
1) = r +1+a for some a ≥ 0. By

Riemann-Roch, we have h0(M̃ ′
2) = p ′

a −d ′+ r +a. By Theorem 3.5, we get

(3.3) Kp ′
a−d ′+2r−2+2a,1(C̃ ′,KC̃ ′), 0.

Since a ≥ 0, we have

p ′
a −d ′+2r +2a ≥ p ′

a −d ′+2r −2 = p ′
a −c ′−2 = pa −c −2.

So from (3.3), we conclude

Kpa−c−2,1(C̃ ′,KC̃ ′), 0.

Then by [D18, Lemma 1], we deduce

Kpa−c−2,1(C̃ ,KC̃ ), 0.

The proof is now complete. □

4. BLOW-UP INDEX STRATIFICATION OF THE SPACE OF RIBBONS

Recall that a split ribbon C̃ on C is one that admits a retraction map C̃ → C . Every ribbon
admits a blow-up that is a split ribbon. The blow up index of a ribbon is the minimum number of
simple blow-ups necessary to make the ribbon split. In this section, we study the set of ribbons
of a given blow-up index, its relationship with a secant variety, and with the linear series Clifford
index.
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4.1. Blow-up index of a ribbon as a pushout and relations to secant variety. Fix a smooth
curve C . A ribbon C̃ on C with conormal bundle L gives an extension

0 → L →ΩC̃ |C → KC → 0.

Conversely, given an extension

0 → L → E → KC → 0,

there is a unique ribbon C̃ on C with an isomorphism E �ΩC̃ |C compatible with the extension.
Therefore, the space of ribbons on C with conormal bundle L is identified with PExt1(ΩC ,L)
(see [BE95, Theorem 1.2]).

Fix a ribbon C̃ . Given a divisor β ⊂ C , we have the map L → L(β). Construct the push-out
diagram

0 L ΩC̃ |C KC 0

0 L(β) E KC 0.

The extension in the second row corresponds to a ribbon C̃ ′ with conormal bundle L(β). By
[BE95, Theorem 1.9], the ribbon C̃ ′ is precisely the blow-up of C̃ along the Weil divisor β of C̃ .
Let e be the class of the extension in the first row and e ′ the extension in the second row. Let

(4.1) PExt1(KC ,L) →PExt1(KC ,L(β))

be the map induced by L → L(β). Then e ′ is the image of e. If β is of sufficiently large degree,
then the group on the right vanishes, and hence e ′ vanishes. Then C̃ ′ is the split ribbon.

Definition 4.1. Let C̃ be a ribbon on a smooth projective curve C . The blow-up index b(C̃ ) of C̃
is the smallest b such that there exists a divisor β on C of degree b such that the blow-up of C̃
along β is split.

Let e ∈PExt1(KC ,L) be the extension class corresponding to C̃ . Then b(C̃ ) is the smallest such
that there exists an effective divisor β⊂C such that the image of e in PExt1(KC ,L(β)) vanishes.

Recall that C is a smooth curve. By Serre duality, we have the identification

Ext1(ΩC ,L) = H 1(L⊗K −1
C ) = H 0(K 2

C ⊗L−1)∗.

Proposition 4.2. Let L be a line bundle of negative degree on C . Let i : C ,→ PH 0(K 2
C ⊗L−1)∗ be

the embedding given by the complete linear series of the very ample line bundle K 2
C ⊗L−1. Then

the ribbons C̃ on C with conormal bundle L and b(C̃ ) ≤ k correspond to the points of the k-secant
variety of the embedding i .

Proof. Let C̃ be a ribbon on C with conormal bundle L and extension class

e ∈ H 0(K 2
C ⊗L−1)∗ = H 1(L⊗K −1

C ).

Let β⊂C be an effective divisor. Consider the map

H 1(L⊗K −1
C )

f−→ H 1(L(β)⊗K −1
C ).
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The map above is Serre dual to the map

H 0(K 2
C ⊗L−1)∗ → H 0(K 2

C ⊗L−1(−β))∗,

which in turn is dual to the map

H 0(K 2
C ⊗L−1(−β))

g−→ H 0(K 2
C ⊗L−1)

induced by the inclusion O (−β) → O . Observe that e lies in the kernel of f if and only if the
composite

H 0(K 2
C ⊗L−1(−β))

g−→ H 0(K 2
C ⊗L−1)

e−→k

vanishes. But the points λ ∈PH 0(K 2 ⊗L−1) such that the composite λ◦ g vanishes are precisely
the points that lie on the span of β in the embedding i . It follows that the ribbons C̃ of blow-up
index at most k correspond the points lying on the span of an effective divisor of degree at most
k, which is the k-secant variety of C . □

Corollary 4.3. Let C be a smooth curve of genus g . Fix pa > 2g −1 and let L be a line bundle on
C of degree −pa +2g −1. Let C̃ be a ribbon of arithmetic genus with conormal bundle L. Then

(1) 0 ≤ b(C̃ ) ≤ ⌈(pa + g −2)/2⌉
(2) If C̃ ∈PExt1(KC ,L) is general, then b(C̃ ) = ⌈(pa + g −2)/2⌉

Proof. The k−th secant variety of a curve C ,→PN is of expected dimension min(2k −1, N ) (see
[Lan84]). So the result follows from Theorem 4.2. □

4.2. Blow-up index as pullback and relations to stability of ΩC̃ |C . There is another interpreta-

tion of the blow-up index, which is useful for measuring gonality. As usual, let C̃ be a ribbon on
C with conormal bundle L defined by an extension

0 → L →ΩC̃ |C → KC → 0.

An effective divisor β ⊂ C gives a map of line bundle KC (−β) → KC . This map yields the pull-
back diagram

(4.2)

0 L E KC (−β) 0

0 L ΩC̃ |C KC 0.

Denoting by e ∈ Ext1(KC ,L) the class of the extension in the bottom row, the class of the exten-
sion in the top row is simply the image of e under the map

(4.3) Ext1(KC ,L) → Ext1(KC (−β),L).

The observation leads to the following.

Proposition 4.4. Let C be a smooth curve and L a line bundle on C . Let C̃ be a ribbon on C of
arithmetic genus with conormal bundle L. Let e ∈ Ext1(KC ,L) be the extension class of

0 → L →ΩC̃ |C → KC → 0.

The blow-up index of C̃ is any of the following equal quantities:
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(1) the minimum b such that there exists an effective divisor β on C of degree b such that the
image of e under the push-out by L → L(β) vanishes,

(2) the minimum b such that there exists an effective divisor β on C of degree b such that the
image of e under the pull-back by KC (−β) → KC vanishes.

If pa > g +1, then it is also equal to 2g −2−k where k is the maximum such that ΩC̃ |C has a sub
line-bundle of degree k.

Proof. The quantity (1) is the definition of the blow-up index (Theorem 4.1). The equality of (1)
and (2) follows because the push-out L → L(β) and pull-back KC (−β) → KC induce the same
map

Ext1(KC ,L) → Ext1(KC ,L(β)) = Ext1(KC (−β),L).

We now prove the last statement. Note that the extension obtained by the pull-back along
KC (−β) → KC splits if and only if there is a map KC (−β) →ΩC̃ |C such that the following diagram
commutes

KC (−β)

ΩC̃ |C KC

In this case, KC (−β) is a sub-bundle of ΩC̃ |C of degree 2g −2−b. So (3) ≤ (2). For the reverse
inequality, let M ⊂ΩC̃ |C be a sub line-bundle of largest degree k. By Theorem 4.3 we know that
the blow-up index of C̃ is at most ⌈1/2(pa + g −2)⌉. So ΩC̃ |C has a line sub-bundle of degree at
least 2g −2−⌈1/2(pa + g −2)⌉. The condition pa > g +1 ensures that

2g −2−⌈1/2(pa + g −2)⌉ > degL =−pa +2g −1.

Therefore deg M = k > degL, and so M does not admit a non-zero map to L. It follows that the
composite M →ΩC̃ |C → KC is non-zero. So M has the form KC (−β) for some effective divisor β
of degree 2g −2−k. We conclude that (2) ≤ (3). □

As a corollary, we relate the blow-up index with the stability of the rank 2 bundle ΩC̃ |C .

Corollary 4.5. Let C̃ be a ribbon of arithmetic genus pa > g+1 on a smooth curve of genus g . Then
ΩC̃ |C is stable (resp. semistable) if and only if b(C̃ ) > 1/2(pa +3)−2 (resp. b(C̃ ) ≥ 1/2(pa +3)−2).

Proof. Note that

deg(ΩC̃ |C ) =−deg(L)+2g −2 =−(pa −2g +1)+2g −2 =−(pa +3)+4g .

So the slope of ΩC̃ |C is −1/2(pa +3)+2g . The statement now follows from Theorem 4.4. □

Remark 4.6. For ribbons of blow-up index between −1/2(pa +3)−2 and the maximum, which
is ⌈1/2(pa + g − 2)⌉, the bundles ΩC̃ |C are semi-stable. But they are still distinguished by the
maximum degree of sub line-bundles.
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4.3. Blow-up index, gonality, and linear series Clifford index. We end this section with bounds
on the gonality of a ribbon in terms of the blow-up index. Recall that the gonality of C̃ is the
minimum d such that there exists a generalized g 1

d on C̃ .
The following gives an upper bound on gonality.

Proposition 4.7. Let C be a smooth curve of genus g and gonality m. Let C̃ be a ribbon C of
arithmetic genus pa , blow-up index b, and gonality d. Assume there exist a smooth divisor in
|−2L| and that pa > 2g −1+2m, then

d ≤ min(b +2m,⌊1/2(pa +3)⌋).

Proof. Let C̃ ′ be the split ribbon obtained by blowing up C̃ along a divisor of degree b. Then we
have a degree 2 map C̃ ′ →C . The pull-back of a g 1

m on C yields a g 1
2m on C̃ ′. Its push-forward to

C̃ gives a g 1
b+2m on C̃ . So d ≤ b +2m.

Finally, in the prescribed range, all ribbons are smoothable [Gon06]. A smooth curve of
genus pa has gonality at most ⌊1/2(pa +3)⌋. So the bound d ≤ ⌊1/2(pa +3)⌋ follows from semi-
continuity (Theorem 3.2). □

The following gives a lower bound on gonality.

Proposition 4.8. Let C be a smooth curve of genus g and gonality m. Let C̃ be a ribbon C of
arithmetic genus pa , blow-up index b, and gonality d. Then

d ≥ b − (2g −2).

Proof. Let M̃ denote the generalized line bundle associated to the g 1
d on C̃ . We observe that

M̃ must be generated by the 2 sections of the g 1
d . If not, the subsheaf generated by these two

sections gives a generalised g 1
d ′ with d ′ < d , contradicting the minimality of d .

Let us first treat the case that M̃ is a line bundle. Since M̃ is a line bundle, d is even. Then the
g 1

d on C̃ induces a finite map C̃ →P1 of degree d , leading to the diagram

C

C̃ P1.

The diagram above induces the diagram

f ∗(KP1 )

ΩC̃ |C KC .

Note that f : C →P1 is finite of degree d/2. We have the identification f ∗(KP1 ) = KC (−β), where
β is the ramification divisor of f , which has degree 2g −2+d . Owing to this diagram, the pull-
back of the extension

0 → L →ΩC̃ |C → KC → 0

to KC (−β) is split. Therefore, by Theorem 4.4, we get b ≤ 2g −2+d .
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Let us treat the general case, where M̃ is only a generalized line bundle. Then there exists
an effective divisor α of degree a such that M̃ is the push-forward of a line bundle M̃ ′ on the
blow-up C̃ ′ of C̃ at a. Then we have a g 1

d−a on C̃ ′ with the line bundle M̃ ′. Plainly, the blow-up

index b′ of C̃ ′ is bounded below by b −a. So we get

d −a ≥ b′− (2g −2) ≥ b −a − (2g −2),

and hence d ≥ b − (2g −2), as required. □

5. GONALITY STRATIFICATION OF THE SPACE OF RIBBONS

In this section we describe the stratification of the space of ribbons by gonality. Fix a smooth
curve C of genus g and a line bundle L on C of negative degree. Then the space of ribbons on C
with conormal bundle L is naturally the projective space PH 0(K 2

C ⊗L−1). Let

Wd ⊂PH 0(K 2
C ⊗L−1)

be the subset of ribbons that carry a generalized g 1
d . Let

Seck (C ) ⊂PH 0(K 2
C ⊗L−1)

be the k-secant variety of C ⊂PH 0(K 2
C ⊗L−1).

Theorem 5.1. With the notation above, Wd ⊂ Secd+2g−2(C ) is the union of linear subspaces
spanned by divisors of degree d +2g −2 that contain the ramification divisor of a map C →P1 of
degree at most d/2.

Proof. Let C̃ ∈Wd . Then C̃ carries a g 1
d , say M̃ . We show that C̃ lies on a linear subspace spanned

by a divisor of degree d +2g −2 that contains a ramification divisor of a map C → P1 of degree
at most d/2. It suffices to treat the case when the two sections of the g 1

d genarate M̃ . (If not, we

simply replace M̃ by the subsheaf they generate).
The generalised line bundle M̃ is the push-forward of a line bundle M̃ ′ on a blow-up C̃ ′ of

C̃ in a divisor β ⊂ C of degree b. Note that the degree of M̃ ′ is d −b. The two sections of M̃ ′
generate M̃ ′ and hence yield a map C̃ ′ → P1 of degree d −b. Its restriction f : C → P1 is a map
of degree e = (d −b)/2. Let R be the ramification divisor of f . By [BE95, Theorem 1.6], we have
a map KC (−R) →ΩC̃ ′ |C that makes the following diagram commute

(5.1)

f ∗(KP1 ) = KC (−R)

0 L(β) ΩC̃ ′ |C KC 0.

By Theorem 4.4, this means that C̃ ′ splits after blowing it up in R. Then C̃ splits after blowing it
up in β+R. Note that β+R has degree d +2g −2 and contains the ramification divisor R.

Conversely, let R ⊂ C be the ramification divisor of a map f : C → P1 of degree e ≤ d/2, and
let C̃ lie in the linear span of a divisor of degree d +2g −2 of the form β+R, where β is effective.
We produce a generalized g 1

d on C̃ . Since C̃ lies in the span of β+R, the blow-up of C̃ in β+R is

split (Theorem 4.2). Let C̃ ′ be the blow-up of C̃ in β, so that the blow-up of C̃ ′ in R is split. Then
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we have a map KC (−R) →ΩC̃ ′ |C making the diagram (5.1) commute. Applying [BE95, Theorem
1.6] again, we conclude that the map f : C → P1 extends to a map C̃ ′ → P1. Then the pull-back
of O (1) is a g 1

2e on C̃ ′, whose push-forward to C̃ is a g 1
d on C̃ . □

Corollary 5.2. We have the inclusions

Secd−2m(C ) ⊂Wd ⊂ Secd+2g−2(C ).

Proof. The second inclusion is a part of Theorem 5.1. For the first, take x ∈ Secd−2m(C ). Then
x is in the span of a divisor α of degree d − 2m. Since m is the gonality of C , we have a map
C →P1 of degree m. Its ramification divisor R has degree 2g −2+2m. Then x is also in the span
of α+R. □

Theorem 5.1 allows us to count the dimension of each gonality stratum. To do so, let us
further stratify Wd . For a non-negative integer e ≤ d/2, set b = d − 2e. Let We,b ⊂ Wd be the
union of linear subspaces spanned by divisors of degree d +2g −2 that contain the ramification
divisor of a map C →P1 of degree e. Then, by definition, we have

Wd =
d/2⋃
e=0

We,b .

From the proof of Theorem 5.1, we see that the points of We,b correspond to ribbons C̃ that
carry a generalised g 1

d that is the push-forward of a line bundle from a blow-up of C̃ in a divisor
of degree b.

Let m be the gonality of C and let W 1
e (C ) be the moduli space of base-point free linear series

of rank 1 and degree e on C .

Theorem 5.3. Retain the setup above and assume that L is a line bundle of degree ≤−2m−5. Set
pa = 2g −1−degL. Then

dim(W e,b) ≤ dimW 1
e (C )+2g +2e +2b −3.

In addition, if C is a general curve of genus g , the following hold.

(1) If 2e < g +2, then W e,b is empty, and otherwise, we have

dim(W e,b) ≤ g +2d −5.

(2) The gonality of a general ribbon on C with conormal bundle L is the maximum, namely
⌊1/2(pa +3)⌋.

Proof. Consider a point (φ,β) ∈ W 1
e (C ) × Symb(C ). Let Rφ be the ramification divisor of φ.

Consider the span of R +β in PH 0(K 2
C ⊗ L−1). For (φ,β) in a non-empty Zariski open subset

U ⊂ W 1
e (C )× Symb(C ), this span has a constant dimension n. Since degR = 2g + 2e − 2 and

degβ= b, we have n ≤ 2g +2e +b −3. Consider the incidence variety

I ⊂U ×PH 0(K 2
C ⊗L−1)

consisting of (φ,β, x) such that x lies on the span of Rφ+β. Then I is a closed subvariety and
its projection to PH 0(K 2

C ⊗L−1) contains a Zariski open subset of We,b . The fibers of I →U are
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projective spaces of dimension n. Therefore, we get

dimW e,b ≤ dim I = dimU +n = dimW 1
e (C )+b +n

≤ dimW 1
e (C )+b + (2g +2e +b −3),

as required.
If C is general, then dimW 1

e (C ) = 2e−g −2 (and W 1
e (C ) is empty if 2e < g +2). Since d = 2e+b,

we get

dimW e,b ≤ g +2d −5.

The dimension of the ambient dimPH 0(K 2
c ⊗L−1) is g +pa −3. Therefore, if

g +2d −5 < g +pa −3,

then W e,b ⊂ PH 0(K 2
c ⊗L−1) is a proper subset. That is, a generic point of the ambient space is

contained in Wd only when d ≥ ⌊(pa +3)/2⌋. In other words, a generic ribbon has gonality at
least ⌊(pa + 3)/2⌋. To see that a generic ribbon has gonality at most ⌊(pa + 3)/2⌋, observe that
such a ribbon is a limit of smooth curves and smooth curves have gonality at most ⌊(pa +3)/2⌋.
Then apply the semi-continuity of gonality (Theorem 3.2). □

We end the section with some examples of the gonality loci of ribbons. In all the examples, C
will be a smooth curve of genus g and L a line bundle of negative degree on C . We set

pa =−degL+2g −1.

We consider C embedded in PH 0(K ⊗2
C ⊗ L−1)∗ by the complete linear series. Recall that the

points of PH 0(K ⊗2
C ⊗L−1)∗ correspond to ribbons on C of arithmetic genus pa and with conor-

mal bundle L.

Example 5.4 (Ribbons on hyperelliptic curves). Let C be a hyperelliptic curve of genus g . We
describe We,b explicitly for e = 2.

Assume for simplicity that pa ≥ 2g +5. Let R be the ramification divisor of the degree 2 map
C → P1. Fix e = 2 and d ≥ 4 and b = d −2e = d −4. By Theorem 5.1, W2,d−4 ⊂ PH 0(K ⊗2

C ⊗L−1)∗ is

the union of the span of R +β as β varies in Symb(C ). Let 〈R〉 ⊂ PH 0(K ⊗2
C ⊗L−1)∗ be the span of

R. Then 〈R〉 is a projective space of dimension 2g +1. We have the linear projection

PH 0(K ⊗2
C ⊗L−1)∗dPH 0(K ⊗2

C ⊗L−1(−R))∗

with center 〈R〉. The projection of C yields an embedding C ⊂ PH 0(K ⊗2
C ⊗ L−1(−R))∗ by the

complete linear series. Then W 2,d−4 ⊂ PH 0(K ⊗2
C ⊗L−1)∗ is the cone over the b-secant variety of

C in PH 0(K ⊗2
C ⊗L−1(−R))∗. Note that the ambient space PH 0(K ⊗2

C ⊗L−1(−R))∗ has dimension
pa − g −5. Hence the b-secant variety has dimension min(2b −1, pa − g −5). Therefore, we get

dimW 2,d−4 = min(2d +2g −7, pa + g −3).

Note that 2g +2g −7 is the bound given by Theorem 5.3 and pa + g −3 is simply the dimension
of the ambient projective space P(K ⊗2

C ⊗L−1)∗. Observe that if d ≥ (pa −g +4)/2, then W 2,d−4 is
the ambient projective space. In particular, the gonality of a generic ribbon over a hyperelliptic
curve is less than the maximum ⌊(pa +3)/2⌋.
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Example 5.5 (Non-existence of a limiting g 1
3 ). Let C be an elliptic curve and take pa = 4. Then

C is a limit of smooth curves of genus 4, which have gonality 3. Nevertheless, from Theorem 5.1
it follows that W3 is empty. So C does not admit a generalised g 1

3 . This does not contradict the
semi-continuity of gonality (Theorem 3.2), since the condition pa > d +2g −1 is not satisfied.

Example 5.6 (An elliptic normal curve in P5). Let C be a smooth curve of genus 1 and take pa =
7. Then the conormal bundle L has degree −6. The complete linear series gives an embedding

C ⊂ P(K ⊗2
C ⊗L−1)∗ = P5.

Theorem 5.1 implies that Wd is empty for d = 1,2,3. We describe W4. We have W4 =W2,0 and it
is the union of the spans of the ramification divisors of degree 2 maps C → P1. Fix one degree 2
map f : C → P1; all others are translates of f . Let R = p1+p2+p3+p4 be the ramification divisor
of f and P ⊂ P5 the P3 spanned by R. Then W4 is the union of the translates of P by the points
of the Jacobian of C . This is a hypersurface of degree 6.

6. GREEN’S CONJECTURE AND RESOLUTION CLIFFORD INDEX FOR A GENERAL RIBBON ON A

GENERAL CURVE

In this section, we relate the linear series Clifford index to the resolution Clifford index. Specif-
ically, we prove Green’s conjecture for a general ribbon using Green’s conjecture for a general
smooth curve. The proof follows the ideas in [D18].

We begin with two results about embedded and abstract deformations of ribbons.

Proposition 6.1. Let C̃ be a ribbon of arithmetic genus pa on a smooth curve C of genus g . Sup-
pose pa ≥ 4g −2. Let C̃ ⊂ PN be the embedding by a complete linear series of a very ample line
bundle of degree at least 2pa . Then the deformations of C̃ ⊂ PN are unobstructed. That is, the
Hilbert scheme of PN is smooth at the point represented by [C̃ ].

Proof. Let L be the conormal bundle of the ribbon C̃ .
We have the sequence

(6.1) 0 → TC → TPN ⊗OC → NC /PN → 0

and the Euler exact sequence

(6.2) 0 →OC →OC (1)⊕N → TPN ⊗OC → 0.

Note that degOC (1) ≥ pa and degOC (1)⊗L ≥ 2g −1. So both OC (1) and OC (1)⊗L have vanishing
H 1. From the long exact sequence in cohomology applied to (6.2) and its twist by L, we get

(6.3) H 1(TPN ⊗OC ) = 0 and H 1(TPN ⊗L) = 0.

As a result, from the long exact sequence in cohomology applied to (6.1) and its twist by L, we
get

(6.4) H 1(NC /PN ) = 0 and H 1(NC /PN ⊗L) = 0.

We now turn to the normal bundle of C̃ . Since C̃ is a local complete intersection, its normal
bundle is locally free of rank N −1. Restricting it to C yields the exact sequence

(6.5) 0 → NC̃ /PN ⊗L → NC̃ /PN → NC̃ /PN ⊗OC → 0.
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We have the exact sequence

0 → I 2
C /(IC · IC̃ ) → IC̃ /(IC · IC̃ ) → IC̃ /I 2

C → 0,

whose terms are locally free OC -modules of ranks 1, N −1, and N −2, respectively. Specifically,
the kernel is the line bundle L2 and the middle term is the conormal bundle of C̃ restricted to C .
Applying Hom(−,OC ) yields the sequence

(6.6) 0 → Hom(IC̃ /I 2
C ,OC ) → NC̃ /PN ⊗OC → L−2 → 0

Finally, we have the sequence

0 → IC̃ /I 2
C → IC /I 2

C → IC /IC̃ → 0,

whose terms are locally free OC -modules of ranks N −2, N −1, and 1, respectively. Specifically,
the cokernel is the line bundle L and the middle term is the conormal bundle of C . Applying
Hom(−,OC ) yields the sequence

(6.7) 0 → L−1 → NC /PN → Hom(IC̃ /I 2
C ,OC ) → 0.

Using the vanishings (6.4), the long exact sequence in cohomology applied to (6.7) and its twist
by L yields

(6.8) H 1(Hom(IC̃ /I 2
C ,OC )) = 0 and H 1(Hom(IC̃ /I 2

C ,OC )⊗L) = 0.

Note that degL−2 ≥ degL−1 = pa−2g +1 ≥ 2g −1. So H 1(L−2) = H 1(L−1) = 0. Combined with the
vanishing (6.8), the long exact sequence in cohomology applied to (6.6) and its twist by L yields

(6.9) H 1(NC̃ /PN ⊗OC ) = 0 and H 1(NC̃ /PN ⊗OC ⊗L) = 0.

Finally, the long exact sequence in cohomology applied to (6.5) yields

H 1(NC̃ /PN ) = 0.

So the embedded deformations of C̃ ⊂ PN are unobstructed. □

We now turn to the abstract deformations of C̃ .

Proposition 6.2. Let C̃ be a ribbon of arithmetic genus pa on a smooth curve C of genus g . Sup-
pose pa ≥ 4g − 2. Then the deformations of C̃ are unobstructed. That is, a versal deformation
space of C̃ is smooth.

Proof. Choose an embedding C̃ ⊂ PN by the complete linear series of a very ample line bundle
of degree at least 2pa . We relate the abstract versus embedded deformations of C̃ .

Consider the conormal sequence

0 →I /I 2 →ΩPN |C̃ →ΩC̃ → 0.

Applying Hom(−,OC̃ ) yields

(6.10) Hom(I /I 2,OC̃ ) → Ext1(ΩC̃ ,OC̃ ) → Ext1(ΩPN |C̃ ,OC̃ ) → Ext1(I /I 2,OC̃ ) → Ext2(ΩC̃ ,OC̃ ).

Consider Ext1(ΩPN |C̃ ,OC̃ ) = H 1(TPN |C̃ ). We have the exact sequence

0 → TPN |C ⊗L → TPN |C̃ → TPN |C → 0.
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By (6.3), the H 1 of the first and the third term vanishes. So H 1 of the middle term also vanishes.
Now, (6.10) says that

H 0(NC̃ /PN ) → Ext1(ΩC̃ ,OC̃ )

is surjective, and

H 1(NC̃ /PN ) → Ext2(ΩC̃ ,OC̃ )

is injective. That is, the forgetful map from embedded to abstract deformations is surjective on
tangent spaces and injective on obstruction spaces. As a result, the forgetful map is smooth.
We know that the embedded deformation space is smooth (Theorem 6.1). We conclude that the
abstract deformation space is also smooth. □

We examine the non-nodal locus in a versal deformation.

Proposition 6.3. Let C̃ be a ribbon of arithmetic genus pa on a smooth curve of genus g with
pa ≥ 3g − 1. Let (U ,0) be a versal deformation space of C̃ with a versal family of deformations
C → U . Let N ⊂ U be the closed subset containing u ∈ U such that Cu has worse than nodal
singularities. Then N ⊂U has codimension at least 2 at 0.

Proof. We follow the proof of [D18, Proposition 3]. Since every ribbon C̃ can be isotrivially de-
formed to a split ribbon, it is enough to prove the theorem for the split ribbon. So assume that
C̃ is the split ribbon. Let the conormal bundle be L and let V = H 0(−2L). Every v ∈ V gives
a double cover of C whose branch divisor is the zero locus of v and whose structure sheaf is
OC ⊕L. Consider the family of curves CV →V , whose fiber over v ∈V is the double of C defined
by v . Note that the fiber over 0 is the split ribbon C . By versality, possibly after passing to an
étale neighborhood of 0, we have a map (V ,0) → (U ,0) and an isomorphism of CV →V with the
pull-back of the versal family. Let NV ⊂V be the pre-image of N ⊂U . Then NV ⊂V is the locus
of v ∈ V that define a worse than nodal Cv . But the double cover Cv is has worse than nodal
singularities if and only if v has a zero of multiplicity at least 3. Since deg(−L) = pa −2g +1 ≥ g ,
we have deg(−2L) ≥ 2g . Then it follows that NV ⊂V has codimension 2 at 0. Therefore, NU ⊂U
has codimension at least 2 at 0. □

As in [D18], let U denote the open sub-stack of the stack of all projective curves whose points
corresond to curves X satisfying the following conditions:

(1) X is Gorenstein of arithmetic genus pa and h0(OX ) = 1.
(2) KX embeds X as a arithmetically Gorenstein subscheme of Ppa−1.
(3) A versal deformation space of X is smooth.

Let Mpa be the stack of smooth projective curves of genus pa , and let M nh
pa

⊂ Mpa be the stack of
non-hyperelliptic curves.

Let C be a smooth curve of genus g and let C̃ be a ribbon on C of arithmetic genus pa with
pa ≥ 4g − 2. Then X = C̃ satisfies the three conditions above: the first is clear; the second is
Theorem 2.2; and the third is Theorem 6.2. Therefore, C̃ defines a point [C̃ ] of U .

Let pa be odd, say pa = 2k +1. As shown in [D18, Proposition 4], we have a divisor D ⊂ U

whose points represent curves X such that Kk−1,1(X ,KX ) , 0. We also have a divisor in M nh
pa

whose points represent smooth curves of gonality k +1. Let Dk+1 ⊂U be its closure.
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Proposition 6.4. Let C̃ be a ribbon of arithmetic genus pa = 2k +1 on a smooth projective curve
C of genus g with pa ≥ 4g −2. Then Dk+1 = D on an open subset of U containing [C̃ ].

Proof. The proof of [D18, Proposition 5] applies verbatim, thanks to Theorem 6.3. □

Proposition 6.5 (Green’s conjecture for generic ribbons of odd genus). Let C̃ be a ribbon of arith-
metic genus pa = 2k +1 on a smooth projective curve C of genus g with pa ≥ max{4g +2,6g −4}.
Suppose C̃ has gonality k +2. Then its resolution Clifford index is k. That is, we have

RCliff(C̃ ) = LCliff(C̃ ) = k.

In particular, the statement applies to a general ribbon of odd arithmetic genus pa ≥ max{3g +
7,6g −4} on a general curve of genus g .

Proof. By the semi-continuity of gonality (Theorem 3.2), we see that [C̃ ] ∉ Dk+1. Therefore, by
Theorem 6.4, [C̃ ] ∉ D , so Kk−1,1(C̃ ,KC̃ ) = 0. That is, RCliff(C̃ ) ≥ k. But the lower bound on pa

further ensures that C̃ is smoothable (see [Gon06] or [GGP08]). By semi-continuity, RCliff(C̃ ) is
at most RCliff of a general curve of genus 2k +1; that is, RCliff(C̃ ) ≤ k. So RCliff(C̃ ) = k.

Since C̃ is (k +2)-gonal, we have LCliff(C̃ ) ≤ k. But we know that LCliff(C̃ ) ≥ RCliff(C̃ ) (Theo-
rem 3.7). So LCliff(C̃ ) = k.

The last assertion follows from Theorem 5.3, (2). □

The case of general ribbons of even arithmetic genus follows using blow-ups.

Proposition 6.6 (Green’s conjecture for generic ribbons of even genus). Let C be a general smooth
curve of genus g . Fix an even non-negative integer pa = 2k ≥ max{3g+7,6g−4} and a line bundle
L of degree −pa +2g −1 on C . Then a general ribbon C̃ on C with conormal bundle L satisfies

RCliff(C̃ ) = LCliff(C̃ ) = k −1.

Proof. We have RCliff(C̃ ) ≤ LCliff(C̃ ) by Theorem 3.7, and LCliff(C̃ ) ≤ k − 1 by Theorem 3.2 (or
Theorem 4.7) since C̃ is smoothable under the condition on pa . It remains to prove that k −1 ≤
RCliff(C̃ ), that is,

Kk,1(C̃ ,KC̃ ) = 0.

By semi-continuity, it suffices to exhibit one C̃ such that Kk,1(C̃ ,KC̃ ) = 0.
Choose a point x ∈C and let C̃ ′ be a generic ribbon on C with conormal bundle L(−x). Let C̃

be the blow-up of C̃ ′ at x. Then C̃ has conormal bundle L. Applying Theorem 6.5 to C̃ ′, we get

Kk,1(C̃ ′,KC̃ ′) = 0.

By [D18, Lemma 1], we deduce

Kk,1(C̃ ,KC̃ ) = 0.

The proof is now complete. □

The same idea allows us to obtain a lower bound on the resolution Clifford index of general
ribbons of every blow-up index. But we have to relinquish control over the conormal bundle.
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Proposition 6.7. Let C be a general smooth curve of genus g . Fix a non-negative integer max{3g+
7,6g − 4} . Let C̃ be a general ribbon on C of arithmetic genus pa and blow-up index b. Set
m = ⌊(g +3)/2⌋. Except in the case where pa is even and g is odd and b = ⌈(pa + g −2)/2⌉ is the
maximum possible, we have

b −⌊g /2⌋ ≤ RCliff(C̃ ) ≤ LCliff(C̃ ) ≤ min(b +2m −2,⌊1/2(pa −1)⌋).

Note that the excluded case is handled by Theorem 6.6.

Proof. Again, the second and the third inequalities follow from Theorem 3.7 and Theorem 4.7.
So we are left to prove the first inequality. By semi-continuity, it suffices to exhibit one ribbon C̃
of arithmetic genus pa and blow-up index b such that b −⌊g /2⌋ ≤ RCliff(C̃ ).

The proof depends on the parity of pa and g . We fully explain the case when pa is even and
g is odd, and indicate the changes necessary in the other cases. Take

k = (pa + g −2)−2b.

(If g is even, add 1 to the right hand side.) Observe that k ≥ 0 (in the excluded case, we have
k =−1). Set p ′

a = pa +k, and observe that it is odd. Let C̃ ′ be a general ribbon on C of arithmetic
genus p ′

a . By Theorem 4.3, the blow-up index of C̃ ′ is

b′ = (p ′
a + g −2)/2 = b +k.

Consider the sequence of b′ blow-ups that takes C̃ ′ to the split ribbon. Let C̃ be the ribbon
obtained after k blow-ups in this sequence. Then C̃ has arithmetic genus pa and blow-up index
b.

By Theorem 6.5 applied to C̃ ′, we have

RCliff(C̃ ′) = (p ′
a −1)/2.

That is,

K(p ′
a−1)/2(C̃ ′,KC̃ ′) = 0.

By [D18, Lemma 1], we conclude

K(p ′
a−1)/2(C̃ ,KC̃ ) = 0,

and therefore

RCliff(C̃ ) ≥ (pa −2)− (p ′
a −1)/2+1

= (pa −k −1)/2

= b −⌊g /2⌋.

The proof is now complete. □

7. GONALITY AND CLIFFORD INDEX OF A SPLIT RIBBON

In this section we concentrate on the linear series Clifford index, gonality, and the resolution
Clifford index of the split ribbon.
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7.1. Linear series Clifford index of a split ribbon. We first find the linear series Clifford index.

Proposition 7.1. Let C̃ be a ribbon of arithmetic genus pa on a smooth curve C of genus g and
gonality m.

(1) If C̃ has a g 1
d then d ≥ 2m.

(2) Suppose the Clifford index of C is m−2. Then, if C̃ has a g r
d with d ≤ pa −1, then d −2r ≥

2m −2

Proof. We begin with some set-up for both statements. Let L be the conormal bundle of C̃ . Let
(V , M̃) be a g r

d on C̃ . Then there exists a divisor β⊂C such that M̃ is the push-forward of a line

bundle on the blow-up of C̃ at β. Let b be the degree of β. Let C̃ ′ be the blow-up of C̃ at β and
M̃ ′ such a line bundle on C̃ ′ whose push-forward is M̃ . Note that C̃ ′ has arithmetic genus pa −b
and conormal bundle L(β). Set M = M̃ |C /torsion. On C̃ ′, we have the exact sequence

0 → M ⊗L(β) → M̃ ′ → M → 0.

Set e = deg M , so that deg M̃ ′ = 2e = d −b.
Having set-up the basic objects, we turn to the proof of (1). Assume that r = 1. Since (V , M̃) is

a generalised g 1
d , the restriction map V → H 0(M) is injective. Therefore, h0(M) ≥ 2. Since C has

gonality m, we conclude that e = deg M ≥ m. As a result, d = 2e +b ≥ 2m.
We now assume r = 2 and turn to the proof of (2). We make two cases:

(1) Suppose e ≥ 2g −2. Then h1(M) ≤ 1 and so h0(M) ≤ 2− g + e. As a result, r ≤ 1− g + e,
and

d −2r = 2e +b −2r ≥ 2g −2+b ≥ 2m −2.

(2) Suppose e < 2g −2. Then M contributes to the linear series Clifford index of C . That is,
we have e −2r ≥ LCliff(C ). As a result, using the fact that LCliff(C ) ≥ m −3, (see [MG91])
we get

d −2r = 2e +b −2r ≥ 2LCliff(C )+2r +b ≥ 2m −2.

□

Corollary 7.2. Let C be a smooth curve of gonality m. Let C̃ be a split ribbon of arithmetic genus
pa .

(1) The gonality of C̃ is 2m.
(2) The linear series Clifford index of C̃ is 2m −2.

Proof. The pull-back of a g 1
m on C yields a g 1

2m on C̃ . Therefore, the gonality of C̃ is at most 2m
and the linear series Clifford index is at most 2m−2. The lower bounds follow from Theorem 7.1.

□

As a result of Theorem 7.2, we see that Green’s conjecture for the split ribbon implies Green’s
conjecture for any smooth double cover of C .

Corollary 7.3. Let D be a smooth curve of genus pa and f : D → C a finite map of degree 2. Let
L be the line bundle on C such that f∗OD �OC ⊕L. Let C̃ be the split ribbon on C with conormal
bundle L. If RCliff(C̃ ) = LCliff(C̃ ), then RCliff(D) = LCliff(D).
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Proof. Let m be the gonality of C . By Theorem 7.2, we have

RCliff(C̃ ) = 2m −2 = gon(C̃ )−2.

Note that f : D →C is specified by a global section of L−2. Scaling this section by t ∈ A1 gives a
family of double covers of C whose fiber at t = 0 is C̃ and whose all other fibers are isomorphic
to D . By the semi-continuity of Koszul cohomology, we have,

RCliff(C̃ ) ≤ RCliff(D).

Note that the pull-back of a g 1
m on C gives a g 1

2m on D , so

gon(D) ≤ 2m,

and hence

LCliff(D) ≤ 2m −2.

The inequalities

2m −2 = RCliff(C̃ ) ≤ RCliff(D) ≤ LCliff(D) ≤ 2m −2

yield the conclusion. □

7.2. Resolution Clifford index of a split ribbon. We now take up the resolution Clifford index of
the split ribbon. Unsurprisingly, we can describe the Koszul complex of the split ribbon entirely
in terms of the underlying curve and the conormal bundle.

We begin by defining a graded module that governs the Koszul complex of the split ribbon.
Let C be a smooth curve of genus g and fix a line bundle L on C . Fix a non-negative integer p.
Let S = Sym(H 0(C ,KC )) with the usual grading where the elements of H 0(C ,KC ) have degree 1.
The graded S-module M p

L , or simply M p if L is clear from the context, is defined by

M p = ⊕
q≥0

Kp,1
(
C ,K q

C ,KC ⊗L−1) .

The S-module structure is induced by the multiplication maps

Kp,1(C ,K q
C ,KC ⊗L−1)⊗H 0(C ,KC ) → Kp,1(C ,K q+1

C ,KC ⊗L−1).

Consider the Koszul complex of the graded S-module M p , namely

(7.1) · · ·→
i+1∧

H 0(KC )⊗M p
q−1 →

i∧
H 0(KC )⊗M p

q →
i−1∧

H 0(KC )⊗M p
q+1 →··· .

Let Φi ,p,q be the first map shown above. Writing out the descriptions of the graded pieces of
M p , we have

(7.2) Φi ,p,q :
i+1∧

H 0(KC )⊗Kp,1(C ,K q−1
C ,KC ⊗L−1) →

i∧
H 0(KC )⊗Kp,1(C ,K q

C ,KC ⊗L−1).

Since M p
q ’s are themselves Koszul cohomology groups, the complex (7.1) arises as a row in a dou-

ble complex after taking vertical cohomology. We now write this double complex. For brevity,
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we write (A) for H 0(C , A) and V (i ) for
∧i V . The double complex is

(7.3)

(KC )(i+1) ⊗ (KC ⊗L−1)(p+1) ⊗ (K q−1
C ) (KC )(i ) ⊗ (KC ⊗L−1)(p+1) ⊗ (K q

C )

(KC )(i+1) ⊗ (KC ⊗L−1)(p) ⊗ (K q
C ⊗L−1) (KC )(i ) ⊗ (KC ⊗L−1)(p) ⊗ (K q+1

C ⊗L−1)

(KC )(i+1) ⊗ (KC ⊗L−1)(p−1) ⊗ (K q+1
C ⊗L−2) (KC )(i ) ⊗ (KC ⊗L−1)(p−1) ⊗ (K q+2

C ⊗L−2)

di ,p,q .

The map Φi ,p,q in (7.2) is the map induced on vertical cohomology by the map di ,p,q .

Lemma 7.4. In the setup above, assume that h1(−L) = 0 and p ≤ 2g −4. Then Φi ,p,1 is surjective
if and only if Ki ,1(M p ) = 0.

Proof. Note that Ki ,1(M p ) is the middle cohomology of the complex

(KC )(i+1)⊗Kp,1(C ,KC⊗L−1)
Φi ,p,1−−−→ (KC )(i )⊗Kp,1(C ,KC ,KC⊗L−1) → (KC )(i−1)⊗Kp,1(C ,K 2

C ,KC⊗L−1).

It suffices to prove that the last term vanishes. Let r +1 = h0(KC ⊗L−1). By duality [G84, 2.6.c],
we have

Kp,1(C ,K 2
C ,KC ⊗L−1) = Kr−1−p,1(C ,K −1

C ,KC ⊗L−1)∗.

Shifting by 1 gives

Kr−1−p,1(C ,K −1
C ,KC ⊗L−1) = Kr−1−p,0(C ,L−1,KC ⊗L−1).

Since h1(−L) = 0, we get
h0(−L) = h0(KC −L)− (2g −2).

Since p ≤ 2g −4, the right hand side is bounded above by r −1−p. By [G84, Theorem 3.a.1], we
conclude that Kr−1−p,0(C ,L−1,KC ⊗L−1) = 0. □

The following theorem relates the syzygies of the canonically embedded split ribbon with the
Koszul cohomology of the module M p .

Theorem 7.5. Let C be a smooth curve of genus g and gonality m. Let

pa ≥ max(2g +2m −1,6g −4)

and let L be a line bundle on C of degree −pa +2g −1. Let C̃ be the split ribbon with conormal
bundle L. The following are equivalent.

(1) C̃ satisfies Green’s conjecture, that is,

RCliff(C̃ ) = LCliff(C̃ ).
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(2) for all non-negative integers i , j such that i + j = 2m −3, the map

Φi , j ,1 :
i+1∧

H 0(KC )⊗K j ,1(C ,KC −L) −→
i∧

H 0(KC )⊗K j ,1(C ,KC ,KC −L)

is surjective.
(3) for all non-negative integers i , j such that i + j = 2m −3, we have Ki ,1(M j ) = 0.

Proof. Let φ : C̃ →C be the projection. For any line bundle A on C , we have a canonically split
exact sequence of OC̃ -modules

0 → A⊗L →φ∗A → A → 0.

The splitting A →φ∗A is given by the pull-back map. In particular, for the q-th tensor power of
KC̃ =φ∗(KC ⊗L−1), we have the splitting

K q

C̃
= (K q

C ⊗L−q )⊕ (K q
C ⊗L−q+1).

As a result, we have

(7.4) H 0(C̃ ,K q

C̃
) = H 0(C ,K q

C ⊗L−q )⊕H 0(K q
C ⊗L−q+1).

Let S̃ and S be the graded rings

S̃ = ⊕
q≥0

H 0(C̃ ,K q

C̃
), and

S = ⊕
q≥0

H 0(C ,K q
C ⊗L−q ),

and let J be the graded S-module

J = ⊕
q≥0

H 0(C ,K q
C ⊗L−q+1).

Let ϵ be a formal variable with ϵ2 = 0. Taking the direct sum over all q in (7.4) gives an isomor-
phism of graded rings

S̃ = S ⊕ϵJ .

The Koszul complex that computes Kp,q (C̃ ,KC̃ ) is

K = ·· ·→
p+1∧

S̃1 ⊗ S̃q−1 →
p∧

S̃1 ⊗ S̃q →
p−1∧

S̃1 ⊗ S̃q+1 →···
Here, we take the three terms above to be in homological degres q −1, q, q +1, respectively. The
compelx K has a subcomplex

S = ·· ·→
p+1∧

S̃1 ⊗ϵJq−1 →
p∧

S̃1 ⊗ϵJq →
p−1∧

S̃1 ⊗ϵJq+1 →··· ,

and the quotient complex is

Q = ·· ·→
p+1∧

S̃1 ⊗Sq−1 →
p∧

S̃1 ⊗Sq →
p−1∧

S̃1 ⊗Sq+1 →··· .

Observe that
p∧

S̃1 =
⊕

i

i∧
S1 ⊗ϵ

p−i∧
J1.
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The action of ϵ
∧p−i J1 on ϵJq and on Sq is zero. As a result, we see that

H q (S ) =⊕
i

p−i∧
J1 ⊗Ki ,q (C ,L,KC ⊗L−1), and

H q (Q) =⊕
i

p−i∧
J1 ⊗Ki ,q (C ,KC ⊗L−1).

The short exact sequence of complexes

0 →S →K →Q → 0

induces a long exact sequence in cohomology

(7.5) · · ·→ H q−1(Q) → H q (S ) → H q (K ) →··· .

Consider the connecting map⊕
i

p+1−i∧
J1 ⊗Ki ,q−1(C ,KC ⊗L−1) →⊕

i

p−i∧
J1 ⊗Ki ,q (C ,L,KC ⊗L−1).

It is easy to check that this map is diagonal, that is, the direct sum of maps

(7.6)
p+1−i∧

J1 ⊗Ki ,q−1(C ,KC ⊗L−1) →
p−i∧

J1 ⊗Ki ,q (C ,L,KC ⊗L−1).

Note that J1 = H 0(C ,KC ) and

Ki ,q (C ,L,KC ⊗L−1) = Ki ,q−1(C ,KC ,KC ⊗L−1),

so the map (7.6) becomes

(7.7)
p+1−i∧

H 0(KC )⊗Ki ,q−1(C ,KC ⊗L−1) →
p−i∧

H 0(KC )⊗Ki ,q−1(C ,KC ,KC ⊗L−1).

For q = 2, this is precisely the map Φp−i ,i ,1 from (7.2).
We are now ready to prove the equivalence of (1) and (2). By Theorem 7.2, we know that

LCliff(C̃ ) = 2m −2. By Theorem 3.7, we know that RCliff(C̃ ) ≤ LCliff(C̃ ). So, (1) is equivalent to
the vanishing

K2m−3,2(C̃ ,KC̃ ) = 0.

Taking p = 2m −3 and q = 2, we have

K2m−3,2(C̃ ,KC̃ ) = H q (K ).

Observe that we have

H 2(Q) =
2m−3⊕

i=0

2m−3−i∧
H 0(KC )⊗Ki ,2(C ,KC ⊗L−1).

By our hypothesis, we have
deg(L−1) = pa −2g +1 ≥ 2m,

and therefore deg(KC ⊗L−1) ≥ 2g +2m −2. By [G84, Theorem 4.a.1], for 0 ≤ i ≤ 2m −3, we have

Ki ,2(C ,KC ⊗L−1) = 0.
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So H 2(Q) = 0. By the long exact sequence (7.5), the vanishing of H 2(K ) is equivalent to the
surjectivity of

H 1(Q) → H 2(S ).

By (7.7), this surjectivity is equivalent to (2).
The equivalence of (2) and (3) is Theorem 7.4. □

In light of Theorem 7.5, it is natural to ask the following.

Question 7.6. Are the equivalent statements in Theorem 7.5 are true ?

We observe that they are true for hyperelliptic curves.

Proposition 7.7. The conditions in Theorem 7.5 hold for a hyperelliptic curve C .

Proof. We begin with a more general statement. Let C be a smooth curve of genus g and let m
be its gonality. We show that the map

i+1∧
H 0(KC )⊗K j ,1(C ,KC ⊗L−1) →

i∧
H 0(KC )⊗K j ,1(C ,KC ,KC ⊗L−1)

is surjective for i = 0 and j = 2m −3. To see this, we use the results and notation of [But94]. For
line bundles A and B , the kernel of the map

j∧
H 0(A)⊗H 0(B) →

j−1∧
H 0(A)⊗H 0(A⊗B)

is H 0(
∧ j MA ⊗ A ⊗B) (see, for example, [EL93, Lemma 1.4]). So it is enough to show that for

j = 2m −3, the map

H 0(KC )⊗H 0

(
j∧

M(KC⊗L−1) ⊗KC ⊗L−1

)
→ H 0

(
j∧

M(KC⊗L−1) ⊗K 2
C ⊗L−1

)
is surjective. Since KC ⊗L−1 is semistable of degree (= slope) at least 2g , the bundle MKC⊗L−1 is
semistable ([But94, Theorem 1.2]). The surjection follows from [But94, Proposition 2.2]. □

We end with an example of a split ribbon that does not satisfy Green’s conjecture.

Example 7.8. Let C be a general curve of genus 3, and take L = K −1
C . Note that C has gonality

3. Let C̃ be the split ribbon with conormal bundle L. Then pa(C̃ ) = 9. By Theorem 7.2, we have
LCliff(C̃ ) = 4. A Macaulay2 computation—done over the base field Z/101Z with a randomly
chosen plane quartic C —shows that the minimal free resolution of the canonical embedding of
C̃ has the betti table

0 1 2 3 4 5 6 7
total: 1 21 84 154 154 84 21 1

0 : 1 . . . . . . .
1 : . 21 64 90 64 20 . .
2 : . . 20 64 90 64 21 .
3 : . . . . . . . 1

,

which means RCliff(C̃ ) = 2.
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