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1. Introduction

Supplementary material

Many of the results in this paper rely on calculations performed using Sage [4]. Several of them
required new implementations within this platform using Python. We have created supplementary
files so that the reader can reproduce all the claimed assertions done via explicit computations.
These files can be found at:

https://people.math.osu.edu/cueto.5/anticanonicalTropDelPezzoCubics/

In addition to all Sage scripts, the website contains all input and output files both as Sage object
files and in plain text. We have also included the supplementary files on the arXiv’s submission of
this paper. They can be obtained by downloading the source.

All computations are performed symbolically using either our own implementation of group-
actions on polynomial rings, tropical operations (min for tropical addition and usual product for
tropical multiplication), or build-in functions for computations with Weyl groups, polyhedra and
factorizations of rational functions over the rational numbers. They were performed on a 2.4 GHz
Intel(R) Core 2 Duo with 3MB cache and 2GB RAM. The implementation of the construction of
the Bergman complex of a general matroid from its nested sets is new and exploits symmetries
whenever possible. The computation of the Bergman complex for the arrangement associated to
the root system E6 takes about 1 hour to finish. The time is split evenly between the calculation
of adjacencies and the whole Bergman complex.

The most time-demanding calculations are those in Section 8. The computation of the tropical-
ization of each 5× 45 matrix of rational functions associated to each cone in the Naruki fan takes
about 20 minutes. The computation-time required to search for tropically singular 3×3-minors for
each such matrix is not uniform. With the exception of a single cone, each calculation takes about
30 seconds. For the problematic cone and each choice of three rows in the corresponding matrices,
the computation takes 10 minutes since several extremal curves have no tropical non-singular 3× 3
minors, and the calculation exhausts all 3-element subsets from {0, . . . , 44}.
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2. Moduli of cubic del Pezzo surfaces and the action of W(E6)

In this section, we review the classical construction of the moduli space of marked del Pezzo
surfaces, originating in the work of Coble. Our main references are [1] and [2], which describe
classical and tropical moduli spaces of del Pezzo surfaces of arbitrary degree. To simplify and focus
our exposition, we restrict ourselves to cubic del Pezzos.

A cubic del Pezzo surface is a smooth projective surface with semi-ample anti-canonical bundle
whose class has self-intersection 3. It follows that the anti-canonical bundle is also base-point free,
and the map given by its sections is birational onto a cubic surface in P3. If the anti-canonical
bundle is ample, then the map is a closed embedding. In this case, we say that the surface is a
Fano cubic surface. The convention of using del Pezzo for semi-ample anti-canonical bundle and
Fano for ample anti-canonical is not standard in the literature, but it agrees with the one followed
in [1].

A cubic del Pezzo surface X is obtained by 6 successive blow-ups of P2. Conversely, any surface
obtained in this way is a cubic del Pezzo provided that no 3 centers of the blow up lie on a line
and the 6 do not lie on a conic. As a result, the Picard group of X is isomorphic to Z7, generated
by the canonical class KX and the classes of the 6 exceptional divisors. The Picard group contains
27 exceptional divisor classes, namely classes E with KX · E = 1 and E2 = −1. On a Fano
surface, these are precisely the classes of the 27 lines. More generally, each exceptional class is
represented by a unique effective divisor. An ordered collection of 6 exceptional classes E1, . . . , E6

with Ei ·Ej = −δij is called a marking of X. For example, if X is obtained from P2 by blowing up
6 distinct points, then the 6 exceptional divisors give a marking. It turns out that there are 72 · 6!
markings of a del Pezzo surface (72 if we disregard the ordering). So there are essentially 72 ways
in which a general cubic surface arises as a blow up of P2.

The blow-up construction shows that the moduli space of marked cubic del Pezzos contains an
open subset isomorphic to a dense open subset U of (P2)6. The set U consists of 6 tuples of distinct
points, no 3 of which lie on a line, and the 6 do not lie on a conic. We denote this set by M◦m,3.

The group of automorphisms of the lattice 〈PicX, ·〉 that fix KX is the Weyl group W(E6). This
group acts transitively not only on the exceptional classes, but also on the markings. Consequently,
it also acts on M◦m,3. The quotient is an open subset of the moduli of (unmarked) del Pezzo cubics,
which we denote by M◦3 . This will only play an auxiliary role in the sequel.

2.1. The Naruki space and Coble covariants. The space M◦3 admits a natural compactifica-
tion M∗3 using Geometric Invariant Theory (GIT). The compactified moduli space M∗3 is the GIT
quotient P Sym3(C4)/ SL(4). The line bundles O(n) on P Sym3(C4) descend to rank one sheaves
on M∗3 (they are line bundles if M∗3 is considered as a stack rather than a coarse space, but we will
ignore this point). It is convenient to denote by OM∗3 (1) the sheaf descended from O(4). The sheaf

OM∗3 (1) has the following geometric interpretation. Consider the rank 6 bundle R1f∗ω
−1, where ω

is the relative dualizing sheaf of the universal family over M∗3 . Then there is an isomorphism

OM∗3 (1) = detR1f∗ω
−1.

The compactification M∗3 of M◦3 gives a natural compactification M∗m,3 of M◦m,3 called the Naruki

space. Let M∗m,3 be the normalization of M∗3 in M◦m,3. The action of W(E6) on M◦m,3 extends to

an action on M∗m,3 and the map M∗m,3 →M∗3 is the quotient. Denote by OM∗m,3
(1) the pullback of

OM∗3 (1).

Global sections of O∗Mm,3
(1) are called Coble covariants. The space H0(OM∗m,3

(1)) is a 10 dimen-

sional irreducible representation of W(E6). It yields a very ample linear series on M∗m,3 and gives
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Figure 1. The labelled Dynkin diagram of the Root system E6. Each label i
corresponds to the simple root αi.

an embedding of M∗m,3 in P9. It was this particular projective model M∗m,3 that Naruki discov-
ered. We will describe the Coble covariants and the Naruki space explicitly using an equivariant
uniformization of M∗m,3.

2.2. An equivariant uniformization. Let h6 be the lattice of type E6 tensored with K. More
explicitly, h6 is the K-vector space spanned by d1, . . . , d6 with a bilinear form given by

di · dj =

{
−1/9 if i 6= j,

8/9 if i = j.

The elements (dj − di) for i < j and (di + dj + dk) for i < j < k, and (d1 + · · ·+ d6) together form
the set of 36 positive roots of E6 associated to the simple roots αi = (di+ 1 − di) for i 6= 2 and
α2 = d1 + d2 + d3. It induces Bourbaki’s convention for labelling the Dynkin diagram of type E6,
as in Figure 1.

We have a map h∗6 → (P2
K)6 given by

p 7→
(
[1 : d1(p) : d31(p)], . . . , [1 : d6(p) : d36(p)]

)
.

Denote by h◦6 the complement in h∗6 of the zeros of the roots. For p ∈ h◦6, the points [1 : di(p) : d3i (p)]
for 1 ≤ i ≤ 6 are distinct, no three of them lie on a line, and the six do not lie on a conic. Therefore,
the blow up of P2

K at these points gives a marked cubic Fano surface, where the marking is given
by the six exceptional divisors. Scaling p by t ∈ K produces a different set of six points, but they
are related to the original six by the automorphism of P2

K defined by [X : Y : Z] 7→ [X : tY : t3Z].
As a result, the resulting marked surfaces are canonically isomorphic. We thus get a morphism

(2.1) P(h◦6)→M◦m,3.

It is easy to check that the map in (2.1) is equivariant with respect to the action of W(E6).
Furthermore, it is surjective and flat [1, Theorem 3.1] of relative dimension 1.

We digress momentarily to describe the fibers of the morphism (2.1). Note that the points
[d3 : d : 1] lie on the cuspidal plane cubic with affine equation x2 = y3. Conversely, there exists a
cuspidal cubic passing through six distinct points on P2

K. In fact, such cubics form a one-parameter
family. Having fixed such a cuspidal cubic, it can be brought to the standard one given by x2 = y3

by an automorphism of P2
K unique up to a Gm acting by [X : Y : Z] 7→ [X : tY : t3Z]. Therefore,

we may think of Ph∗6 as the moduli space of 6 distinct points on P2 along with a choice of a cuspidal
cubic passing through them. Then the map P(h◦6)→M◦m,3 simply forgets the cuspidal cubic.

Let Z ⊂ P(h∗6) be the union of the W(E6) orbits of the linear subspace defined by d1 = d2 = d3.
More intrinsically, Z is the union of the linear subspaces whose points are fixed by a Weyl subgroup
of W(E6) of type A3. The map P(h◦6) → M◦m,3 extends to a regular map P(h∗6) \ Z → M∗m,3 [1,

Proposition 4.10]. There is a natural isomorphism of the pullback of OM∗m,3
(1) to P(h∗6) with

OP(h∗6)(9). As a result, we can write (the pullbacks of) the Coble covariants as homogeneous
polynomials of degree 9 in d1, . . . , d6.

2.3. Yoshida and Cross functions. We now describe two sets of Coble covariants that play a key
role in the paper. Both sets are W(E6) invariant and have a beautiful description as homogeneous
polynomials of degree 9 in d1, . . . , d6 in terms of root subsystems of the root system E6. We give



4 M.A. CUETO AND A. DEOPURKAR

this description as well as explicit formulas which we will use heavily for computation. By the
discriminant ∆ of a root system, we mean the square root of the product of all the roots, both
positive and negative. This is a polynomial, well-defined up to a sign. Prescribing a set of positive
roots R+ pins down the sign – we simply take the product of all the positive roots.

The first set of Coble covariants are the Yoshida functions. These are are the discriminants of
sub root systems of h6 of type A⊕32 . For example, the subsystem

S =〈d5 − d6, d1 + d2 + d6, d1 + d2 + d5〉⊕
〈d3 − d4, d4 + d5 + d6, d3 + d5 + d6〉⊕
〈d1 − d2, d2 + d3 + d4, d1 + d3 + d4〉

(2.2)

yields the Yoshida function

(2.3)

Y(S) =(d5 − d6)(d1 + d2 + d6)(d1 + d2 + d5)

(d3 − d4)(d4 + d5 + d6)(d3 + d5 + d6)

(d1 − d2)(d2 + d3 + d4)(d1 + d3 + d4).

The group W(E6) acts transitively on the Yoshida functions, so the others can be computed using
the group action. There are 80 Yoshida functions (40 up to sign). Since the Yoshida functions
are products of the roots, they are invertible on P(h◦9). Equivalently, the corresponding Coble
covariants are invertible on M◦m,3. The Yoshida functions span the 10 dimensional space of Coble
covariants. Since the linear system defined by the Coble covariants is very ample on M∗m,3, we can

recover M∗m,3 ⊂ P39 as the closure of image of the map

Ph6 99K P39

defined by the 40 Yoshida functions (up to sign).
The second set of Coble covarints are the Cross functions. Let S ⊂ h6 be a sub root system of

type A⊕32 and let α ∈ h6 be a root not orthogonal to any of the summands of S. Let S+ be a set
of positive roots for S and denote by sα the reflection in the plane orthogonal to α. The Cross
associated to the pair (S+, α) is the difference

Cross(S+, α) = ∆(S+)− sα∆(S+).

Note that the Cross is a difference of two Yoshidas. Furthermore, due to the linear relations between
the Yoshida functions, each cross can be expressed in 4 distinct ways as a difference of Yoshidas.
The data of (S, α) (without the choice of positive roots) determines the cross function up to a sign;
we denote it by Cross(S, α). Observe that there are three roots in S+ orthogonal to α, say α1, α2,
and α3. Clearly, these three roots divide the cross ∆(S+) − sα∆(S+). Furthermore, it is easy to
see that α also divides Cross(S+, α). Therefore, Cross(S+, α) factors as

(2.4) Cross(S, α) = αα1α2α3Q,

where Q is a quintic polynomial. It turns out that Q is irreducible. For example, taking S as
in (2.2) (with the listed roots taken to be positive) and α = d2 + d4 + d5 yields the Cross function

Cross(S+, α) =(d3 + d5 + d6)(d2 + d4 + d5)(d1 + d3 + d4)(d1 + d2 + d6)

(d21d
2
2d3 + d21d2d

2
3 − d22d3d24 − d2d23d24 − d21d22d5 − d21d2d3d5 + d1d

2
2d3d5 − d21d23d5

+ d1d2d
2
3d5 + d21d

2
4d5 − d1d22d25 − d1d2d3d25 + d22d3d

2
5 − d1d23d25 + d2d

2
3d

2
5 + d1d

2
4d

2
5

− d22d3d4d6 − d2d23d4d6 − d21d24d6 + d22d
2
4d6 + d2d3d

2
4d6 + d23d

2
4d6 + d21d4d5d6

− d1d24d5d6 + d1d4d
2
5d6 − d24d25d6 − d22d3d26 − d2d23d26 − d21d4d26 + d22d4d

2
6

+ d2d3d4d
2
6 + d23d4d

2
6 + d21d5d

2
6 − d1d4d5d26 + d1d

2
5d

2
6 − d4d25d26).
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The group W(E6) acts transitively on the Cross functions, so the others can be computed using
the group action.

The combinatorics of the factorization of a Cross function into 4 linear factors and 1 quintic
factor is the following. Note that the four linear factors form four mutually orthogonal roots.
Given any four mutually orthogonal roots, there is a unique (up to sign) Cross function divisible
by all four. This yields a bijection between the set of the Cross functions (up to sign) and sub root
systems of type A⊕41 of h6. Abusing notation, we denote the Cross associated to a subsystem S of

type A⊕41 by Cross(S). The Weyl group W(E6) acts transitively also on the quintic factors of the

Cross functions. Given a quintic in this orbit, there are three sub root systems of type A⊕41 of h6
whose Cross is divisible by the quintic.

The locus of vanishing of the cross functions has the following geometric interpretation. Recall
that an Eckhard point on a Fano cubic surface is the point of concurrency of three exceptional
curves. The locus of Fano cubic surfaces with an Eckhard point forms a divisor in M◦3 , called the
Eckhard divisor.

Proposition 2.1. The vanishing locus of the product of all Cross functions in M◦3 is the Eckhard
divisor.

Proof. It suffices to prove the statement on P(h◦6), where we can do a direct computation. Let
pi = [1 : di : d3i ] for i = 1, . . . , 6 and distinct di and let X be the blow-up of P2 at p1, . . . , p6.
Consider the triple of exceptional curves on X given by the proper transforms of the lines Lij = pipj
for (i, j) = (1, 2), (3, 4), and (5, 6). The equation of Lij is

didj(di + dj)X − (d2i + didj + d2j )Y + Z = 0.

The three lines L12, L34, and L56 are concurrent if and only if the determinant of the matrix

(2.5) M =

d1d2(d1 + d2) d21 + d1d2 + d22 1
d3d4(d3 + d4) d23 + d3d4 + d24 1
d5d6(d5 + d6) d25 + d5d6 + d26 1

 .

vanishes. Note that detM is an irreducible homogeneous quintic polynomial, which is a quintic
factor of a suitable Cross function. In the example above it is obtained from the quintic in (2.4)
by applying a permutation in S6. �

Let (X,E1, . . . , E6) be a marked Fano cubic surface. The marking yields a marking of the 27
exceptional curves on X. Express X as the blow up of P2 at p1, . . . , p6 such that the Ei is the
exceptional divisor over i. Then the 27 exceptional curves are

• Ei: The exceptional divisor over pi, for 1 ≤ i ≤ 6;
• Fij : The proper transform of the line through pipj for 1 ≤ i 6= j ≤ 6;
• Gj : The proper transform of the conic through {p1, . . . , p6} \ {pj}.

Note that the two indices in Fij are unordered, namely Fij = Fji. While doing computations, we
choose the indices so that i < j.

An anticanonical triangle in X is a triple of exceptional curves whose pairwise intersection
numbers are 1. In this case, their sum is an anticanonical divisor (zero locus of a section of the
anticanonical bundle). There are 45 anticanonical triangles on a cubic surface. On a marked Fano
cubic surface as above, they are

• xij = {Ei, Fij , Gj} for 1 ≤ i 6= j ≤ 6.
• yijklmn = {Fij , Fkl, Fmn} for distinct i, j, k, l,m, n in {1, . . . , 6}.

Note that the two indices of X are ordered, namely xij 6= xji. The ordering of the six indices of Y
is important only to the extent of the resulting tripartition of {1, . . . , 6}. That is, we consider two
sextuple (i, j, k, l,m, n) and (i′, j′, k′, l′,m′, n′) if we have the equality of sets

{{i, j}, {k, l}, {m,n}} = {{i′, j′}, {k′, l′}, {m′, n′}}.
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While doing computations, we choose the indices so that i < j, k < l, m < n, and i < k < m.
The action of W(E6) on the markings induces an action on both sets {Ei, Fij , Gj} and {xij , yijklmn}.

The proof of Proposition 2.1 gives a bijection between the 45 anticanonical triangles and the 45
quintic factors of the cross functions (up to sign), equivariant with respect to the action of W(E6).
Explicitly, this correspondence is defined by

(2.6) y123456 ←→ detM

where M is the matrix in (2.5). More intrinsically, the bijection is characterized by the property
that the vanishing locus of the quintic associated to an anticanonical triangle is the locus of marked
cubic surfaces where the triangle degenerates to three concurrent lines.

3. The anticanonical embedding

In this section, we give an explicit W(E6) equivariant description of the anti-canonical map of
the universal cubic surface, and use this to describe the tropicalized anti-canonically embedded
universal cubic surface. The following field extensions of K will play a prominent role:

(3.1) F := K(Yi : 0 ≤ i ≤ 39) ⊂ L := K(h6) = K(d1, . . . , d6).

Here, the parameters d1, . . . , d6 are algebraically independent over K and give explicit expressions
for the lattice h6, as discussed in 2.2. Geometrically, the extensions in (3.1) are characterized as
follows: F is the fraction field of Mm,0 and L is the fraction field of h6. The inclusion F ↪→ L is
induced by the uniformization map P(h6) 99KMm,3 defined in Subsection 2.2.

The key input in our description is the explicit presentation and tropicalization of the Cox ring
of the universal del Pezzo surface in [3]. We begin by recalling this description for cubic surfaces.
Let XF → SpecF the universal marked cubic surface. Let Ei, Fij , and Gj be the 27 exceptional
curves of XF as defined in Subsection 2.3. We have an isomorphism

Pic(XF ) = Z〈H,E1, . . . , E6〉,

where H is the pullback of OP2(1) under the map XF → P2
F that blows down E1, . . . , E6.

Recall that the Cox ring of XF is the Z7 graded F -algebra

Cox(XF ) =
⊕

(n0,...,n6)∈Z7

H0(XF , n0KX + n1E1 + · · ·+ n6E6).

Each effective divisor in XF gives an element of Cox(XF ), well-defined up to scaling. Let S be
the 27 element set consisting of variables Ei for 1 ≤ i ≤ 6 and Fij for 1 ≤ i 6= j ≤ 6 (following
the ordering conventions in Subsection 2.3), which we think of as the set of markings of the 27
exceptional curves on XF . This identification endows S with an W(E6) action.

Theorem 3.1 ([3, Proposition 2.2]). We have a W(E6) equivariant surjection

L[S]→ Cox(XL)

that sends a variable E ∈ S to a generator of H0(XL,O(E)). The kernel is generated by a W(E6)
invariant set of 270 quadratic trinomials (up to sign). Explicitly, the generators are the W(E6)
conjugates of the following:

(d3 − d4)(d1 + d3 + d4)E2F12 − (d2 − d4)(d1 + d2 + d4)E3F13 + (d2 − d3)(d1 + d2 + d3)E4F14.

Note that L[S] has two natural gradings. The first one is Z-valued, and each variable has degree
1. The other one is Z7-valued, and is induced from the Z7-grading on Cox(XL):

(3.2) degEi := ei ; degGi := 2e0−
6∑
l=1

el+ei (1 ≤ i ≤ 6) ; degFij := e0−ei−ej (1 ≤ i < j ≤ 6).
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Notice that both grading inducee natural torus actions over L by the corresponding lattice. The
choice of grading used will be clear from context.

The anti-canonical ring of XF is the Z-graded F algebra

A(XF ) =
∑
n∈Z

H0(XF ,−nKX).

Since KX is anti-ample, the nonzero graded components of A(XF ) are in non-negative degrees.
Following the order conventions in Subsection 2.3 we let T be the 45 element set consist-

ing of 30 variables xij for 1 ≤ i 6= j ≤ 6 and 15 variables yijklmn for distinct tripartitions
{{i, j}, {k, l}, {m,n}} of {1, . . . , 6}. We view T as the set of markings of the 45 anticanonical
triangles on XF . This identification yields an action of W(E6)-action on T .

Theorem 3.2. We have an W(E6) equivariant surjection

L[T ]→ A(XL).

The ideal is generated by an W(E6) equivariant set of 270 linear trinomials (up to sign) and 120
cubic binomials (up to sign). Explicitly, the linear trinomials are the W(E6) conjugates of the
following

(d3 − d4)(d1 + d3 + d4)x21 − (d2 − d4)(d1 + d2 + d4)x31 + (d2 − d3)(d1 + d2 + d3)x41,

and the cubic binomials are the W(E6)-conjugates of the following

y123456y142536y162345 − y123645y162534y142356.

Proof. Since the anti-canonical map embeds XL as a cubic hypersurface in P3
L, we know that the

anti-canonical ring is isomorphic (abstractly) to L[X,Y, Z,W ]/Q, where Q is a cubic polynomial.
In particular, it is generated by the degree 1 graded component.

Denote the images of Ei, Fij , Gj by ei, fij , gj , respectively. Denote graded components by sub-
scripts and set a = (3,−1,−1,−1,−1,−1,−1). We have

L[S]a = L〈EiFijGj , FijFklFmn〉.
From Theorem 3.1, we have a surjection L[S]a → Cox(XL)a, and by definition we have an equality
Cox(XL)a = A(XL)1. Since A(XL)1 generates A(XL), we conclude that the elements eifijgj and
fijfklfmn generate A(XL). In other words, the map L[T ]→ A(XL) is surjective.

Let I be the kernel of L[T ]→ A(XL) and J the kernel of L[S]→ Cox(XL). We have the diagram

(3.3)

L[T ]1 L[S]ay y
A(XL)1 Cox(XL)a,

and therefore we have I1 = Ja. But for each of the 270 quadric generators q of J , there is a unique
variable v such that vq lies in Ja. For example, for the quadric generator listed in Theorem 3.1, it
is the variable G2. Therefore, the component Ja is spanned by the W(E6) conjugates of

(d3− d4)(d1 + d3 + d4)E2F12G2− (d2− d4)(d1 + d2 + d4)E3F13G2 + (d2− d3)(d1 + d2 + d3)E4F14G2.

These turn into the linear equations claimed above.
It is easy to check that the cubic y123456y142536y162345 − y123645y162534y142356 is in the kernel of

L[T ] → A(XL). Therefore, so are its conjugates. Since we know that the anti-canonical ideal is
principal modulo the linear polynomials, any cubic that is nonzero modulo the linear polynomials
generates the ideal. By evaluating at a generic choice of di, we check that this is indeed the case
for y123456y142536y162345 − y123645y162534y142356. �

Anand: Strengthen the above to a statement on an explicit open subset of the moduli space?
Complement of roots and quintics?
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Remark 3.3. A simple inspection at the defining equations of XL confirms that the equivariant
map from Theorem 3.2 is compatible with the Z- and Z7-grading on L[T ] and A(XL), respectively.

Theorem 3.1 and Theorem 3.2 describe the universal Cox ring and the universal anti-canonical
ring after a base change from F to L. We now make a simple change of variables that allows us to
describe the anti-canonical ring over F , without the need to base change to L. Recall from (2.6)
that we have a W(E6) equivariant bijection between the set T and the set of quintic factors of Cross
functions (up to sign). Make a choice of signs once and for all. Denote the quintic corresponding
to xij by Qij and the quintic corresponding to yijklmn by Qijklmn. Set

(3.4) Xij = xij/Qij and Yijklmn = yijklmn/Qijklmn.

Let us abuse notation slightly and use the same symbol T for set the variables Xij and Yijklmn.
Note that W(E6) acts on the old set of variables {xij , yijklmn} by permutations and it acts on
the set of 45 quintics {Qij , Qijklmn} by signed permutations. Therefore, it acts on the new set of
variables {Xij , Yijklmn} also by signed permutations. The signs depend on the signs chosen in the
bijection betwen T and the set of quintics.

After rescaling the variables as above, the linear polynomial in Theorem 3.2 takes the form

(d3 − d4)(d1 + d3 + d4)Q21X21 − (d2 − d4)(d1 + d2 + d4)Q31X31 + (d2 − d3)(d1 + d2 + d3)Q41X41.

After multiplying throughout by (d5 − d6)(d1 + d5 + d6), it turns out that all three coefficients
become Cross functions. We can then write the linear polynomial as

(3.5) Cross(S1)X21 − Cross(S2)X31 + Cross(S3)X41,

where the Cross functions are those associated to the root subsystems of type A⊕41 given by the
four factors of

(3.6)

S1 = (d3 − d4)(d5 − d6)(d1 + d3 + d4)(d1 + d5 + d6),

S2 = (d2 − d4)(d5 − d6)(d1 + d2 + d4)(d1 + d5 + d6),

S3 = (d2 − d3)(d5 − d6)(d1 + d2 + d3)(d1 + d5 + d6).

The cubic polynomial in Theorem 3.2 undergoes similar transformation. After rescaling the
variables we obtain the cubic

Q123456Q142536Q162345y123456y142536y162345 −Q123645Q162534Q142356y123645y162534y142356.

We now mutiply throughout by the following product of degre 12

P =(d1 + d2 + d3 + d4 + d5 + d6)
3(d1 − d2)(d3 − d4)(d5 − d6)

(d1 − d4)(d2 − d5)(d3 − d6)(d1 − d6)(d2 − d3)(d4 − d5).

This P can be written as a product of 3 quartics in two ways:

(3.7)

P = F1F2F3

= (d1 + d2 + d3 + d4 + d5 + d6)(d1 − d2)(d3 − d4)(d5 − d6)
(d1 + d2 + d3 + d4 + d5 + d6)(d1 − d4)(d2 − d5)(d3 − d6)
(d1 + d2 + d3 + d4 + d5 + d6)(d1 − d6)(d2 − d3)(d4 − d5),

and

(3.8)

P = G1G2G3

= (d1 + d2 + d3 + d4 + d5 + d6)(d1 − d2)(d3 − d6)(d4 − d5)
(d1 + d2 + d3 + d4 + d5 + d6)(d1 − d6)(d2 − d5)(d3 − d4)
(d1 + d2 + d3 + d4 + d5 + d6)(d1 − d4)(d2 − d3)(d5 − d6)



ANTICANONICAL TROPICAL CUBIC DEL PEZZOS CONTAIN EXACTLY 27 LINES 9

with the property that each of the degree 9 polynomials F1Q123456, F2Q142356, F3Q162345, G1Q123645,
G2Q162534, G3Q142356 is a Cross function. As a result, we can write the cubic polynomial as
(3.9)
Cross(F1) Cross(F2) Cross(F3)Y123456Y142356Y123645−Cross(G1) Cross(G2) Cross(G3)Y123645Y162534Y142356,

where Cross(P ) denotes the Cross associated to the sub root system of type A⊗41 spanned by the
four factors of the quartic P .

We can now describe the universal anticanonical ring on the moduli space, without having to
pass to a uniformization.

Theorem 3.4. We have an W(E6) equivariant surjection

F [T ]→ A(XF )

whose ideal is generated by an W(E6) equivariant set of 270 linear trinomials (up to sign) and
120 cubic binomials (up to sign). Explicitly, the linear trinomials are the W(E6) conjugates of the
following

Cross(S1)X21 − Cross(S2)X31 + Cross(S3)X41,

and the cubic binomials are the W(E6) conjugates of the following

Cross(F1) Cross(F2) Cross(F3)Y123456Y142356Y123645−Cross(G1) Cross(G2) Cross(G3)Y123645Y162534Y142356.

Above, Cross(P ) denotes the Cross function associated to the root system of type A⊕41 spanned by
the four linear factors of the quartic polynomial P . The quartics Si are defined in (3.6), Fj in
(3.7), and Gk in (3.8).

Note that the Cross functions and the variables Xij and Yijklmn both involve the choice of a sign,
which has been suppressed in the statement of Theorem 3.4.

We compute the Yoshida functions, the Cross functions, the universal anti-canonical ring, and
the W(E6) action on these objects explicitly using Sage; the results are collected in ??. In the
notation used there, the linear polynomial in Theorem 3.4 is

Cross116X21 − Cross2X31 + Cross19X41,

which can be written in terms of the Yoshida functions as

(3.10) (Y3 − Y37)X21 − (Y20 − Y8)X31 + (Y3 − Y5)X41.

The cubic polynomial in Theorem 3.4 is

,

which can be written in terms of the Yoshida functions as

.

From these two, the anti-canonical ideal can be computed by applying the W(E6) action. The
action is also given explicitly in ??.

4. The Bergman fan of E6 and the tropical Naruki space

The monomial Yoshida map

(4.1) Υ: G36
m/Gm → G40

m/Gm.

Maria: Can you add a remark along these lines, with a reference to the Supplementary material?

Remark 4.1. rank of the Yoshida matrix is 16. The exponents of the Yoshida functions give a
sublattice of Z36 of index 3.

Maria: Write sample vector in the left kernel.
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5. Combinatorial types of anticanonical tropical del Pezzo cubic surfaces

In this section, we study the combinatorial types of smooth tropical del Pezzo cubics in P44

without Eckardt points induced by the anticanonical embedding. Our main results says that these
types agree with the types induced by Cox embedding. Furthermore, they are determined by the
polyhedral structure of the Naruki fan [3, Table 1].

In Section 3 we presented the anticanonical map of the universal cubic surface over the field
L from (3.1). Theorem 3.2 relates the Cox and anticanonical embeddings of the universal cubic
surface XL over L by means of an W(E6)-equivariant monomial map with non-negative exponents.
Each smooth del Pezzo cubic X with no Eckardt points defined over the field K is obtained by
specialization of the parameters d1, . . . , d6 at elements in K outside the vanishing locus of the
product of all Yoshida and Cross functions from (2.3) and (2.4). Our choice of markings T and S
for the 45 anticanonical triangles and the 27 extremal curves together with Theorem 3.2 yield a
degree 3 map

(5.1) α : Spec(K[S])→ Spec(K[T ]).

The W(E6)-monomial map α is defined by a rank 21 matrix A of size 45 × 27 over Z having
only 0/1 entries and three nonzero entries per row. The matrix is recorded in the Supplementary
material. By Remark 3.3, this map is compatible with the gradings on the coordinate rings, which
we now recall.

The natural gradings on L[T ] and A(XF ) discussed in Section 3 induce natural torus actions on
K[S] and K[T ]. More precisely, the action of the 7-dimensional multiplicative split torus G7

m over
K on Spec(K[T ]) is determined by the Z7-grading (3.2) as follows:

(5.2) t ∗ Ei= tiEi ; t ∗Gi= t20(
∏
k 6=i

tk)
−1Gi (1 ≤ i ≤ 6) ; t ∗ Fij = t0(titj)

−1Fij (1 ≤ i < j ≤ 6).

The rank 7 sublattice Λ of Z27 inducing this action is saturated and contains the all-ones vector.
At the cocharacter level, the all-ones vector action is obtained by the cocharacter t30t1 · · · t5. The
grading induced by the latter identifies Proj(K[T ]) with P26. It inherits an action by the torus
G7
m/Gm. The action of t0 on the 45 anticanonical coordinates in K[T ] is given by scaling by t30.

The projectivization Proj(K[S]) is a 3-weighted projective space, which we denote by P44.
The monomial map α from (5.1) is compatible with the torus actions discussed above and induces

a monomial degree 3 map on the quotient space.

(5.3) α : P26/(G7
m/Gm) ' Proj(K[S])/(G7

m/Gm)→ Proj(K[T ]) ' P44.

Furthermore, for any choice of generic values of d1, . . . , d6 in K, the corresponding del Pezzo cubic
X embeds in P26/(G7

m/Gm). Anand: Should we cite [RSS] and say that we take a compactification
of their embedding? The map α yield an embedding of the quotient del Pezzo cubic

(5.4) α : X ↪→ P26/(G7
m/Gm)→ P44.

Remark 5.1. Notice that the choice of coordinates on P44 is given by the marking T , rather than
by the Yoshida-adapted variables (3.4). The tropicalization of X in TP44 induced by the latter
will be obtained by translating the tropicalization of X induced by the marking T by the image
of the vector (val(Qij), val(Qijklmn) : ij, ijklmn) ∈ R45/R·1. This simple operation preserves the
combinatorial types.

We now turn our attention to the combinatorial types of anticanonical tropical del Pezzo cubics
in TP44, answering a question of Ren, Shaw and Sturmfels [3, Section 5]. The following statement
shows that these types match the classification for the Cox embedding described in [3, Table 1].
The remainder of this section will be devoted to its proof.
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Theorem 5.2. The combinatorics of tropical smooth del Pezzo cubics without Eckardt points in
TP44 is completely determined by the line arrangement at infinity. They agree with the types induced
by the Cox embedding and hence are classified by the Naruki fan.

Proof. By Remark 5.1 it suffices to show the statement for the embedding induced by the marking
T . The result follows by translating the classification of tropical cubics induced by the Cox embeed-
ing [3, Table 1] to the anticanonical embedding in P44 using the map α from (5.3). Proposition 5.5
shows the combinatorics of both tropicalizations is the same. Lemma 5.4 describes the boundary
of the tropical surface as a line arrangement at infinity. The characterization of T X in terms of
the line arrangement at infinity follows from [3, Lemma 3.3] and Proposition 5.5. �

We start by discussing the structure of the boundary of T X ⊂ TP44. Our embedding charac-
terizes it as an arrangement of tropical lines, as we now explain. By construction, the intersection
of T X and the hyperplane indexed by an anticanonical triangle is the union of the tropicalization
of the lines associated to the three constituent vertices of the triangle in the Schläfli graph. For
example, T X ∩ {X12 = ∞} = T E1 ∪ T F12 ∪ T G2. Each of these tropical lines at infinity is a
metric balanced tree with prescribed directions for its leaf edges. We refer to Definition 7.1 for
more precisions. Thus, the boundary of T X is an arrangement of trees.

Remark 5.3. In the absence of Eckardt points, any point in a fixed classical line in the cubic
surface X ⊂ P44 lies in exactly 5 or 9 coordinate hyperplanes in TP44. The number depends on
the nature of the point. For example, the non-nodal points in E1 lie in exactly 5 hyperplanes,
whereas the node E1 ∩ F12 lies in the intersection of 9 hyperplanes indexed by {X1k : k 6= 1} ∪
{X21} ∪ {Y123456, Y123546, Y123645}. The action of W(E6) allows us to extend the count from E1 to
the remaining 26 lines.

Our first result shows that the combinatorics of the tree arrangement at infinity in T X matches
that of the intersection complex of the 27 lines in X. For this reason, we refer to an intersection
point between two boundary tropical lines as a nodal point of the boundary of T X.

Lemma 5.4. Let X be a smooth cubic del Pezzo surface without Eckardt points viewed in P44 via
the anticanonical embedding. Then, the 27 classical lines in X tropicalize to distinct trees in TP44.
Furthermore, two such trees intersect if and only if their classical counterparts do.

Proof. Each tropicalization of a classical line lies in the intersection of the 5 hyperplanes deter-
mined by the anticanonical triangles containing the corresponding line. For example, the line E1

is contained in precisely the 5 hyperplanes determined by the vanishing of X12, . . . , X16. The data
corresponding to the remaining 26 extremal curves can be obtained from the action of W(E6).
These 27 5-tuples of hyperplanes are distinct, and therefore, so are the 27 trees.

The statement regarding the pairwise intersection of all trees follows from the fact that if two
classical lines do not meet, then the set of anticanonical triangles containing each one of them is
disjoint. Our previous discussion characterizing a tree in terms of the 5 hyperplanes containing it
implies that any intersection point between the tropicalization of two disjoint lines will have at least
10 infinity coordinates. This count dissagrees with the exact number of hyperplanes containing any
point in the boundary of T X in the absence of Eckardt points stated in Remark 5.3. We conclude
that the intersection complex of the boundary tropical lines and the 27 classical lines agree. �

Lemma 5.4 shows that the intersection complex of the tree arrangement at infinity is encoded in
the Schläfli graph, just as it happened with tropicalization with respect to the Cox embedding [3,
Section 2]. In particular, it allows us to label the leaves of each tree by the collection of hyperplanes
containing it. Each node lies in 9 hyperplanes by Remark 5.3. The topological type of each tree
depends on the polyhedral structure of the Naruki fan [3, Section 5]. We analyze their combinatorics
in Section 6.
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We end this section by comparing the combinatorial types of tropical smooth tropical del Pezzo
cubics with no Eckardt points induced by the Cox and anticanonical embeddings. Following 5.1, we
assume the anticanonical embedding of the classical smooth del Pezzo cubic X in P44 is associated
to the marking T .

Under tropicalization, the action of G7
m/Gm on P26 induced by the lattice Λ := Λ/Z·1 gives rise

to the quotient space TP44/ΛR, where ΛR := Λ ⊗Z R. By functoriality with respect to monomial
maps, the tropicalization of α yields a linear map

(5.5) trop(α) : TP26/ΛR → TP44

having the same associated 45 × 27-matrix A as (5.1). The map trop(α) is well defined since the
preimage of Z·1 under A is the lattice Λ.

The following result ensures that the combinatorics of T X ⊂ TP26/ΛR are preserved under the
tropical map:

Proposition 5.5. The tropical map trop(α) from (5.5) is is injective on each compact tropical del
Pezzo cubic T X.

Proof. The definition of the map α is compatible with the boundary structure on the source and
target spaces by Remark 5.3 and Lemma 5.4. This compatibility is preserved under tropicalization.
In particular, the preimages of distinct strata of TP44 are disjoint strata of T X ⊂ TP26/ΛR. Thus,
it suffices to check injectivity on each strata of T X induced by the structure of TP26/ΛR.

We start by discussing injectivity on the big open cell (R27/R ·1)/ΛR. This follows from the
preceeding discussion and (5.1) because

ker(trop(α#)) ∩ (R27/R·1) = ker(A) ∩ (R27/R·1) = ΛR.

This identity is checked by a simple matrix multiplication in the Supplementary material.
By Lemma 5.4 the recession fan of T X in both TP26/ΛR and TP44 is the cone over the Schläfli

graph. Hence, points in the boundary of T X lies in at most two hyperplanes at infinity. Points
in two hyperplanes at infinity correspond to the tropicalization of the intersection of two extremal
curves in X. Up to the action of W(E6)-there are two types of boundary strata, determined by the
number of ∞-coordinates. We choose our two representatives as those associated to the curve E1

and the pair (E1, F12), respectively. Keeping the notation from the proof of Theorem 3.2, they are
defined inside T X by the conditions e1 = ∞ and e1 = f12 = ∞, respectively. The latter consists
of a single point, so injectivity follows automatically.

On the relative interior of the strata of T X defined by e1 =∞, a point is defined by the remaining
26 coordinates. Its image under trop(α) will have ∞ coordinates precisely at the 5 anticanonical
triangles x1i for i = 2, . . . , 6. Thus, the image on the strata will be completely determined by
the corresponding 36 × 26 submatrix A′ of A associated to the remaining coordinates. A simple
calculation available in the Supplementary material shows that the projection of the lattice Λ to
Z26 is a saturated rank 7 lattice Λ′ containing the all-ones vector. Furthermore, A′ has rank 20 and
it contains the R-span of Λ′. We conclude that A′ is injective on the quotient space R26/Λ′R. The
same holds for trop(α) and the boundary strata of T X induced by e1, as we wanted to show. �

6. Combinatorial types of tree arrangements

Maria: Put a labeling lemma for the tree arrangement with a local picture here Maybe we can
do it for the 2 generic types?
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A = (0, 1,∞, 0)

B = (0,∞, 2, 0)

C = (0, 1, 2, 0)

E = (0, 0, 1,∞)

F = (∞, 0, 1, 0)

D = (0, 0, 1, 0)

D′ = (∞, 1, 2,∞)

Figure 2. A generic tropical line in TP3 and a non-generic one associated to the
partition {0, 3} t {1} t {2} of {0, 1, 2, 3}.

7. Tropical lines in TPn−1

In this section we study tropical lines in TPn−1 and extend characterizations of collinearity from
the tropical projective torus to the compact setting. This result will be crucial in Section 8. We
start by recalling the definition of a tropical line in tropical projective space:

Definition 7.1. A generic tropical line in tropical projective space TPn−1 meeting the interior of
TPn−1 is an embedded metric tree which is balanced with multiplicity 1 edges and has n leaf edges
(those adjacent to a leaf of the tree) pointing into the coordinate directions. Non-generic tropical
lines meeting the interior of TPn−1 are tree with m ≤ n leaves, and the leaf edges have directions
eBj :=

∑
i∈Bj

ei for j = 1, . . . ,m, where the non-empty sets B1, . . . , Bm partition the set {0, . . . , n}.

The previous definition is nothing but the compactification of tropical lines in the tropical pro-
jective torus Rn/R·1. All leaves of such trees will be at the boundary of TPn−1. The collections
B1, . . . , Bm correspond to the coordinates with values ∞ of each of the m leaves. In particular, all
leaves lie in the relative interior of distinct cells. Figure 2 gives an example of two tropical lines in
TP3 meeting its interior.

Remark 7.2. We can extend Definition 7.1 to tropical lines in the boundary of TPn−1 by viewing
an ambient boundary cell as a TPs−1 ⊂ TPn−1 where the remaining coordinates are taken to be∞.

Every tropical line in TPn−1 is realizable by a classical line in Pn−1 (the proof in [?, Theorem 3.8]
can be extended from the dense torus to the coordinate hyperplanes using Remark 7.2). Classically,
we can easily determine when a finite set r of points in Pn−1 is collinear. It suffices to build an r×n-
matrix and check that all 3 × 3 minors vanish. Foundational work on tropical linear algebra [?]
shows that analogous statement holds for characterizing tropical lines in the tropical projective
torus. The determinant of each minor is replaced by its tropical permanent, as we now define:

Definition 7.3. The tropical permanent of a matrix S ∈ Rd×d is defined by

(7.1) perm(S) = min
σ∈Sd

{s1σ(1) + . . .+ sdσ(d)},

where Sd denotes the set of permutations of [d]. The matrix S is called tropically singular if the
minimum in (7.1) is achieved at least twice. Otherwise, we say S is tropically non-singular.

To simplify notation, we sometimes refer to the tropical permanent (as opposed to the matrix)
as tropically singular or non-singular. The following lemma extends the characterization of tropical
lines meeting the tropical projective torus to the compact setting.

Lemma 7.4. Fix a collection C of r points in TPn−1 with pairwise disjoint ∞-entries. The col-
lection C is tropically collinear if and only if all 3 × 3-minors of the associated r × n-matrix with
entries in R are tropically singular.
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Proof. We let {p1, . . . , pr} be the collection C of points and call M the tropical r× n-matrix in the
statement. When the points in C lie in the tropical projective torus, the matrix M has entries in R,
and the statement follows from [?, Corollary 3.8 and Theorem 6.5]. If we allow some of the points
to lie in the boundary of TPn−1 the argument needs to be slightly modified. Our hypothesis on the
∞-entries of each pi ensures that each coordinate hyperplane contains at most one point of C. In
particular, any tropical line containing them must meet the interior of TPn−1.

Suppose the collection C is tropically collinear, and let T L be the tropical line through its points.
To use the criterion over the torus, we must replace C by r points with no ∞-coordinates. Every
point pi in the boundary of TPn−1 will be a leaf of our tree T L. We replace each such pi by a point
p′i in the leaf edge ending at pi. If a point pi has only real coefficients we set p′i = pi.

The new collection C′ is contained in T L and the corresponding tropical matrix M ′ given by the
entrywise valuations has only real entries. Therefore, all 3× 3-minors of M ′ are tropically singular.
As the points p′i approach the original points, the tropical permanents of the submatrices of M ′

approach the corresponding tropical permanents for M , hence they are also tropically singular.
For the converse, we approximate our collection C by a collection C′ with only real entries and

with only tropically singular 3× 3-minors. We do so as follows. After permutation of columns, we
may assume that M has the form:

M =



∞ . . . ∞ ∗ . . . ∗ . . . ∗ . . . ∗ ∗ . . . ∗
∗ . . . ∗ ∞ . . . ∞ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗
∗ . . . . . . . . . . . . ∗ . . . ∗ ∗ . . . ∗
∗ . . . . . . . . . ∗ . . . ∗ ∞ . . . ∞ ∗ . . . ∗
∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗
...

...
...

...
...

...
...

...
...

...
∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗


,

where the bottom right block matrix has size s× l, with s, l ≥ 0. The entries labeled with ∗ in M
take only real values, as opposed to the entries marked with ∞’s.

We letBi be the columns corresponding to the∞-entries on the i-th row ofM with i = 1, . . . , r−s.
Since every row is an element of TPn−1 we can find an si in {0, . . . , n−1} with Misi ∈ R. If |Bi| ≥ 2,
working with the 3×3-tropical permanents involving 2 columns of Bi and the column si, we conclude
that the (r−1)×|Bi|-submatrix of M with rows in [n]r{i} and columns in Bi has tropical rank 2,
that is, all its 2× 2-minors are tropically singular. In particular, the difference of any two columns
in this submatrix is a multiple of the all-ones vector.

By removing all but the first column from each Bi and remembering the corresponding λ1
differences with respect to the first column of Bi (for reconstruction purposes), we may assume
|Bi| = 1 for all i ≤ r− s and |Bi| = 0 for i > r− s. We claim that the points in C will be tropically
collinear if and only if the projection to the chosen r − s coordinates is. Indeed, the tropical rank
2 condition on the columns indexed by Bi will guarantee that we can reconstruct a tropical line in
TPn−1 through C from the projection to TPr−s−1, namely, that preimage will satisfy the required
the balancing condition with multiplicity 1 and all leaf edges will have the mandatory directions.

We fix a large integer N and we let M ′ be the matrix obtained by replacing every ∞-entry
of M with the number N , and consider C′ := {p′i : 1 ≤ i ≤ r} the corresponding set of r points
in TPn−1. Our choice of N and the condition that |Bi| = 0 or 1 for all i guarantees that every
3 × 3-tropical permanent of M ′ takes the same value that the corresponding tropical permanent
of M ′. In particular, by our hypotheses, all the 3× 3-tropical permanents of M ′ are also singular.
Since M ′ has only real entries, we conclude that the configuration C′ is tropically collinear.

We let C′′ be the configuration obtained by adding to C′ all r− s points p′i+µei where µ ≥ 0 and
ei is the ith canonical basis vector in Kn. Our choice of N also ensures that all the 3× 3-tropical
permanents of C′′ are singular as well. Hence, the expanded configuration will remain collinear.
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As we let µ go to ∞, the added r − s points p′i + µei approach pi for i ≤ r − s and furthermore,
the sequence of tropical lines containing C′′ is ultimately constant. We conclude that C lies in the
limiting tropical line. This concludes our proof. �

8. Tropical lines on anticanonical tropical cubic del Pezzo surfaces

In this section, we esturn our attention to the second guiding question in the paper, namely,
the number of tropical lines on anticanonically embedded tropical cubic surfaces. Our main proof
technique exploits the rigid structure of teh boundary of the tropical surface and builds candidate
points in the boundary of potential tropical lines meeting the interior of the tropical surface. A
tropical computation of ranks shows that in the non-trivially valued case, these points are never
tropically collinear. In the trivially valued case, which we discuss in Section 9, this construction
yields 27 additional tropical lines.

As in the previous sections, we let X be a smooth cubic del Pezzo surface without Eckardt points
embedded in P44 via the anticanonical map, and we consider its induced tropicalization T X ⊂ TP44.
Our discussion in Section 5 reveals a key property of this embedding: the surface X intersects the
45 coordinate hyperplanes exactly at its 27 lines. Since the boundary of T X is the tropicalization
of the boundary of X, we conclude that any tropical line in the boundary of T X must be supported
on the arrangement of trees determined by the tropicalizations of the 27 classical lines.

The following is the main result in this section. To simplify the exposition, its proof will be
provided by a series of auxiliary technical lemmas and propositions.

Theorem 8.1. Let X be a smooth del Pezzo cubic without Eckardt points. Assume some Yoshida
function on X has non-trivial valution. Then, the anticanonically embedded tropical del Pezzo cubic
T X has exactly 27 tropical lines.

Proof. Lemma 5.4 ensures that the boundary of T X contains exactly 27 tropical lines. Proposi-
tions 8.2, 8.9 and Lemma 8.10 imply that there are no tropical lines in T X meeting its interior. �

Since every tropical line in TP44 is realizable, we write our potential tropical line as T L for some
line L in P44. Sine any extra line on T X meets its interior, our earlier discussion ensures that L
meets the dense torus. The tropical line satisfies the following two properties:

(i) T L meets all 45 boundary hyperplanes in TP44, each one of them indexed by an anticanonical
triangle. Each such intersection consists of one point.

(ii) T L intersects each boundary tropical line in at most one point.

Since T L is a tree with at most 45 leaves and the leaf edges have directions with disjoint support,
there is at most one point in the intersection between T L and a given boundary hyperplane.
Equality holds by construction. Condition (ii) is a direct consequence of T L meeting the interior
of T X and the description of leaf-edge directions of T L.

Our first technical result shows that any potential tropical line meeting the interior of T X has
exactly 5 points in its boundary and they correspond to the intersection points between pairs of
boundary tropical lines meeting a common third one. We refer to them as nodal points.

Proposition 8.2. Let X be a smooth cubic del Pezzo surface without Eckardt points. Consider
its tropicalization with respect to the anticanonical embedding. Then, there are at most 27 families
of tropical lines meeting the interior of T X. Each family is indexed by a given extremal curve
in X, and all its members have the same 5 boundary points. Furthermore, these points are the
tropicalization of the 5 nodes associated to the link of the indexing curve in the Schläfli graph.

Proof. We write our potential tropical line as T L for some L meeting the dense torus of P44. Our
first key observation is that the combinatorics of the boundary of T X, encoded in the Schläfli
graph by Lemma 5.4, make it impossible to simultaneously satisfy conditions (i) and (ii). A careful
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case by case analysis, which is described by Lemmas 8.3, 8.4 and 8.5, shows that T L meets every
boundary tropical line of T X in at most one point. Furthermore, the point must be a node.

By Remark 5.3 we know that each node lies in exactly 9 boundary hyperplanes. Since all
boundary points of T L must have disjoint sets of ∞-entries, we conclude that T L has at most 5
boundary points. By the action of W(E6) we may assume that one of them equals T E1 ∩ T F12.
Lemma 8.6 implies that the remaining 4 points in the boundary of T L are T Ei ∩T F2i for i 6= 1, 2.
They come from the intersections of the 5 pairs of classical lines meeting G2, so we use G2 as an
index for T L. Notice that the 5 boundary points are complete determined by this label but the
tropical line T L need not be unique. There are 27 such labels and they are all W(E6)-conjugate.
This concludes our proof. �

Lemma 8.3. T L cannot meet 3 tropical boundary lines at non-nodal points.

Proof. We argue by contradiction. Our hypothesis ensures that the three boundary lines are pair-
wise disjoint since, otherwise, their intersection point with T L would be a node. Without loss of
generality, by the action of the Weyl group W(E6) we may assume they are T E1, T E2 and T E3.

We consider the anticanonical triangles X14, X25 and X36. Our hypothesis and (ii) ensures that
T L cannot meet any of the three lines T F14, T F25 and T F36. We conclude that T L does not
intersect the boundary hyperplane corresponding to Y123456, thus violating condition (i). �

Lemma 8.4. T L cannot meet 2 boundary tropical lines at non-nodal points.

Proof. We argue by contradiction. As with Lemma 8.3, we know that the two boundary lines in
the statement cannot intersect and we may assume they are T E1 and T E2. Since their intersection
with T L is not a node and T L meets the hyperplanes indexed by X1∗ and X2∗, condition (ii)
implies that T L cannot intersection any of the boundary tropical lines T F1j nor T F2l where j 6= 1
and l ≥ 3. Since it also intersects all the hyperplanes Y1k2l∗∗, we conclude that T L must intersect
all tropical lines Fij with i, j /∈ {1, 2}.

An analogous argument shows that T L does not intersect any T Gk for k = 1, . . . , 6. Looking at
the triangle Y123456, we conclude that T L meets the associated hyperplane at the node T F34∩T F56.
In turn, the intersection between T L and each of the three hyperplanes X32 and X34, allows us to
conclude not only that T L intersects E3, but that the intersection point must be in T E3 ∩ T F34

and T E3 ∩ T F35. This cannot happen since T F34 ∩ T F56 and T E3 ∩ T F34 are distinct points in
T L ∩ T F34 by Lemma 5.4. �

Lemma 8.5. T L cannot meet a boundary tropical line at a non-nodal point.

Proof. We argue by contradiction. Using the action of W(E6) if necessary, we may assume T L
meets T E1 at a non-nodal point. Our first claim is that T L must also intersect T E2, . . . , T E6.
Otherwise, by the action of S6, we may assume T L does not meet T E6. By considering the
hyperplanes X1i for i 6= 1, we conclude from condition (ii) that

(8.1) T L ∩ T F1i = ∅ and T L ∩ T Gi = ∅ for all i 6= 1.

On the contrary, since T L∩T E6 = ∅, the non-empty intersection between T L and the hyperplane
X61 together with (8.1) guarantees that T L ∩ T G1 6= ∅. Furthermore, Lemma 8.4 forces this
intersection to be a nodal point of T G1. Again, (8.1) and the combinatorics of the anticanonical
triangles restrict the nature of this node: it must lie in some T Ej , which we may take as T E2.

Considering the hyperplanes X2i for i 6= 2, conditions (i) and (ii) and the absence of Eckardt
points implies that T L does not intersect any F2i for i 6= 2. A similar argument using the hyperplane
X31, the properties on T G1 discussed above and (8.1) ensures that T L does not meet T E3.

Since T L ∩ T E3 = T L ∩ T G2 = T L ∩ T F23 = ∅, we conclude that T L does not meet the
hyperplane X32, in disagreement with condition (i). Therefore,

(8.2) T L ∩ T Ei 6= ∅ for all i = 1, . . . , 6.
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The analysis for both hyperplanes Xij and Xji for all pairs i 6= j together with (8.2) implies that
T L ∩ T Fij = ∅. For if this were not the case, the intersection would necessary contain the nodal
points T Fij ∩ T Ei and T Fij ∩ T Ej , contradicting (ii).

Finally, our last claim implies that T L does not meet the hyperplane defined by Y123456, violating
condition (i). This concludes our proof. �

Lemma 8.6. Let X be a smooth cubic del Pezzo without Eckardt points and let T L be a tropical
line in TP44 meeting the interior of T X. Assume T L meets the line T E1 at the node T E1 ∩ T F1j

with j 6= 1. Then, T L has exactly 5 points in its boundary, namely T Ei ∩ T Fij with i 6= j.

Proof. By the action of S6, we may assume that j = 2. Since T L intersects T F12 at T E1 ∩ T F12,
conditions (i) and (ii) ensure that T L cannot intersect T E2, T G1, T G2 nor any T Fkl with k, l /∈
{1, 2}. Likewise, since T L intersects T E1 at the same node, we conclude that T L misses T F1k and
T Gk for all k 6= 1, 2.

There are 8 remaining boundary tropical lines to consider, namely T Ei and T F2i for i = 3, . . . , 6.
Notice that they give rise to 4 nodal points, so T L itself has at most 5 boundary points. Since
T L avoids both T E2 and T Gi for i = 3, . . . , 6, but meets the boundary hyperplane X2i for each
i = 3 . . . , 6, we conclude that T L meets all T F2i for i 6= 1, 2. Similarly, analyzing the intersection
between T L and the boundary hyperplane Xij for a fix i = 3, . . . , 6 and j /∈ {1, 2, i}, it follows that
T L meets T Ei for all i 6= 1, 2.

Finally, the nontrivial intersection between T L and each of the boundary hyperplanes Xi2 for
i 6= 2 ensures that T L meets both T Ei and T F2i at their intersection point T Ei∩T F2i. Therefore,
T L has exactly 5 boundary points and they have the desired description. �

Proposition 8.2 provides strong combinatorial conditions on potential tropical lines meeting the
interior of T X, by characterizing 27 possible five tuples of boundary points as the tropicalization of
the five points in P44 associated to the link of a vertex in the Schläfli graph. Such tuples of points
have coordinates in the function field associated to the 40 Yoshida functions from Subsection 2.3.
The next result describes their coordinates, and its proof provides an algorithm for expressing them.
An implementation in Pythonand Sage is available in the Supplementary material.

Lemma 8.7. Let X be a smooth cubic del Pezzo surface with no Eckardt points anticanonically
embedded in TP44. Then, each of the 135 nodes of X obtained as pairwise intersections between
its 27 extremal curves has exactly 9 zero coordinates. The remaning ones are Laurent monomials
in the Yoshida and Cross functions. Furthermore, each nonzero coordinate has at least one Cross
function factor.

Proof. By the action of W(E6), it is enough to show the validity of the statement for the 5 points
associated to the link of G2, namely E1∩F12 and Ei∩F2i for i 6= 1, 2. By Remark 5.3, these points
are characterized by the vanishing of precisely 9 anticanonical coordinates in the linear span of X
obtained as the solution to the 270 linear equations (3.10).

Using Sage we compute a basis {v0, . . . , v3} of the 4-dimensional solution set to this linear system
over the function field associated to the 40 Yoshida functions (see the Supplementary material).
We encode it as a 4×45 matrix M all of whose entries are Laurent monomials in both the Yoshidas
and Cross functions. Since these coordinates are not algebraically indepedent, we choose to work
instead with the matrix M ′, whose entries are the rational functions in the parameters d1, . . . , d6
expressing the corresponding entries in M . The new matrix is obtained from (2.3) and (2.4).

We obtain the precise coordinates for the classical node associated to a giving boundary point of
T L by finding a generator of the 1-dimensional left-kernel of the corresponding 4× 9-submatrix of
M ′: this generators provides the scalars in the linear combination of the vectors vi giving the node.
For example, the point E1 ∩ F12 coincides with the basis element v3, but in general, the scalars
will be rational functions in parameters d1, . . . , d6. A Python script allows us to re-express these
coordinates as rational functions in the Yoshidas functions.



18 M.A. CUETO AND A. DEOPURKAR

By factorizing the 36 nonzero coordinates of E1 ∩F12, we certify the claim in the statement (see
the Supplementary material). The factors are monomials and binomials in the Yoshidas, and these
binomial expressions yield Cross functions. By acting via the transpositions (1 i) in S6 we see that
the remaining 4 nodes associated to the link of G2 have the desired factorization. The action of
W(E6) proves the statement for all vertices in the Schläfli graph. �

Remark 8.8. The parameterization of the 135 nodes described in Lemma 8.7 in terms of Yoshida
and Cross functions is solely obtained from the coordinates of the P3 linearly spanned by X, and
makes no use of the binomial cubic equation cutting out the X in P3. Explicit coordinates for the
27 families of 5 nodes are available in the Supplementary material.

Lemma 7.4 provides a powerful tool to check when a finite set of points in TPn−1 is not collinear:
it suffices to find a tropically non-singular 3×3-minor in the associated r×n-matrix with entries in
R. Our strategy to rule out any tropical line on T X beyond the tropicalization of the 27 classical
lines in X is to find precise coordinates for the 5 boundary points on each potential tropical lines in
the interior of T X and search for tropically non-singular 3× 3-minors that show these five points
are not collinear in TP44. This method discards any potential tropical line meeting the interior of
T X whenever some Yoshida function has non-trivial valuation. A separate analysis will be required
for the apex of the Naruki fan. We do this in Section 9.

As discussed in Section 4, the Naruki fan N in R40 encodes the combinatorial types of tropical
smooth del Pezzo cubics with no Eckardt points in TP44 by means of the valuations of the 40
Yoshida functions. Proposition 8.2 expresses the 5 boundary points of the potential line T L as the
tropicalizations of nodes in the boundary of the surface X. By Lemma 8.7, the coordinates of these
nodes come in two flavors: 9 of them are zero, and the remaining 36 are Laurent monomials in the
Yoshidas and Cross functions. Furthermore, Cross functions do appear in all nonzero coordinates.

The Cross functions, expressed as linear binomials in the 40 Yoshida functions yields the Cross
tropical hyperplane arrangement in R40 generated by the single hyperplane Y3 = Y37 (associated
to the Cross116 function) and its 134 W(E6)-conjugates. The Cross arrangement is compatible
with the fan structure of N discussed in Section 4. The valuation of each Cross function cannot
be completely determined from a given point in N if the point lies in the tropical hyperplane
determined by the Cross. Indeed, in the presence of ties between the summands, the valuation of
the binomial expression can be higher than expected. Our previous observation allows us to check
this condition uniformly on each cone of N using any point in its relative interior. We choose the
sum of the rays spanning each cone as our witness point.

The uncertainty of the valuations of these 135 Cross functions makes it a priori impossible to
determine all coordinates of the 5 boundary points of T L from the coordinates of the associated 5
classical nodes. To take this uncertainty into account, given a cone σ in N and an extremal curve
C in X indexing a potential tropical line T L, we compute two 5 × 45-matrices describing the 5
boundary points of T L:

(1) a matrix Mexp with the expected valuations of each of the 5 classical nodes in P44 (assuming
the valuation of a Cross factors is the minimum of the valuation of the constituent 2 Yoshida
functions). The entries are linear functions in the valuations of the Yoshida functions. For
a given point in rel int(σ) it gives an element in R;

(2) a matrix Mtrue whose (i, j) entries come in two types. Given σ, we conside the collection
C indexing all Cross hyperplanes intersecting its relative interior. If the jth. coordinate of
the ith. node in P44 does not contain any Cross function in C, then the valuation of this
coordinate is the expected one, so Mtrue[i, j] = Mexp[i, j]. Otherwise, its valuation cannot
be determined. We record the entry of Mtrue as a ‘None’.

The values of these 27 pairs of matrices is constant along the relative interior of each cone in N .
Our implementation stores the values of these two matrices at the center of mass of each cone σ,
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so the entries of our matrices take values in R ∪ {∞} ∪ {None}. For each cone σ in N , we collect
the 27 pairs of (evaluated) matrices into a family

(8.3) Fσ := {(Mexp[C, σ],Mtrue[C, σ]) : C extremal curve in X}.

We use the families Fσ to rule out all the potential extra tropical lines described in Proposition 8.2
for all cones in N except the apex. The method is described in algorithm 1 and its implementation
in Python can be found in the Supplementary material. Most of the cones of N are covered
by Proposition 8.9. The cone σ of type (a) requires a different strategy for 15 of the extremal
curves. Lemma 8.10 discusses these special cases. The apex of N is analyzed in Section 9.

Proposition 8.9. Assume some Yoshida function on X has non-trivial valuation. Given a vertex
C of the Schläfli graph, we consider the 5 nodes on X associated to the link of C in this graph.
Then, their tropicalizations in TP44 are not tropically collinear.

Proof. Since not all 40 Yoshida functions on X have trivial valuation, we know the associated point
p in N describing the combinatorial type of T X ⊂ TP44 is not the apex. We let σ be the smallest
cone containing the point p, and consider the family Fσ in (8.3) encoding the expected and true
coordinatewise valuations of the 27 families of 5 nodes from Lemma 8.7.

Given an extremal curve C, algorithm 1 uses the pair of matrices (Mexp[C, σ],Mtrue[C, σ]) and
a fixed 3-element set J of {0, . . . , 5} and searches for a 3-element set J ′ of {0, . . . , 44} giving a
tropically non-singular minor of Mtrue[C, σ] with rows J and columns J ′ that agrees with the
associated minor of Mexp[C, σ]. We test this by checking the minor of Mtrue[C, σ] has no ‘None’
entries. The existence of such a tropically non-singular minor together with Lemma 7.4 would
prove that the tropicalization of the 5 nodes associated to C gives 5 not tropically collinear points
in TP44. Whenever the output is the list NonSingMinors for some choice of J , our Python script
checks the next set J in the lexicographic order and attempts to find 3 suitable columns. We repeat
this process until all triples of rows have been tested.

For each non-apex cone σ in N and each extremal curve C in X, Table A.4 gives all instances
where algorithm 1 succeeds. We record the information of rows and columns giving a tropically
non-singular 3× 3-minor of Mtrue[C, σ]. With this method we find a tropically non-singular minor
for all non-apex cones in N and all curves C with one exception: the combination of the (a) cone
and the 15 extremal curves

(8.4) F := {E3, E4, E5, E6, F12, F34, F35, F36, F45, F46, F56, G3, G4, G5, G6}.

In all these cases, Lemma 8.10 and algorithm 2 provides a tropically non-singular minor for the
corresponding element in F(a). This concludes our proof. �

The failure of algorithm 1 in providing a certifying minor with entries in R for a pair in Fσ
need not imply that the corresponding 5 points in TP44 are tropically collinear. An analysis of
the entry patterns of tropically non-singular 3 × 3-minors of Mexp[C, (a)] (computed in the body
of algorithm 1) gives many instances where the tropical permanents consist of two non-infinite
terms but when evaluated in Mtrue[C, (a)] both terms involve ‘None’ entries. Furthermore, up to
permutations of rows and columns, the associated minors in Mtrue[C, (a)] have the form

(8.5)

 ∗ ∞ ∞
∞ ∗ None

∗ ∗ None

 ,

where ∗ indicates an entry in R. This shape indicates the nature of the 3 coordinates of 3 classical
nodes in X. In particular, the third entries of the last 2 nodes involve Cross functions whose
associated tropical hyperplanes contain the cone (a). The following lemma shows that, nonetheless,
we can completely determine the valuation of their ratio. Therefore, these two ‘None’ entries will
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Algorithm 1: Ruling out a potential tropical line in TP44 meeting the interior of T X.

Input: An ordered list J in {0, . . . , 4} of size 3 and a pair of 5× 45 matrices (Mexp,Mtrue) in
Fσ of expected and certain coordinates of 5 points in the boundary of T X ⊂ TP44, for
a fixed cone σ in the Naruki fan N .

Assumption: X is a smooth del Pezzo cubic with no Eckardt points, embedding in P44 via
the Yoshida-adapted anticanonical coordinates, where the valuation of the 40 Yoshida
functions yield a point in the cone σ.
Output: A 3-element subset in {0, . . . , 44} giving the columns of a tropically non-singular

3× 3 minor with rows in J for each pair (Mexp,Mtrue) in Fσ, or a list of all
3-element subsets of {0, . . . , 44} giving tropically non-singular minors of Mexp if no
tropically non-singular minor without ‘None’ entries can be detected.

NonSingMinors ← [ ]
for J ′ in Subsets([44], 3) do

Sexp(J, J ′)← 3× 3-submatrix of Mexp with rows J and columns J ′;

if Sexp(J, J ′) is tropically non-singular then
NonSingMinors ← NonSingMinors + [J ′]
Strue(J, J

′)← 3× 3-submatrix of Mtrue with rows J and columns J ′;

if Strue(J, J
′) = Sexp(J, J ′) then

return J ′

return NonSingMinors.

not change the number of terms realizing the minimum in the tropical permanent, showing that
the 3× 3-minor of Mtrue is tropically non-singular.

Lemma 8.10. Let C be a curve in the collection F from (8.4) and let N be the 5×45 matrix giving
the 5 nodes associated to the link of C in the Schläfli graph. Then, there exists a pair of unordered
3-element sets J in {0, . . . , 5} and J ′ in {0, . . . , 44} satisfying the following three conditions:

(i) the submatrix of Mexp[C, (a)] with rows J and columns J ′ is tropically non-singular,
(ii) the submatrix of Mtrue[C, (a)] with rows J and columns J ′ has the shape (8.5),

(iii) the expression (N [J [1],J ′[2]]
N [J [2],J ′[2]])

3 is a Laurent monomial in the Yoshida functions.

Proof. The discussion preceeding the statement shows why it is conceivable to find a pair (J, J ′)
satisfying (i) and (ii). It gives rise to algorithm 2, which enables us to prove (iii) by explicit
computations. A direct factorization of the expression in (iii) is not possible since the Yoshida
functions are not algebraically independent for dimensional reasons. We are forced to express all
relevant functions in terms of the parameters d1, . . . , d6.

From the shape (8.5) we deduce that the only entries in the submatrix of N with rows J and
columns J ′ with undetermined valuations are N [J [1], J ′[2]] and N [J [2], J ′[2]]. This means that
both entries contain Cross functions in their factorization whose valuations cannot be determined
from the cone (a). We let A (respectively B) be the product of all the Cross factors in N [J [1], J ′[2]]
(resp. N [J [2], J ′[2]]). A simple calculation shows that the ratio A/B is a Laurent monomial in the
36 positive roots of E6.

By Remark 4.1 we know that the exponent vectors of the 40 Yoshida functions span a rank 16
sublattice of Z36 of index 3. A basis of this lattice is provided by the Yoshida functions indexed by
the set B = {5} ∪ {17, . . . , 31} (see the Supplementary material). In particular, even though the
ratio A/B need not be a Laurent monomial in the Yoshida functions indexed by B, its cube will be.
We certify this last step as follows. We factor (A/B)3 as a Laurent monomial in the positive roots
of E6 and let v be its exponent vector in Z36. We solve the linear system of equations M tx = vt,
where M is the 16 × 36-submatrix of the Yoshida matrix with rows in B. If it exists, its unique
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solution will lie in Z16 and it will be the exponent vector giving the desired factorization of (A/B)3.
From this it follows that the cubed ratio in (iii) has the same desired property.

For each choice of J and C, we run our Python implementation of algorithm 2 (available in the
Supplementary material). As the input set S we use the output NonSingMinors from algorithm 1
obtained from the input J and C. Table 8.1 shows the choice of rows J for each curve C in
F from (8.4) that failed to give the desired output in algorithm 1 and the non-empty output
of algorithm 2 in each case. This concludes our proof. �

Algorithm 2: Finding tropically non-singular 3× 3-minors involving unknown valuations.

Input: A 3-element set J ⊂ {0, . . . , 5}, an extremal curve C in X, a 5× 45 matrix N giving
the 5 nodes associated to the link of C in the Schläfli graph, a list S of 3-element sets
in {0, . . . , 44} encoding all tropically non-singular 3× 3-minors in Mexp[C, σ] for a
fixed cone σ in the Naruki fan N , and a list B of row indices giving a Z-basis of the
row space of the Yoshida matrix

Assumptions: X is a smooth del Pezzo cubic with no Eckardt points, embedding in P44 via
the Yoshida-adapted anticanonical coordinates. The valuation of its 40 Yoshida functions is a
point in the relative interior of σ. The output of algorithm 1 for C and J is the empty list.
Output: The empty list or a pair consisting of (1) an element J ′ in S giving the 3 columns

of a tropically non-singular minor with rows J for the pair (Mexp[C, σ],Mtrue[C, σ]),
and (2) the expression of the third power of the ratio of the two relevant entries with
unknown valuations in N as a Laurent monomial in the Yoshidas indexed by B.

for J ′ in S do
Sexp(J, J ′)← 3× 3-submatrix of Mexp[C, σ] with rows J and columns J ′;

if Sexp(J, J ′) is tropically non-singular then
Strue(J, J

′)← 3× 3-submatrix of Mtrue[C, σ] with rows J and columns J ′;

for (τ1, τ2) ∈ S3 ×S3 do
(Nnew, Snew

true)← ((τ1, τ2)·N, (τ1, τ2)·Strue(J, J ′));
if Snew

true has the entries-pattern of (8.5) (where ∗ indicates a real number) then
(A,B)← product of all Cross factors in each (Nnew[2, 3], Nnew[3, 3]), converted
into a rational function in d1, . . . , d6 ;

if (A/B)3 is a monomial in the Yoshida functions indexed by B then
return (J ′, (A/B)3).

return [ ].

9. Tropical lines in T X in the trivial valuation case

In Section 8 we discussed the combinatorics of potential tropical lines meeting the interior of T X.
In particular, Proposition 8.2 showed that any tropical line on T X meeting its interior intersects
the boundary of TP44 at precisely 5 points. These points are the tropicalization of the intersections
of pairs of (-1)-curves meeting a fixed (-1)-curve, which we use to label the potential tropical line.
There are exactly 27 families of such potential tropical lines and they are all conjugated by W(E6).
The quintuple of boundary points of each potential line gives 5 disjoint sets B1, . . . , B5 associated
to the nine ∞ coordinates of each boundary point. These sets determine the 5 rays eB1 , . . . , eB5 in
the recession fan of T L.

When some of the Yoshida functions parameterizing X has non-trivial valuation, these potential
lines are ruled out after checking that their five boundary points are not collinear in TP44. When
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Curve Rows Columns Minor Shape (A/B)3 as a Laurent monomial in the Yoshidas

E3 [0, 1, 2] [8, 9, 24]

 ∗ ∞ ∞
∞ ∗ None

∗ ∗ None

 -1

E4 [0, 1, 2] [8, 9, 13]

 ∗ ∞ None

∞ ∗ ∞
∗ ∗ None

 Y5 Y22 Y
2
26 Y30/(Y

2
18 Y20 Y21 Y27)

E5 [0, 1, 2] [7, 32, 33]

 ∗ None ∞
∞ ∞ ∗
∗ None ∗

 (−1)Y 3
17 Y

2
18 Y20 Y26 Y27 Y

2
30/(Y5 Y

3
19 Y

2
21 Y22 Y

3
29)

E6 [0, 1, 2] [7, 8, 12]

∞ ∗ ∞
∗ ∞ None

∗ ∗ None

 1

F12 [0, 2, 4] [17, 26, 44]

None ∞ ∗
∞ ∗ ∞

None ∗ ∗

 -1

F34 [0, 2, 4] [5, 7, 23]

 ∗ ∞ ∞
∞ ∗ None

∗ ∗ None

 1

F35 [0, 1, 2] [6, 15, 23]

 ∗ ∗ None

∞ ∗ ∞
∗ ∞ None

 Y 2
5 Y21 Y

3
25 Y26 Y27 Y

3
29/(Y18 Y

2
20 Y22 Y

3
24 Y

3
28 Y30)

F36 [0, 1, 2] [6, 9, 19]

 ∗ ∞ ∞
∞ ∗ None

∗ ∗ None

 -1

F45 [0, 1, 2] [7, 10, 12]

 ∗ ∗ None

∗ ∞ ∞
∞ ∗ None

 Y5 Y18 Y
2
26 Y

3
31/(Y20 Y21 Y

2
22 Y27 Y

2
30)

F46 [0, 1, 2] [8, 9, 13]

 ∗ ∞ None

∞ ∗ ∞
∗ ∗ None

 Y18 Y
2
20 Y22 Y

3
24 Y

3
28 Y30/(Y

2
5 Y21 Y

3
25 Y26 Y27 Y

3
29)

F56 [0, 1, 2] [8, 9, 13]

 ∗ ∞ None

∞ ∗ ∞
∗ ∗ None

 Y 2
5 Y20 Y

2
22 Y26 Y

3
28 Y

3
31/(Y

3
17 Y18 Y

2
21 Y

3
25 Y

2
27 Y30)

G3 [0, 2, 4] [30, 35, 44]

None ∞ ∗
∞ ∗ ∞

None ∗ ∗

 1

G4 [0, 3, 4] [20, 32, 38]

 ∗ None ∞
∞ ∞ ∗
∗ None ∗

 (−1)Y18 Y
2
20 Y22 Y30/(Y

2
5 Y21 Y26 Y27)

G5 [0, 2, 4] [32, 34, 42]

None ∗ ∗
∞ ∗ ∞

None ∗ ∗

 1

G6 [0, 1, 3] [11, 32, 42]

 ∗ None ∞
∞ ∞ ∗
∗ None ∗

 1

Table 8.1. Ruling out the remaining 15 potential interior tropical lines for the
combinatorial type induced by the cone (a) in N that are not covered by Table A.4.
The entries A and B correspond to products of all Cross factors in the coordinate
of the 2 classical nodes responsible for the two ‘None’ entries in the (J, J ′)-minor of
Mtrue, read from top to bottom.

all 40 Yoshida functions have valuation zero, the methods from Section 8 fail. Maria: Explain
combinatorial type refers to stable surfaces.

Our main result in this section says that when the valuation on K is trivial, these tuples of 5
points are tropically collinear and, furthermore, the tropical line through them lies in the surface
T X. Surprisingly, no tropical cycle supported on such curves can be lifted to a curve in X.
Thus, the challenging relative lifting problem for such cycles on T X has a negative answer for the
anticanonical embedding. The monomial map (4.1) will yield the same answer for tropicalizations
with respect to the Cox embedding of X.
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Theorem 9.1. Assume that K has trivial valuation. Then, there are exactly 27 extra (non-generic)
tropical lines in T X meeting its interior. Furthermore, no tropical cycle supported on each such
tropical line can be lifted to an effective curve on the del Pezzo cubic X.

Proof. The group W(E6) acts transitively on all 27 potential tropical lines meeting the interior
of T X. Therefore, the count gives either no such lines or exactly 27 of them. Without loss of
generality, we assume our tropical line is indexed by the extremal curve E1.

We prove both assertions in the statement for this particular curve. By Proposition 8.2, the five
points associated to the link of E1 in the Schläfli graph are the tropicalization of the nodes F1j ∩Gj
for j = 2, . . . , 6. By Remark 5.3, each one of these nodes has exacly 9 coordinates equal to 0.
These coordinates become ∞ under tropicalization. The corresponding five sets of ∞-coordinates
are Bj = {Xij : i 6= j} ∪ {Y1jklmn : k, l,m, n} (j = 2, . . . , 6). They partition the set {0, . . . , 44}.

Since K has trivial valuation, the remaining 36 coordinates on the tropicalization of each node
have value 0. Therefore, the fan ΣE1 with rays eBj (j = 2, . . . , 6) is a non-generic tropical line
passing through these five points at infinity. It is the only tropical line containing these five points.
Since T X is also a fan, ΣE1 lies in T X.

A tropical cycle supported on ΣE1 has an integer multiplicity on each ray and it must satisfy the
balancing condition at the origin: the five primitive vectors for each ray scaled by their multiplicity
should add up to a multiple of the all-ones vector. The disjoint support property forces these five
multiplicities to agree, hence the cycle can be written as m ·ΣE1 for some integer m. Note that the
tropical cycle will be effective whenever m ≥ 1. We claim any such cycle (effective or not) cannot
be lifted to an effective curve C on X. We argue by contradiction.

By construction, all boundary points on the curve C tropicalize to one of the five boundary
points on ΣE1 . In particular, C contains five boundary points p2, . . . , p6, where trop(pj) is the leaf
associated to the ray eBj for j = 2, . . . , 6. Each point pj lies in the 9 hyperplanes indexed by Bj .
We claim that pj = Fij ∩Gj for j = 2, . . . , 6. For this, it suffices to show that

(9.1) C ∩G1 = ∅ , C ∩ Ek for all k 6= 1 and C ∩ Fik = ∅ for all i, k 6= 1.

The assertion follows by tropicalization. For example, if C ∩ G1 6= ∅, then ΣE1 contain a point in
its boundary with all coordinates X21 = X31 = . . . = X61 = ∞. This contradicts the definition of
ΣE1 . The other two assertions follow similarly by the combinatorics of the anticanonical triangles.
Since each pj has vanishing coordinates Y1jklmn and Xij with i 6= j, the conditions (9.1) imply that
pj = Fij ∩Gj for each j = 2, . . . , 6.

The 27 lines E1, . . . , G6 generate the effective cone, thus we can write the class of C as

[C] =
∑
i

ai[Ei] +
∑
i<j

bij [Fij ] +
∑
i

ci[Gi] for some ai, bij , ci ≥ 0.

Conditions (9.1) translate this identity to the following system of 16 linear equations:

0 = [C] · [G1] =
∑
i 6=1

ai +
∑
j>1

b1j − c1,

0 = [C] · [Ek] = −ak +
∑
i<k

bik +
∑
i>k

bki +
∑
i 6=k

ci for k 6= 1,

0 = [C] · [Fik] = ai + ak − bik +
∑

{p,q}∩{i,k}=∅

bpq + ci + ck for i, k 6= 1.

A simple calculation with Sage, available in the supplementary material, confirms that the system
has rank 6 and no solutions in the positive orthant other than the trivial one. Therefore, no multiple
of the tropical line ΣE1 lifts to an effective curve in X. This concludes our proof. �

Maria: We can use tropical intersection theory on Gubler models to get rid of the effectiveness
assumption on C.
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Roots r0 to r5 Roots r6 to r11 Roots r12 to r17 Roots r18 to r23 Roots r24-r29 Roots r30 to r35
−d1 + d2 −d2 + d4 −d1 + d4 −d2 + d6 −d1 + d6 d2 + d4 + d6
d1 + d2 + d3 d1 + d2 + d4 d1 + d2 + d5 −d1 + d5 d2 + d3 + d6 d2 + d5 + d6
−d2 + d3 −d4 + d6 −d3 + d6 d1 + d3 + d5 d2 + d4 + d5 d3 + d4 + d6
−d3 + d4 −d1 + d3 d1 + d3 + d4 d1 + d4 + d5 d1 + d4 + d6 d3 + d5 + d6
−d4 + d5 −d3 + d5 d2 + d3 + d4 d2 + d3 + d5 d1 + d5 + d6 d4 + d5 + d6
−d5 + d6 −d2 + d5 d1 + d2 + d6 d1 + d3 + d6 d3 + d4 + d5 d1 + d2 + d3 + d4 + d5 + d6

Table A.1. 36 positive roots of E6

k = 0 to 9 10 to 19 20 to 29 30 to 39
r10r11r12r2r22r24r27r35r8 r13r16r19r2r20r25r27r34r8 r0r10r12r14r33r35r5r6r7 r0r13r14r23r25r29r34r4r7
r1r18r21r23r29r30r31r4r9 r1r12r16r2r21r27r31r33r5 r1r15r26r28r30r33r5r6r9 r11r14r23r24r26r35r4r6r9
r15r17r18r20r25r26r34r4r9 r11r13r15r22r23r30r34r8r9 r0r1r2r34r35r4r5r8r9 r10r12r15r17r18r21r22r30r33
r16r19r2r24r28r3r35r5r6 r14r19r20r25r26r28r32r6r7 r0r10r17r20r22r32r34r7r8 r11r15r17r22r24r26r28r3r32
r1r19r2r21r22r28r30r32r8 r11r12r13r14r15r25r26r27r33 r11r12r14r21r22r23r31r32r7 r10r16r17r20r24r26r27r33r6
r12r15r2r22r25r28r34r5r7 r13r14r16r19r21r23r30r33r6 r12r14r18r19r2r21r25r35r4 r0r10r17r18r24r29r3r35r4
r0r13r15r16r17r3r33r34r5 r16r17r2r21r22r23r24r34r4 r0r1r10r13r27r29r30r33r8 r0r11r13r14r19r3r32r35r8
r10r18r19r20r30r35r6r8r9 r11r12r15r18r3r31r35r5r9 r10r22r23r24r28r29r30r6r7 r0r1r28r29r3r31r32r5r7
r16r20r23r31r34r5r6r7r9 r1r2r24r25r26r27r28r29r4 r13r15r18r19r25r28r29r3r30 r0r1r14r17r21r26r32r33r4

Table A.2. Yoshida functions Yk for 0 ≤ k ≤ 39 expressed as products of roots
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Appendix A. Computation

A.1. Coble covariants. Table A.1, Table A.2, and Table A.3 give our choices of positive roots, Yoshida
functions, and Cross functions, respectively.

A.2. W(E6) action.
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k = 0 to 14 15 to 29 30 to 44 45 to 59 60 to 74 75 to 89 90 to 104 105 to 119 120 to 134

−Y12 + Y36 −Y14 + Y5 −Y10 + Y4 −Y1 + Y38 −Y0 − Y35 Y28 − Y32 Y1 + Y9 Y18 − Y35 Y31 − Y36
−Y2 + Y35 −Y27 − Y31 −Y34 − Y38 −Y34 + Y7 −Y10 − Y30 −Y23 + Y37 −Y31 + Y34 −Y36 + Y4 Y1 − Y26
Y20 − Y8 −Y39 + Y4 −Y19 + Y37 Y17 − Y33 Y37 − Y39 −Y10 + Y11 −Y22 + Y23 −Y17 + Y5 Y34 − Y9
Y30 − Y36 −Y12 − Y29 Y2 − Y30 Y18 − Y19 Y12 − Y8 Y2 − Y25 −Y3 + Y33 −Y2 + Y31 −Y31 − Y39
Y1 − Y17 −Y21 + Y37 Y15 − Y21 −Y24 + Y4 Y28 + Y3 −Y0 + Y12 Y14 + Y20 −Y23 − Y27 −Y25 − Y4
Y27 − Y33 −Y19 − Y7 Y24 − Y39 Y21 − Y8 −Y11 + Y14 −Y3 + Y8 Y39 + Y7 Y10 − Y15 Y20 − Y23
−Y21 − Y32 Y27 + Y35 −Y26 + Y37 Y7 − Y8 Y23 − Y38 −Y28 − Y5 Y33 − Y5 −Y1 + Y19 −Y0 − Y27
−Y39 − Y9 Y4 + Y9 −Y10 − Y9 −Y26 + Y30 Y31 + Y8 Y1 − Y24 −Y22 + Y35 Y15 − Y20 −Y15 + Y36
−Y16 + Y18 Y5 + Y6 −Y12 − Y33 −Y11 + Y25 Y14 − Y19 −Y23 + Y26 −Y8 + Y9 Y16 + Y5 Y1 − Y39
−Y29 + Y9 −Y24 + Y30 −Y18 − Y26 Y18 − Y39 −Y17 + Y36 −Y16 − Y35 Y29 + Y39 Y15 − Y24 Y12 − Y15
Y12 − Y4 Y26 − Y39 −Y16 − Y23 −Y3 − Y36 −Y11 + Y38 −Y4 − Y7 Y23 − Y6 Y0 − Y26 Y22 − Y3
Y25 + Y30 −Y17 − Y28 Y13 − Y15 −Y12 + Y16 −Y13 + Y19 Y19 − Y24 Y13 − Y3 Y3 − Y37 −Y13 + Y39
Y35 − Y7 Y12 − Y24 Y14 − Y31 −Y12 − Y27 Y13 − Y28 −Y13 − Y30 Y14 − Y39 −Y15 + Y6 Y22 − Y7
−Y37 − Y4 −Y19 + Y2 Y10 − Y16 −Y14 − Y18 Y1 + Y8 Y22 − Y39 Y22 + Y6 −Y13 + Y37 −Y34 − Y6
−Y10 − Y6 Y11 − Y21 Y1 + Y28 −Y17 + Y3 Y38 + Y6 −Y29 − Y3 Y15 − Y4 −Y25 − Y35 −Y13 + Y5

Table A.3. Cross functions Crossk for 0 ≤ k ≤ 134 in terms of Yoshida functions.
The table shows only one of the four ways of writing a Cross function in this way.



Cone Rows E1 E2 E3 E4 E5 E6 F12 F13 F14 F15 F16 F23 F24 F25 F26 F34 F35 F36 F45 F46 F56

(aa2a3a4) 012 0,1,2 0,2,12 0,1,2 0,1,4 0,1,4 0,1,15 0,8,36 0,2,5 0,1,6 0,1,5 0,1,5 0,1,2 0,1,2 0,1,3 0,1,2 0,2,12 0,1,2 0,1,3 0,1,7 0,2,3 0,2,3
(aa2a3b) 012 0,2,9 0,2,18 1,2,7 0,1,7 0,1,7 0,2,7 0,2,7 0,5,11 0,1,6 0,5,10 0,1,7 0,1,2 0,1,2 0,1,2 0,1,10 0,2,18 0,1,2 0,1,2 0,1,7 0,2,4 0,2,4

(aa2a3) 012 0,2,12 0,2,18 1,2,5 0,1,7 0,1,7 0,1,15 0,8,36 0,5,11 0,1,6 0,5,10 0,1,7 0,1,2 0,1,2 0,1,3 0,1,2 0,2,18 0,1,2 0,1,4 0,1,7 0,2,4 0,2,4

(aa2a4) 012 0,1,2 0,2,12 0,2,4 0,1,4 0,1,4 0,1,15 0,8,36 0,2,5 0,1,6 0,1,5 0,1,5 0,1,2 0,1,2 0,1,3 0,1,2 0,2,12 0,1,2 0,1,3 0,1,7 0,2,3 0,2,3

(aa3a4) 012 0,1,2 0,2,12 0,1,2 0,1,4 0,1,4 0,1,15 0,8,36 0,2,5 0,1,6 0,1,5 0,1,5 0,1,2 0,1,2 0,1,3 0,1,2 0,2,12 0,1,2 0,1,3 0,1,20 0,2,3 0,2,3

(a2a3a4) 012 0,2,9 0,2,12 0,2,4 0,2,4 0,2,4 0,2,12 0,8,36 0,2,5 0,2,8 0,2,5 0,2,5 0,2,3 0,2,4 0,2,3 0,2,5 0,2,12 0,2,5 0,2,3 0,2,7 0,2,3 0,2,3

(aa2b) 012 0,2,13 0,2,23 1,3,7 0,2,8 0,2,7 0,2,7 0,2,7 0,5,11 0,1,6 0,5,10 0,1,7 0,1,2 0,1,2 0,1,2 0,1,10 0,2,25 0,1,2 0,1,2 0,1,7 0,2,7 0,2,8

(aa3b) 012 0,2,9 0,2,18 1,2,7 0,1,7 0,1,7 0,2,7 0,2,7 0,5,11 0,1,6 0,5,10 0,1,7 0,1,2 0,1,2 0,1,2 0,1,10 0,2,18 0,1,2 0,1,2 0,1,33 0,2,4 0,2,4

(a2a3b) 012 0,2,9 0,2,18 2,3,7 0,2,4 0,2,4 0,2,7 0,2,7 0,5,12 0,2,8 0,5,10 0,2,7 0,2,7 0,2,4 0,2,7 0,2,4 0,2,18 0,2,3 0,2,10 0,2,7 0,2,4 0,2,4

(aa2) 012 1,8,13 0,2,23 1,3,5 0,6,8 0,6,7 0,6,7 2,18,33 0,5,11 0,1,6 0,5,10 0,1,7 0,1,2 0,1,2 0,1,3 0,1,2 0,2,25 0,1,2 0,1,4 0,1,7 0,2,7 0,3,8

(aa3) 012 0,2,12 0,2,18 1,2,5 0,1,7 0,1,7 0,2,13 0,8,36 0,5,11 0,1,6 0,5,10 0,1,7 0,1,2 0,1,2 0,1,3 0,1,2 0,2,18 0,1,2 0,1,4 0,1,33 0,2,4 0,2,4

(aa4) 012 0,2,9 0,2,12 0,2,4 0,2,4 0,2,4 0,2,15 0,8,36 0,2,5 0,2,8 0,2,5 0,2,5 0,2,3 0,2,4 0,2,3 0,2,7 0,2,12 0,2,5 0,2,3 0,2,7 0,2,3 0,2,3

(a2a3) 012 0,2,12 0,2,19 2,3,5 0,2,4 0,2,4 0,2,13 0,8,36 0,5,14 0,2,8 0,5,10 0,2,7 0,2,7 0,2,10 0,2,7 0,2,7 0,2,18 0,2,5 0,2,16 0,2,7 0,2,4 0,2,4

(a2a4) 012 0,2,9 0,2,12 0,2,4 0,2,4 0,2,4 0,2,12 0,8,36 0,2,5 0,2,8 0,2,5 0,2,5 0,2,3 0,2,4 0,2,3 0,2,5 0,2,12 0,2,5 0,2,3 0,2,7 0,2,3 0,2,3

(a3a4) 012 0,2,9 0,2,12 0,2,4 0,2,4 0,2,4 0,2,12 0,8,36 0,2,5 0,2,8 0,2,5 0,2,5 0,2,3 0,2,4 0,2,3 0,2,5 0,2,12 0,2,5 0,2,3 0,2,7 0,2,3 0,2,3

(ab) 012 0,2,20 — 1,3,12 1,2,8 1,2,7 1,2,7 0,2,7 0,5,11 0,5,16 0,5,11 0,5,10 0,1,2 0,1,2 0,2,7 0,1,10 — 0,1,2 0,1,3 0,1,37 0,2,7 0,2,8
013 2,3,20 0,2,3

(a2b) 012 0,2,13 0,2,23 2,3,7 0,2,8 0,2,7 0,2,7 0,2,7 0,5,12 0,2,8 0,5,10 0,2,7 0,2,7 0,2,10 0,2,7 0,2,4 0,2,25 0,2,3 0,2,10 0,2,7 0,2,7 0,2,8

(a3b) 012 0,2,9 0,2,18 2,3,7 0,2,4 0,2,4 0,2,7 0,2,7 0,5,12 0,2,8 0,5,10 0,2,7 0,2,7 0,2,4 0,2,9 0,2,4 0,2,18 0,2,3 0,2,10 0,2,7 0,2,4 0,2,4

(a) 012 2,8,20 — — — — — — 0,5,11 0,5,16 0,5,11 0,5,10 0,1,10 0,1,6 0,2,7 0,1,10 — — — — — —
013 3,4,20 — — — — — — — — — — —
rest — — — — — — — — — — —

(a2) 012 2,8,13 0,2,33 2,3,5 0,8,13 0,7,12 0,7,13 2,18,36 0,5,14 0,3,8 0,5,10 0,2,7 0,2,7 0,2,10 0,2,7 0,2,7 0,2,25 0,2,15 0,2,26 0,2,7 0,2,7 0,3,8

(a3) 012 0,2,12 0,2,19 2,3,7 0,2,4 0,2,4 0,2,13 0,8,36 0,5,14 0,2,8 0,5,10 0,2,7 0,2,7 0,2,10 0,3,9 0,2,7 0,2,18 0,2,5 0,2,16 0,2,7 0,2,4 0,2,4

(a4) 012 0,2,9 0,2,12 0,2,4 0,2,4 0,2,4 0,2,15 0,8,36 0,2,5 0,2,8 0,2,5 0,2,5 0,2,3 0,2,4 0,2,3 0,2,7 0,2,12 0,2,5 0,2,3 0,2,7 0,2,3 0,2,3

(b) 012 2,8,21 — — 2,7,8 2,7,8 3,7,8 2,4,7 2,4,7 — 2,15,16 — 2,3,7 — 2,15,16 — — 2,15,16 — 2,3,8 2,7,8 2,7,8
013 2,3,20 2,3,20 2,16,21 2,8,15 2,3,15 2,3,16 2,3,15 2,3,16

Cone Rows G1 G2 G3 G4 G5 G6

(aa2a3a4) 012 0,1,2 0,2,7 0,2,5 0,2,5 0,1,5 0,2,5
(aa2a3b) 012 0,1,2 0,2,7 0,5,7 0,2,5 0,5,10 0,1,5

(aa2a3) 012 0,1,2 0,2,7 0,5,7 0,2,5 0,12,14 0,2,5

(aa2a4) 012 0,1,2 0,2,7 0,5,20 0,2,5 0,1,5 0,2,5

(aa3a4) 012 0,1,2 0,2,7 0,2,5 0,2,5 0,1,5 0,2,5

(a2a3a4) 012 0,2,7 0,2,7 0,2,5 0,2,5 0,2,5 0,2,5

(aa2b) 012 0,1,2 0,2,7 0,5,7 0,2,5 0,5,10 0,1,5

(aa3b) 012 0,1,2 0,2,7 0,5,7 0,2,5 0,5,10 0,1,5

(a2a3b) 012 0,10,12 0,2,7 0,5,7 0,2,5 0,5,10 0,2,5

(aa2) 012 0,1,2 0,2,7 0,5,21 0,2,5 0,12,14 0,2,5

(aa3) 012 0,1,2 0,2,7 0,5,7 0,2,5 0,12,14 0,2,5

(aa4) 012 0,2,7 0,2,7 0,5,20 0,2,5 0,2,5 0,2,5

(a2a3) 012 0,10,22 0,2,7 0,5,7 0,2,5 0,12,14 0,2,5

(a2a4) 012 0,2,7 0,2,7 0,5,20 0,2,5 0,2,5 0,2,5

(a3a4) 012 0,2,7 0,2,7 0,2,5 0,2,5 0,2,5 0,2,5

(ab) 012 0,1,2 0,2,7 1,2,7 1,2,6 1,5,7 0,1,7

(a2b) 012 0,10,12 0,2,7 0,5,7 0,2,5 0,5,10 0,2,5

(a3b) 012 0,10,12 0,2,7 0,5,7 0,2,5 0,5,10 0,2,5

(a) 012 0,1,11 0,2,7 — — — —
013 — — — —
rest — — — —

(a2) 012 0,10,12 0,2,7 0,5,21 0,2,5 0,12,14 0,10,36

(a3) 012 0,11,12 0,2,7 0,5,7 0,2,5 0,12,14 0,2,5

(a4) 012 0,2,7 0,2,7 0,5,20 0,2,5 0,2,5 0,2,5

(b) 012 2,3,7 2,4,7 2,4,7 — 7,12,17 —
013 3,8,20 2,7,20

Table A.4. Ruling out all 27 potential non-
boundary tropical lines for all non-apex cells in the
Naruki fan N . Each entry gives the 3 columns of
a tropically non-singular 3 × 3-minor of the pair of
matrices (Mexp[C, σ],Mtrue[C, σ]) in the family Fσ
from (8.3) for each cone σ.
An absence of a triple for an extremal ray is indicated
by ‘—’ and it should be interpreted as algorithm 1
failing to find a singular minor with the prescribed
rows. Whenever a choice of 3 rows does not rule out
all extremal curves, we move on to the next choice of
rows (in the lexicographic order) and only check the
remaining extremal curves.
All 27 extremal curves are covered by a suitable choice
of rows with the exception of the cell (a), for which
the method only rules out 12 potential lines. The
remaining 15 cases are treated in Table 8.1.
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