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Abstract. We describe Baily-Borel, toroidal, and geometric — using the KSBA stable
pairs — compactifications of some moduli spaces of K3 surfaces with a nonsymplectic
automorphism of order 3 and 4 for which the fixed locus of the automorphism contains
a curve of genus ≥ 2. For order 3, we treat all the maximal-dimensional such families.
We show that the toroidal and the KSBA compactifications in these cases admit simple
descriptions in terms of certain ADE root lattices.
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1. Introduction

Background. There has been significant recent progress on modular interpretations of
Hodge-theoretic compactifications of moduli spaces of K3 surfaces [AE23,AEH24]. Build-
ing on this, we completely describe the Baily-Borel, toroidal, and modular (= semi-toroidal)
compactifications for some moduli spaces of K3 surfaces with a non-symplectic automor-
phism of degree 3 or 4. The degree N = 2 case was treated in [AE22]. If N ̸∈ {2, 3, 4, 6}
then the moduli spaces of ADE K3 surfaces are already compact by [AEH24].

Let X be a smooth K3 surface and σ : X → X an automorphism of degree N > 1. We say
that σ is purely non-symplectic if σ∗ acts onH2,0(X) by multiplication by ζN = exp(2πi/N).
Let L be the K3 lattice. The automorphism σ induces an order N automorphism ρ of L.
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Let Tρ ⊂ L be the primitive sub-lattice—the maximal sublattice such that the eigenvalues
of σ on Tρ ⊗ C are primitive N -th roots of unity. We can associate to (X,σ) a period in a
Hermitian symmetric domain Dρ ⊂ P(T ζNρ,C), where T ζNρ,C is the ζN -eigenspace of ρ on Tρ⊗C.
The Torelli theorem identifies the moduli space of (X,σ) with a dense subset F sep

ρ of the
quotient of Dρ by an arithmetic group Γρ (see Section 2).

Assume that N > 2. Then Dρ is of type I (i.e. a complex hyperbolic ball). It has
several standard compactifications: the Baily-Borel, the toroidal (unique in this case),
and semi-toroidal that interporate between the two. The boundary of the Baily-Borel
compactification consists of finitely many points (“cusps”), each corresponding to a Γρ-orbit
of a primitive ρ-invariant isotropic plane J ⊂ Tρ. The semi-toroidal compactifications are
determined by a semifan F, which in this case is simply a primitive ρ-invariant sublattice
FJ ⊂ J⊥

Tρ
/J := (J⊥ ∩ Tρ)/J for every cusp J . Here, J⊥ is taken in L.

Assume the following condition.

(∃g ≥ 2) The fixed locus Fix(σ) contains a smooth curve Cg of genus g ≥ 2.

Then Cg ⊂ X is a semi-ample divisor. Let X → X be the contraction defined by Cg
and Cg ⊂ X the image of Cg ⊂ X. Then X is a K3 surface with ADE singularities
and for a small enough positive ϵ, the pair (X, ϵCg) is KSBA stable. Let FKSBA

ρ be (the
normalization of) the KSBA compactification of such pairs. By [AEH24, Theorem 3.26],
this compactification is isomorphic to a semi-toroidal compactification of Dρ/Γρ. When
N = 3, this quotient is in fact rational by [MOT15, Theorem 1.1].

Results. We explicitly identify the semi-fan describing the semi-toroidal compactification
F

KSBA
ρ for certain moduli spaces. To be more precise, recall that Artebani and Sarti classify

all possible automorphisms ρ of the K3 lattice of order 3 that arise from a non-symplectic
automorphism σ [AS08]. The ρ is determined (up to conjugation) by the number n of
isolated fixed points of σ and the number k of fixed curves of σ. Of all the possibilities,
11 satisfy (∃g ≥ 2). Of these, the maximal four (per genus of Cg) correspond to (n, k) =
(0, 2), (0, 1), (1, 1), and (2, 1). (The others arise from one of these four by specialization.)

Theorem 1.1. For each of the four maximal families of K3 surfaces with a non-symplectic
automorphism of degree 3 satisfying (∃g ≥ 2), the compactification FKSBA

ρ is a semi-toroidal
compactification of Dρ/Γρ given by the explicit semifan F called the KSBA semi-fan de-
scribed in Table 1.

In the main text, Theorem 1.1 is split into Theorem 7.1, Theorem 8.2, Theorem 9.3, and
Theorem 10.5 by the four cases. The corresponding sections also describe the KSBA stable
surfaces that appear on the boundary.

For N = 4, we describe the moduli space of cyclic quadruple covers of P2 branched at a
smooth quartic (studied in [Kon00,Hac04,Art09] from other points of view). In this case,
the Baily-Borel compactification has a unique cusp.
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g (n, k)
Root lattice of J⊥

Tρ
/J at the cusps. The saturation of

parenthesized sublattice is the KSBA semi-fan FJ (if
non-zero).

5 (0, 2) E⊕2
8

4 (0, 1) E⊕2
6 ⊕

(
A⊕2

2

)
E8 ⊕ E6 ⊕ (A2) E⊕2

8

3 (1, 1) E6 ⊕
(
A⊕4

2

)
E8 ⊕

(
A⊕3

2

)
E⊕2

6 ⊕ (A2) E8 ⊕ E6

2 (2, 1)
(
A⊕6

2

)
E6 ⊕

(
A⊕3

2

)
E6 ⊕ E6 E8 ⊕

(
A⊕2

2

)
Table 1. The semi-fans corresponding to the KSBA compactification of the
moduli space of K3 surfaces with a non-symplectic automorphism of order
3 with n fixed points and k fixed curves.

Theorem 1.2. The compactification F
KSBA
ρ of the space of cyclic quadruple covers of P2

branched at a quartic is the semi-toroidal compactification where the semi-fan FJ is the A⊕2
1

summand of J⊥
Tρ
/J = D⊕2

4 ⊕A⊕2
1 .

In the main text, Theorem 1.2 is Theorem 4.10.

Strategy of the proof. We know that there is a regular map

Dρ/Γρ
tor → F

KSBA
ρ

from the toroidal to the KSBA compactification [AEH24, Theorem 3.26]. For N = 3 or 4,
let E be the unique elliptic curve with an action of Z/NZ. Over a cusp corresponding to
J ⊂ Tρ, the toroidal compactification is (a finite quotient of) an abelian variety AJ , which
is isogeneous to J⊥

Tρ
/J⊗Z[ζN ]E. The map to the KSBA compactification contracts precisely

the translates of the abelian subvariety of AJ isogeneous to FJ ⊗Z[ζN ] E ⊂ J⊥
Tρ
/J ⊗Z[ζN ] E.

Recall that Hom(J⊥/J,E) = J⊥/J ⊗ E is the period domain of Kulikov degenerations
over the cusp J [Kon85]. In the ρ-equivariant setting, the period domain turns out to be
J⊥
Tρ
/J ⊗Z[ζN ] E (see Section 3.3). On the other hand, the points of the KSBA compacti-

fication correspond to stable pairs. So it suffices to identify which Kulikov degenerations
yield the same stable pair; this leads to the computation of FJ . We do so in all the cases
treated in Theorem 1.1 and Theorem 1.2. The N = 4 case is easy to do by ad-hoc methods.
For the N = 3 cases, we devise a construction called the triple Tschirnhausen construction,
that takes an admissible triple cover as input and constructs a Kulikov model as output. It
turns out to give essentially all Kulikov degenerations. We then run an MMP to construct
the stable models.

About the lattices and the semi-fans. The lattice J⊥/J arises from the middle co-
homology lattice of the Kulikov degenerations. Paired with the action of ρ ∈ O(L), the
lattice J⊥

Tρ
/J is the intersection of J⊥/J and Tρ/J in L/J . The components of the Kulikov
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degenerations turn out to be blow-ups of del Pezzo surfaces. The E6, E7, E8 lattices come
from these del Pezzos; for example, if N = 3 then E8, resp. E6, comes from a degree 1, resp.
degree 3, del Pezzo surface with a Z/3-action. The An-lattices, on the other hand, come
from the exceptional loci of the blow-ups of aforementioned surfaces along some ZN -orbits
of points. The passage from the Kulikov model to the stable model (roughly speaking)
undoes the blow-ups, and therefore, the translates of the An-lattices are identified in the
KSBA compactification.

Organization. In Section 2 we recall the Hodge-theoretic preliminaries for K3 surfaces
with a purely non-symplectic automorphism, including the Baily-Borel, toroidal, and semi-
toroidal compactifications. In Section 3, we recall Kulikov models, their modifications,
and the associated periods. In Section 4 we finish the (easier) N = 4 case mentioned in
Theorem 1.2. From then on, we fix N = 3. In Section 5, we recall Eisenstein lattices,
and using them we describe the Baily-Borel cusps of Dρ/Γρ. In Section 6, we describe the
triple Tschirnhausen construction, and compute the cohomology lattices of the degenerate
surfaces produced by this construction. In the four subsequent sections, we carry out the
proof strategy for the 4 moduli spaces mentioned in Theorem 1.1.

Conventions. We work over the complex numbers C. We set ζN = exp(2πi/N) and let
E = Z[ζ3] be the ring of Eisenstein integers. For a Cohen–Macaulay variety X, we use
KX to denote the canonical divisor or the dualizing sheaf, depending on the context. dPm

refers to a degree m del Pezzo surface. If J and P are sub-lattices of an ambient lattice
L, with J ⊂ P , the notation J⊥

P denotes the orthogonal complement of J in P , that is
J⊥
P = J⊥ ∩ P .

Version on arXiv. The version on arXiv gives additional details of computations, which
are skipped in the journal version to save space.

Acknowledgements. The first author was partially supported by the National Science
Foundation under the award DMS-2201222. The second author was partially supported
by the Australian Research Council under the award DE180101360. The third author was
partially supported by Korea University Grants K2422881 and K2424631. This project had
started during a visit of the first author to the Sydney Mathematical Research Institute
and he is grateful to the SMRI for the support and hospitality.

2. Moduli of K3 surfaces with a non-symplectic automorphism

2.1. The period map. Let U = II1,1 be the lattice Z2 with the bilinear form b(x, y) = xy
and E8 = II0,8 be the standard negative definite lattice. Then the K3 lattice L is

L ≃ II3,19 ≃ U⊕3 ⊕ E⊕2
8 .

Let D ⊂ P(L⊗ C) be the subset

D = {[x] | (x · x) = 0 and (x · x) > 0} .
Then D is a complex analytic manifold of dimension 20.
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Let X be a smooth K3 surface. Choose a generator ωX of H0(X,KX) = H2,0(X) and
an isometry H2(X,Z) → L. Then the image of ωX lies in D and is called the period of X.
It is well-defined up to the action of O(L).

Fix an isometry ρ : L → L of order N > 1. Let σ be a purely non-symplectic aucoto-
morphism of X of order N , i.e. σ∗(ωX) = ζNωX . A ρ-marking of (X,σ) is an isometry
ϕ : H2(X,Z) → L such that σ∗ = ϕ−1 ◦ ρ ◦ ϕ. The period a ρ-marked (X,σ) is the image
of ωX in D under the ρ-marking.

We say that (X,σ) is ρ-markable if it has a ρ-marking. In this case, we say that σ has
(Hodge) type ρ. The period point of a ρ-markable (X,σ) is well-defined up to the action of
the subgroup Γρ ⊂ O(L) defined by

Γρ := {γ ∈ O(L) | γ ◦ ρ = ρ ◦ γ}.

Let LζNC ⊂ LC := L⊗ C be the eigenspace of ρ corresponding to the eigenvalue ζN . Then,
the period point of X lies in

(1) Dρ := D ∩ P(LζNC ).

Note that Γρ preserves Dρ.
Let Lprim

C ⊂ LC be the subspace spanned by the ρ-eigenspaces whose eigenvalues are
primitive n-th roots of unity. We call Tρ := L

⋂
Lprim
C the generic transcendental lattice

associated to ρ, and Sρ := T⊥
ρ the generic Picard lattice associated with ρ. The signature of

Tρ is (2, rk(Tρ)− 2). Let T ζNρ,C = LζNC be the ρ-eigenspace of Tρ,C := Tρ⊗C with eigenvalue
ζN . We can then rewrite Dρ from (1) as

(2) Dρ = {x ∈ P(T ζNρ,C) | (x · x) = 0 and (x · x) > 0}.

Every root δ ∈ L, defines a hyperplane δ⊥ ⊂ P(LC). Define the discriminant ∆ρ ⊂ Dρ as
the union

∆ρ =
⋃
δ

δ⊥ ∩ Dρ,

where δ ranges over all roots in (Lρ)⊥. Note that Γρ preserves ∆ρ.
We have the following [AEH24, Theorem 2.10].

Theorem 2.1. Let Fρ be the moduli space of ρ-markable K3 surfaces. The period map

Fρ → (Dρ \∆ρ) /Γρ.

induces an isomorphism on the separated quotient F sep
ρ of Fρ.

Remark 2.2. Note that Fρ and F sep
ρ from Theorem 2.1 are constructed as moduli spaces of

ρ-markable K3 surfaces as in [AEH24]. This approach differs from Dolgachev and Kondō’s
approach in [DK07] via [Dol96], which is based on the moduli of S-polarized surfaces. Our
construction, based on [AEH24, §2C], is a more direct approach.



6 VALERY ALEXEEV, ANAND DEOPURKAR, AND CHANGHO HAN

2.2. The Baily–Borel compactification. From now on, assume N ≥ 3; this simplifies
the period domain. For x ∈ T ζNρ,C, we have

(x · x) = (ρx · ρx) = ζ2N (x · x),

so (x · x) = 0. Then, in (2), the condition (x · x) = 0 is vacuous, and Dρ is a Hermitian
symmetric domain of type I.

The compact dual Dcρ of Dρ is simply the projective space P
(
T ζNρ,C

)
. A rational boundary

component of Dρ is a subset of Dcρ of the form P(JC)∩Dcρ, where J ⊂ Tρ is a rank 2 primitive
isotropic sub-lattice of Tρ. The rational closure DBB

ρ of Dρ is the union of Dρ with all of its
rational boundary components, topologised by the horoball topology along the boundary.
The quotient Dρ/Γρ

BB
:= DBB

ρ /Γρ is the Baily–Borel compactification of Dρ/Γρ. It has the
structure of a projective variety [BB66] and it contains Dρ/Γρ as dense open subvariety.

Let J ⊂ Tρ be a rank 2 primitive isotropic sub-lattice such that P(JC) ∩ P(T ζρ,C) is non-
empty. We observe that J is automatically ρ-invariant and P(JC) ∩ P(T ζρ,C) is a point.

Indeed, let v ∈ (JC) ∩ T ζNρ,C be non-zero. Then the conjugate v lies in (JC) ∩ T
ζ−1
N
ρ,C and

JC is spanned by v and v. As a result, JC, and hence J , is ρ-invariant. Furthermore,
P(JC) ∩ P (T ζNρ ) is the point [v].

The boundary (Dρ/Γρ
BB

)\ (Dρ/Γρ) is a collection of (finitely many) points, called cusps,
which are in bijection with the Γρ-orbits of ρ-invariant isotropic primitive rank 2 sub-lattices
J ⊂ Tρ.

2.3. Semitoroidal compactifications. Recall that we specialise to N ≥ 3, so that we
have a type I domain where the constructions are easier. Here, we recall the construction
of (semi)toroidal compactifications of Dρ/Γρ from [AEH24, §3E]. See also [Kon93, Loo03,
AMRT10,Mok12] for more details.

We first summarize preliminary definitions on lattices and subgroups of orthogonal
groups. LetOρ(Tρ) be the subgroup ofO(Tρ) consisting of isometries commuting with ρ. Let
Γρ ⊂ Oρ(Tρ) be the image of Γρ ⊂ StabTρ(O(L)) under the restriction map StabTρ(O(L)) →
O(Tρ). If N = 3, then Γρ = Oρ(Tρ) by the proof of [MOT15, Theorem 3.6]. Consider a
primitive ρ-invariant isotropic rank 2 sublattice J ⊂ Tρ such that JζNC ̸= ∅; in this case,
JζNC ≃ J ⊗Z[ζN ] C where ζN acts on J via ρ. For every such J , there is an exact sequence
of groups

0 → UJ → StabJ(Γρ) → ΓJ → 0,

where UJ is the unipotent radical of StabJ(Γρ) (i.e., UJ acts trivially on J , J⊥
Tρ
/J , and

Tρ/J
⊥
Tρ

), and ΓJ ⊂ GL(J) × O(J⊥
Tρ
/J). In fact, ΓJ is finite because ρ acts on J as a

rotation and elements of O(J) commuting with a fixed rotation forms a finite group.

The construction of semitoroidal compactifications Dρ/Γρ
F

of Dρ/Γρ from [AEH24, §3E]
(which is the ρ-equivariant analog of construction in [Loo03, §6]) depends on the data of a
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Γρ-admissible semi-fan F, which is a Γρ-invariant collection {FJ} of a primitive ρ-invariant
sub-lattice

FJ ⊂ J⊥
Tρ/J

for every ρ-invariant isotropic primitive rank 2 sub-lattice J ⊂ Tρ such that JζNC ̸= 0. Then
the semitoroidal compactification Dρ/Γρ

F
is a normal projective variety such that for every

such J , the associated cusp of Dρ/Γρ
BB

is replaced by a finite quotient ÂFJ
J /ΓJ of an abelian

variety ÂFJ
J isogeneous to a product of elliptic curves of the same j-invariant. In fact, there

is an isogeny AFJ
J → ÂFJ

J , where AFJ
J := ((J⊥

Tρ
/J)/FJ)⊗Z[ζN ] E is defined by ζN -action on

J⊥
Tρ
/J via ρ and an elliptic curve E = C/Z[ζN ] with Aut(E, 0) ⊃ Z/NZ.

The semi-toroidal compactifications interpolate between the Baily–Borel and the toroidal
compactification (unique in this case, which is a ball quotient). The Baily–Borel compact-
ification Dρ/Γρ

BB
corresponds to the maximal semifan, namely FJ = J⊥

Tρ
/J . The toroidal

compactification Dρ/Γρ
tor

corresponds to the minimal semifan, namely FJ = 0. In this
case, the boundary components are of codimension 1 and finite quotients of AJ := A0

J =

(J⊥
Tρ
/J)⊗Z[ζN ] E. For a general semifan F, we have birational morphisms

(3) Dρ/Γρ
tor → Dρ/Γρ

F → Dρ/Γρ
BB
.

These maps are the identity on Dρ/Γρ. Above the Baily–Borel cusp corresponding to
J ⊂ Tρ, the first map is induced by the quotient AJ → AFJ

J of the translates of FJ ⊗Z[ζN ]E
in AJ .

2.4. KSBA stable pair compactifications. We refer the reader to [Kol23] for the def-
inition of semi-log-canonical (slc for short) singularities and the existence of the KSBA
compactifications of moduli spaces via (KSBA-)stable pairs.

In our context, a (KSBA-)stable pair (X, (w + ϵ)D) consists of a rational number w ∈
Q ∩ [0, 1), a seminormal surface X, and an effective Q-divisor D on X such that the pair
(X,D) has slc singularities, KX + wD ∼Q 0, and KX + (w + ϵ)D ∼Q ϵD is Q-Cartier and
ample for every 0 < ϵ≪ 1 bounded above in terms of D2. When D2 is fixed, then there is
a projective coarse moduli space for such pairs. For full details, see [AET23] and [KX20].

Assuming that every pair (X,σ) ∈ Fρ satisfies (∃g ≥ 2), there is an associated stable pair
(X, ϵCg). Here X is obtained from X by contracting the Cg-trivial curves and Cg ⊂ X is
the image of Cg ⊂ X. As a result, F sep

ρ is a moduli space of ADE K3 surfaces (X, ϵCg)
equipped with an induced automorphism σ of order N , where the divisorial part of the
fixed locus of σ is Cg.

Define FKSBA
ρ as the normalization of the closure of F sep

ρ in the space of KSBA stable
pairs; it parameterizes stable pairs (X, ϵR) with trivial dualizing sheaves. By [AEH24,
Proposition 3.27], any (X, ϵR) ∈ F

KSBA
ρ comes equipped with an automorphism σ : X → X

with R = Fix(σ). Moreover, by [AEH24, Theorem 3.26], FKSBA
ρ = Dρ/Γρ

F
for a particular
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semitoroidal compactification for a semifan F = {FJ}; call F the KSBA semifan. One of
the main goals of this paper is to compute F for various examples of ρ.

In some cases, an explicit classifications of members of FKSBA
ρ can be obtained by classi-

fying KSBA degenerations of the σ-quotients (Y, N−1+ϵ
N B) of (X, ϵCg) ∈ F sep

ρ , where B is
the branch divisor of the quotient X → Y := X/σ. Specifically, Y is a (possibly singular)
rational surface with (N − 1)B ∼ −NKY , i.e., (Y, (N−1+ϵ

N )B) is a stable pair. Let Yρ be
the normalization of the KSBA compactification of the moduli space of such quotient pairs
(Y, N−1+ϵ

N B). Then, [AEH24, Theorem 4.2, Corollary 4.3] says the following.

Theorem 2.3. There is an isomorphism of coarse moduli spaces

F
KSBA
ρ → Yρ

(X, ϵR) 7→
(
Y,
N − 1 + ϵ

N
B

)
,

where Y = X/σ and B is the branch divisor of X → Y .

3. Degenerations and Kulikov surfaces

3.1. Kulikov models. We summarize properties of one-parameter degenerations of K3
surfaces; see [FS86] for more details.

Definition 3.1. Let X∗ → C∗ be a family of smooth complex K3 surfaces over a punctured
curve or disk C∗ = C \ 0. A Kulikov, or Kulikov–Persson–Pinkham, model is a proper
extension X → C such that KX ∼C 0 and X → C is semistable, i.e., X is nonsingular and
the central fiber X0 is reduced with normal crossing singularities. The central fiber X0 is
called a Kulikov surface.

By [Kul77,PP81], A Kulikov model of X∗ → C∗ exists after a finite base-change C ′ → C.
There are three types of Kulikov models depending on the dual complex of the Kulikov

surface X0. Let Vi be the irreducible components of X0 and set Di,j = Vi ∩ Vj .
(I) X0 is smooth, i.e., it is a K3 surface.

(II) The dual complex of X0 is an interval of length m ordered by vertices {0, . . . ,m},
D0,1 ≃ · · · ≃ Dm−1,m ≃ E are elliptic curves, V0 and Vm are rational, and Vi → E
is generically ruled for every 0 < i < m. The double locus Di :=

∑
j Di,j is an

anticanonical divisor on each component Vi of X0.
(III) The dual complex of X0 is a triangulation of the sphere S2. The double locus Di

is an anticanonical divisor on each component Vi of X0 and is a wheel of rational
curves.

If (X∗ → C∗, σ ∈ AutC∗(X∗)) is a family of ρ-markable K3 surfaces and N = ord(ρ) ≥ 3,
then the associated Kulikov surface X0 is of Type I or II by [AEH24, Corollary 3.17]. If
N ̸= 3, 4, 6, then in fact X0 is always of Type I.

A snc surface of the form X0 = V0∪V1 with trivial KX0 is a Kulikov surface if and only if
ND0/V0 ⊗ND1/V1 ≃ OE by [FM83, Proposition 3.7]; this condition is called d-semistability.
So a Type II Kulikov surface of the form X0 = V0 ∪ V1 satisfies D2

0 +D2
1 = 0.
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Given a Kulikov model X → C, we have an extended period map

f : C → Dρ/Γρ
BB
.

If f(0) ∈ Dρ/Γρ, then X → C is of Type I; otherwise, X → C is of Type II or III.
Given a Kulikov model X → C, the Picard–Lefschetz transform of X∗ → C∗ is the

unipotent monodromy T : H2(Xt,Z) → H2(Xt,Z). It is of the form T = exp(N ) with

N (x) = (x · λ)δ − (x · δ)λ,

where δ ∈ H2(Xt,Z) is primitive isotropic and λ ∈ δ⊥/δ is a vector called the monodromy
invariant, which satisfies

λ2 = #{triple points of X0}.
In the ρ-markable case, there are no Type III Kulikov surfaces so λ2 = 0. When λ = 0,
then X0 is of Type I. Otherwise, X0 is of Type II and the length m of the dual complex
of X0 coincides with the imprimitivity of λ ∈ δ⊥/δ. Denote J := (Zδ ⊕ Zλ)sat to be the
primitive isotropic plane corresponding to X0. In the ρ-markable case, (σ∗t )−1Nσ∗t = N as
T commutes with the automorphism σt ∈ Aut(Xt). By expanding the previous equality, it
is easy to see that Zδ⊕Zλ is σ∗t -invariant, hence J is also σ∗t -invariant. If ϕt : H2(Xt,Z) → L

is a ρ-marking, then the cusp f(0) ∈ Dρ/Γρ
BB

corresponds to ϕt(J) ⊂ Tρ.
Two Kulikov models X → C of the same family X∗ → C∗ differ by a sequence of flops in

curves F ⊂ X0. If the central fiber X0 is of Type I or II, then the flops are of the following
types:

(M0) F ⊂ Vi and F ∩ Di = ∅; so F is an interior (−2)-curve. This flop is a nontrivial
birational map X 99K X ′ over C but X ′

0 = X0 are canonically identified.
(M1) F ⊂ Vi with F 2 = −1 and F ∩Di = p ∈ Di,j . This flop contracts F on Vi to p and

blows up p ∈ Vj to create a (−1)-curve F ′ ⊂ Vj .

3.2. Nef, divisor, and stable models. We define various types of models of X∗ → C∗

based on [AE23, §3B]:

Definition 3.2. Let L∗ be a line bundle on X∗, relatively nef and big over C∗. A relatively
nef extension L to a Kulikov model X → C is called a nef model.

Definition 3.3. Let R∗ ⊂ X∗ be the vanishing locus of a section of L∗ as above, containing
no vertical components. A divisor model is an extension R ⊂ X to a relatively nef divisor
R ⊂ |L| for which R0 contains no triple point, double curve, or component of X0. We call
the central fiber (X0, R0) a divisor limit.

A divisor model is not necessarily unique. Two divisor models are related by a sequence
of M0 and M1 modifications along curves disjoint from R.

Definition 3.4. The (KSBA-)stable model (X, ϵR) is ProjC
⊕

n≥0 π∗O(nR) for some di-
visor model π : (X,R) → C. It is unique, depending only on the family (X

∗
, R

∗
) → C∗,

and stable under base change. We call (X0, ϵR0) the stable limit.
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Given a ρ-markable K3 family (X∗ → C∗, σ) where every fiber satisfies (∃g ≥ 2), define
R∗ ⊂ X∗ to be the irreducible component of (X∗)σ which is a family of smooth curves of
genus g ≥ 2 over C∗. Then, up to a finite base change on C, there is a Kulikov model of
X∗ → C∗. Then R∗ extends to R ⊂ X by [AEH24, Theorem 3.26], but R0 (the flat limit
of Rt) may not be nef. In that case, a divisor model can be achieved by taking a sequence
of M0 and M1 modifications on X → C.

3.3. Periods of Type II Kulikov surfaces. We define periods of type II Kulikov surfaces
equipped with an automorphism following [AE23,Kon85].

Let us first recall the theory without the automorphism. Consider a type II Kulikov
surface X0 = V0∪ · · · ∪Vm with Dij = Vi∩Vj in Vi; note that Dij ̸= ∅ whenever |i− j| = 1,
and Dij ≃ Dji. Define the lattice of numerically Cartier divisors

Λ̃ = ker

(⊕
i

H2(Vi,Z) →
⊕
i

H2(Di,Z)

)
.

In the map above, the summandH2(Vi,Z) = PicVi maps toH2(Di,i+1,Z) andH2(Di,i−1,Z)
by restriction. Let ξi :=

∑
j(Dij −Dji) ∈ ⊕ℓ PicVℓ for every 0 ≤ i ≤ n. Set Ξ =

∑
ξi ∈ Λ̃.

Define the reduced lattice of numerically Cartier divisors

Λ = Λ̃/Ξ.

We have rk Λ̃ = 19 and rkΛ = 18.
Let E be the elliptic curve isomorphic to any of the double curves Di,i+1. The period

of X0 is the homomorphism ψ : Λ → E = C/J is defined in [AE23, Construction 4.3]
and [Kon85, §2]. Specifically, when X0 = V0 ∪ V1 consists of two irreducible components,
then ψ(α) = α0|D01 − α1|D01 ∈ Pic(D01) ≃ E for every α ∈ Λ.

Suppose X0 is the central fiber of a Kulikov model X → C corresponding to a primitive
isotropic 2-plane J ⊂ H2(Xt,Z). Then by [AE23, Proposition 3.20] we have an isometry of
unimodular lattices

(4) Λ ≃ J⊥/J.

By [AE23, Theorem 4.16] (see also [Kon85]), the period ψ of X0 lies in the period domain
J⊥/J ⊗ E = Hom(J⊥/J,E). Observe that M0 and M1 modifications do not change ψ.

Fix an isometry L ≃ H2(Xt,Z), a primitive sublattice S ⊂ L, and set T = S⊥. Suppose
that Pic(X∗/∆∗) contains a primitive subgroup whose restriction to every fiber Xt is S.
Let X → C be a Kulikov model with central fiber X0 corresponding to a primitive isotropic
plane J ⊂ T . Let Ssat ⊂ J⊥/J be the saturation of the image of S. Then J⊥

T /J and Ssat

are two saturated mutually orthogonal sublattices of J⊥/J . Using (J⊥/J)/Ssat = (J⊥
T /J)

∗,
we have the following (split) short exact sequence

0 → Hom((J⊥
T /J)

∗, E) → Hom((J⊥/J)/S,E) → Hom(Ssat/S,E) → 0.

The period ψ ∈ Hom(J⊥/J,E) of X0 vanishes on S, and hence lies in Hom((J⊥/J)/S,E).
By [AE23, §4C], its image χ in Hom(Ssat/S,E) depends only on S and J ⊂ T . In other
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words, the set of all periods of S-quasipolarized Type II surfaces over the cusp J is the
translate of Hom((J⊥

T /J)
∗, E) = (J⊥

T /J)⊗ E in Hom((J⊥/J)/S,E) over χ.
Fix an automorphism ρ of L of finite order. Suppose that the family X∗ → C∗ is

equipped with an automorphism σ and is ρ-markable. Let T = Tρ and S = Sρ as defined
in Section 2.1. By σ∗-equivariance of the monodromy, J lies in T and is ρ-invariant. From
(4), we get the isometry

(5) Λprim ∼= J⊥
T /J.

The double curve E = C/J of X0 also admits a ρ-action, generating Z/NZ ⊂ Aut(E, 0).
The period ψ of X0 is ρ-invariant in Hom((J⊥/J)/S,E), and so is the associated charac-
ter χ. So the period domain of Kulikov limits of ρ-markable K3 surfaces associated with
fixed J ⊂ T is a χ-translate of

HomZ[ζN ]((J
⊥
Tρ/J)

∗, E) = J⊥
Tρ/J ⊗Z[ζN ] E ≃ AJ .

From now on, we identify this period domain with AJ .
Using the ρ-equivariant analog of [AE23, Theorem 4.16] and the construction of the

toroidal compactification Dρ/Γρ
tor

(see [AE23, §5B] and [AEH24, §3E]), the period map
f∗ : C∗ → Dρ/Γρ of a ρ-markable family X∗ → C∗ as above extends to an extended period
map

(6) f : C → Dρ/Γρ
tor
.

Recall from Section 2.3 that the boundary component of Dρ/Γρ
tor

above the cusp J is a
finite quotient of AJ . Then, ρ-equivariant version of [AE23, Theorem 4.16] implies that
f(0) in the boundary component is the image of ψ ∈ AJ .

4. Moduli space of quadruple covers of P2

In this section, we identify the KSBA compactification of a moduli space of K3 surfaces
with a non-symplectic automorphism of order 4.

Let X → P2 be a cyclic cover of degree 4 branched along a general quartic B ⊂ P2. Then
X is a smooth K3 surface. The cyclic cover construction equips it with a non-symplectic
automorphism σ : X → X of order 4. We choose it so that σ∗ωX = ζ4ωX .

Recall that L is the K3 lattice. Let ρ ∈ O(L) be the automorphism of order 4 arising
from a marking of (X,σ). Let τ = σ2, so that τ∗ is identified with ρ2 ∈ O(L) under this
marking. Recall from Section 2.1 that Tρ = L ∩ Lprim

C and Sρ = T⊥
ρ . In this case, we have

Tρ = {x ∈ L | τ∗x = −x}.
Kondō describes Sρ and Tρ in [Kon00, § 2] (the notation there is L+ and L−) as

Tρ ≃ U(2)⊕ U(2)⊕D8 ⊕A⊕2
1 , Sρ ≃ ⟨2⟩ ⊕A⊕7

1 .

We now describe the automorphism ρ : Tρ → Tρ induced by σ. To do so, it is helpful to
write a different direct sum decomposition for Tρ.

Lemma 4.1. We have Tρ ≃ U ⊕ U(2)⊕D⊕2
4 ⊕A⊕2

1 .
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Proof. The lattices U(2) ⊕ D8 and U ⊕ D⊕2
4 are even, 2-elementary, indefinite, and have

the same basic invariants (t+, t−, a, δ) = (1, 9, 4, 0). So by [Nik79, Theorem 3.6.2], they are
isomorphic. □

Choose a basis ⟨e, f⟩ of U so that e2 = f2 = 0 and ef = 1. Likewise, choose a basis
⟨e′, f ′⟩ of U(2) such that e′2 = f ′2 = 0 and e′f ′ = 2. Consider D4 as an index 2 sublattice
of Z4 in the standard way, namely consisting of vectors whose coordinates add up to an
even number. Let e1, . . . , e4 be the standard basis of Z4.

Proposition 4.2. Set T = Tρ = U ⊕U(2)⊕D⊕2
4 ⊕A⊕2

1 . Up to conjugation by an element
of O(T ), the order 4 automorphism ρ = σ∗ acts on T as follows.

(1) On U ⊕ U(2) = ⟨e, f⟩ ⊕ ⟨e′, f ′⟩ by

e 7→ −e+ e′, e′ 7→ −2e+ e′, f 7→ f + f ′, f ′ 7→ −2f − f ′.

(2) On each D4 ⊂ Z4 = ⟨e1, . . . , e4⟩, by e2i−1 7→ e2i 7→ −e2i−1 for i = 1, 2.
(3) On A1 ⊕A1 = ⟨h1, h2⟩ by h1 7→ h2 7→ −h1.

Proof. For a 2-elementary lattice M , let AM =M∗/M be the discriminant group, equipped
with the discriminant form qM (x) = x2 mod 2Z ∈ 1

2Z/2Z. Set

N = {x ∈ AT | q(x) ∈ Z/2Z}.
Let ϕ : T → T be the action described in the statement. We see that ϕ|N is the identity.
Let S = Sρ be the generic Neron-Severi lattice. By [Kon00, Lemma 2.2(ii)], we see that
ϕ = σ∗ on AT = AS . Therefore, the pair (σ∗|S , ϕ) lifts to an isometry of L; call it g.

The isometry g : L→ L is a purely non-symplectic automorphism with invariant subspace
Lg of rank 1, isomorphic to the lattice ⟨4⟩. By [BH23] and the accompanying database, up
to conjugation there exists a unique isometry of L with these properties. So g and σ∗ are
conjugate. □

Corollary 4.3. Let J = ⟨e, e′⟩ ⊂ U ⊕ U(2) ⊂ T . Then J is ρ-invariant, isotropic, and
satisfies J⊥

T /J ≃ D2
4 ⊕A⊕2

1 .

Proof. Indeed, J⊥
T = J ⊕D⊕2

4 ⊕A⊕2
1 , so J⊥

T /J ≃ D2
4 ⊕A⊕2

1 . □

It turns out that this J defines the unique cusp of the Baily–Borel compactification.

Theorem 4.4. In the setup above, the Baily–Borel compactification Dρ/Γρ
BB

has a unique
cusp, corresponding to the isotropic plane J ⊂ U(2) ⊕ U(2) ⊂ Tρ. For this J , we have
J⊥
Tρ
/J = D⊕2

4 ⊕A2
1.

Proof. By [Art09, Corollary 4.6], Dρ/Γρ
BB

has a unique cusp. Now use Corollary 4.3. □

4.1. Stable and Kulikov degenerations. Following the notation in Section 2.4, let Yρ be
the normalization of the KSBA compactification of weighted pairs (Y, (34+ϵ)B), where Y ≃
P2 and B ⊂ Y is a quartic curve. This is a normal projective variety of dimension 6. Recall,
again from Section 2.4, that FKSBA

ρ is the normalization of the KSBA compactification of
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weighted triples (X, ϵR, σ), where X → Y is a cyclic degree 4 cover branched along B,
R ⊂ X is the ramification divisor, and σ is the automorphism of type ρ induced by the
covering construction. Theorem 2.3 gives an isomorphism F

KSBA
ρ

≃−→ Yρ.
The geometry of Yρ is described in [Hac04, § 11.1]. The pairs that give a type II surface

correspond to those with reducible Y .

Proposition 4.5. The locus Z ⊂ Yρ that parametrises (Y,B) with reducible Y is irreducible
of dimension 4. Its points parametrise (Y,B) where Y = Y0∪Y1 is the union of two quadric
cones Yi = P(1, 1, 2) glued along a line (with the singularities glued together) and B is the
union of Bi ⊂ Yi of class −KYi .

Proof. See [Hac04, § 11.1]. □

Let (Y,B) correspond to a generic point of Z. Let X → Y be a cyclic degree 4 cover
branched along B. We describe the two components of X. Consider P(1, 1, 2) ⊂ P3 as a
singular quadric. The class of a line through the singular point generates the Weil divisor
class group; we call it OP(1,1,2)(1). The canonical class KP(1,1,2) is OP(1,1,2)(−4) and the
double locus Di ⊂ Yi ≃ P(1, 1, 2) is of class OP(1,1,2)(1). Since KP(1,1,2) +(3/4)Bi+Di ∼ 0,
the class of Bi ⊂ Yi is OP(1,1,2)(4).

Proposition 4.6. Let C ⊂ P(1, 1, 2) be a smooth curve of class −K = OP(1,1,2)(4). Let
V → P(1, 1, 2) be a cyclic degree 4 cover branched along C and σ the order 4 involution on
V induced by the cyclic covering. Then V is a smooth dP2. The action of Z/4Z = ⟨σ⟩ on
V is free except along the pre-image of C, where the stabilizer group is Z/4Z, and at two
points, where the stabilizer group is Z/2Z. Let H ⊂ P(1, 1, 2) be generic of class OP(1,1,2)(1).
Then the pre-image of H in V is the elliptic curve of j-invariant 1728.

Proof. Setting W = V/σ2, we have

V →W → P(1, 1, 2)

where each map is of degree 2. The double cover ϕ : W → P(1, 1, 2) is branched along C.
Since OP(1,1,2)(C) = OP(1,1,2)(2)

⊗2 and OP(1,1,2)(2) is a Cartier divisor, ϕ is étale except
over C. In particular, the pre-image of the A1 singularity of P(1, 1, 2) is the union of two
points, both of which are A1-singularities of W .

The double cover ψ : V → W is branched along D = 1
2ϕ

∗(C). We have OW (D) =

ϕ∗OP(1,1,2)(2) = ϕ∗OP(1,1,2)(1)
⊗2 and OP(1,1,2)(1) is not Cartier at the two A1-singularities

of W . Therefore, ϕ is a non-trivial double cover in a neighborhood of the A1-singularities
but is étale on the punctured neighborhood. The only such cover, in local coordinates, is
C2 → C2/± 1. Thus, we see that V is smooth.

Let π = ψ ◦ ϕ. Then

KV = ϕ∗(KP(1,1,2) + (3/4)C) = ϕ∗OP(1,1,2)(−1).

So we see that KV is anti-ample and K2
V = 4 · (1/2) = 2. That is, V is a smooth dP2.

The cardinality of the fibers of V → P(1, 1, 2) is 1 over C, is 2 over the A1-singularity, and
is 4 elsewhere. Therefore, Z/4Z = ⟨σ⟩ has stabilizer Z/4Z at the points of the pre-image of
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C, stabilizer Z/2Z at the points of the pre-image of the A1-singularity, and trivial stabilizer
elsewhere.

Let E ⊂ V be the pre-image of H. Then E is an elliptic curve with faithful Z/4Z-action.
There is a unique such curve, namely the curve of j-invariant 1728. □

Corollary 4.7. Let (Y,B) be the pair parametrised by a generic point of Z ⊂ Yρ and let
X → Y be the degree 4 cover branched along B. Then X = X0 ∪ X1 where each Xi is
a smooth dP2 with a Z/4Z-action, and the two are glued along an elliptic curve which is
anti-canonical in each component.

The surface X described in Corollary 4.7 is not a Type II Kulikov surface. Indeed, letting
Ei ⊂ Xi be the double curve, we have E2

0 + E2
1 = 2 + 2 ̸= 0.

We now modify X to obtain a Kulikov surface (of Type II). Let p ∈ D0 ⊂ Y0 be a generic
point. Let Ỹ0 → Y0 be the blow-up at p and let

(7) Ỹ = Ỹ0 ∪ Y1,

glued along the proper transform of D̃0 and D1. Let

(8) X̃ = X̃0 ∪X1 → Ỹ = Ỹ0 ∪ Y1
be the cyclic cover of degree 4 branched along B. Note that X̃1 is simply the blow-up of
X along the 4 points of the pre-image of p.

Proposition 4.8. There is a Kulikov model X → ∆ with a Z/4Z-action along the fibers
such that the generic fiber is a cyclic degree 4 cover of P2 branched along a quartic and the
special fiber is the surface X̃.

Proof. Start with P2 × ∆ → ∆ and let L0, L1 ⊂ P2 be two lines in the central fiber. Let
β : Ŷ → P2 × ∆ be the blow-up along L0 followed by another blow-up along the proper
transform of L1. Then the central fiber of Ŷ → ∆ has three components (see Figure 1). Let
P ∼= P2 be the proper transform of the original central fiber. Blow it down to get Ỹ → ∆.
Note that P has normal bundle OP2(−2), so the blow-down is singular. The central fiber
of Ỹ → ∆ is Ỹ = Ỹ0 ∪ Y1 as in (7). It is easy to see that B ⊂ Ỹ can be smoothed to a
divisor B ⊂ Ỹ. We let X → Ỹ be a cyclic cover of order 4 branched along B. This is the
required Kulikov model. We leave it to the reader to verify that X is indeed smooth and
K-trivial. □

4.2. The KSBA semifan. Let X̃ = X̃0∪X1 be a very general choice of a Kulikov surface
constructed in (8) with double curve E. In this case, the lattice of numerically Cartier
divisors Λ̃ is Λ̃ = ker(H2(X̃0,Z) ⊕ H2(X1,Z) → H2(E,Z)), and the reduced lattice of
numerically Cartier divisors Λ is Λ = Λ̃/(E,−E) (see Section 3.3). Both are equipped with
an order 4 automorphism ρ = σ∗. Let J ⊂ Tρ be the isotropic plane corresponding to the
unique cusp of Dρ/Γρ

BB
. By (5) and Theorem 4.4, we have isomorphisms

Λprim = J⊥
Tρ/J = D⊕2

4 ⊕A⊕2
1 .
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The next proposition identifies the A⊕2
1 summand.

Proposition 4.9. Let E1, . . . , E4 ⊂ X̃0 be the exceptional divisors of X̃0 → X0, labelled
so that ρ acts on them by the 4-cycle (1234). Then E1 − E3 and E2 − E4 span the A⊕2

1

summand of Λprim.

Proof. It is clear that M = ⟨E1 − E3, E2 − E4⟩ lies in Λprim and is isomorphic as a lattice
to A⊕2

1 . It remains to show that there is a projection Λprim → M . Consider α ∈ Λprim

represented by (α0, α1) ∈ H2(X̃0,Z)⊕H2(X1,Z). Then α0 ∈ H2(X̃0,Z) is well-defined up
to adding multiples of E and τ(α0) = −α0 (mod E). From this, it is easy to check that
α0 · E1 ≡ α0 · E3 (mod 2) and likewise for E2 and E4. The projection Λprim →M is

(α0, α1) 7→
1

2
(α0 · (E3 − E1), α0 · (E4 − E2)) .

□

Theorem 4.10. The space FKSBA
ρ is isomorphic to the semi-toroidal compactification for

the semifan FJ = A⊕2
1 ⊂ J⊥

Tρ
/J = D⊕2

4 ⊕A⊕2
1 .

Proof. Let E be the elliptic curve with an order 4 automorphism ρ. Observe that ρ2 acts
as −1, so ρ makes E a Z[i]-module.

Recall from Section 3.3 that AJ = J⊥
Tρ
/J ⊗Z[i] E is the period domain for Kulikov limits

of ρ-markable K3 surfaces. By Section 2.3 and Section 2.4, the morphism

(9) Dρ/Γρ
tor → F

KSBA
ρ

1

1

1

−2

1

−2

−1

0

−1

1

−3/2

1/2

−1

1

Figure 1. We obtain a degeneration of P2 to Blp P(1, 1, 2) ∪ P(1, 1, 2) by
blowing up succesively in two lines and blowing down a P2. The figure shows
the central fibers in this process. The numbers next to the edges represent
self-intersections. By taking a cyclic degree 4 cover, we obtain a type II
Kulikov degeneration.
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restricted to the boundary components over the unique cusp J of Dρ/Γρ
BB

is identified (up
to a quotient by finite groups) with

AJ → AJ/(FJ ⊗Z[i] E).

That is, the fibers of (9) are the translates of FJ ⊗Z[i] E.
We now show that FJ = A⊕2

1 . Consider a Kulikov surface X̃ = X̃0 ∪ X1 constructed
in (8). Note that the log canonical contraction X̃ → X contracts the exceptional divisors
E1, . . . , E4 of X̃0 → X0. Recall from (4.9) that ⟨E1 −E3, E2 −E4⟩ is the A⊕2

1 summand of
J⊥
Tρ
/J ⊂ J⊥/J .

Let ψ ∈ AJ ≃ HomZ[i]((J
⊥
Tρ
/J)∗, E) be the period of X̃. Consider the construction of X̃

as described in (7) and (8). Let X̃ ′ be obtained from X by blowing up a point p′ ∈ D0 ⊂ Y0
different from p. Let ψ′ be the period of X̃ ′. Then ψ′ and ψ differ only on the A⊕2

1 -
summand. Conversely, any ψ′ that differs from ψ only on the A⊕2

1 -summand arises from
such a X̃ ′. Since X̃ and X̃ ′ have the same stable model, it follows that the translates of
A⊕2

1 ⊗Z[i]] E are contracted by (9). That is, we have A⊕2
1 ⊂ FJ . By a dimension count, we

see that FJ must have rank 2. We conclude that A⊕2
1 = FJ . □

5. Eisenstein and 3-elementary lattices

For this and the subsequent sections, assume that N = 3. Let ω := ζ3 = e2πi/3.

5.1. Generalities on Eisenstein lattices. An Eisenstein lattice M is a finite torsion-free
module over the ring E = Z[ω], together with an E-valued Hermitian form. Since E is a
PID, M is a free E-module of some rank n. It is thus a Z-module of rank r = 2n together
with an automorphism ρ : x→ ω · x of order 3 that does not have a non-zero fixed vector.

If M is an ordinary lattice with a Z-valued bilinear form ⟨x, y⟩ and an automorphism ρ
of order 3 without a non-zero fixed vector, then ρ defines a complex structure J on M ⊗R
by J = 1√

3
(ρ − ρ2), and the associated Hermitian structure is H(x, y) = ⟨x, y⟩ + i⟨x, Jy⟩.

This Hermitian structure is not necessarily E-valued but the rescaled form

h(x, y) =
3

2
H(x, y) =

1

2

(
3⟨x, y⟩+ θ⟨x, ρy − ρ2y⟩

)
is, where θ = ω − ω2 =

√
−3. We call this associated Eisenstein lattice ME . The effect of

this rescaling is that h(x, y) ∈ θE for all x, y ∈ ME . Equivalently,

(10) ME ⊂ θ(ME)′, where (ME)′ = {x ∈ME | h(x, y) ∈ E}.

Vice versa, for any c ∈ θE one has 2
3 Re c ∈ Z. Thus for any Eisenstein lattice ME

satisfying condition (10), the bilinear form 2
3 Reh(x, y) on the underlying Z-module M is

Z-valued. This gives a bijection between the Z-lattices (M,ρ) with an order 3 automorphism
without a non-zero fixed vector and Eisenstein lattices ME satisfying condition (10).

Following [AS08], we call the pair (M,ρ) an E-lattice; and if in addition ρ acts trivially on
the discriminant group AM =M∗/M , we call it an E∗-lattice. A lattice M is 3-elementary
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if 3M∗ ⊂ M , i.e. AM = Za3 for some integer a, the Z3-rank of M . One has M∗ = θ(ME)′.
This implies that M is 3-elementary if and only if 3θ(ME)′ ⊂ME .

For x ∈ M∗ one has ρx − x = (1 − ω)x = θx/ω. Thus, M is an E∗-lattice if and only
if θM∗ ⊂ M , i.e. M is “θ-elementary". In terms of the Hermitian form this is equivalent
to the condition 3(ME)′ ⊂ ME , or that the matrix of 3h−1 has entries in E . In particular,
any E∗-lattice is 3-elementary (see [AS08, Lemma 1.3] for another proof).

5.2. Eisenstein 1-cusps. The goal of this subsection is to prove Theorem 5.4.
Recall the hyperbolic plane U = II1,1 = ⟨e, f⟩ with e2 = f2 = 0 and ef = 1. It is well

known that U ⊕ U = ⟨e1, f1⟩ ⊕ ⟨e2, f2⟩ and U ⊕ U(3) = ⟨e1, f1⟩ ⊕ ⟨e′1, f ′1⟩ are E∗-lattices,
with ρ acting as follows:

(1) e1 7→ e2, e2 7→ −e1 − e2, f1 7→ f1 + f2, f2 7→ −f1
(2) e1 7→ e1 − e′2, e′2 7→ 3e1 − 2e′2, f1 7→ −2f1 − f ′2, f ′2 7→ 3f1 + f ′2

and that this action is unique up to conjugation. The corresponding Eisenstein lattices
have Hermitian forms (

0 θ
θ̄ 0

)
and

(
0 3
3 0

)
.

Lemma 5.1. The only even 3-elementary lattices of signature (1, 1) are U and U(3), and
of signature (2, 2) are U ⊕ U , U ⊕ U(3) and U(3)⊕ U(3).

Proof. The Z3-rank a is even in all cases. For a hyperbolic lattice (i.e., (1, 1)-lattice) it
is true by Rudakov–Shafarevich [RS81], cf. [AS08, Thm. 1.5]. And for a (2, 2)-lattice
it is true by the same theorem applied to the orthogonal complement in the K3 lattice
U⊕3 ⊕ E2

8 . In the boundary cases a = 0, resp. a = rkH the lattice H is unimodular, resp.
unimodular dilated by 3, so it it unique. In the case r = 4, a = 2, the lattice is unique
by [Nik79, 1.13.2]. □

Lemma 5.2. The only E∗-lattices of signature (2, 2) are U⊕U and U⊕U(3) with the above
ρ-action.

Proof. U(3) ⊕ U(3) is not an E∗-lattice. Indeed, the ρ-action on H also defines a ρ-action
on H(13) = U⊕U , which is unique by the above. It is easy to see that the induced action on
AU(3)⊕U(3) is nontrivial. Another way to see it is: in this case 3(ME)′ = 1

θ (M
E)′ ̸⊂ME . □

For a lattice T , we call an isotropic line I = Ze ⊂ T a 0-cusp and an isotropic plane,
i.e. a saturated isotropic sublattice J ≃ Z2 ⊂ T , a 1-cusp. The justification for this is the
fact that when T has signature (2, n), I (resp., J) define a 0-cusp (resp., 1-cusp) of the
corresponding Type IV Siegel domain D(T ).

Lemma 5.3. Let T be a 3-elementary lattice and e ∈ T be an isotropic vector. Then there
exists an orthogonal decomposition T = H ⊕ T with H ≃ U or U(3), e ∈ H and e⊥/e ≃ T .

Proof. An isotropic vector e ∈ T defines an isotropic vector e∗ = e/div(e) ∈ AT in the
discriminant group. Here the divisibility div(e) is defined by e·T = div(e)Z. Let T := e⊥/e.
One has div(e) = 1 or 3. If div(e) = 1 then it is contained in a unimodular sublattice
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H ⊂ T , which is isomorphic to U by Lemma 5.1. It splits off as a direct summand, and the
statement follows.

If div(e) = 3 then e∗ ̸= 0 and the lattice T has the discriminant group (e∗)⊥/e∗. Thus,
a(T ) = a(T )− 2. Consider the projection e⊥ → T . Choose a lift i : T → e⊥ ⊂ T , which is
automatically an isometry. Let H = i(T )⊥ in T . By [Nik79, 1.15.1] it is 3-elementary, so it
is isomorphic to U or U(3) by Lemma 5.1. The first case is impossible, so H ≃ U(3). We
have an inclusion of lattices H ⊕ T ⊂ T , and the lattices on the left and on the right are
3-elementary with the same Z3-rank a. Thus this inclusion is an identity and the statement
follows. □

Now let T be an E-lattice. If e ∈ T is an isotropic vector then so are ρe and ρ2e, and
the identity e+ ρe+ ρ2e = 0 implies that ⟨e, ρe⟩ = 0. Thus, the saturation of the span of e
and ρe is an isotropic plane J ≃ Z2 ⊂ T .

Theorem 5.4. Let T be an E∗-lattice and J ⊂ T be an isotropic plane. Then there exists
an orthogonal decomposition of E∗-lattices T = H ⊕ T with H ≃ U ⊕ U or H = U ⊕ U(3)

an E∗-lattice as above, J contained in H, and J⊥/J = T as an E∗-lattice. The isotropic
planes in T up to the group Oρ(T ) of isometries commuting with ρ are in a bijection with
the isomorphism classes of the E∗-lattices J⊥/J appearing this way.

Proof. Let us work with the corresponding Eisenstein lattice JE ⊂ T E . Then JE = Ee
is a free rank-1 E-module. Repeating the argument of Lemma 5.3, we get a sublattice

HE = (Ee)⊥ and an inclusion HE ⊕ T
E
⊂ T E . (Note here that the orthogonals in L and

LE are the same.) On the other hand, we can obtain the same lattice T in two steps by
working with Z-lattices, by adding two ordinary isotropic vectors e1 ∈ T and then e2 ∈ T .
Thus, by Lemma 5.3 applied twice there is an equality T = H ⊕ T and H is one of the
lattices of Lemma 5.1. Since T is an E∗-lattice then so is its direct summand H. Thus by
Lemma 5.2 H = U ⊕ U or U ⊕ U(3).

One has a(H) + a(T ) = a(T ). Thus the isomorphism class of T = J⊥/J defines H
uniquely. Two decompositions with the isomorphic H and T differ by an isometry, mapping
the first (resp. second) summand to the first (resp. second) summand. □

Note that the action of Γρ ⊂ O(L) on Tρ is induced by the restriction Γρ → Oρ(Tρ),
which is surjective by the proof of [MOT15, Theorem 3.6]. Thus, Dρ/Γρ = Dρ/Oρ(Tρ)
and cusps of Dρ/Γρ

BB
, which are Γρ-orbits of ρ-invariant isotropic planes J ⊂ Tρ, are in a

bijection with the isomorphism classes of J⊥
T /J by Theorem 5.4.

5.3. 1-cusps of K3 E∗-lattices. Artebani and Sarti [AS08] classified the period lattices T
(corresponding to Tρ from Section 2.1) of K3 surfaces with a nonsymplectic automorphism
of order 3. The main result is given by [AS08, Table 2] which lists the possible lattices
T = T (n, k) and their orthogonals S = T⊥

L in the K3 lattice L (they are denoted N in that
paper). All of them turn out to be E∗-lattices. Our main interest are the maximal lattices
with g ≥ 2 which are as follows:
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g (n, k) S = T⊥
L T P = T⊥

Λ

5 (0,2) U U2 ⊕ E2
8 E8

4 (0,1) U(3) U ⊕ U(3)⊕ E2
8 E6 ⊕A2

3 (1,1) U(3)⊕A2 U ⊕ U(3)⊕ E6 ⊕ E8 E6 ⊕A2
2

2 (2,1) U(3)⊕A2
2 U ⊕ U(3)⊕ E2

6 E6 ⊕A3
2

Table 2. Maximal K3 E∗-lattices with g ≥ 2

The negative definite lattice P of the last column is the orthogonal of T in the even
unimodular lattice Λ = II2,26. We will need it in the proof of Theorem 5.5.

Theorem 5.5. The cusps J of the lattices T in Table 2 modulo Oρ(T ) are uniquely deter-
mined by the root sublattices of J⊥/J , which are given in Table 3. Here, R∗ denotes an
index-3 overlattice of a root lattice R.

g (n, k) J⊥/J

5 (0,2) E2
8

4 (0,1) E2
8 , E8 ⊕ E6 ⊕A2, (E2

6 ⊕A2
2)∗

3 (1,1) E8 ⊕ E6, E2
6 ⊕A2, E8 ⊕A3

2, (E6 ⊕A4
2)∗

2 (2,1) E8 ⊕A2
2, E2

6 , E6 ⊕A3
2, A6

2∗

Table 3. The 1-cusps of E∗-lattices with g ≥ 2

Proof. The Eisenstein 1-cusps of T (0, 1) were found in [CMJL12, Theorem 5.9]. The case
T (0, 2) is very easy. The proof in [CMJL12] proceeds by using an extension of Scattone’s
method [Sca87] to the Eisenstein case. For the lattices T (2, 1) and T (1, 1) in addition to
this method we also need Theorem 5.4 to show uniqueness of J for a given J⊥/J .

The lattice Λ = II2,26 ≃ U2⊕E3
8 has a unique ρ-action making it into an Eisenstein lattice

ΛE . For each T -lattice of Table 2, T E can be embedded into ΛE . Let P E be its orthogonal.
Note that P is a negative definite E∗-lattice given in the last column of Table 2. Let J ⊂ T
be an isotropic plane. We seek J⊥/J = J⊥

T /J , where J⊥
T denotes the orthogonal in T .

On the other hand, J⊥
Λ /J = N is a unimodular negative definite lattice of rank 24, that

is one of the 24 Niemeier lattice (see e.g. [CS99, Ch. 18]) or the Leech lattice. Let R denote
the root sublattice of N ; it is well known that N is uniquely determined by R. One has
P ⊂ R (in particular, R ̸= 0 so N is not the Leech lattice) and J⊥

T /J = P⊥
N .

It follows that N and R must be E-lattices. The only such lattices N with P ⊂ R in
our four cases are N(E3

8) and N(E4
6). It remains to find the embeddings P ⊂ R and to

compute P⊥
N , which is the saturation of P⊥

R in N . Moreover, computing P⊥
R is very easy

since (A2)
⊥
E8

= E6, (E6)
⊥
E8

= A2, (A2)
⊥
E6

= A2
2, (A2

2)
⊥
E6

= A2 and (A2
2)

⊥
E8

= A2
2.
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The lattice P (0, 2) = E8 has a unique embedding into E3
8 . P (0, 1) = E6 ⊕ A2 has two

embeddings into E3
8 and one into E4

6 . P (1, 1) = E6⊕A2
2 has three embeddings into E3

8 and
two into E4

6 . P (2, 1) = E6 ⊕A3
2 has four embeddings into E3

8 and four into E4
6 . For each of

these embeddings we compute P⊥
R and obtain the root systems in the statement.

For R = E3
8 one has N = R, so P⊥

N = P⊥
R . For R = E4

6 one has AR = R∗/R = Z4
3 and

N is an index 9 sublattice of R∗ corresponding to a “glue”, an isotropic space V ≃ Z2
3 ⊂ AR

listed in [CS99, Ch. 18]). Each nonzero glue vector v ∈ V has exactly one zero coordinate
in Z4

3. On the other hand, in the non-starred cases the image of P⊥
R∗ in Z4

3 has at least two
zero coordinates, so P⊥

R is saturated in N . In the three starred cases one has V ∩(P⊥
R∗/R) =

Z3 ⊂ AR, so the saturation is a Z3-extension of P⊥
R . (Here, we use (A2)

⊥
E∗

6
/E6 = Z3 and

(A2
2)

⊥
E∗

6
/E6 = 0.)

Here is how one computes P⊥
R∗ . Using Bourbaki’s notation for the roots of E6: Let

A2 = ⟨α1, α3⟩ ⊂ E6. Then A⊥
2 = ⟨α∗

2, α
∗
4, α

∗
5, α

∗
6⟩. Here α∗

i are the fundamental coweights,
giving the dual basis to the root basis. Similarly, for A2

2 = ⟨α1, α3, α5, α6⟩ ⊂ E6 one has
A⊥

2 = ⟨α∗
2, α

∗
4⟩. In A(E6) = Z3 one has α∗

2 = α∗
4 = 0 and α∗

i ̸= 0 for i = 1, 3, 5, 6. Now,
A(E4

6) = Z4
3, and the above computation shows which coordinates in P⊥

R∗ are zero. Tables
4, 5, 6, 7 give the details of this computation.

P R P⊥
R P R P⊥

R P R P⊥
R P⊥

R∗/R

E6A2 E8 0 E6 E8 A2 E6 E6 0 0
E2

8 E2
8 A2 E8 E6 A2 E6 A2

2 Z3

E8 E8 E2
6 E2

6 Z2
3

Table 4. Case (n, k) = (0, 1)

P R P⊥
R P R P⊥

R P R P⊥
R P R P⊥

R P⊥
R∗/R P R P⊥

R P⊥
R∗/R

E6A2 E8 0 E6 E8 A2 E6 E8 A2 E6 E6 0 0 E6 E6 0 0
A2 E8 E6 A2

2 E8 A2
2 A2 E8 E6 A2

2 E6 A2 0 A2 E6 A2
2 Z3

E8 E8 E8 E8 A2 E8 E6 E2
6 E2

6 Z2
3 A2 E6 A2

2 Z3

E6 E6 Z3

Table 5. Case (n, k) = (1, 1)

□

Remark 5.6. In several cases, it happens that the same cusp of T mod O(T ) corresponds
to two different cusps of Λ mod O(Λ), to both N(E3

8) and N(E4
6). For (n, k) = (1, 1)

this happens for E2
6 ⊕ A2, and for (n, k) = (2, 1) for E2

6 and E6 ⊕ A3
2. This is possible

because not every isometry of T extends to an isometry of N . Indeed, in these cases the
homomorphism ϕT : O(T ) → O(qT ) is surjective but ϕP : O(P ) → O(qP ) = O(qT ) is not.
An isometry g ∈ O(T ) extends to an isometry of Λ precisely when ϕT (g) ∈ imϕP .
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P R P⊥
R P R P⊥

R P R P⊥
R P R P⊥

R

E6A2 E8 0 E6A2 E8 0 E6 E8 A2 E6 E8 A2

A2
2 E8 A2

2 A2 E8 E6 A3
2 E8 A2 A2

2 E8 A2
2

E8 E8 A2 E8 E6 E8 E8 A2 E8 E6

Table 6. Case (n, k) = (2, 1), embeddings into N(E3
8)

P R P⊥
R P⊥

R∗/R P R P⊥
R P⊥

R∗/R P R P⊥
R P⊥

R∗/R P R P⊥
R P⊥

R∗/R

E6 E6 0 0 E6 E6 0 0 E6 E6 0 0 E6 E6 0 0
A3

2 E6 0 0 A2
2 E6 A2 0 A2

2 E6 A2 0 A2 E6 A2
2 Z3

E2
6 E2

6 Z2
3 A2 E6 A2

2 Z3 A2 E6 A2
2 Z3 A2 E6 A2

2 Z3

E6 E6 Z3 E6 E6 Z3 A2 E6 A2
2 Z3

Table 7. Case (n, k) = (2, 1), embeddings into N(E4
6)

An isometry g ∈ O(E6 ⊕ Ak2) sends the E6 block to itself and permutes the A2 blocks,
because g sends a root system to a root system and the direct decomposition into irreducible
root systems is unique. But the group O(qE6⊕A2

2
) ≃ S3 ⋉ Z3

2 has order 48 ̸= 23 · 2, so it
contains an element that does not preserve the block decomposition.

Remark 5.7. By Theorem 5.4 one has T ≃ H ⊕ J⊥/J . Here, H = U2 iff the Z3-ranks of
T and J⊥/J coincide. In this case S is saturated in J⊥/J . The opposite case is a(T ) =
a(J⊥/J) + 2, then H = U ⊕ U(3) and the torsion subgoup of (J⊥/J)/S is Z3.

6. K3 surfaces with an automorphism of order 3

6.1. The triple Tschirnhausen construction. Let P be a reduced connected projective
curve, possibly singular, and let p1, . . . , pn ∈ P be distinct points in the smooth locus of
P . Let ϕ : C → P be a Gorenstein triple cover, that is, a finite flat morphism of degree 3
with Gorenstein fibers. Assume that ϕ is étale over the generic points of the components
of P and also over p1, . . . , pn. Let E = (ϕ∗OC/OP )

∨ be the Tschirnhausen bundle of ϕ and
brϕ ⊂ P the branch divisor of ϕ. Then OP (brϕ) = detE⊗2. Assume that the line bundle
detE∨⊗OP (2p1+ · · ·+2pn) is divisible by 3 in PicP . In fact, let η ∈ PicP be a cube root
of this line bundle. We associate to (ϕ : C → P, p1, . . . , pn, η) a surface X together with an
automorphism σ of order 3. In our applications, PicP will be torsion-free, so there will be
a unique choice of η. In that case, we drop η from the notation. Figure 2 shows a sketch of
the construction.

By [CE96, Theorem 1.3], we have a canonical embedding C ⊂ PE whose image is a
Cartier divisor of class OPE(3) ⊗ π∗ detE∨. Let π : PE → P be the projection and let
F1, . . . , Fn be the fibers of π over p1, . . . , pn. Let P̂E → PE be the blow-up at the 3n points⊔
iC ∩ Fi. Let Ĉ and F̂i be the proper transforms in P̂E of C and Fi. Note that these
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C

F

PE

Ĉ

F̂

P̂E X̂ X
Blow up C ∩ F 3:1 cover branched

along Ĉ ∪ F̂

Blow down

pre-image of F̂

Figure 2. The pinched triple Tschirnhausen construction

curves are pairwise disjoint. Set F̂ =
⊔
i F̂i. Let ϵ ⊂ P̂E be the exceptional divisor of the

blow-up. Then ϵ is the disjoint union of 3n smooth rational curves of self-intersection −1.
Consider the cyclic triple cover P̂E branched over Ĉ+2F̂ . This is constructed as follows.

Let H ∈ Pic P̂E be the class of the pull-back of OPE(1). Observe that in Pic P̂E, we have

Ĉ + 2F̂ = 3(H + η − ϵ).

Let s be a global section of OPE(3(H + η − ϵ)) whose zero locus is Ĉ + 2F̂ . We have the
OPE-algebra

OP̂E ⊕OP̂E(−H − η + ϵ)⊕OP̂E(−2H − 2η + 2ϵ),

where the multiplication map sends

OP̂E(−H − η + ϵ)⊗OP̂E(−2H − 2η + 2ϵ) → OP̂E

by the map induced by s. The cyclic triple cover is the relative spectrum of this algebra.
Let q ∈ F̂ be a point. Choose local coordinates x, y on P̂E at q so that x = 0 cuts out F̂ .
Then, in coordinates, the triple cover is given by

SpecC[x, y, t]/(t3 − x2) → SpecC[x, y].

Let X̂ be the normalisation of the cyclic triple cover constructed above along the pre-image
of F̂ . Then X̂ is non-singular along the pre-image of F̂ , and for each i, the pre-image
of F̂i is a (−1)-curve on X̂. Let X̂ → X be the blow-down of these (−1)-curves. Let σ̂
be the automorphism of X̂ arising from the cyclic triple cover and let σ be the induced
automorphism of X. The construction is now complete.

We say that (X,σ) is obtained from (ϕ : C → P, p1, . . . , pn, η) by the triple Tschirnhausen
construction pinched over p1, . . . , pn.

Remark 6.1. We can describe the cover X̂ → P̂E as a standard cover in the sense of [Par91,
Theorem 2.1]. Let χ : µ3 → C∗ be the tautological character. In the notation of [Par91],
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the cover X̂ → P̂E corresponds to the building data

Lχ = OP̂E(H + η − ϵ), Lχ2 = L⊗2
χ ⊗OP̂E

(
−F̂
)
,

Dµ3,ζ3 = Ĉ, and Dµ3,ζ23
= F̂ .

As an OP̂E-module, we have
O
X̂

= OP̂E ⊕ L∨
χ ⊕ L∨

χ2 .

We have an action of µ3 on O
X̂

. It preserves the direct sum decomposition and acts by the
characters χ0, χ1, χ2 on the summands.

Let C̃ be the image in X of the pre-image of Ĉ ⊂ P̂E in X̂. Note that C̃ is an isomorphic
copy of C. Let xi be the image in X of the pre-image of F̂i ⊂ P̂E in X̂.

Proposition 6.2. The fixed locus of σ on X is the disjoint union of C̃ and the points
x1, . . . , xn.

Proof. Since X̂ → P̂E is totally ramified over Ĉ⊔ F̂ , the fixes locus of σ on X̂ is the disjoint
union of the pre-images of Ĉ and F̂i. The fixed locus on X is simply the image. □

Proposition 6.3. Assume that P and C are Gorenstein. Set p =
∑
pi and let π : X → P

be the natural map. In PicX ⊗Q, we have

KX =
1

3
(detE + π∗(p)) +KP

Proof. This is a straight-forward computation using the Riemann–Hurwitz formula. □

Proposition 6.4. Suppose P = P1, C is smooth, and deg brϕ + 2n = 12. Then X is a
smooth K3 surface and σ is a non-symplectic automorphism of X of order 3. The fixed
curve of σ is isomorphic to C, and in addition, σ has n isolated fixed points.

Proof. Since C is smooth, so is X. Recall that 2 degE = deg brϕ, so we have degE+n = 6.
Proposition 6.3 gives KX = 0 in PicX ⊗ Q. To see that X is a K3 surface, it suffices to
show that its topological Euler characteristic is 24. Let m = deg brϕ. Then

χtop(C) = 6−m and χtop(P̂E) = 4 + 3n.

Since X̂ → P̂E is a triple cover totally ramified over Ĉ ⊔ F̂ , we have

χtop(X̂) = 3(4 + 3n− χtop(C)− χtop(F )) + χtop(C) + χtop(F )

= 2m+ 5n.

Since X̂ → X blows down n (−1)-curves and m+ 2n = 2(degE + n) = 12, we have

χtop(X) = χtop(X̂)− n = 2m+ 4n = 24,

as desired. Since σ contains a curve in its fixed locus, it is non-symplectic. Since it arises
from a cyclic triple cover, it is of order 3. The fixed locus σ̂ on X̂ is the disjoint union of
Ĉ ≃ C and F̂ . The curve Ĉ ⊂ X̂ maps isomorphically to C̃ ⊂ X. The curve F̂ contracts
to n isolated fixed points in X. □
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Remark 6.5. Let k be the number of connected components of C. The K3 surface X in
Proposition 6.4 corresponds to the row (n, k) of [AS08, Table 2]. In particular, the lattice
H2(X,Z)σ is the lattice N = T⊥ described there. The four maximal families are in Table 2.

The triple Tschirnhausen construction works in families. In particular, applying it to a
family of marked triple covers of P1 as in Proposition 6.4, we get a family of K3 surfaces
with a non-symplectic automorphism of order 3.

6.1.1. Kulikov models from degenerations of triple covers. Let ∆ be a smooth curve, possibly
non-proper. Let 0 ∈ ∆ be a point. Let P → ∆ be a proper map whose fiber over any point
of ∆∗ = ∆\0 is a smooth curve of genus 0 and special fiber P0 isomorphic to a nodal union
P1 ∪ P1 of genus 0. Let ϕ : C → P be a triple cover and let p1, . . . , pn : ∆ → P be disjoint
sections lying in the smooth locus of P → ∆. Assume that

(1) C → P is étale over the node of P0 and over the sections p1, . . . , pn,
(2) C → ∆ is smooth, except at points in the pre-image of the node of P0,
(3) the divisor brϕ + 2

∑
pi has total degree 12 and has degree 6 on each component

of P0.

Proposition 6.6. Suppose (ϕ : C → P, p1, . . . , pn) satisfies the conditions above. Let X →
∆ be the family of surfaces obtained by applying the triple Tschirnhausen construction
pinched at p1, . . . , pn to the family of marked triple covers (ϕ : C → P, p1, . . . , pn) over ∆.
Then X → ∆ is a type II Kulikov degeneration of K3 surfaces.

Proof. Using conditions (1) and (2), it is easy to see that X is a non-singular threefold and
the central fiber of X → ∆ is a simple normal crossings divisor. From Proposition 6.4, we
know that the generic fiber of X → ∆ is a K3 surface. Using (3) and Proposition 6.3, we see
that KX is numerically trivial on the central fiber. Since KX is trivial on the generic fiber,
it follows that KX must in fact be trivial. Therefore, X → ∆ is a Kulikov degeneration.
The central fiber is the union of two surfaces, so its dual graph is a chain with 2 vertices.
This is a type II degeneration. □

Remark 6.7. In Proposition 6.6, the central fiber of C → P is an admissible cover étale
over the node of the base. A version of Proposition 6.6 also holds for an admissible cover
ramified over the node. We do not require such degenerations, so we omit the details.

Remark 6.8. The total space X of the Kulikov degeneration comes equipped with an au-
tomorphism σ of order 3, acting on the fibers of X → ∆.

6.2. Kulikov surfaces and their lattices of numerically Cartier divisors. Recall
that Proposition 6.6 gives Kulikov degenerations of K3 surfaces associated with a degen-
erating family of marked triple covers. Let (ϕ : C → P, p1, . . . , pn) be the central fiber
of such a family of marked triple covers. Let X be the Kulikov surface obtained from
(ϕ : C → P, p1, . . . , pn) the triple Tschirnhausen construction pinched over p1, . . . , pn. Let
X = X0 ∪X1 and let D = X0 ∩X1 be the double curve. Recall the lattice of numerically
Cartier divisors

Λ̃ = ker(H2(X0,Z)⊕H2(X1,Z) → H2(D,Z)),



COMPACT MODULI OF K3 SURFACES WITH A NONSYMPLECTIC AUTOMORPHISM 25

and its quotient
Λ = Λ̃/⟨(D,−D)⟩.

Since X admits an automorphism σ of order 3, so does Λ. We have the saturated sublattice
Λρ ⊂ Λ of ρ-fixed vectors and its orthogonal complement Λprim ⊂ Λ. It is easy to check
that Λprim is a negative definite even lattice.

We use the notation introduced for the triple Tschirnhausen construction in Section 6.1.
Set Y = P̂E and let Y0 and Y1 be the components of Y . For i = 0, 1, let Si ⊂ H2(Yi,Z)
be the sub-lattice of classes orthogonal to the curves F̂1, . . . , F̂n. Then the pull-back map
H2(Yi,Z) → H2(X̂i,Z) sends Si to H2(Xi,Z). The lattice H2(Xi,Z)ρ is the saturation of
Si. Let Λi = H2(Xi,Z)prim be the orthogonal complement. Then Λi is a negative definite
even lattice. Observe that the class D ∈ H2(Xi,Z) is the pull-back of the class of a fiber
of Yi → Pi, and in particular, it lies in the image of Si. Therefore, for all α ∈ Λi, we have
α ·D = 0. As a result, we have a map Λi → Λprim. It is easy to see that the map is injective,
and the images of Λ0 and Λ1 are mutually orthogonal. As a result, we get a map

Λ0 ⊕ Λ1 → Λprim.

The following proposition says that the root sublattices of Λprim and Λ0 ⊕ Λ1 agree.

Proposition 6.9. The image of Λ0⊕Λ1 is a finite index sublattice of Λprim. Furthermore,
if α ∈ Λprim is a root, then α lies in the image of Λ0 or Λ1.

Proof. Take α ∈ Λprim and write α as the image of (a0, a1) where ai ∈ H2(Xi,Z). Then
(a0, a1) is well-defined up to adding multiples of (D,−D).

Let y ∈ H2(X,Z)ρ be such that y · D ̸= 0 (for example, an ample class), and let yi ∈
H2(Xi,Z) be its restriction. The image of y in Λ lies in Λρ, so (a0, a1)y = a0 ·y0+a1 ·y1 = 0.
Let (m,n) = (−y · D, a0 · y0). Then (ma0 + nD) · y0 = 0. For any x ∈ H2(X0,Z)ρ with
x · D = 0, the element (x, 0) ∈ Λ is ρ-fixed, and hence (a0, a1) · (x, 0) = a0 · x = 0. As a
result, (ma0+nD) ·x = 0. It follows that ma0+nD is orthogonal to H2(X0,Z)ρ. Likewise,
(ma1 − nD) is orthogonal to H2(X1,Z)ρ. So (ma0,ma1) + n(D,−D) = mα ∈ Λ lies in
Λ0 ⊕ Λ1. Therefore, Λ0 ⊕ Λ1 ⊂ Λprim is of finite index.

Since D2 = 0 and KXi = −D, the lattice Vi = D⊥
H2(Xi,Z)/⟨D⟩ is even and negative

definite. Suppose α ∈ Λprim is a root, that is, α2 = −2. Write α = (a0, a1) with ai ∈
H2(Xi,Z). Then, we have seen that ai ·D = 0, so ai represents a class in Vi. Since Vi is
even and negative definite, and a20+a21 = −2, we must have ai = 0 in Vi for some i; that is,
ai ∈ H2(Xi,Z) is a multiple of D. By changing (a0, a1) by adding a multiple of (D,−D),
we may assume that ai = 0. Then it follows that α lies in the image of Λj for j ̸= i. □

We now compute the root sublattice of Λ. By Proposition 6.9, the root sublattice of Λ
is the direct sum of the root sublattices of Λ0 and Λ1. The lattice Λi depends only on the
component Xi, which is obtained by the triple Tschirnhausen construction from ϕ : Ci → Pi
along with the marked points pj that lie on Pi. So we may focus on the two components
ϕ : Ci → Pi individually.

Let (ϕ : C → P1, p1, . . . , pm) be a marked triple cover such that deg brϕ + 2m = 6.
In addition to the number m, we have some additional numbers, namely the genera and
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degrees over P1 of the connected comonents of C. The space of marked triple covers with
fixed numerical invariants is irreducible.

Proposition 6.10. Let (ϕ : C → P1, p1, . . . , pm) be a general marked triple cover with the
numerical invariants specified in the first two columns of the table below. Let X be the
surface obtained from it by the triple Tschirnhausen construction pinched at p1, . . . , pm and
let ρ be the order 3 automorphism on X induced by the triple cover. Then X is a rational
surface admitting an elliptic fibration, and the lattice H2(X,Z)prim is given by the last
column.

m (Genus, degree) of components of C H2(X,Z)prim

0 (1, 3) E6 ⊕A2

0 (0, 1) and (2, 2) E8

1 (0, 3) A⊕3
2

1 (0, 1) and (1, 2) E6

2 (0, 1) and (0, 2) A⊕2
2

3 (0, 1) and (0, 1) and (0, 1) A2

We devote the rest of Section 6.2 to the proof of Proposition 6.10. The proof is by a case-
by-case analysis, which also illuminates the geometry of each X. Within the proof, we also
record whether each component of C̃ ⊂ X is nef or not; this will be useful for computing
stable pairs. We first make some general remarks and then treat the cases one-by-one.

Let V be any surface with an order 3 automorphism ρ. Suppose ϵ ⊂ V is a ρ-invariant
(−1)-curve and let V → V be the blow-down of ϵ. Then

H2(V,Z) = Z⟨ϵ⟩ ⊕H2(V ,Z).
Therefore,

(11) H2(V,Z)ρ = Z⊕H2(V ,Z)ρ and H2(V,Z)prim = H2(V ,Z)prim.
Suppose ϵ1, ϵ2, ϵ3 ⊂ V is a set of three mutually disjoint (−1)-curves that form an orbit
under ⟨ρ⟩ and let V → V be the blow-down of ϵ1 ∪ ϵ2 ∪ ϵ3. Then

H2(V,Z) = Z⟨ϵ1, ϵ2, ϵ3⟩ ⊕H2(V ,Z).
Therefore,

(12) H2(V,Z)ρ = Z⊕H2(V ,Z)ρ and H2(V,Z)prim = A2 ⊕H2(V ,Z)prim,
where the A2 is spanned by ϵ1 − ϵ2 and ϵ2 − ϵ3. Finally, if rkH2(V,Z)ρ = 1 and KV ̸= 0,
then

(13) H2(V,Z)prim = ⟨KV ⟩⊥.
We use (11), (12), and (13) repeatedly.

Before we begin, we recall our notation. We denote by Fn the nth Hirzebruch surface with
σ the section of self-intersection −n and f a fiber. We denote by C ⊂ PE the Tschirnhausen
embedding and by Fi ⊂ PE the fiber of PE over the marked point pi. We let P̂E be the
blow-up of PE at

⊔
iC ∩ Fi. For a curve α ∈ PE, we let α̂ ⊂ P̂E be the proper transform.
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3

3

Figure 3. In the case m = 0 and C = (1, 3), the surface X (left) is the
blow-up of a dP3 X (right). The double curve is blue, the ramification curve
is red, and the numbers are self-intersections.

We have the triple cover X̂ → P̂E branched over Ĉ and
⊔
i F̂i and the blow-down X̂ → X

along the pre-images of F̂i. We denote by α̃ the image in X of the pre-image of α̂ in X̂.
Note that α̃ may be disconnected.

Let D ⊂ X be the pre-image of a general fiber of P̂E → P1. In the central fiber described
in Proposition 6.6, the double curve is of this form. From the triviality of the canonical
bundle of the central fiber in Proposition 6.6, it follows that D ⊂ X is an anti-canonical
divisor. Since D is the pre-image of a fiber, we also have D2 = 0.

Recall that H2(X,Z)prim is isomorphic to the orthogonal complement of ⟨F̂1, . . . , F̂k⟩ in
H2(P̂E,Z). It follows that rkH2(X,Z)prim = 2 + 2k.

6.2.1. Case m = 0 and Γ = {(1, 3)}. In this case, rkH2(X,Z)ρ = 2. We have PE = F1

and C ⊂ F1 is of class 3σ+3f . The curve σ̃ ⊂ X is the disjoint union of three (−1)-curves,
which are in an orbit under ⟨ρ⟩. Let X → X be the blow-down of σ̃. Let D ⊂ X be the
image of D. Then D is an anti-canonical divisor with D

2
= 3. So X is a dP3. Using

rkH2(X,Z)ρ = 2 and (12), we get

rkH2(X,Z)ρ = 1 and H2(X,Z)prim = A2 ⊕H2(X,Z)prim.

Finally, using (13), we get H2(X,Z)prim = ⟨KX⟩⊥, which is E6 since X is a dP3.
In this case, C̃ ⊂ X is nef. It is zero only on the three −1 curves contracted by X → X.

See Figure 3 for a sketch of X (left), X (right), D (blue), and C (red).

6.2.2. Case m = 0 and Γ = {(0, 1), (2, 2)}. In this case, rkH2(X,Z)ρ = 2. We have
PE = F3 and C ⊂ F3 is the disjoint union of σ and a curve Q of class 2σ + 6f . The
curve σ̃ ⊂ X is a ρ-fixed (−1)-curve. Let X → X be its blow-down. Let D ⊂ X be the
image of D. Then D is an anti-canonical divisor with D

2
= 1. So X is a dP1. Using

rkH2(X,Z)ρ = 2 and (11), we get

rkH2(X,Z)ρ = 1 and H2(X,Z)prim = H2(X,Z)prim.

Finally, using (13), we get H2(X,Z)prim =
〈
KX

〉⊥, which is E8 since X is a dP1.
In this case, σ̃ is not nef. But Q̃ is nef and it is zero only on σ̃. See Figure 4 for a sketch

of X (left), X (right), D (blue), and C (red).
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1

4

Figure 4. In the case m = 0 and C = (0, 1)⊔ (2, 2), the surface X (left) is
the blow-up of a dP1 X (right). The double curve is blue, the ramification
curve is red, and the numbers indicate self-intersections.

9

1

Figure 5. In the case m = 1 and C = (0, 3), the surface X (left) is the
blow-up of P2 (right). The double curve is blue, the ramification curve is
red, and the numbers indicate self-intersections.

6.2.3. Case m = 1 and Γ = {(0, 3)}. In this case, rkH2(X,Z)ρ = 4. We have PE = P1×P1

and C ⊂ PE is a curve of class 3σ + f . Let c1, c2, c3 be the three points of C ∩ F1. For
i = 1, 2, 3, let Li ⊂ PE be the curve of class σ through pi. Then L̃i ⊂ X is a disjoint union
of three (−1)-curves that form an orbit under ⟨ρ⟩. Let X → X be the blow-down of all L̃i
for i = 1, 2, 3. Let D ⊂ X be the image of D. Then D is an anti-canonical divisor with
D

2
= 9. It follows that X ≃ P2. Using (12), we get

H2(X,Z)prim = A⊕3
2 ⊕H2(X,Z)prim.

But since X ≃ P2, we have H2(X,Z)prim = ⟨KX⟩⊥ = 0. So H2(X,Z)prim = A⊕3
2 .

Note that C̃ is disjoint from L̃i for all i = 1, 2, 3 and C̃2 = 1; therefore, the image of C̃ in
X ≃ P2 is a line. This in turn implies that C̃ is nef. See Figure 5 for a sketch of X (left),
X (right), D (blue), and C (red).

6.2.4. Case m = 1 and Γ = {(0, 1), (1, 2)}. In this case, rkH2(X,Z)ρ = 4. We have
PE = F2 and C ⊂ PE is the disjoint union of σ and a curve Q of class 2σ + 4f . Let
c1 = F ∩ σ and let c2 be one of the two points of Q ∩ F . For i = 1, 2, let ϵi ⊂ P̂E be the
exceptional divisor over ci.

On X, the curves σ̃, ϵ̃1, and ϵ̃2 form a chain of ρ-invariant smooth rational curves of
self-intersections −1,−2,−2. Let X → X be the blow-down of this chain. Let D ⊂ X be
the image of D. Then D is an anti-canonical divisor with D

2
= 3. So X is a dP3. Using

that rkH2(X,Z)ρ = 4 and (11) three times, we get

rkH2(X,Z)ρ = 1 and H2(X,Z)prim = H2(X,Z)prim.

Using (13), we get H2(X,Z)prim = ⟨KX⟩⊥, which is E6 since X is a dP3.
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Figure 6. In the case m = 1 and C = (0, 1)⊔ (1, 2), the surface X (left) is
the blow-up of a dP3 X (right). The double curve is blue, the ramification
curve is red, and the numbers indicate self-intersections.

Note that σ̃ is not nef. But Q̃ is nef, and it is zero only on σ̃ and the middle curve in
the chain. See Figure 6 for a sketch of X (left), X (right), D (blue), and C (red).

6.2.5. Case m = 2 and Γ = {(0, 1), (0, 2)}. In this case, rkH2(X,Z)ρ = 6. We have
PE = F1 and C ⊂ PE is the disjoint union of σ and a curve Q of class 2σ+2f . For i = 1, 2,
let Fi ∩ Q = {qi,1, qi,2}. For j = 1, 2, let Lj the unique curve of class σ + f through q1,2
and q2,j . Let ϵ1 ⊂ P̂E be the exceptional divisor over σ ∩ F1 and ϵ2 ⊂ P̂E the exceptional
divisor over q1,1. The curves introduced so far have the following dual graph in P̂E

σ̂ ϵ1 F̂1 ϵ2 Q̂

F̂2 L̂1 L̂2

On X, the curves σ̃, ϵ̃1, ϵ̃2 form a chain of ρ-invariant smooth rational curves of self-
intersections −1,−2,−2. For j = 1, 2, the curve L̃j is the disjoint union of three (−1)-
curves that form an orbit under ⟨ρ⟩. The curves L̃1 and L̃2 are disjoint from each other
and also from the chain σ̃, ϵ̃1, ϵ̃2. Let X → X be the blow-down of L̃1, L̃2, σ̃, ϵ̃1, and ϵ̃2.
Let D ⊂ X be the image of D ⊂ X. Then D is an anti-canonical divisor with D2

= 9. So
X ≃ P2. Using (11) and (12), we get

H2(X,Z)prim = A⊕2
2 ⊕H2(X,Z)prim.

Since X ≃ P2, we have H2(X,Z)prim = ⟨KX⟩⊥ = 0.
Note that σ̃ is not nef. But Q̃ is nef and it is zero on Q̃ itself, σ̃, the middle curve in

the chain contracted in X, and the −1 curves contracted in X. As Q̃2 = 0, Q̃ is not a big
divisor. See Figure 7 for a sketch of X (left), X (right), D (blue), and C (red).

6.2.6. Case m = 3 and Γ = {(0, 1), (0, 1), (0, 1)}. In this case, rkH2(X,Z)ρ = 8. We
have PE = P1 × P1 and C ⊂ PE is the disjoint union of three curves of class σ, say
C = C1 ⊔ C2 ⊔ C3. For i = 1, 2, 3 and j = 1, 2, 3, set qi,j = Ci ∩ Fj and let ϵi,j ⊂ P̂E be
the exceptional divisor over qi,j . Let Q ⊂ PE be the unique curve of class σ + f through
q1,2, q2,3, and q3,1. For i = 1, 2, 3, the curves Ĉi and ϵ̂i,i form a chain of ρ-invariant smooth
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Figure 7. The surface X (left) as the blow-up of P2 (right), together with
the double curve (blue) and the ramification curve (red). The numbers
indicate self-intersection.

rational curves of self-intersections −1 and −2. These three chains are mutually disjoint.
Furthermore, Q̂ is the disjoint union of three (−1)-curves that form an orbit of ⟨ρ⟩, disjoint
from Ĉi and ϵ̂i,i. Let X → X be the blow-down of the chains Ĉi and ϵ̂i,i for i = 1, 2, 3 and of
the three (−1)-curves Q̂. Let D ⊂ X be the image of D ⊂ X. Then D is an anti-canonical
divisor with D2

= 0. So X ≃ P2. Using (11) and (12), we get

H2(X,Z)prim = A2 ⊕H2(X,Z)prim.

Since X ≃ P2, we have H2(X,Z)prim = ⟨KX⟩⊥ = 0.
In this case, none of the components of C is nef in X as their self-intersections are all

equal to −1.

6.3. Periods of surfaces with an anti-canonical cycle. Fix a row in the table in
Proposition 6.10. Let m, Γ and Λ be the entries in the first, second, and third columns of
this row.

Let H be the coarse moduli space of

(ϕ : C → P, p1, . . . , pm, q)

where
• P ≃ P1;
• C is a smooth curve, not necessarily connected, and ϕ : C → P is a finite map of

degree 3; the genera of the connected components of C and their degrees over P are
given by Γ;

• p1, . . . , pm and q are pairwise distinct marked points on P over which ϕ is étale.
Let b be the degree of the branch divisor of ϕ, and observe from Proposition 6.10 that
b = 6−2m. Note that H is an example of a Hurwitz space. By standard results on Hurwitz
spaces [RW06, § 4], it follows that H is an irreducible quasi-projective variety of dimension
b+m+ 1− 3 = 4−m.

Let E be the unique elliptic curve of j-invariant 0, so that Aut(E, 0) ≃ Z/6Z. The
automorphism of E that acts by multiplication by ζ3 on the universal cover makes E a
Z[ζ3]-module.

Let X be the surface obtained from (ϕ : C → P, p1, . . . , pm) by the triple Tschirnhausen
construction pinched over p1, . . . , pm. Let D ⊂ X be the fiber of X → P over q. Then
we have an isomorphism Jac(D) ≃ E. Let σ be the automorphism on X induced by the
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triple cover construction normalised so that σ corresponds to the multiplication by ζ3 on
the universal cover of Jac(D). Via the map induced by σ, the lattice H2(X,Z)prim becomes
a Z[ζ3]-module.

In our case, the surface X is a rational surface. So we identify H2(X,Z) = Pic(X) and
think of H2(X,Z)prim as a subset of Pic(X). We have a map of Z[ζ3]-modules

ψ : H2(X,Z)prim → Jac(D)

given by
δ 7→ δ|D.

After choosing identifications of Z[ζ3]-modules H2(X,Z)prim ≃ Λ and Jac(D) ≃ E, which
are unique up to the action of the finite group Aut(Λ) × Aut(E, 0), we can think of ψ as
an element of HomZ[ζ3](Λ, E). The association (ϕ, p1, . . . , pm, q) 7→ ψ yields a regular map

Ψ: H → HomZ[ζ3](Λ, E)/Aut(Λ)×Aut(E, 0).

Proposition 6.11. The map Ψ defined above is dominant.

The proof of Proposition 6.11 follows essentially from the Torelli theorem for rational
surfaces with an anti-canonical cycle [Loo81, § 5]. We include an exposition for the lack of
a good reference.

Fix d ∈ {1, . . . , 6}. Consider the lattice I1,9−d with orthogonal basis vectors ℓ, e1, . . . , e9−d
of self-intersections 1,−1, . . . ,−1. Let Λd ⊂ I1,9−d be the orthogonal complement of 3ℓ −∑
ei. For 9−d = 3, 4, 5, 6, 7, 8, the lattice Λd is the root lattice A2⊕A1, A4, D5, E6, E7, E8,

respectively.
Let X be a smooth del Pezzo surface of degree d. Suppose X is obtained as the blow-up

of P2 at p1, . . . , p9−d. Let Ei be the exceptional divisor over pi and H the pull-back of the
hyperplane class from P2. Then we get the isomorphism

I1,9−d
∼−→ H2(X,Z) ℓ 7→ H ei 7→ [Ei]

and the induced isomorphism
Λd

∼−→ K⊥
X .

Via this isomorphism, we identify Λd and K⊥
X .

Let D ⊂ X be a smooth anti-canonical divisor. We call (X,D) an anti-canonical pair.
We have a map

ψ : K⊥
X → Jac(D) δ 7→ δ|D,

which we call the period of the pair.

Theorem 6.12. Let (X1, D1) and (X2, D2) be anti-canonical pairs with periods ψ1 and ψ2.
Suppose we are given isomorphisms D1 → D2 and K⊥

X2
→ K⊥

X1
such that the following

diagram commutes
K⊥
X1

K⊥
X2

Jac(D1) Jac(D2).

ψ1 ψ2
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Then there is a unique isomorphism (X1, D1) → (X2, D2) inducing the given isomorphisms.

Proof. Let (X,D) = (X1, D1) and fix an isomorphism K⊥
X

∼= Λd. We recall how to recon-
struct (X,D) from ψ : Λd → Jac(D) (see [McM07, § 6]). We choose an arbitrary p1 ∈ D
and for i = 1, · · · , 9− d, define pi ∈ D by

pi = p1 + ψ(ei − e1).

We take the divisor class h on D of degree 3 given by

h = ψ(ℓ− e1 − e2 − e3) + p1 + p2 + p3,

and embed D ⊂ P2 by the complete linear series |h|. Then we have a unique isomorphism
of X with the blow-up of P2 at the points p1, . . . , p9−d, compatible with K⊥

X
∼= Λd.

Considering (X,D) = (X2, D2), we likewise obtain an isomorphism of X with P2 blown
up at the same 9−d points, and hence an isomorphism (X1, D1) → (X2, D2) as required. □

We are now ready to prove Proposition 6.11.

Proof of Proposition 6.11. Note that dimH = 4−m. Observe that Λ is a free Z-module of
rank 8− 2m, and hence a free Z[ζ3]-module of rank 4−m. Therefore,

HomZ[ζ3](Λ, E) ∼= E4−m.

So the source and target of Ψ have the same dimension 4−m. Therefore, to prove that Ψ
is dominant, it suffices to prove that generic fibers of Ψ are finite.

Let (ϕ : C → P, p1, . . . , pm, q) ∈ H be generic. Let (X,D) be the anti-canonical pair
associated to it by the triple Tschirnhausen construction. Fix isomorphisms H2(X,Z)prim ∼=
Λ and Jac(D) ∼= E and let ψ : Λ → E be the period of (X,D).

Let (ϕ′ : C ′ → P ′, p′1, . . . , p
′
m, q

′) ∈ H be another point, and let (X ′, D′) be the anti-
canonical pair associated to it. Suppose (X ′, D′) also has the same period ψ.

We first show that a (Z/3Z)-equivariant isomorphism (X,D) ∼= (X ′, D′) yields an isomor-
phism (ϕ, p1, . . . , pm, q) ∼= (ϕ′, p′1, . . . , p

′
m, q

′), up to reordering p1, . . . , pm. Let ι : (X,D) →
(X ′, D′) be a (Z/3Z)-equivariant isomorphism. Since ι takes D to D′, which define elliptic
fibrations, ι induces an isomorphism P ∼= P ′ such that the diagram

X X ′

P P ′

ι

commutes, and such that P → P ′ maps q to q′. Restricting ι to the divisorial components
of the fixed loci yields an isomorphism C → C ′ compatible with P → P ′. By restricting ι
to the isolated fixed points shows that the isomorphism P → P ′ takes the marked points
p1, . . . , pm to a reordering of p′1, . . . , p′m.

To finish the proof of Proposition 6.11, it remains to show that there are finitely many
(X ′, D′) up to a (Z/3Z)-equivariant isomorphism that have the same period ψ.

The proof of Proposition 6.10 yields a (Z/3Z)-equivariant birational morphism

(X ′, D) → (X
′
, D

′
)
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where

(1) X ′ is a smooth del-Pezzo surface and D′ ⊂ X
′ is a smooth anti-canonical divisor,

(2) X ′ → X
′ is a sequence of blow-ups of points in D

′ or its proper transforms; the
center of the blow-up is either a Z/3Z fixed point or a triple of points forming an
orbit under Z/3Z,

(3) the pull-back map gives an embedding K⊥
X

′ → H2(X ′,Z)prim as a direct summand.

Let d be the degree ofX ′. Note that there are only finitely many embeddings ofK⊥
X

′ → Λ.
So, having fixed ψ : Λ → E, there are only finitely many possible periods K⊥

X
′ → E. For

d ≤ 6, Theorem 6.12 implies that there are finitely many (X
′
, D

′
) up to a (Z/3Z)-equivariant

isomorphism whose period is compatible with ψ. The only remaining possibility is d = 9, for
which the finiteness is automatic (indeed, there are only finitely many (Z/3Z)-equivariant
embeddings of E ⊂ P2).

Since there are finitely many Z/3Z fixed points on D′ ∼= E, there are only finitely many
blow-ups of X ′ in Z/3Z-fixed points of D′. The same argument applies to any further
blow-ups.

Let {p1, p2, p3} ⊂ D
′ be an orbit under Z/3Z. Let Ei be the exceptional divisor over pi

in of the blow-up of this orbit. Then we obtain an A2-summand in the primitive Picard
lattice of the blow-up spanned by [Ei]− [Ej ]. The period map sends [Ei]− [Ej ] to pi − pj .
Now, there are only finitely many embeddings A2 → Λ. So, having fixed ψ : Λ → E, there
are only finitely many possibilities for ψ([Ei] − [Ej ]). As a result, there are only finitely
many orbits {p1, p2, p3} whose blow-up has a period map compatible with ψ. Henceforth,
there are finitely many (X ′, D′) up to a (Z/3Z)-equivariant isomorphism whose period is
equal to ψ. □

6.4. Dominance of the triple Tschirnhausen map. Fix a pair (n, k) of non-negative
integers from Table 2. By [AS08, Theorem 3.3], there is a (unique upto conjugation)
ρ ∈ O(L) with Sρ = S(n, k) and Tρ = T (n, k). The moduli space Fρ of ρ-markable K3
surfaces (X,σ) is irreducible of dimension 9− n.

Set g = g(n, k) from Table 2. Let H be the moduli space of marked simply branched
triple covers (C → P, p1, . . . , pn) where

• P ∼= P1 and C is a smooth curve of genus g (except in the case (n, k) = (0, 2), where
we take C to be the disjoint union of a genus 2 curve and a copy of P ),

• p1, . . . , pn ∈ P are marked points over which ϕ is étale.

The space H is again an example of a Hurwitz space, and it is easy to see that it is
an irreducible quasi-projective variety of of dimension 9 − n. The triple Tschirnhausen
construction gives a rational map Ψ: H 99K F sep

ρ .

Proposition 6.13. In the setup above, the map Ψ is dominant. That is, for (n, k) in
Table 2, a generic K3 with an automorphism of degree 3 with n fixed points and k fixed
curves arises from the triple Tschirnhausen construction.
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Proof. We give two proofs, one direct (sketched here) and one by degeneration (Remark 6.15).
Let (X,σ) ∈ F sep

ρ be very general. Then [Tak11, Lemma 3.3] yields an elliptic fibration
π : X → P1 with n reducible fibers whose dual graph is the affine Dynkin diagram Ã2. One
checks that σ acts along the fibers of π. The quotient by σ together with the fixed locus
recovers the triple cover in its Tschirnhausen embedding. The marked points correspond
to the location of the singular fibers. □

Let H be the compactification of H by (marked) admissible covers, following [HM82].
The boundary points of H are marked triple covers (ϕ : C → P, p1, . . . , pn) where (P, brϕ+
p1 + · · · + pn) is a stable pointed rational curve and ϕ is a triple cover with admissible
ramification over the nodes of P . General points of the boundary divisors of H correspond
to P ∼= P1 ∪ P1. The map Ψ yields rational maps from H to FKSBA

ρ and Dρ/Γρ
tor

.
Let ∆ ⊂ H be a boundary divisor whose generic point t = (ϕ : C → P, p1, . . . , pn) satisfies

• ϕ is étale over the node of P = P1 ∪ P1,
• brϕ+ 2

∑
pi has degree 6 on each component of P .

LetX be the type II Kulikov surface associated to t by the triple Tschirnhausen construction
(see Proposition 6.6). Let J ⊂ Tρ be the corresponding cusp. The properties of the extended
period map (6) allows us to explicitly describe

(14) Ψ: ∆ 99K Dρ/Γρ
tor
.

Let E be the elliptic curve with an order 3 automorphism, Λ the reduced lattice of numer-
ically Cartier divisors on X (isometric to J⊥

Tρ
/J by (5)), and ψ ∈ Λprim ⊗Z[ζ3] E ≃ AJ the

period of X. Let δ be the boundary component of Dρ/Γρ
tor

corresponding to the cusp J ;
recall from Section 2.3 that δ is AJ/Γ̂J for some finite group Γ̂J . Then the map Ψ sends t
to the Γ̂J -orbit of ψ.

Proposition 6.14. In the setup above, Ψ maps ∆ dominantly onto δ ⊂ Dρ/Γρ
tor

.

Proof. Let P0, P1 be irreducible componets of P , and let q be the node of P . Call Xi the
result of triple Tschirnhausen construction on ti := (ϕi : ϕ

−1(Pi) → Pi, {p1, . . . , pn}∩Pi, q).
Then X has two irreducible components X0 and X1. Let Hi be the coarse moduli space
from Section 6.3 that contains ti. We have a generically finite rational map ∆ 99K H0×H1

that sends t to (t0, t1).
By Proposition 6.9, we have the finite index sublattice

H2(X0,Z)prim ⊕H2(X1,Z)prim ⊂ Λprim,

which induces the following isogeny

AJ ≃ HomZ[ζ3]((Λ
prim)∗, E) ↠ HomZ[ζ3](H

2(X0,Z)prim ⊕H2(X1,Z)prim, E)
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sending the period ofX to the pair of periods of anticanonical pairs (X0, D01) and (X1, D10).
So it suffices (by the isogeny above) to prove the dominance of

H0 ×H1 →
1∏
i=0

HomZ[ζ3](H
2(Xi,Z)prim, E)/Aut(H2(Xi,Z)prim)×Aut(E, 0),

which follows from Proposition 6.11. □

Remark 6.15. The dominance of Ψ on the boundary (Proposition 6.14) implies dominance
on the interior (Proposition 6.13).

7. Moduli space 1: g = 5 and (n, k) = (0, 2)

In this section, we identify the KSBA compactification of the moduli space of K3 surfaces
with a non-symplectic automorphism of order 3 with 0 isolated fixed points and 2 fixed curve
(so n = 0 and k = 2).

Let (X,σ) be a generic K3 surface with an automorphism of order 3 with n = 0 and
k = 2. From Proposition 6.13, we know that (X,σ) arises from the triple Tschirnhausen
construction applied to (ϕ : C → P1), where C = P1 ⊔ Q with Q a smooth curve of genus
5 with deg ϕ|Q = 2. Observe that, for a generic ϕ, the Tschirnhausen embedding identifies
the P1 component of C as the (−6)-section α of F6 and Q as a divisor on F6 of class 2α+6f
disjoint from α, where f is the class of a fiber of F6. The K3 surface X is simply the cyclic
triple cover of F6 branched over curves of classes α and 2α + 6f . Artebani–Sarti give the
same description using explicit equations [AS08, Proposition 4.7].

Fix an isometry of H2(X,Z) with the K3 lattice L, and let ρ be the automorphism of
L induced by σ. We recall the Hodge type of ρ from Table 2. Recall that Sρ ⊂ L is the
sub-lattice of vectors fixed by ρ and Tρ = S⊥

ρ . Choose a basis α+ 3f, f of H2(F6,Z) ≃ U .
Denoting α̃ to be the reduced preimage in X of α ∈ H2(F6,Z), notice that 3α̃ = α. As ρ
is identified with σ∗, the pull-back of the cyclic triple cover X → F6 gives an identification

Sρ = H2(F6,Z)(3)sat = U

via the generators α̃, f ∈ H2(X,Z). The lattice Tρ turns out to be

Tρ ≃ U ⊕ U ⊕ E8 ⊕ E8.

The automorphism ρ acts on the summands U ⊕U and E8 and E8. For U ⊕U , the action
is described in Section 5.2 and for E8 it is described in [CS99, Ch II § 2.6].

7.1. Baily–Borel cusps. Let F sep
ρ = (Dρ \∆ρ)/Γρ be the period domain for ρ-markable

K3 surfaces as described in Section 2.1. Recall from Theorem 5.5 that there is exactly one
cusp of Dρ/Γρ

BB
; choose a representative J ⊂ Tρ, which is a ρ-invariant isotropic plane.

As a result, the boundaries of Dρ/Γρ
tor

and Dρ/Γρ
F
= F

KSBA
ρ are irreducible. Note also

that J⊥
Tρ
/J = E2

8 by Theorem 5.5, and the ρ-action on J⊥
Tρ
/J respects the direct sum

decomposition. On each summand, up to the action of the Weyl group, it is the unique
automoprhism of order 3 that has no non-zero fixed vectors.
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2 2

Γ0,2

Figure 8. For the case n = 0 and k = 2, we consider degenerations of
triple covers whose central fibers have the dual graph shown above.

7.2. Kulikov models. We use the notation in Section 6.4. In particular, we let H be the
moduli space of triple covers ϕ : Q ⊔ P1 → P1 and H its compactification by admissible
covers. We consider the boundary divisor ∆ ⊂ H whose generic point parametrises a
degenerate triple cover with the dual graph shown in Figure 8. In this graph, the vertices
at the top represent irreducible components of C, labelled by their genus, which we omit
if it is zero. The vertices at the bottom represent irreducible components of P = P1 ∪ P1.
Edges represent nodes, and the map C → P corresponds to vertical downward projection.
Recall that C → P is unramified over the node, so there are exactly 3 nodes of C and they
map to the unique node of P . The degree of each component of C over the corresponding
component of P is simply the number of edges incident to the corresponding vertex.

The extended period map from H to the Baily–Borel compactification maps ∆ to the
unique cusp. The map to the toroidal compactification maps ∆ dominantly onto the bound-
ary divisor over the cusp (Proposition 6.14).

7.3. Stable models and the KSBA semifan. We now identify the KSBA semifan F

that gives the KSBA compactification F
KSBA
ρ . For the cusp of Dρ/Γρ

BB
corresponding to

an isotropic rank 2 sublattice J ⊂ Tρ, we must specify a sublattice FJ ⊂ J⊥
Tρ
/J .

Theorem 7.1. The space FKSBA
ρ is isomorphic to the semi-toroidal compactification for

the following semifan F = {0}. In other words, FKSBA
ρ ≃ Dρ/Γρ

tor
.

We first explain the strategy to prove Theorem 7.1 and analogous theorems that follow.
Let δ ⊂ Dρ/Γρ

tor
be the divisor lying over the unique cusp corresponding to J ⊂ Tρ.

Denoting by E the elliptic curve with an order 3 automorphism, we know that δ is a
quotient of AJ = J⊥

Tρ
/J ⊗Z[ζ3] E (see Section 2.3 and Section 3.3). The sublattice FJ is

characterised by the property that the translates of FJ ⊗Z[ζ3]E ⊂ AJ are contracted by (9).
The divisor ∆ ⊂ H maps dominantly onto δ.

Strategy for finding the KSBA semifan.
(S1) Take a generic point of ∆. Let ψ ∈ AJ be the period point of X.
(S2) Find the KSBA stable limit of a one-parameter family of pairs degenerating to

(X,R). The stable limit gives the image of ψ in FKSBA
ρ .
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(S3) Identify when two period points ψ lead to the same stable limit, and thus identify
the sub-lattice FJ ⊂ J⊥

Tρ
/J .

The key step in the strategy is (S2). We observe that (X, ϵR) is not KSBA stable when
R is not ample on X. In this case, we modify (X,R) by a sequence of

(1) M1 modifications so that R becomes nef, and then
(2) curve contractions so that R becomes ample.

Proof of Theorem 7.1. We execute the strategy outlined above. Let ϕ : C = P ⊔ Q → P
be a generic point of ∆. Write P = P0 ∪ P1 and Q = Q0 ∪ Q1 such that Pj ⊔ Qj maps
to Pj . Let X be the associated type II surface and R ⊂ X the genus 5 component of the
fixed divisor of σ. Note that R is a copy of Q. Write X = X0 ∪X1 and R = R0 ∪R1 with
Rj ⊂ Xj .

Observe that for every i = 0, 1, the curve Ri = Qi is smooth of genus 2 and Pi ≃ P1.
From Section 6.2.2, we know that Xi is the blow up of Xi, which is a dP1, in a (Z/3Z)-fixed
point; the exceptional divisor of this blowup is Pi ⊂ Xi. The curve Ri = Qi is big and nef
on Xi, and is disjoint from the exceptional divisor Pi of the blowup. On Xi, the image of Ri
is anti-canonical, and hence ample. Therefore, the KSBA stable surface associated to X is
X = X0 ∪X1 (see Figure 9). Observe that (up to a finite choice), the (Z/3Z)-isomorphism
class of X and X is determined by the (Z/3Z)-isomorphism classes of the anti-canonical
pairs (X0, D) and (X1, D). It follows that stabilization map has finite fibers, so FJ = 0.

□

Figure 9. The stable model is obtained by contracting (Z/3Z)-fixed (−1)-
curves on each component (dashed blue) disjoint from the divisor R (red).
The image of contracted curves is a single Z/3Z-fixed point (blue dot) of
the double curve of X, which is the unique isolated Z/3Z-fixed point of X.

8. Moduli space 2: g = 4 and (n, k) = (0, 1)

In this section, we identify the KSBA compactification of the moduli space of K3 surfaces
with a non-symplectic automorphism of order 3 with 0 isolated fixed points and 1 fixed curve
(so n = 0 and k = 1).

Let (X,σ) be a generic K3 surface with an automorphism of order 3 with n = 0 and
k = 1. From Proposition 6.13, we know that (X,σ) arises from the triple Tschirnhausen
construction applied to (ϕ : C → P1), where C is a smooth curve of genus 4. Observe that,
for a generic ϕ, the Tschirnhausen embedding identifies C as a divisor on P1 × P1 of class
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Figure 10. The dual graphs of the admissible covers that give Kulikov
degenerations in the case n = 0 and k = 1.

(3, 3). Therefore, X is simply the triple cover of P1×P1 branched over a curve of class (3, 3).
Artebani–Sarti give the same description using explicit equations [AS08, Proposition 4.7].

Fix an isometry of H2(X,Z) with the K3 lattice L, and let ρ be the automorphism of L
induced by σ. We recall the Hodge type of ρ from Table 2 (also see [Kon02, § 2]). Recall
that Sρ ⊂ L is the sub-lattice of vectors fixed by ρ and Tρ = S⊥

ρ . As ρ is identified with
σ∗, the pull-back of the cyclic triple cover X → P1 × P1 gives an identification

Sρ = H2(P1 × P1,Z)(3) = U(3).

The lattice Tρ turns out to be

Tρ ≃ U ⊕ U(3)⊕ E8 ⊕ E8.

The automorphism ρ acts on the summands U ⊕ U(3) and E8 and E8. For U ⊕ U(3), the
action is described in Section 5.2 and for E8 it is described in [CS99, Ch II § 2.6].

8.1. Baily–Borel cusps. Let F sep
ρ = (Dρ\∆ρ)/Γρ be the period domain for ρ-markable K3

surfaces as described in Section 2.1. From [CMJL12, Theorem 5.9], see also Theorem 5.5,
the cusps of Dρ/Γρ

BB
are classified by the root sublattices of J⊥

Tρ
/J , which is one of

(1) E⊕2
6 ⊕A⊕2

2 ,
(2) E8 ⊕ E6 ⊕A2, or
(3) E⊕2

8 .
The ρ-action on J⊥

Tρ
/J respects the direct sum decomposition of the root sublattice

[CMJL12, Lemma 5.5]. On each summand, up to the action of the Weyl group, it is the
unique automoprhism of order 3 that has no non-zero fixed vectors.

8.2. Kulikov models. We use the notation in Section 6.4. In particular, we let H be the
moduli space of triple covers ϕ : C → P1 where C is a smooth genus 4 curve and H its
compactification by admissible covers. For i = 1, 2, 3, we consider the boundary divisors
∆i ⊂ H whose generic point parametrise a degenerate triple cover with the dual graphs Γi
shown in Figure 10.

Proposition 8.1. The extended period map H 99K Dρ/Γρ
BB

maps ∆i to the i-th cusp in
Section 8.1.
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Proof. The generic point of ∆i corresponds to a Kulikov surface X = X0∪X1 and a 2-plane
J ⊂ Tρ. Let Λ be the reduced lattice of numerically Cartier divisors on X. By (5), we have
an isometry

(15) Λprim ≃ J⊥
Tρ/J.

Proposition 6.9 implies that the root sub-lattice of Λprim is the direct sum of the root
sublattices of the lattices Λ0 and Λi associated to X0 and X1. Proposition 6.10 identifies
these lattices. As a result, we see that the root sublattice of J⊥

Tρ
/J is:

(1) for i = 1, the direct sum of two copies of E6 ⊕A2,
(2) for i = 2, the direct sum of E8 and E6 ⊕A2, and
(3) for i = 3, the direct sum of two copies of E8.

The statement follows. □

8.3. Stable models and the KSBA semifan. We now identify the KSBA semifan F

that gives the KSBA compactification FKSBA
ρ . For each cusp of Dρ/Γρ

BB
corresponding to

an isotropic rank 2 lattice J ⊂ Tρ, we must specify a sublattice FJ ⊂ J⊥
Tρ
/J . We use the

superscript root to denote the root sublattice of a lattice and the superscript sat to denote
the saturation of a sub-lattice in an ambient lattice.

Theorem 8.2. The space FKSBA
ρ is isomorphic to the semi-toroidal compactification for

the following semisfan FJ :

FJ =


⟨A⊕2

2 ⟩sat for the cusp with (J⊥
Tρ
/J)root = E⊕2

6 ⊕A⊕2
2

⟨A2⟩sat for the cusp with (J⊥
Tρ
/J)root = E8 ⊕ E6 ⊕A2

0 for the cusp with (J⊥
Tρ
/J)root = E⊕2

8 .

We devote the rest of Section 8.3 to the proof of Theorem 8.2. For i = 1, 2, 3, let
δi ⊂ Dρ/Γρ

tor
is the divisor lying over the i-th cusp. Let J = Ji ⊂ Tρ be the rank 2

isotropic sublattice corresponding to this cusp. For each i, we follow the strategy outlined
in Section 7.3. We let ϕ : C0 ∪ C1 → P0 ∪ P1 be the degenerate triple cover corresponding
to a generic point of ∆i and X = X0 ∪X1 the associated Kulikov surface. In this case, we
have R = C ⊂ X; write R = R0 ∪R1 with Ri ⊂ Xi.

8.3.1. The case i = 1. In this case, both C0 and C1 are smooth curves of genus 1. From
Section 6.2.1, we know that Xj is the blow up of Xj , which is a dP3, in three points that
form a (Z/3Z)-orbit. The curve Rj is big and nef and disjoint from the exceptional divisors
of the blow-up. On Xj , the image of Rj is anti-canonical, and hence ample. Therefore, the
KSBA stable surface associated to X is X = X0∪X1 (see Figure 11). Observe that (up to a
finite choice), the (Z/3Z)-isomorphism class of X is determined by the (Z/3Z)-isomorphism
classes of the anti-canonical pairs (X0, D) and (X1, D).

We identify A2 ⊕ E6 with H2(Xj ,Z)prim following Proposition 6.10. We then get an
identification

A⊕2
2 ⊕ E⊕2

6 = H2(X0,Z)prim ⊕H2(X1,Z)prim.
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Figure 11. The stable model in the case i = 1 is obtained by contracting a
(Z/3Z)-orbit of (−1)-curves on each component (dashed) disjoint from the
divisor (red).

For j = 0, 1, let ψj be the restriction of the period point ψ of X to the first and the second
E6-summand. Then ψj is simply the period point of the anti-canonical pair (Xj , D). By
the Torelli theorem for anti-canonical del Pezzo pairs (Theorem 6.12), we conclude that
two Kulikov surface X and X ′ whose periods ψ and ψ′ agree on the E6 summands have
isomorphic stable models (possibly up to a finite choice). Therefore, the map ∆1 99K F

KSBA
ρ

contracts precisely the traslates of A⊕2
2 ⊗Z[ζ3]E ⊂ AJ . We conclude that FJ ⊂ J⊥

Tρ
/J is the

saturation of the A⊕2
2 summand.

8.3.2. The case i = 2. In this case, C0 = P0 ⊔Q0, where Q0 is smooth of genus 2, and C1

is irreducible of genus 1. From Section 6.2.2, we know that X0 is the blow up of X0, which
is a dP1, in a (Z/3Z)-fixed point. From Section 6.2.1, we know that X1 is the blow-up of
X1, which is a dP3, in three points that form a (Z/3Z)-orbit.

Note that R0 = P0+Q0 is negative on P0 ⊂ X0. Let D = X0∩X1 be the double curve of
X. We perform an M1 modification on X by contracting P0 ⊂ X0 and blowing-up P0 ∩D
on X1. Call the resulting surface X ′ = X ′

0 ∪X ′
1 and let R′ ⊂ X ′ be the proper transform

of R. Then R′ ⊂ X ′ is nef and trivial only on the exceptional divisors of X1 → X1 (which
are unaffected by the M1 modification). Let X ′

1 → X
′
1 be the contraction of these three

−1 curves. Let X ′
0 = X ′

0. Then X
′
= X

′
0 ∪ X

′
1 is the stable model (see Figure 12).

Note that (up to a finite choice) the (Z/3Z)-isomorphism class of X ′ is determined by the
(Z/3Z)-isomorphism classes of the anti-canonical pairs (X

′
0, D) and (X1, D).

Figure 12. The stable model in the case i = 2 is obtained by an M1 mod-
ification along a (−1)-curve on the left (dashed red) followed by contracting
a (Z/3Z)-orbit of (−1)-curves on the right (dashed). The divisor is shown
in red (dashed and solid).
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We identify E8 with H2(X0,Z)prim and E6 ⊕ A2 with H2(X1,Z)prim following Proposi-
tion 6.10. We then get an identification

E8 ⊕ E6 ⊕A2 = H2(X0,Z)prim ⊕H2(X1,Z)prim.

Let ψ be the period point of X. Then ψ induces a homomorphism

ψ : E8 ⊕ E6 ⊕A2 → E

The restriction E8 → E is the period of the pair (X
′
0, D) and the restriction E6 → E

is the period of the pair (X1, D). By the Torelli theorem for anti-canonical del Pezzo
pairs (Theorem 6.12), we conclude that two Kulikov surface X and X ′ whose periods ψ
and ψ′ agree on the E8 and E6 summands have isomorphic stable models (possibly up
to a finite choice). Therefore, the map ∆2 99K F

KSBA
ρ contracts precisely the traslates of

A2 ⊗Z[ζ3] E ⊂ AJ . We conclude that FJ ⊂ J⊥
Tρ
/J is the saturation of the A2 summand.

8.3.3. The case i = 3. In this case, Cj = Pj ∪ Qj , where Qj is smooth of genus 2. From
Section 6.2.2, we know that Xj is the blow up of Xj , which is a dP1, in a (Z/3Z)-fixed
point.

Note that Rj = Pj + Qj is not nef on Xj . Let D = X0 ∩ X1 be the double curve of
X. We perform two M1 modifications: contract P0 ⊂ X0 and blow-up P0 ∩D on X1 and
likewise conract P1 ⊂ X1 and blow-up P1 ∩D on X0. Let X ′ = X ′

0 ∪X ′
1 be the resulting

surface and R′ ⊂ X ′ the proper transform of R. Then R′ is ample on X ′ and X ′ is the
stable model (see Figure 13). Up to a finite choice, the (Z/3Z)-isomorphism class of X ′ is
determined by the (Z/3Z)-isomorphism classes of the pairs (X0, D) and (X1, D). It follows
that no translates in E⊕2

8 ⊗Z[ζ3] E = AJ are contracted by ∆3 99K F
KSBA
ρ . We conclude

that FJ = 0.

Figure 13. The stable model in the case i = 3 is obtained by M1 modifi-
cations along the (−1)-curves on the left and the right (dashed red). The
divisor is shown in red (dashed and solid).

Conclusion of the proof of Theorem 8.2. Having settled the cases of the three cusps in Sec-
tion 8.3.1, Section 8.3.2, and Section 8.3.3, the proof of Theorem 8.2 is complete. □
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8.4. Connection with the moduli space of stable log quadrics. Fix a small positive
number ϵ. Let Yρ be the KSBA compactification of weighted pairs (Y, (23 + ϵ)B) where
Y ≃ P1 × P1, and B ⊂ Y is a curve of bi-degree (3, 3). We call Yρ the space of stable
log quadrics. By Theorem 2.3, the map X 7→ X/σ induces an isomorphism F

KSBA
ρ → Yρ.

The geometry of Yρ is described in detail in [DH21]. In particular, we know that Yρ is the
coarse space of a smooth stack, and hence already normal.

A Zariski open subset of Yρ parametrises (Y,B) whose triple cover X is either a smooth
K3 surface or a type I degeneration. There are three disjoint irreducible Zariski closed
subsets of Yρ where the triple covers come from type II degenerations. These map to the
three cusps of D/Γρ

BB
. We recall their description.

Proposition 8.3. The locus of points (Y,B) of Yρ with reducible Y is the union of three
irreducible components Z1, Z2, Z3 of dimension 6, 7, and 8, respectively. Their generic
points correspond to the following (Y,B).
Z1: Y = P2 ∪ P2 glued along a line and B = E0 ∪ E1 where Ei ⊂ P2 are cubic curves.
Z2: Y = T ∪ P(3, 1, 1), where T is the Q-Gorenstein smoothing of the A1-singularity of

P(3, 1, 2). In this case, B = E∪C1 where E ⊂ T is an elliptic curve, C1 ⊂ P(3, 1, 1)
is a genus 2 curve with OP(3,1,1)(C1) = OP(3,1,1)(2), and E ∩ C1 consists of two
distinct points.

Z3: Y is the coarse space of P(O(4/3, 5/3)⊕ O(5/3, 4/3)) over an orbinodal curve P with
two irreducible components glued along a node of stabilizer group µ3. The restriction
of B to the two components of Y are smooth curves of genus 2 which intersect the
double curve transversally at a single non-Weierstrass point.

Proof. Follows from the description of the points of Yρ given in [DH21, Table 1]. □

We now determine which Zi map to which cusp.

Theorem 8.4. Enumerate the cusps as in Section 8.1. Then the map Yρ → Dρ/Γρ
BB

sends Zi to the i-th cusp.

Proof. We use the same Hurwitz space H, but its compactification H as the moduli space
of weighted admissible covers, where we assign weight 1/6 + ϵ to every branch point. This
space was constructed in [Deo14] and used extensively in [DH21]. By [DH21, Theorem 3],
we have a regular surjective morphism

H → Yρ.

From [DH21, Table 1], we see that Zi is the image of the boundary divisor of H correspond-
ing to the dual graph Γi. The statement now follows from Proposition 8.1. □

9. Moduli space 3: g = 3 and (n, k) = (1, 1)

In this section, we identify the KSBA compactification ofthe moduli space of K3 surfaces
with a non-symplectic automorphism of order 3 with 1 isolated fixed points and 1 fixed
curve (so n = 1 and k = 1).
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Let (X,σ) be generic K3 surface with an automorphism of order 3 with n = 1 and k = 1.
From Proposition 6.13, we know that (X,σ) arises from the pinched triple Tschirnhausen
construction applied to (ϕ : C → P1, p), where C is a smooth curve of genus 3. For a
generic ϕ, the Tschirnhausen embedding identifies C as a divisor in F1 of class 3σ + 4f .
In the literature, there are two other explicit constructions of X: [AS08, Proposition 4.9]
and [MOT15, Example 4.10], both of which are equivalent to our construction.

Fix an isometry of H2(X,Z) with the K3 lattice L and let ρ be the automorphism of L
induced by σ. We recall the Hodge type of ρ from Table 2. The lattice Sρ ⊂ H2(X,Z) of
ρ-fixed vectors is given by

Sρ = U(3)⊕A2.

Its orthogonal complement Tρ is

Tρ = U ⊕ U(3)⊕ E6 ⊕ E8.

The automorphism ρ acts on the U ⊕ U(3) summand as described in Section 5.2, and on
the E6 and E8 summands by the unique order 3 automorphism without non-zero fixed
vectors [CS99, Ch II § 2.6].

Remark 9.1. We describe a basis for Sρ = U(3)⊕ A2. Let F̂1 be the blow-up of F1 at the
three points of C over p. Recall that X is obtained by taking a normalised triple cover of
F1 and then blowing down the pre-image of the proper transform of the fiber over p. Let
σ ⊂ F̂1 be the directrix of F1 and let E1, E2, E3 ⊂ F̂1 be the exceptional divisors of the
blow-up. For a curve α ⊂ F̂1, use α̃ to denote the image in X of the pre-image of α in the
triple cover. Then

Sρ = ⟨σ̃, Ẽ1, Ẽ2, Ẽ3⟩.

Set e = Ẽ1 + Ẽ2 + Ẽ3 and f = σ̃+ Ẽ1 + Ẽ2. Then e2 = f2 = 0 and e · f = 3. Changing the
basis of Sρ to (e, f, Ẽ1, Ẽ2) gives an isomorphism Sρ ∼= U(3)⊕A2.

9.1. Baily–Borel cusps. Let F sep
ρ = (Dρ \∆ρ) /Γρ be the period domain for ρ-markable

K3 surfaces as described in Section 2.1. Recall from Theorem 5.5, the classification of cusps
for the Baily–Borel compactification Dρ/Γρ

BB
by the root sublattice of J⊥

Tρ
/J , which is one

of:
(1) E6 ⊕A⊕4

2 ,
(2) E8 ⊕A⊕3

2 ,
(3) E⊕2

6 ⊕A2,
(4) E8 ⊕ E6.

9.2. Kulikov models. We use the notation in Section 6.4. In particular, we let H be the
moduli space of marked triple covers (ϕ : C → P1, p) where C is a smooth genus 3 curve
and ϕ is étale over p. Let H be its compactification by marked admissible covers. For
i = 1, . . . , 4, we consider the boundary divisor ∆i ⊂ H whose generic point parametrizes a
degenerate triple cover with the dual graph Γi shown in Figure 14 (we indicate the marked
point p by a half edge).



44 VALERY ALEXEEV, ANAND DEOPURKAR, AND CHANGHO HAN

1

Γ1

2

Γ2

1
1

Γ3

1

2

Γ4

Figure 14. The dual graphs of the admissible covers that give Kulikov
degenerations in the case n = 1 and k = 1.

Proposition 9.2. The extended period map H 99K Dρ/Γρ
BB

maps ∆i to the i-th cusp in
Section 9.1.

Proof. The proof is analogous to the proof of Proposition 8.1, based on the calculation of
the primitive Picard lattices in Proposition 6.10. □

9.3. Stable models and the KSBA semifan. We now identify the KSBA semifan F

that gives the KSBA compactification FKSBA
ρ . We follow the notation of Theorem 8.2.

Theorem 9.3. The space FKSBA
ρ is isomorphic to the semi-toroidal compactification for

the following semisfan FJ :

FJ =


⟨A⊕4

2 ⟩sat for the cusp with (J⊥
Tρ
/J)root = E6 ⊕A⊕4

2

⟨A⊕3
2 ⟩sat for the cusp with (J⊥

Tρ
/J)root = E8 ⊕A⊕3

2

⟨A2⟩sat for the cusp with (J⊥
Tρ
/J)root = E⊕2

6 ⊕A2

0 for the cusp with (J⊥
Tρ
/J)root = E8 ⊕ E6.

We devote the rest of Section 9.3 to the proof of Theorem 9.3. We use notation analogous
to that introduced after Theorem 8.2.

9.3.1. The case i = 1. In this case, C0 and C1 are smooth curves of genus 1 and 0, respec-
tively. From Section 6.2.1, we recall that X0 is the blow-up of X0, a dP3, in 3 points of a
(Z/3Z)-orbit. From Section 6.2.3, we recall that X1 is the blow-up of X1 = P2 in 9 points
of three (Z/3Z)-orbits. We also recall that R0 ⊂ X0 is nef and it is trivial precisely on the
exceptional curves of X0 → X0. Similarly, R1 ⊂ X1 is also nef and it is trivial precisely
on the exceptional curves of X1 → X1. Therefore, X = X0 ∪X1 is the stable model (see
Figure 15). By the Torelli theorem for anti-canonical pairs, the moduli of X is determined
(possibly up to a finite choice) by the restriction of ψ to the E6-summand. It follows that
the translates of A⊕4

2 ⊗Z[ζ3] E ⊂ AJ are contracted in F
KSBA
ρ . Therefore, FJ ⊂ J⊥

Tρ
/J is

the saturation of the A⊕4
2 summand.



COMPACT MODULI OF K3 SURFACES WITH A NONSYMPLECTIC AUTOMORPHISM 45

Figure 15. The stable model in the case i = 1 is obtained by contracting
a (Z/3Z)-orbit of (−1)-curves on the left (dashed) and three such (Z/3Z)-
orbits on the right (dashed). All are disjoint from the divisor (red).

9.3.2. The case i = 2. In this case, C0 = P0 ⊔Q0, where Q0 is a smooth curve of genus 2,
and C1 is a smooth curve of genus 0. From Section 6.2.2, we know that X0 is the blow-up
X0, which is a dP1, in a (Z/3Z)-fixed point. From Section 6.2.3, we know that X1 is the
blow-up of X1

∼= P2 in 9 points which form three (Z/3Z)-orbits. The divisor R0 ⊂ X0

is negative on P0, which is a (−1)-curve on X0. The divisor R1 ⊂ X1 is nef (and has
self-intersection 1).

We perform an M1 modification along P0, obtaining X ′ = X ′
0 ∪X ′

1. Let R′ ⊂ X ′ be the
proper transform of R. Then R′ is nef, so we obtain the stable model by taking the image
of X ′ under the map given by (large multiples of) R′.

Finding the stable image is a bit subtle. The divisor R′
0 ⊂ X ′

0 = X0 is ample. But the
divisor R′

1 ⊂ X ′
1 is nef but not big. Indeed, its self intersection is 0. It induces a contraction

X ′
1 → P1, which restricts to a degree 2 morphism on the double curve D = X ′

0∩X ′
1. Hence,

the entire component X ′
1 is contracted to a curve in the stable model. Owing to the

contraction of X ′
1, the points in the fiber of the degree 2 map D → P1 are identified in

the stable image. The stable image is thus a non-normal surface X, whose normalisation
is X ′

0 = X0; the map X0 → X is an isomorphism away from D, but it folds D to a P1 by
a degree 2 map (see Figure 16). The smooth curve R′

0 of genus 2 maps to a nodal curve of
arithmetic genus 2 on X; its two intersection points with D are identified to form a node.

Figure 16. The stable model in the case i = 2 is obtained by an M1 modi-
fication along a (−1)-curve on the left (dashed red) followed by a morphism
that contrats the entire right-hand component, and folds the double curve
into a P1, resulting in a non-normal surface.
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By the Torelli theorem for anti-canonical pairs (Theorem 6.12), the isomorphism class of
the stable model is equivalent (up to a finite choice) to the isomorphism class of the anti-
canonical pair (X0, D), whose period is the restriction of ψ to the E8-summand. It follows
that translates of A⊕3

2 ⊗Z[ζ3] E ⊂ AJ are contracted in F
KSBA
ρ . Therefore, FJ ⊂ J⊥

Tρ
/J is

the saturation of the A⊕3
2 summand.

9.3.3. The case i = 3. In this case, C0 is a smooth curve of genus 1 and C1 = P1 ∪ Q1,
where Q1 is a smooth curve of genus 1. From Section 6.2.1, we know that X0 is the blow
up of X0, which is a dP3, in 3 points forming a (Z/3Z)-orbit. From Section 6.2.4, we know
that X1 is the blow up of X1, which is a dP3. The exceptional locus of the blow-up is a
(−1,−2,−2)-chain of which the first curve is P1. Let E1 and E2 be the next two curves.
The divisor R1 ⊂ X1 is negative on P1. We do an M1 modification of X along P1, obtaining
X ′ = X ′

0∪X ′
1. The proper transform R′ ⊂ X ′ is nef and trivial on the exceptional divisors of

X0 → X0 (which are unaffected by the M1 modification) and on the image E′
1 of E1, which

is now a (−1)-curve. Contracting these (−1)-curves gives the stable model X ′
= X

′
0 ∪X

′
1

(see Figure 17).

Figure 17. The stable model in the case i = 3 is obtained by an M1 modifi-
cation along a (−1)-curve on the right (dashed red) followed by contracting a
(−1)-curve on the right (dashed) and three (−1)-curves on the left (dashed).
The divisor is shown in red (dashed and solid).

By the Torelli theorem for anti-canonical pairs (Theorem 6.12), the moduli of the stable
model is determined (possibly up to a finite choice) by the restriction of ψ to the E6-
summands. It follows that the translates of A2⊗Z[ζ3]E are contracted in FKSBA

ρ . Therefore,
FJ ⊂ J⊥

Tρ
/J is the saturation of the A2 summand.

9.3.4. The case i = 4. In this case, C0 = P0 ⊔Q0 and C1 = P1 ⊔Q1, where Q0 is a smooth
curve of genus 2 and Q1 is a smooth curve of genus 1. From Section 6.2.2, we know that
X0 is the blow-up of X0, which is a dP1, in a (Z/3Z)-fixed point. From Section 6.2.4, we
know that X1 is the blow-up of X1, which is a dP3, with an exceptional divisor forming a
(−1,−2,−2)-chain of which the first curve is P1. The divisor R0 is negative on P0 and R1

is negative on P1. We perform M1 modifications along P0 and P1, obtaining X ′ = X ′
0∪X ′

1.
Let R′ be the proper transform of R. Then R′ ⊂ X ′ is nef, and zero only on the image of
the middle curve in the (−1,−2,−2)-chain, which is now a (−1)-curve. Contracting this
curve gives the stable model X ′

= X
′
0 ∪ X

′
1 (see Figure 18). By the Torelli theorem for
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Figure 18. The stable model in the case i = 4 is obtained by M1 modifica-
tions along the (−1)-curves on the left and the right (dashed red) followed
by the contraction of a (−1)-curve on the right (dashed). The divisor is
shown in red (dashed and solid).

anti-canonical pairs (Theorem 6.12), the moduli of the stable model is determined by ψ.
So there is no contraction while mapping to FKSBA

ρ and we get FJ = 0.

Conclusion of the proof of Theorem 9.3. Having settled the cases of the four cusps in Sec-
tion 9.3.1, Section 9.3.2, Section 9.3.3, and Section 9.3.4, the proof of Theorem 9.3 is
complete. □

10. Moduli space 4: g = 2 and (n, k) = (2, 1)

In this section, we identify the KSBA compactification ofthe moduli space of K3 surfaces
with a non-symplectic automorphism of order 3 with 2 isolated fixed points and 1 fixed
curve (so n = 2 and k = 1).

Let (X,σ) be generic K3 surface with an automorphism of order 3 with n = 2 and k = 1.
From Proposition 6.13, we know that (X,σ) arises from the pinched triple Tschirnhausen
construction applied to (ϕ : C → P1, p1, p2), where C is a smooth curve of genus 2. For a
generic ϕ, the Tschirnhausen embedding identifies C as a divisor in P1 × P1 of class (3, 2).

Remark 10.1. In [AS08, Proposition 4.11], Artebani–Sarti give explicit projective equations
for X. It is the double cover of P2 branched along a smooth plane sextic of the form

(16) F6(x0, x1) + F3(x0, x1)x
3
2 + bx62,

where Fi is a generic form of degree i. We now reconcile this description with ours. Consider
the P(1, 1, 3) obtained by taking the quotient of P2 by the order 3 automorphism

[x0 : x1 : x2] 7→ [x0 : x1 : ζ3x2].

Let h be the positive generator of the Weil divisor class group of P(1, 1, 3). Then the
cubic (16) is the pull-back of a curve of class 6h. The branch divisor of the triple cover
P2 → P(1, 1, 3) is of class 3h. We have the diagram

X
2:1−−→ P2 3:1−−→ P(1, 1, 3).

We swap the triple and double covers (see Figure 19 for reference). Let Y be the double
cover of P(1, 1, 3) branched along a curve of class 6h. Then X is the triple cover of Y
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branched along a curve that is the pull-back of a curve of class 3h; that is,

X
3:1−−→ Y

2:1−−→ P(1, 1, 3).
To understand Y , let F3 → P(1, 1, 3) be the minimal resolution of the 1

3(1, 1) singularity.
Observe that the pull-back of the Cartier divisor 3h to F3 is σ+3f . Set Ỹ = F3×P(1,1,3) Y .
Then Ỹ → F3 is a double cover branched along a curve B ⊂ F3 of class 2σ+ 6f (the curve
B is drawn in red in Figure 19). The surface Ỹ contains two disjoint −3 curves, say σ̃1 and
σ̃2; these are the pre-images of the directrix σ ⊂ F3. The map Ỹ → Y contracts them. The
curve B is hyperelliptic of genus 2; its projection B → P1 has 6 branch points. Therefore,
the composite Ỹ → F3 → P1 is generically a P1-bundle with 6 nodal fibers of the form
P1 ∪ P1. Let L ⊂ P(1, 1, 3) be a general curve of class 3h . Then its pre-image in F3 is
a general curve of class σ + 3f (drawn in blue in Figure 19). It intersects B in 6 points
(distinct from the 6 Weierstrass points of B). The pre-image C̃ of L in Ỹ (also blue) is a
hyperelliptic curve of genus 2, which is disjoint from the nodes of the 6 reducible fibers of
Ỹ → P1. Contract a rational component of each of the 6 reducible fibers of Ỹ → P1 so that
three of the contracted components meet σ̃1 and three meet σ̃2 (drawn as dashed lines in
Figure 19). For i = 1, 2, let σi be the images of σ̃i. Observe that the contracted surface is
a P1-bundle over P1 with sections σi satisfying σ2i = 0. Therefore, it is P1 × P1. The image
of C of C̃ in P1 × P1 is a curve of class 3σi + 2f . Let C → P1 be the degree 3 projection
and let pi ∈ P1 be the image of σi. Then we see that X is obtained from (C → P1, p1, p2)
by the triple Tschirnhausen construction pinched at p1 and p2.

F3

P(1, 1, 3)

σ

B

L

Ỹ

Y

σ̃1

σ̃2

C̃C

P1

p1

p2

P1 × P1

X
3 : 1 2 : 1

2 : 1contract dashed

3 : 1

Figure 19. The figure above reconciles Artebani–Sarti’s description of K3s
of type (2, 1) with the triple Tschirnhausen construction. See Remark 10.1.

Remark 10.2. Contracting the six (−1)-curves on Ỹ intersecting σ̃2 yields an F3. This
transformation reconciles our construction with [MOT15, § 8.1].

Fix an isometry of H2(X,Z) with the K3 lattice L and let ρ be the automorphism of L
induced by σ. We recall the Hodge type of ρ from Table 2. The lattice Sρ ⊂ H2(X,Z) of
ρ-fixed vectors is given by

Sρ = U(3)⊕A⊕2
2 .
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Its orthogonal complement Tρ is

Tρ = U ⊕ U(3)⊕ E⊕2
6 .

The automorphism ρ acts on U ⊕U(3) as described in Section 5.2 and on the E6-summand
by the unique order 3 automorphism without non-zero fixed vectors [CS99, Ch II § 2.6].

Remark 10.3. We describe a basis for Sρ = U(3) ⊕ A⊕2
2 analogous to Remark 9.1. Let

Ŷ → P1 × P1 be the blow-up in the six points points of C that map to p1 or p2 (this
notation is consistent with Figure 19). Let E1, E2, E3 ⊂ Ỹ be the exceptional curves over
p1 and F1, F2, F3 ⊂ Ỹ over p2. Recall that X is obtained from Ỹ by taking a triple cover
and blowing down two −1 curves. For a curve α ∈ Ỹ , let α̃ be the image in X of the
pre-image of α in the triple cover of Ỹ . Let x ∈ P1 × P1 be the image of E1. There are
two ruling lines of P1 × P1 passing through x: one maps to p1 and the complementary one.
Let σ ⊂ Ỹ be the proper transform of the complementary one. Then Sρ is spanned by
σ̃, Ẽ1, Ẽ2, Ẽ3, F̃1, F̃2, F̃3 modulo the relation

∑
Ẽi =

∑
F̃i. Set

e = Ẽ1 + Ẽ2 + Ẽ3, and

f = σ̃ + F̃1 + F̃2.

Then we have
Sρ = ⟨e, f⟩ ⊕ ⟨Ẽ2, Ẽ3⟩ ⊕ ⟨F̃2, F̃3⟩ ∼= U(3)⊕A2 ⊕A2.

10.1. Baily–Borel cusps. Let F sep
ρ = (Dρ \∆ρ) /Γρ be the period domain for ρ-markable

K3 surfaces as described in Section 2.1. Recall from Theorem 5.5 the classification of cusps
for the Baily–Borel compactification Dρ/Γρ

BB
by the root sublattice of J⊥

Tρ
/J , which is one

of:
(1) A⊕6

2 ,
(2) E6 ⊕A⊕3

2 ,
(3) E⊕2

6 ,
(4) E8 ⊕A2.

10.2. Kulikov models. We use the notation in Section 6.4. In particular, we let H be
the moduli space of marked triple covers (ϕ : C → P1, p1, p2), where C is a smooth curve of
genus 2 and ϕ is étale over p1 and p2. Let H be its compactification by marked admissible
covers. For i = 1, . . . , 5, we consider the boundary divisor ∆i ⊂ H whose generic point
parametrises a degenerate triple cover with the dual graph Γi shown in Figure 20.

Proposition 10.4. The extended period map H 99K Dρ/Γρ
BB

maps ∆i to the i-th cusp in
Section 10.1 for i = 1, . . . , 4. It maps ∆5 to the 2nd cusp.

Proof. The proof is analogous to the proof of Proposition 8.1, based on the calculation of
the primitive Picard lattices in Proposition 6.10. □
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Γ1

1

Γ2

1

1

Γ3

2

Γ4

1

Γ5

Figure 20. The dual graphs of the admissible covers that give Kulikov
degenerations in the case n = 2 and k = 1.

10.3. Stable models and the KSBA semifan. We now identify the KSBA semifan F

that gives the KSBA compactification FKSBA
ρ . We follow the notation of Theorem 8.2.

Theorem 10.5. The space FKSBA
ρ is isomorphic to the semi-toroidal compactification for

the following semisfan FJ :

FJ =


⟨A⊕6

2 ⟩sat for the cusp with (J⊥
Tρ
/J)root = A⊕6

2

⟨A⊕3
2 ⟩sat for the cusp with (J⊥

Tρ
/J)root = E6 ⊕A⊕3

2

0 for the cusp with (J⊥
Tρ
/J)root = E⊕2

6

⟨A2⟩sat for the cusp with (J⊥
Tρ
/J)root = E8 ⊕A2.

We devote the rest of Section 10.3 to the proof of Theorem 10.5. We use notation
analogous to that introduced after Theorem 8.2. Many of the following arguments are
analogous to those in Section 8.3 and Section 9.3, so we will be even more brief.

10.3.1. The case i = 1. From Section 6.2.3, we know that each Xj → P2 is a blow-up in 9
points that form three Z/3Z-orbits. The divisor R is nef and it contracts the 9 exceptional
curves on each Xj , yielding P2 ∪ P2 as the stable model (see Figure 21). Note that the
stable model has no moduli, and hence the entire divisor δ1 is contracted to a point.

×3

×3

Figure 21. The stable model in the case i = 1 is obtained by contracting
three (Z/3Z)-orbits of (−1)-curves on each side (dashed). All are disjoint
from the divisor (red).
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10.3.2. The case i = 2. Write C0 = P0 ∪Q0, where Q0 is a smooth curve of genus 1. From
Section 6.2.4, we know that X0 is the blow-up of X0, which is a dP3, with an exceptional
divisor forming a (−1,−2,−2)-chain of which the first curve is P0. From Section 6.2.3,
we know that X1 is the blow-up of P2 at 9 points forming three Z/3Z-orbits. The divisor
R0 ⊂ X0 is negative on P0. The divisor R1 ⊂ X1 is nef (and has self-intersection 1).

We perform an M1 modification along M1, obtaining X ′ = X ′
0 ∪X ′

1 (see Figure 22). Let
R′ be the proper transform of R. Then R′ is nef on X ′, so we obtain the stable model by
taking the image of X ′ under the map given by (large multiples of) R′.

Finding the stable image is a bit subtle. The divisor R′
0 ⊂ X ′

0 is big and nef; it is trivial
on the second curve in the (−1,−2,−2)-chain, which is now a −1 curve (drawn as a dashed
curve on the left surface in the middle of Figure 22), and positive on all other curves. This
(−1)-curve is contracted in the stable model. Let X ′

0 → X̃0 be this contraction. Note that
X̃0 is the blow-up of the dP3 surface X0 at a (Z/3Z)-fixed point on the (anti-canonical)
double curve. The divisor R′

1 ⊂ X ′
1 is nef but not big. Indeed, its self intersection is 0. It

induces a contraction X ′
1 → P1, which restricts to a degree 2 morphism on the double curve

D. Hence, the entire component X ′
1 is contracted to a curve in the stable model. Owing to

the contraction of X ′
1, the points in the fiber of the degree 2 map D → P1 are identified in

the stable image. The stable image is thus a non-normal surface X, whose normalization is
X̃0; the map X̃0 → X is an isomorphism away from D, but it folds D to a P1 by a degree
2 map. The curve C0 = R′

0 maps to a nodal curve of arithmetic genus 2 on X; its two
intersection points with D are identified to form a node.

Up to a finite choice, the isomorphism class of the stable model is equivalent to the
isomorphism class of the anti-canonical pair (X0, D), whose period is the restriction of ψ
to the E6-summand. It follows that translates of A⊕3

2 ⊗Z[ζ3] E are contracted in F
KSBA
ρ .

Therefore, FJ ⊂ J⊥
Tρ
/J is the saturation of the A⊕3

2 summand.

×3 ×3

Figure 22. The stable model in the case i = 2 is obtained by an M1 modi-
fication along a (−1)-curve on the left (dashed red) followed by a morphism
that contracts the entire right-hand component, contracts a (−1)-curve on
the left (dashed), and folds the double curve into a P1, resulting in a non-
normal surface.

10.3.3. The case i = 3. Write C0 = P0∪Q0 and C1 = P1∪Q1, where Qj are smooth curves
of genus 1. By Section 6.2.4, we know that each Xj is a blow-up of Xj , a dP3, with an
exceptional divisor forming a (−1,−2,−2)-chain of which the first curve is Pj . The divisor
Rj is negative on Pj .
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We make M1 modifications along P0 and P1, resulting in X ′ with nef R′. On each side,
the divisor R′ is negative only on the middle component of the chain, which is now a (−1)-
curve. Contracting them yields the stable model (see Figure 23). Passing to the stable
model does not lose any information. Therefore, FJ = 0.

Figure 23. The stable model in the case i = 3 is obtained by M1 modi-
fications along the (−1)-curves (dashed red) followed by the contraction of
the (−1)-curves (dashed). The divisor is shown in red (dashed and solid).

10.3.4. The case i = 4. Write C0 = P0 ∪ Q0, where Q0 is a smooth curve of genus 2, and
C1 = P1 ∪ Q1, where Q1 is a smooth curve of genus 0. From Section 6.2.2, we know that
X0 is the blow-up of X0, a dP1, whose exceptional curve is P0. From Section 6.2.5, we
know that X1 is the blow-up of P2 with exceptional locus consisting of a (−1,−2,−2)-chain
(whose first curve is P1) and six other (−1)-curves. The divisor R0 is negative on P0 and
R1 is negative on P1. We make M1 modifications on P0 and P1, resulting in (X ′, R′) (see
Figure 24). Now R′

0 ⊂ X ′
0 is ample but R′

1 ⊂ X ′
1 is still negative on Q′

1 (which is now
a (−1)-curve). We make another M1 modification along Q′

1, resulting in (X ′′, R′′). Now
R′′

0 ⊂ X ′′
0 is nef and trivial only on the double curve. On the other hand R′′

1 = 0. It
follows that the stable model X is obtained by contracting the entire X ′′

1 component to
a point. In other words, we have a map X ′′

0 → X that contracts the double curve (of
self-intersection −1) to a point (so X has an Ẽ8 elliptic singularity). The stable model
only retains the moduli of (X0, D), captured by the E8 component of the period ψ of X.
Therefore, FJ ⊂ J⊥

Tρ
/J is the saturation of the complementary A2 summand.

Figure 24. The stable model in the case i = 4 is obtained by two M1
modifications along the (−1)-curves (dashed red) followed by an M1 mod-
ification along another (−1)-curve (dashed red in the middle), and finally
the contraction of the right component. It has an elliptic singularity. The
divisor is shown in red.
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10.3.5. The case i = 5. Write C1 = P1 ∪ Q1, where Q1 is a curve of genus 0. From
Section 6.2.1, we know that X0 is the blow-up of X0, a dP3, in 3 points that form a
(Z/3Z)-orbit. From Section 6.2.5, we know that X1 is the blow-up of P2 with exceptional
locus consisting of a (−1,−2,−2)-chain (of which the first curve is P1) and 6 points that
form two (Z/3Z)-orbits. This X is related to the Kulikov surface from the case i = 2
by the sequence of following modifications: three successive M1 modifications along the
components of the (−1,−2,−2)-chain on X1 followed by three M1 modifications along the
exceptional curves of X0 → X0. We get the same stable model as the case i = 2.

Conclusion of the proof of Theorem 10.5. Having settled the cases of the four cusps in Sec-
tion 10.3.1, Section 10.3.2, Section 10.3.3, and Section 10.3.4, the proof of Theorem 10.5 is
complete. The fifth case treated in Section 10.3.5 gives the same information as the second
case treated in Section 10.3.2. □

Observe that for i = 1, 2, 3, 4, the generic stable pair corresponding to the i-th cusp in
Section 10.3 matches with the boundary component numbered 1, 4, 2, 5, respectively, of P2

from [Laz16, Table 1].
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