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Abstract

We construct several modular compactifications of the Hurwitz space Hd
g/h of genus g curves

expressed as d-sheeted, simply branched covers of genus h curves. They are obtained by allowing

the branch points of the cover to collide to a variable extent, generalizing the spaces of twisted

admissible covers of Abramovich, Corti, and Vistoli [2]. The resulting spaces are very well-behaved

if d is small or if relatively few collisions are allowed. In particular, for d = 2 and 3, they are always

well-behaved. For d = 2, we recover the spaces of hyperelliptic curves of Fedorchuk [9]. For d = 3,

we obtain new birational models of the space of triple covers.

We describe in detail the birational geometry of the spaces of triple covers of P1 with a marked

fiber. In this case, we obtain a sequence of birational models that begins with the space of marked

(twisted) admissible covers and proceeds through the following transformations:

(1) sequential contractions of the boundary divisors,

(2) contraction of the hyperelliptic divisor,

(3) sequential flips of the higher Maroni loci,

(4) contraction of the Maroni divisor (for even g).

The sequence culminates in a Fano variety in the case of even g, which we describe explicitly, and

a variety fibered over P1 with Fano fibers in the case of odd g.
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CHAPTER 0

Introduction

The most significant development in the modern theory of algebraic curves is the construction

of their moduli space Mg. It is difficult to get a grasp on the geometry of Mg, largely because it is

difficult to get a grasp on a curve in the abstract. We often approach Mg through moduli spaces of

particular realizations of curves, which are more accessible. One such class of moduli spaces is the

Hurwitz spaces.

The Hurwitz space Hd
g is the moduli space of genus g curves realized as d-sheeted, simply

branched covers of P1. It admits a natural morphism to Mg that only remembers the abstract

moduli of the curve. The images of Hd
g in Mg are some of the most important subvarieties of Mg.

For d = 2, this is the locus of hyperelliptic curves; for d = 3, this is the locus of trigonal curves, and

so on. For odd g, the case of d = (g + 1)/2 plays a crucial role in the celebrated theorem of Harris

and Mumford [15] that Mg is of general type for large g. For sufficiently large d, the map Hd
g →Mg

is surjective. This is a basis for the oldest proof of the irreducibility of Mg, due to Hurwitz [21] in

characteristic zero and due to Fulton [12] in sufficiently high characteristic.

While its relation to Mg makes Hd
g especially interesting, its relation to a simpler moduli space

M0;b makes it accessible to study. The space M0;b is the moduli space of b distinct unordered points1

on P1. There is a map br : Hd
g → M0;b that assigns to a simply branched cover the location of its

branch points, where b = 2g + 2d− 2 by the Riemann–Hurwitz formula. The map br expresses Hd
g

as a finite covering space of M0;b:

(0.0.1) Hd
g Mg

M0;b

br

.

The three quasi-projective varieties in (0.0.1) admit well-known modular compactifications: the

space Mg of Deligne–Mumford stable curves, the space M0;b of Mumford–Knutsen stable marked

curves and the space H
d

g of Harris–Mumford admissible covers.

1Ordered branch points are customary; however, we focus almost exclusively on the unordered case.

1



0. INTRODUCTION 2

A particularly exciting development in the study of these moduli spaces is the construction of

alternate modular compactifications. Let us illustrate with the example of Mg. The story begins

in 1969, when Deligne and Mumford discovered that Mg could be compactified by adding to it

the moduli of curves with the simplest singularities: nodes. A remarkable development came in

1991, when Schubert [36] discovered was that this is not the only way to compactify Mg. He

constructed a compactification that allows cuspidal curves! A couple of decades later, Hassett and

Hyeon [19] constructed a still different compactification that allows tacnodal curves! The story for

M0;b is similar—the Mumford–Knutsen compactification is one choice among the many discovered

by Hassett [18].

The alternate compactifications are fascinating for several reasons. Firstly, they provide tools

to systematically study different kinds of degenerations of nice geometric objects. For example,

in certain cases, it is beneficial to consider a cuspidal degeneration of smooth curves rather than

a nodal degeneration. In this case, Schubert’s compactification of Mg is more pertinent than the

standard compactification.

Secondly, the several alternate compactifications provide an unprecedented opportunity to study

explicitly the birational geometry of extremely interesting higher dimensional varieties. As a result,

the discoveries of Schubert, Hassett and Hyeon have spurred a major research program in algebraic

geometry to understand the birational geometry of moduli spaces by constructing different bira-

tional models as alternate modular compactifications. This program lies at the confluence of several

important areas, such as the classical geometry of the objects being parametrized, the birational ge-

ometry of higher dimensional varieties, especially the Minimal Model Program, Geometric Invariant

Theory (GIT), the study of algebraic stacks, and so on.

There have been fascinating developments in such a program for Mg and M0;b. Our goal is to

explore it for Hd
g . Towards that goal, we systematically construct a number of compactifications of

Hd
g . The idea is to include degenerate covers where the branch points are allowed to coincide to a

variable extent. The resulting spaces are very well-behaved if d is small or if relatively few collisions

are allowed. In particular, for d = 2 and 3, they are always well-behaved. For d = 2, we recover the

spaces of hyperelliptic curves of Fedorchuk [9]. For d = 3, we obtain new birational models of the

space of trigonal curves. These spaces describe a fascinating picture of the birational geometry of

a slight variant of the spaces of trigonal curves, namely the space of trigonal curves with a marked

fiber.
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Figure 1. Generic points of the boundary components of Mg.

In what follows, we describe the context and the statements of our results in more detail.

We begin by giving a brief overview of some of the known alternate compactifications of Mg and

M0;b, respectively. We then describe alternate compactifications of Hd
g . Finally, we describe the

particularly interesting case of trigonal curves.

Compactifications of Mg

The standard compactification of Mg is the Deligne–Mumford compactification Mg, parametriz-

ing stable curves of arithmetic genus g. Recall that a curve C is Deligne–Mumford stable if

(1) C has at worst nodes (y2 − x2) as singularities, and

(2) the dualizing sheaf ωC is ample.

Mg has only quotient singularities and a normal crossings boundary divisor Mg \Mg. The curves

corresponding to the generic points of the boundary components ∆i (for i = 0, . . . , bg/2c) are

displayed in Figure 1.

Schubert’s compactification Mg
ψ

is the space of pseudo-stable curves. A curve C is pseudo-stable

if

(1) C has at worst nodes (y2 − x2) or cusps (y2 − x3) as singularities,

(2) if E ⊂ C is a connected sub-curve of arithmetic genus one, then it meets C \ E in at least

two points (no “elliptic tails”),

(3) ωC is ample.

M
ψ

g is related to Mg by a divisorial contraction—there is a morphism Mg → M
ψ

g that contracts

the boundary divisor ∆1 to the locus of cuspidal curves.

Hassett and Hyeon’s compactification M
tn

g allows curves with at worst tacnodal singularities

(y2−x4) while disallowing elliptic tails and elliptic bridges (a connected, genus one sub-curve meeting

the rest of the curve in two points). M
tn

g is related to M
ψ

g by a flip M
ψ

g 99KM
tn

g .

Motivated by the above examples, Hassett and Keel have pioneered a systematic program to

study the birational geometry of Mg, which we now recall. Before we proceed, let us quickly recall
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the notion of Mori chambers and their relation to the birational geometry of a variety. Let X be a

suitably nice (normal, Q-factorial) projective variety. A birational contraction of X is a birational

map β : X 99K Y , where Y is likewise nice and the exceptional locus of β−1 has codimension at least

two. The Mori chamber Mor(β) is the cone in PicQ(X) spanned by the pullback of the ample cone

of Y and the exceptional divisors of β. The map β can be recovered from its Mori cone as

X 99K Proj
⊕
m≥0

H0 (X,mD)

for any D ∈ Mor(β). Thus, understanding the Mori chambers of X is equivalent to understanding

all the birational contractions of X. In nice cases (for example, when X is toric or Fano), the Mori

chambers form a finite polyhedral partition of a piece of PicQ(X).

The aim of the Hassett–Keel program is twofold:

(1) Describe the Mori chamber decomposition of the 〈λ, δ〉 plane in PicQ(Mg), where λ is the

class of the Hodge bundle and δ the class of the boundary.

(2) Give a modular description, if possible, of the spaces corresponding to each Mori chamber.

One reason to restrict to the 〈λ, δ〉 plane is that it contains the canonical divisor (K = 13λ − 2δ)

and ample divisors (aλ − δ for a > 11). Hence, knowing the Mori chamber decomposition for this

plane would give a sequence of birational models of Mg beginning with Mg itself and culminating

in the canonical model, realizing the Minimal Model Program for Mg. The intermediate spaces can

be interpreted as log canonical models

Proj
⊕
m≥0

H0
(
Mg,m(K + αδ)

)
.

The spaces Mg, M
ψ

g and M
tn

g are the first steps of the Hassett–Keel program. They correspond

to the following chambers (also shown in Figure 2)

Mg : aλ− bδ for a > 0 and a/b > 11,

M
ψ

g : aλ− bδ for a > 0 and 11 ≥ a/b > 10,

M
tn

g : aλ− bδ for a > 0 and 10 > a/b > 10− ε.

The precise value of ε > 0 in the last case is not known. The above is the extent of our knowledge

for arbitrary g. We also know that the hyperelliptic locus must be in the base locus of the birational
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Figure 2. Mori chambers of the first three birational models of Mg along with
some important rays in the 〈λ, δ〉 plane. The numbers represent slopes.

i points (b− i) points

∆i

Figure 3. Generic points of the boundary components of M0;b.

contraction for the rays 〈aλ− δ〉 for a < 8 + 4/g and likewise for the trigonal locus for a < 7 + 6/g.

There are heuristics about what class of singular curves should replace these curves, assuming that

the model has an interpretation as the moduli of some class of curves. We refer the reader to the

article by Fedorchuk and Smyth [10] for a comprehensive survey.

Compactifications of M0;b

The standard compactification ofM0;b is the Mumford–Knutsen compactificationM0;b, parametriz-

ing stable marked rational curves. Recall that a curve P along with a marked divisor Σ is a stable

marked curve if

(1) P has at worst nodes as singularities,

(2) Σ lies in the smooth locus of P ,

(3) Σ is reduced,

(4) ωP ⊗OP (Σ) is ample.

M0;b has only quotient singularities and a normal crossings boundary divisor M0;b \ M0;b. The

marked curves corresponding to the generic points of the boundary components ∆i (for i = 3, . . . , bb/2c)

are displayed in Figure 3. The philosophy behind the compactification is to force the points of Σ to

remain distinct at the cost of allowing P to degenerate into a reducible curve.
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A sequence of alternate compactifications of M0;b is provided by the spaces of weighted marked

rational curves of Hassett [18]. In these spaces, collisions of marked points are allowed to a certain

extent, specified by a rational number ε. The space M0;b(ε) parametrizes ε-stable marked rational

curves. A curve P with a marked divisor Σ is ε-stable if

(1) P has at worst nodes as singularities,

(2) Σ lies in the smooth locus of P ,

(3) ε ·multp Σ ≤ 1 for all p ∈ P ,

(4) ωP ⊗OP (εΣ) is ample.

For ε = 1, we recover the standard compactification M0;b. For ε ≥ ε′, we have a morphism

M0;b(ε) → M0;b(ε
′) that sends (P,Σ) to (P ′,Σ′), where P ′ is obtained from P by contracting

the components on which ωP (ε′Σ) is not ample. The morphism M0;b(ε) → M0;b(ε
′) is a divisorial

contraction; it contracts a component of the boundary M0;b(ε)\M0,b if its generic point parametrizes

a marked curve with at most 1/ε′ points on one of the components (see Figure 4).

7→ multiplicity 3

Figure 4. The divisorial contraction M0;b(1/2)→M0;b(1/3)

The spaces M0;b(ε) can be interpreted as log canonical models of M0;b. They provide a partial

Mori chamber decomposition of the rational Picard group.

Compactifications of Hd
g

We now come to the focus of our work. We first describe the standard compactification of Hd
g

due to Harris and Mumford [15]. The challenge in compactifying Hd
g is handling degenerations of

covers when the branch points come together. Harris and Mumford ingeniously circumvent this

issue by forcing the branch points to remain distinct, following the idea behind the Mumford–

Knutsen compactification M0;b. Their compactification H
d

g parametrizes admissible covers—these

are d-sheeted covers φ : C → P satisfying the following conditions:

(1) (P,brφ) is a stable marked curve,
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(2) φ is admissible over the nodes of P in the following sense: the local picture of C → P near

a node of C is of the following form, for some m ≥ 1:

Spec k[u, v]/uv → Spec k[x, y]/xy

x, y 7→ um, vm.

Strictly speaking, by brφ, we mean the branch divisor of φ : Csm → P sm. The admissibility condition

is better handled using the idea of Abramovich, Corti, and Vistoli [2] of considering covers of

orbinodal modifications of P étale over the (orbi)nodes instead of covers of P itself. This results

in a nicer moduli space called the space of twisted admissible covers. For the moment, we suppress

this subtlety.

The central theme of the present work is to explore what happens when we let the branch points

collide. We construct spaces of weighted admissible covers, following the compactification M0;b(ε),

and thus allowing the branch points to collide to a certain extent.

Theorem (Theorem 1.0.1). Let H
d

g(ε) be the space of ε-admissible covers, which is, roughly

speaking, the moduli of φ : C → P , where C is a curve of genus g, P a curve of genus 0 and φ a

map of degree d satisfying two conditions

(1) (P,brφ) is ε-stable,

(2) φ is admissible over the nodes of P .

Then H
d

g(ε) is a projective coarse moduli space. It contains Hd
g as an open subspace and admits a

branch morphism br : Hd
g (ε)→M0;b(ε).

In the actual definition, the admissibility is handled using orbinodes.

For ε = 1, we recover the Harris–Mumford compactification. As we take smaller and smaller

values of ε, more and more branch points are allowed to coincide, leading to progressively nastier

singularities on C. These singularities are not necessarily Gorenstein. For example, for ε ≤ 1/4,

and d ≥ 3, the curve C can have a spatial triple point singularity (Example 1.7.7). The branch

morphism br : H
d

g(ε)→M0;b(ε) is not necessarily finite; it has positive dimensional fibers for ε ≤ 1/6

(Example 1.7.8).

For d = 2, the only singularities C can have are An singularities, namely singularities of the

form y2−xn+1 (Example 1.7.6). We thus recover the spaces of hyperelliptic curves first constructed

by Fedorchuk [9].
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In general, the local structure of H
d

g(ε) is horrible. In fact, if d is large enough and ε small

enough, then H
d

g(ε) is reducible (Example 1.7.9). Nonetheless, for d = 2 and 3, it is irreducible and

has at worst quotient singularities; the associated moduli stack is a smooth Deligne–Mumford stack

(Theorem 1.5.5).

Geometry of spaces of trigonal curves

We describe in detail the case of d = 3. In this case, we get a fascinating picture of the birational

geometry of a slight variant of the space of trigonal curves. The spaces of weighted admissible covers

form half the story in this picture; the other half is a sequence of yet more compactifications, special

to the case of d = 3, that features an interplay of the global geometry of triple covers and the local

geometry of triple point singularities.

Let us introduce some notation to describe this picture. Denote by Tg;1 the moduli space of

(φ : C → P, σ), where P ∼= P1, C is a smooth curve of genus g, φ a simply branched triple cover and

σ ∈ P an additional marked point over which φ is unramified. Then Tg;1 is a unirational variety

of dimension 2g + 2. A standard compactification T g;1 is provided by the space of (appropriately

marked) admissible covers. In addition, the spaces of weighted admissible covers T g;1(ε) provide a

sequence of alternate compactifications. In these spaces, at most 1/ε points of brφ are allowed to

coincide; the additional marked point σ is always away from brφ. Note that the only relevant values

of ε are ε = 1/j for j = 1, 2, . . . . Furthermore, for ωP (εΣ + σ) to be ample, we must have ε > 1/b,

where b = 2g+ 4 is the degree of Σ. We thus get the following sequence of birational modifications:

(0.0.2) T g;1 99K · · · 99K T g;1(1/j) 99K T g;1(1/(j + 1)) 99K · · · 99K T g;1(1/(b− 1)).

The rational maps in the above sequence are divisorial contractions; they contract the boundary

divisors to loci of higher codimension. The final model T g;1(1/(b− 1)) parametrizes (φ : C → P, σ)

where P ∼= P1 and the only condition on φ is that not all of its branch points be coincident.

Since T g;1 is a uniruled variety, there is no canonical model to look for. The goal in this case,

according to the Minimal Model Program, is a Fano-fibration. The final space T g;1(1/(b−1)) is not

such a model; we must search further. A natural idea to proceed is to consider spaces where all the

branch points are allowed to coincide. However, it is not clear how to do this. After all, there is no

Hassett space that allows all the points of Σ to be coincident.
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It turns out that there is not one, but a sequence of compactifications where all the branch

points are allowed to coincide. Clearly, if we want to allow such covers, we must disallow some

previously allowed covers to have a separated moduli problem. The precise conditions to determine

which covers to include and which to exclude are captured by the notion of an l-balanced cover,

depending on an integer l satisfying 0 ≤ l ≤ g and l ≡ g (mod 2). The condition of being l-balanced

depends on two invariants: the Maroni invariant and the µ invariant.

The Maroni invariant is global in nature. For a connected triple cover φ : C → P1 of genus g,

the sheaf φ∗OC/OP1 is isomorphic to OP1(−m)⊕OP1(−n) for some positive integers m,n satisfying

m+ n = g + 2. The Maroni invariant is the difference |m− n|.

The µ invariant is local in nature and pertains only to those covers whose branch divisor is

concentrated at one point. For a connected triple cover φ : C → P1 of genus g with br(φ) = b · p

for some p ∈ P1, denote by C̃ the normalization of C. The sheaf φ∗
(
OC̃/OC

)
is isomorphic to

k[t]/tm ⊕ k[t]/tn, for some positive integers m,n satisfying m + n = g + 2. The µ invariant is the

difference |m− n|.

We say that a cover φ : C → P1 is l-balanced if

(1) the Maroni invariant of φ is at most l,

(2) if brφ is supported at one point, then the µ invariant of φ is greater than l.

Theorem (Theorem 3.3.4, Theorem 4.0.5(1)). Let T
l

g;1 be the moduli space of (φ : C → P, σ),

where P ∼= P1, σ 6∈ brφ and φ is l-balanced. Then T
l

g;1 is a projective coarse moduli space birational

to Tg;1.

It is easy to see that T
g

g;1 = T g;1(1/(b−1)). We thus get a sequence of yet more compactifications

that extends (0.0.2):

(0.0.3) T
g

g;1 99K T
g−2

g;1 99K · · · 99K T
l

g;1 99K T
l−2

g;1 99K · · · 99K T
0 or 1

g;1 .

Most of these steps are flips. The divisorial contractions in (0.0.2) and the flips in (0.0.3) exhibit

a sequence of models of T g;1 that culminates in a Fano-fibration. Furthermore, we can explicitly

describe the Mori chamber decomposition corresponding to the final sequence of flips. The following

theorem summarizes the geometry of (0.0.3).

Theorem 0.0.1. (Theorem 4.0.5) Let l be an integer with 0 ≤ l ≤ g and l ≡ g (mod 2).
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(1) The rational map

βg : T
g

g;1 99K T
g−2

g;1

extends to a morphism, which contracts the “hyperelliptic divisor” to a point.

(2) If g is even, then the rational map

β2 : T
2

g;1 99K T
0

g;1

extends to a morphism, which contracts the “Maroni divisor” to a P1.

(3) Except in the two cases mentioned above, the rational maps

βl : T
l

g;1 99K T
l−2

g;1

are isomorphisms away from codimension two. In these cases, Exc(βl) is covered by K-

negative curves and Exc(β−1
l ) by K-positive curves, where K is the canonical divisor.

(4) For even g, the final model T
0

g;1 is the quotient of a weighted projective space by an action

of S3. In particular, it is Fano of Picard rank one.

(5) For odd g, the final model T
1

g;1 admits a morphism to P1 whose fibers are Fano of Picard

rank one.

(6) For 0 < l < g, the rational Picard group of T
l

g;1 has rank two. For g 6= 3 it is generated by

λ and δ. The canonical divisor is given by

K =
2

(g + 2)(g − 3)

(
3(2g + 3)(g − 1)λ− (g2 − 3)δ

)
.

(7) There are elements Dl in the rational Picard group, given in the case of g 6= 3 by(
g − 3

2

)
Dl = {(7g + 6)λ− gδ}+

l2

g + 2
· {9λ− δ} ,

such that the following hold. For l > 0, the interior of the cone 〈Dl, Dl+2〉 is the Mori

chamber associated to the model T
l

g;1. For even g, the cone 〈D0, D2〉 is the Mori chamber

associated to the model T
0

g;1. For even (resp. odd) g, the ray 〈D0〉 (resp. 〈D1〉) is an edge

of the effective cone.

Figure 1 shows a sketch of the Mori chamber decomposition along with an approximate location

of the ray 〈K〉.
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−δ

λ

7 +
6
g
∼ 〈D

0〉

8
+

4
g
+
1
∼
〈D
g
+
2
〉

6 ≈ 〈K〉

Dl−2

Dl

Dl+2

Dl+4

T
l
g;1

T
l+2
g;1

T
l−2
g;1

Figure 5. The Mori chamber decomposition of PicQ given by the models T
l

g;1 and
an approximate location of the ray spanned by the canonical class K.

0.1. Conventions

We work over a field K of characteristic zero. All schemes are understood to be locally Noe-

therian schemes over K. We reserve the letter k for (variable) algebraically closed K-fields. While

working over an algebraically closed field k, “point” means “k-point,” unless specified otherwise.

If X is an algebraic space, and x→ X a geometric point then OX,x denotes the stalk of OX at

x in the étale topology; if X is a scheme, then this is the strict henselization of the local ring of X

at x. We set Xx = SpecOX,x. The reader unfamiliar with these algebraic notions need not worry:

nothing is lost by imagining OX,x to be the ring of convergent power series around x and Xx to

be a small simply-connected analytic neighborhood of x in X. For a local ring R, the symbol Rsh

denotes its strict henselization and R̂ its completion.

Stacks are usually denoted by curly symbols and their coarse spaces by the roman equivalents. A

category fibered in groupoids is often described by specifying the objects and keeping the morphisms

implicit; the morphisms are given by standard commutative squares.

Given morphisms φ : X → Y and Z → Y , we set XZ = X ×Y Z and φZ = φ×Y Z. If the Y is

clear from context, we omit it from the notation and simply write X × Z.

We use vector bundle and locally free sheaf interchangeably. The projectivization of a vector

bundle E is denoted by PE; this is the space of one-dimensional quotients of E. The space of

one-dimensional sub-bundles of E is denoted by PsubE. A morphism X → Y is projective if it

factors as a closed embedding X↪→PE followed by PE → Y for some vector bundle E on Y .
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A curve over a scheme S is a flat, proper morphism whose geometric fibers are purely one-

dimensional. The source of this morphism could be a scheme, an algebraic space or a Deligne–

Mumford stack; in the last case it is usually denoted by a curly letter. A curve over S is connected

if its geometric fibers are connected. Genus always means arithmetic genus. By the genus of a

stacky curve, we mean the genus of its coarse space. A cover is a representable, flat, surjective

morphism.

The symbol µn denotes the group of nth roots of unity; its elements are usually denoted by ζ.

The methods we use are purely functorial—there is no use of GIT. We construct a moduli

space by first constructing the Deligne–Mumford stack, prove that it is proper using the valuative

criterion, deduce the existence of a coarse (algebraic) space by the theorem of Keel and Mori [22],

and finally prove that it is a projective scheme by exhibiting ample line bundles on it. Throughout,

an algebraic stack or an algebraic space is understood to be in the sense of Laumon and Moret-Bailly

[26].



CHAPTER 1

The big Hurwitz stack

Let d be a positive integer. Denote by Hd
g/h the classical small Hurwitz space with unordered

branch points. It is the coarse space of the small Hurwitz stack Hdg/h that parametrizes

(1.0.1) φ : C → P,

where P is a smooth curve of genus h, C a smooth curve of genus g, and φ a cover of degree d with

simple branching.

In this chapter, we lay the groundwork for constructing a number of compactifications of Hdg/h
and its variants. Before we dive into the technical details, let us roughly describe the kinds of

compactifications we get as a direct consequence of the main theorem of this chapter. Fix non-

negative integers g, h and b, related by

2g − 2 = d(2h− 2) + b.

Theorem 1.0.1. Let ε > 0 be a rational number such that ε · b+ 2h− 2 > 0. Denote by Mh;b(ε)

the stack of ε-stable b-pointed genus h curves (as in [18]). Let Hdg/h(ε) be the stack of ε-admissible

covers. Roughly speaking, this is the moduli of φ : C → P , where C is a curve of genus g, P a curve

of genus h and φ a map of degree d satisfying the following conditions:

(1) (P,brφ) is ε-stable,

(2) φ is admissible over the nodes of P .

Then Hdg/h(ε) is a proper Deligne–Mumford stack. It contains the classical Hurwitz stack Hdg/h as

an open substack and admits a projective coarse space H
d

g/h(ε).

Proof. See Section 1.7 for a precise definition of Hdg/h(ε). The proof of Theorem 1.0.1 is

subsumed by Corollary 1.7.4. �

We follow Abramovich, Corti, and Vistoli [2] to take care of the admissibility condition over the

nodes, by considering covers of orbinodal modifications of P instead of P itself.

13
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Theorem 1.0.1 is a consequence of a more general observation. Let Mh;b be the stack of (P ; Σ)

where P is a nodal curve of arithmetic genus g and Σ ⊂ P a divisor of degree b supported in the

smooth locus. Then Mh;b is an unscrupulous (read non-separated) enlargement of Mh;b, and the

various compactifications Mh;b(ε) are open substacks of Mh;b, carefully chosen so that they are

proper over the base field. In this chapter, we construct an analogous unscrupulous enlargement

H d
g/h of Hdg/h. It admits a morphism br : H d

g/h →Mh;b that assigns to a cover its branch divisor.

The main theorem of the chapter is the following.

Theorem 1.0.2. The morphism br : H d
g/h →Mh;b defined by

(φ : C → P ) 7→ (P ; brφ)

is proper.

Proof. Theorem 1.0.2 is subsumed by Theorem 1.3.8. �

Mh;b should be seen as the moduli space of all possible branching data of our covers; H d
g/h should

be seen as the moduli space of all possible branched covers; and br should be seen as the map that

assigns to a branched cover the branching data. Theorem 1.0.2 says that any compactification of

the moduli of the branching data gives a corresponding compactification of the moduli of branched

covers by simply taking the preimage under the branch morphism. The spaces of ε-admissible covers

are obtained in this way using the compactifications Mh;b(ε).

The following idea motivates our construction of H d
g/h. A finite flat cover of degree d, say

φ : C → P , can be viewed as a family of length d schemes parametrized by P . Now, we recall that

there exists a moduli stack of length d schemes; it is an Artin stack Ad obtained as the quotient

of an affine scheme by a linear group. Said differently, a finite flat cover φ : C → P of degree d is

simply a map χ : P → Ad. In this way, we can interpret the small Hurwitz space Hdg/h as the space

of maps from smooth curves of genus h into Ad, satisfying certain (deformation open) conditions.

The merit of this re-interpretation is that it allows us to use techniques from the well-studied topic

of compactifications of spaces of maps into stacks to construct compactifications of Hdg/h. The stack

H d
g/h is the fruit of this approach.

In [1], Abramovich and Vistoli develop techniques to compactify spaces of maps from smooth

curves into Deligne–Mumford stacks. Their insightful observation is that to have proper moduli,
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the source curve must be allowed to degenerate into not just a nodal curve but an orbinodal curve—

this is a nodal curve with a particular type of orbifold structure at the node. Our construction of

H d
g/h follows the same theme. Although we use the central idea of [1], we cannot directly use the

results of [1] since Ad is not Deligne–Mumford. Nevertheless, the fact that Ad is the quotient of an

affine scheme by the general linear group allows us to extend the essential arguments without much

trouble.

The main case of interest for us is the Hurwitz stack Hdg of covers of P1. However, it is no more

challenging to treat covers of curves of arbitrary genus. It is also useful to have the flexibility to

fix the ramification type of some fibers of the cover. Therefore, we work in the general context of

covers with arbitrary branching over a divisor and prescribed branching over distinct marked points

on the base. Furthermore, it is notationally easier and conceptually no harder to refrain from fixing

any numerical invariants as far as we can. Therefore, instead of working with H d
g/h and Mh;b we

simply have H d and M .

The chapter is organized as follows. In Section 1.1, we introduce Ad, following Poonen [34].

In Section 1.2, we recall the notion of orbinodal curves. In Section 1.3, we define H d and state

the main theorem (Theorem 1.3.8). In Section 1.4, we prove the main theorem. In Section 1.5, we

study the local structure of H d. In Section 1.6, we prove that certain open substacks of H d admit

projective coarse spaces. In Section 1.7, we describe how to get various compactifications of the

small Hurwitz space using H d. Section 1.4 is by far the most technical. The reader who is put

off by technicalities may wish to skip most of it, except possibly the proofs of the valuative criteria

(Subsection 1.4.5), which contain the main geometric ideas.

1.1. The classifying stack of length d schemes

The object of study in this section is the classifying stack of schemes of length d. We at once

begin with the desired functorial description. Consider the category Ad fibered over Schemes whose

objects over a scheme S are (φ : X → S), where φ is a finite flat morphism of degree d.

To prove that Ad is indeed an algebraic stack, we consider a more rigidified version. The data

of a finite flat morphism φ : X → S is equivalent to the data of on OS algebra A which is locally free

of rank d as an OS module. In the rigidified version of Ad, we consider such algebras along with a

marked OS basis. Namely, we consider the contravariant functor Bd : Schemes→ Sets defined by

Bd : S 7→

{
Isomorphism classes of (A, τ), where A is an OS algebra and τ : A→

O⊕dS an isomorphism of OS modules.

}
.



1.1. THE CLASSIFYING STACK OF LENGTH d SCHEMES 16

Proposition 1.1.1. ([34, Proposition 1.1]) The functor Bd is represented by an affine scheme

Bd of finite type.

Proof. Let e1, . . . , ed be the standard basis of O⊕dS . Then the data (A, τ) is equivalent to an

OS algebra structure on O⊕dS . An OS algebra structure is specified by maps of OS modules

i : OS → O⊕dS , say 1 7→
∑

diei

and

m : O⊕dS ⊗S O
⊕d
S → O⊕dS , say ei ⊗ ej 7→

∑
ckijek.

These maps make O⊕dS an OS algebra with identity i(1) and multiplication m if and only if the ckij

and the di satisfy certain polynomial conditions. Thus Bd is represented by a closed subscheme of

Ad3+d = A〈ckij , di〉. �

The scheme Bd admits a natural Gld action, which is most easily described on the functor of

points. A matrix M ∈ Gld(S) acts on Bd(S) by

(1.1.1) M : (A, τ) 7→ (A,M ◦ τ).

Proposition 1.1.2. Ad is equivalent to the quotient [Bd/Gld].

Proof. The proof is straightforward. There is a morphism from Ad to [Bd/Gld] defined as

follows. Consider an object φ : X → S in Ad(S). Let A = φ∗OX . Then A is an OS algebra which

is locally free of rank d as an OS module. Set P = IsomOS−mod(A,O⊕dS ). Then π : P → S is a

principal Gld bundle. We have a tautological isomorphism

τ : π∗A
∼−→ O⊕dP .

The data (π∗A, τ) gives a map P → Bd, which is visibly Gld equivariant. The assignment

(φ : X → S) 7→ (π : P → S, P → Bd)

defines a morphism Ad → [Bd/Gld] which is easily seen to be an isomorphism. �
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Let φ : Xd → Ad be the universal object; set A = φ∗OXd
and L = det A ∨. We have the trace

map

tr : A → OAd
,

which pre-composed with the multiplication A ⊗A → A yields a map

A ⊗A → OAd
,

or equivalently a map

A → A ∨.

Taking determinants and dualizing once more, we obtain a map

(1.1.2) δ : OAd
→ L ⊗2.

This is the familiar discriminant construction.

Proposition 1.1.3. Let Ed ⊂ Ad be the maximal open substack over which φ is étale. Then

(1) Ed ⊂ Ad is the locus where δ is invertible;

(2) Ed is equivalent to BSd, where Sd is the symmetric group on d letters.

Proof. The first assertion is a standard fact in commutative algebra.

For the second, we exhibit an isomorphism from Ed to BSd. Let φ : X → S be an element of

Ed(S). Then φ : X → S is a finite étale morphism of degree d. Set P = IsomS(X, {1, . . . , d} × S).

Then π : P → S is a principal Sd bundle. The assignment

(φ : X → S) 7→ (π : P → S),

defines a morphism Ed → BSd, which can be easily checked to be an isomorphism. �

We denote the zero locus of δ in Ad by Σd and call it the universal branch locus. We call the

ideal of Σd ⊂ Ad the universal discriminant. Given a map χ : S → Ad, given by a cover φ : X → S,

we denote by brφ the pullback χ∗Σd and call it the branch locus.

1.2. Orbinodal curves

In this section, we recall the notion of an orbinodal curve as introduced by Abramovich and

Vistoli [1]. Our brief exposition is based on the work of Olsson [33]. Orbinodal curves are called

“balanced twisted curves” in [1] and “twisted curves” in [33].
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An orbinodal curve is a stacky modification of a nodal curve at the node points. A nodal curve

C is of the form Spec k[x, y]/xy at a node, in the étale topology. An orbinodal curve C has the form

[Spec k[u, v]/uv]/µn,

where µn acts by u 7→ ζx, v 7→ ζ−1y. Thus, the coarse space of an orbinodal curve is a nodal

curve, as seen by computing the ring of invariants

(k[u, v]/uv)µn = k[x, y]/xy, where x = un, y = vn.

A pointed orbinodal curve is an orbinodal curve C along with marked points on its coarse space

C such that over a marked point, C → C has the form

[Spec k[u]/µn]→ Spec k[x], x 7→ un,

in the étale topology.

Here is the formal definition.

Definition 1.2.1. Let S be a scheme. We say that

(C → C → S; p1, . . . , pn : S → C)

is a pointed orbinodal curve if

(1) C → S is a nodal curve and pi : S → C pairwise disjoint sections.

(2) C → C is the coarse space that is required to be an isomorphism over the open set Cgen ⊂ C

which is the complement of the images of pi and the singular locus of C → S:

C ×C Cgen ∼−→ Cgen.

(3) Let c → C be a geometric point lying over s → S. If c is a node of Cs, then there is an

étale neighborhood U → C of c, an open set T ⊂ S containing s, some t ∈ OT , and n ≥ 1

for which we have the following Cartesian diagram

C ×C U U

[SpecOT [u, v]/(uv − t)/µn] SpecOT [x, y]/(xy − tn)

étale étale

,
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Here, µn acts by u 7→ ζu and v 7→ ζ−1v, and the map on the bottom is given by x 7→ un

and y 7→ vn.

(4) Let s → S be a geometric point and set c = pi(s). Then there is an étale neighborhood

U → C of c and n ≥ 1 for which we have the Cartesian diagram

C ×C U U

[SpecOS [u]/µn] SpecOS [x]

étale étale

,

Here, µn acts by u 7→ ζu, and the map on the bottom is given by x 7→ un.

We abbreviate (C → C → S; p1, . . . , pn : S → C) by (C → C; p).

A morphism between two pointed orbinodal curves (C1 → C1; p1j) and (C2 → C2, p2j) is a

1-morphism F : C1 → C2 such that the induced map F : C1 → C2 takes p1j to p2j .

Although the structure of C is specified for some étale neighborhood, it holds for any sufficiently

small neighborhood. The precise statement from [33] follows.

Proposition 1.2.2. Let (C → C; p) be a pointed orbinodal curve over S. For a geometric point

c→ C, set

Csh = C ×C SpecOC,c.

Let s→ S be the image of c→ C.

(1) Suppose c is a node of Cs and t ∈ OS,s and x, y ∈ OC,c are such that OC,c is isomorphic

to the strict henselization of OS,s[x, y]/(xy − tn) at the origin. Then, for some n ≥ 1, we

have

Csh ∼= [SpecOC,c[u, v]/(uv − t, un − x, vn − y)/µn],

where µn acts by x 7→ ζx, y 7→ ζ−1y.

(2) Suppose c = pi(s) and x ∈ OC,c is such that OC,c is isomorphic to the strict henselization

of OS,s[x] at the origin. Then, for some n ≥ 1, we have

Csh ∼= [SpecOC,c[u]/(un − x)/µn],

where µn acts by u 7→ ζu.

Proof. See [33, Proposition 2.2, Definition 2.3]. �
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1.3. The big Hurwitz stack H d

Fix a positive integer d. The goal of this section is to define the big Hurwitz stack H d as a

moduli stack of d sheeted covers of pointed orbinodal curves. We begin by defining the stack of

divisorially marked, pointed nodal curves. This should be interpreted as the moduli space of the

branching data of our branched covers.

Definition 1.3.1. Define the stack M of divisorially marked, pointed nodal curves as the

category fibered over SchemesK whose objects over S are

M (S) = {(P → S; Σ;σ1, . . . , σn)},

where

(1) P is an algebraic space and P → S a connected nodal curve;

(2) Σ ⊂ P is a Cartier divisor, flat over S, that lies in the smooth locus of P → S;

(3) σj : S → P are pairwise disjoint sections lying in the smooth locus of P → S and away

from Σ.

Proposition 1.3.2. M is a smooth algebraic stack, locally of finite type.

Proof. Postponed to Section 1.4. �

We now define H d. Recall our notation from Section 1.1:

Ad is the classifying stack of schemes of length d;

Xd → Ad is the universal scheme of length d;

Σd ⊂ Ad is the universal branch locus;

Ed = Ad \ Σd is the locus of étale covers.

Definition 1.3.3. Define the big Hurwitz stack H d as the category fibered over SchemesK

whose objects over S are

(1.3.1) H d(S) = {(P → P → S;σ1, . . . , σn;χ : P → Ad)},

where
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(1) (P → P → S;σ1, . . . , σn) is a pointed orbinodal curve;

(2) χ : P → Ad is a representable morphism that maps the following to Ed: the generic points

of the components of Ps, the nodes of Ps, and the preimages of the marked points in Ps,

for every fiber Ps of P → S.

A morphism between two objects (P1 → P1 → S1; {σ1j};χ1 : P1 → Ad) and (P2 → P2 →

S2; {σ2j};χ2 : P2 → Ad) over a morphism S1 → S2 consists of two pieces of data: (F, α), where

(1) F is a morphism of pointed orbinodal curves: F : P1 → P2, and

(2) α is a 2-morphism: α : χ1 → χ2 ◦ F ,

such that (F, α) fits in a Cartesian diagram

(1.3.2)

S1 S2

P1 P2

Ad

F

χ1

χ2

α

We abbreviate (P → P → S;σ1, . . . , σn;χ : P → Ad) by (P → P ;σ;χ).

Remark 1.3.4. The careful reader may wonder what happened to the 2-morphisms between

the 1-morphisms from P1 to P2. After all, the objects of H d involve stacks, which makes it, a

priori, a 2-category. However, by [1, Lemma 4.2.3], the 2-automorphism group of any 1-morphism

P1 → P2 is trivial. Thus, H d is equivalent to a 1-category [1, Proposition 4.2.2]. What this means

explicitly is that we treat two morphisms given by (F, α) and (F ′, α′) as the same if they are related

by a 2-morphism between F and F ′.

Remark 1.3.5. Let us explain the condition of representability of χ (Definition 1.3.3 (2)). A

morphism between two Deligne–Mumford stacks F : X → Y is representable if and only if for

every geometric point x→X , the induced map of automorphism groups Autx(X )→ AutF (x)(Y )

is injective [1, Lemma 4.4.3]. Thus the representability of χ means that the stack structure on P is

the minimal one that affords a morphism to Ad.

Remark 1.3.6. Let us explain the role played by the orbinodes. Consider a local piece of an

orbinodal curve near a node; say U = [Spec (k[x, y]/xy) /µn] and an étale cover C → U . Observe

that the induced map on the coarse spaces C → U is precisely an admissible cover in the sense of



1.3. THE BIG HURWITZ STACK H d 22

Harris and Mumford [15]. In this way, the orbinodes provide a way to deal with the admissibility

condition.

Remark 1.3.7. Let us explain the role played by the marked points. Consider a local piece of

an orbinodal curve near a marked point; say U = [Spec k[u]/µn]. The morphism χ maps such a piece

into Ed ∼= BSd, corresponding to an étale cover C → U . Note that in contrast to the fundamental

group of a small piece of a schematic curve, the fundamental group of the stacky curve U is not

trivial; it is precisely µn. Thus, C → U may be a non-trivial étale cover, specified by the monodromy

Aut0(U) = µn → Aut0(BSd) = Sd.

The condition of representability implies that this monodromy map is injective. On the level of

coarse spaces, we thus get a cover C → U with monodromy around 0 given by an element of order

n in Sd. By taking the open and closed substack of H d where Autσi(P) has order n, we in effect

impose the condition that the monodromy of C → P around σi is a permutation π ∈ Sd of order

exactly n. By further restricting to the open and closed substack where π has a specific cycle

structure, we can fully prescribe the monodromy. In this way, we can get moduli spaces of covers

with prescribed ramification type over distinct marked points on the base.

It is useful to have a formulation of H d purely in terms of finite covers. Since a map to Ad is

nothing but a finite cover of degree d, we see that H d may be equivalently described as the category

whose objects over a scheme S are

(1.3.3) {(P → P → S;σ1, . . . , σn;φ : C → P)},

where

(1) (P → P → S;σ1, . . . , σn) is a pointed orbinodal curve;

(2) φ is a finite cover of degree d, étale over the following: the generic points of the components

of Ps, the nodes of Ps, and the preimages of the marked points in Ps, for every fiber Ps

of P → S.

(3) Furthermore, the following condition is satisfied: for every open subset U ⊂ P \ brφ, the

morphism U → BSd corresponding to the étale cover C|U → U is representable.
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In this formulation, a morphism between (P1 → P1 → S1;σ1j ;φ1 : C1 → P1) and (P2 → P2 →

S2;σ2j ;φ2 : C2 → P1) is given by (F,G) where F : P1 → P2 is a morphism of pointed orbinodal

curves and G : C1 → C2 a morphism over F such that we have a Cartesian diagram

S1 S2

P1 P2

C1 C2

F

G

.

We abbreviate (P → P → S;σ1, . . . , σn;φ : C → P) by (P → P ;σ;φ). We use the formulation

of H d in terms of maps to Ad or in terms of finite covers depending on whichever is convenient.

H d is related to M via the branch morphism, which we now define. Consider an object

(P → P → S;σ1, . . . , σn;φ : C → P) in H d(S). Identify brφ with its image in P (note that brφ

is anyway disjoint from the stacky points of P). Then brφ ⊂ P is an S-flat Cartier divisor. The

branch morphism br : H d →M is defined by

br : (P → P → S;σ1, . . . , σn;φ : C → P) 7→ (P → S; brφ;σ1, . . . , σn).

Theorem 1.3.8 (Main). H d is an algebraic stack, locally of finite type. The morphism

br : H d →M

is represented by proper Deligne–Mumford stacks.

Theorem 1.3.8 is motivated by the treatment of Hurwitz spaces as spaces of maps into a suitable

stack by Abramovich, Corti, and Vistoli [2], building on the work of Abramovich and Vistoli [1].

The proof of the main theorem in [1] is quite involved. However, thanks to the advancement of

technology related to stacks, we can give a fairly short and conceptual proof of Theorem 1.3.8. We

rely most notably on the careful study of orbinodal curves by Olsson [33] and the construction of

Quot schemes by Olsson and Starr [32]. There is a very general result for the existence of Hom

stacks due to Aoki [3], but it is not suitable for our purpose because it does not yield the required

finiteness properties.

We prove Theorem 1.3.8 in Section 1.4.
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Remark 1.3.9. The key properties of Ad used in the proof are that it is the quotient of an

affine scheme by an action of the general linear group and it contains a proper Deligne–Mumford

stack Ed as an open (to which the generic points, the marked points and the nodes are required to

map). It certainly seems possible to prove a generalization of Theorem 1.3.8 where Ad is replaced

by a suitable such global quotient [U/G], generalizing the construction by Ciocan-Fontanine, Kim,

and Maulik [5]. However, such a generalization is beyond the scope of the present work.

1.4. Proof of the main theorem

This section is devoted to proving Theorem 1.3.8. The proof is broken down into parts.

1.4.1. That M is a smooth algebraic stack, locally of finite type. This result is essen-

tially [33, Lemma 5.1]. We sketch a proof for completeness, following Olsson [33] and Hall [14].

Lemma 1.4.1. [14, Proposition 2.1] Let π : P → S be a nodal curve, where P is an algebraic

space and S a scheme. Let s→ S be a geometric point. Then there is an étale neighborhood T → S

of s such that πT : PT → T is projective.

Proof. Pick points x1, . . . , xn ∈ Ps in the smooth locus such that the Cartier divisor x1 +

· · · + xn is ample on Ps. Since P → S is smooth along the chosen points xi, there is an étale

neighborhood T → S of s such that each xi extends to a section σi of πT : PT → T . By passing

to a Zariski open, if necessary, assume that the sections map to the smooth locus of πT . Then the

divisor σ1(T ) + · · ·+ σn(T ) is a Cartier divisor on PT which is ample on the fiber over s. Again, by

passing to a Zariski open, if necessary, we get a πT -ample divisor. Hence πT is projective. �

We are ready to prove Proposition 1.3.2, which we recall for convenience.

Proposition 1.3.2. M is a smooth algebraic stack, locally of finite type.

Proof. Let M b,n ⊂ M be the subcategory where the degree of the marked divisor is b and

the number of marked points is n. It suffices to prove that M b,n is an algebraic stack, locally of

finite type. For brevity, set U = M 0,0.

Clearly, the obvious forgetful morphism M b,n → U is representable by smooth algebraic spaces

of finite type. Hence, it suffices to prove that U is an algebraic stack, locally of finite type.

That U is a stack over SchemesK follows from standard descent theory; it will not be repro-

duced here. Note, however, that it is important to allow algebraic spaces (and not merely schemes)

P → S in the definition of M .
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We now prove that U is algebraic. Recall that this means the following two conditions:

(1) the diagonal U → U ×U is representable by separated algebraic spaces of finite type;

(2) U admits a smooth, surjective morphism from a scheme, locally of finite type.

For (1), we must check that given two objects Pi → S of U , for i = 1, 2, the sheaf IsomS(P1, P2) on

S is representable by a separated algebraic space of finite type. It suffices to check this étale locally

on S. Also, this is well-known if Pi → S are projective. Thanks to Lemma 1.4.1, the general case

follows.

For (2), it suffices to exhibit a smooth, surjective map to U from an algebraic stack, which is

itself locally of finite type. Denote by M DM
g,k the stack of Deligne–Mumford stable curves of genus g

and k marked points. This is an algebraic stack of finite type. The forgetful morphism M DM
g,k → U

is easily seen to be smooth, and the morphism from the disjoint union

⊔
k≥0,g≥0

M DM
g,k → U

is surjective.

Finally, the smoothness of U follows from the smoothness of M DM
g,k . �

1.4.2. That br : H d → M is an algebraic stack, locally of finite type. The overall

strategy is to work our way up from M to H d via a series of intermediate algebraic stacks. We

first introduce some covenient notation. Denote by M b,∗ (resp. M ∗,n, M b,n) the open substack of

M where the marked divisor has degree b (resp. there are n marked points, degree b and n marked

points).

The first intermediate step is the stack of pointed orbinodal curves. Let M orb be the category

over SchemesK whose objects over S are pointed orbinodal curves (P → P → S;σ). Denote by

M orb≤N the subcategory of M orb where the order of the automorphism groups at the points of the

orbinodal curve is bounded above by N . There is a morphism M orb →M 0,∗ given by

(P → P → S;σ)→ (P → S;σ).

We quote, without proof, a theorem of Olsson [33].

Theorem 1.4.2. [33, Theorem 1.9, Corollary 1.11] M orb and M orb≤N are smooth algebraic

stacks, locally of finite type. M orb≤N is an open substack of M orb. The morphism M orb≤N →M 0,∗

is representable by Deligne–Mumford stacks of finite type.
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We have a morphism H d →M orb given by

(P → P ;σ; C → P) 7→ (P → P ;σ).

Define categories F inCovd and V ectd fibered over SchemesK as follows

F inCovd(S) = {(P → P → S;σ;φ : C → P), where φ is finite, flat of degree d},

V ectd(S) = {(P → P → S;σ;F), where F is locally free of rank d on P}.

In both definitions, (P → P → S;σ) is a pointed orbinodal curve. We have morphisms

(1.4.1) H d → F inCovd → V ectd →M orb.

Indeed, the first is obvious; the second is given by

(P → P ;σ;φ : C → P) 7→ (P → P ;σ;φ∗OC);

and the last by

(P → P ;σ;F) 7→ (P → P ;σ).

We analyze each morphism in (1.4.1) one by one.

Before we proceed, we need some results on the structure of orbinodal curves. We first recall

the notion of a generating sheaf on a Deligne–Mumford stack from [25, § 5.2]. Let X be a Deligne–

Mumford stack with coarse space ρ : X → X. A locally free sheaf E on X is a generating sheaf if

for every quasi coherent sheaf F , the morphism

ρ∗ρ∗(H omX (E ,F)⊗OX E)→ F

is surjective. Equivalently, E is a generating sheaf if and only if for every point x of X , the repre-

sentation of Autx(X ) on the fiber of E at x contains every irreducible representation of Autx(X ).

Proposition 1.4.3. Let S be a scheme and (P → P → S;σ) a pointed orbinodal curve. There

is a scheme T and a surjective étale morphism T → S such that

(1) PT admits a finite, flat morphism from a projective scheme Z;

(2) PT is the quotient of a quasi projective scheme by a linear algebraic group;

(3) PT admits a generating sheaf.
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Proof. The first statement is due to Olsson [33, Theorem 1.13]. The existence of a finite flat

cover Z → PT implies that PT is the quotient of an algebraic space Y by the action of a linear

algebraic group by [8, Theorem 2.14]. We may assume that T is affine and, by Lemma 1.4.1, that

PT is projective over T . Then PT is quasi-projective. In this case, Y can be proved to be quasi-

projective [25, Remark 4.3]. Finally, since P is a quotient stack with a quasi projective coarse space,

the third statement follows directly from [25, Theorem 5.3]. �

Proposition 1.4.4. V ectd →M orb is an algebraic stack, locally of finite type.

Proof. Let S be a scheme and (P → P → S;σ) an object of M orb. We must prove that the

category of vector bundles of rank d on P is an algebraic stack, locally of finite type. It suffices to

prove this after passing to an étale cover of S. By Proposition 1.4.3, we can assume that P → S

admits a generating sheaf and by Lemma 1.4.1, that P → S is projective. Now it can be shown

that the stack C ohP/S of coherent sheaves on P, flat over S, is an algebraic stack, locally of finite

type. A smooth atlas is given by the Quot schemes of Olsson and Starr [32]. We omit the details;

see the pre-print by Nironi [31, § 2.1] for a complete proof. Clearly, the stack of vector bundles of

rank d on P is an open substack of C ohP/S . �

Proposition 1.4.5. F inCovd → V ectd is representable by algebraic spaces of finite type.

For the proof, we need two easy lemmas.

Lemma 1.4.6. Let S be an affine scheme and X → S be a proper Deligne–Mumford stack with

coarse space ρ : X → X, where X is a scheme. Let F be a coherent sheaf on X , flat over S. Then,

there is a finite complex M• of locally free sheaves on S:

M0 →M1 → · · · →Mn

such that for every f : T → S, we have natural isomorphisms

Hi(f∗M•)
∼−→ Hi(XT ,FT );

Proof. Let F = ρ∗F . Then F is a coherent sheaf on X, flat over S. Since X is a proper

scheme over S, the standard theorem on cohomology and base change for schemes [30, §II.5], gives

a finite complex of locally free sheaves M• with natural isomorphisms

(1.4.2) Hi(f∗M•)
∼−→ Hi(XT , FT ).
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Now, the map ρT : XT → XT is the map to the coarse space. Since maps to the coarse spaces are

cohomologically trivial for quasi-coherent sheaves, we have ρT ∗(FT ) = FT and a natural identifica-

tion

(1.4.3) Hi(XT , FT ) = Hi(XT ,FT ).

Combining (1.4.2) and (1.4.3), we obtain the result. �

Lemma 1.4.7. Let X → S and F be as in Lemma 1.4.6. Then the contravariant functor from

SchemesS to Sets defined by

(f : T → S) 7→ H0(XT ,FT )

is represented by an affine scheme SectF/S over S.

When no confusion is likely, we denote SectF/S by SectF .

Proof. Let M• be as in Lemma 1.4.6. Let Ti = SpecS(Sym∗(M∨i )) be the total spaces of the

vector bundles Mi (we only care about i = 0, 1). Then Ti are vector bundles over S and we have

a morphism T0 → T1. Let SectF ⊂ T0 be the scheme theoretic preimage of the zero section of T1.

From the natural isomorphism

H0(f∗M•)
∼−→ H0(XT ,FT ),

it is easy to see that SectF represents the desired functor. �

We now have the tools to prove Proposition 1.4.5.

Proof of Proposition 1.4.5. Let S be a scheme and S → V ectd a morphism given by the

object (P → P → S;σ;F) of V ectd(S). We must prove that F inCovd ×V ectd S is an algebraic

space of finite type. It suffices to prove this after passing to an étale cover of S. So, assume that S

is affine and P is projective over S. By an OP -algebra structure on F , we mean a pair (i,m), where

i : OP → F and m : F ⊗F → F are morphisms of OP modules that make F a sheaf of OP -algebras.

Let A lgF be the stack of OP -algebra structures on F . The operation of taking the spectrum gives

an equivalence

A lgF
∼−→ F inCovd ×V ectd S.
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Now, an algebra structure on F is determined by a global section (corresponding to i) of F and one

(corresponding to m) of H om(F ⊗ F ,F) subject to the conditions

m ◦ (i⊗ id) = m ◦ (id⊗1) = id (multiplicative identity)

m ◦ sw = m (symmetry)

m ◦ (id⊗m) = m ◦ (m⊗ id) (associativity),

where sw: F ⊗F → F ⊗F is the switch x⊗ y 7→ y⊗ x. Each of these equations can be interpreted

as the vanishing (agreeing with the zero section) of a morphism from SectF ×S SectH om(F,F⊗F) to

a suitable Sect space. For example, the equality

m ◦ (id⊗1) = id

can be phrased as the vanishing of the morphism

SectF ×S SectH om(F,F⊗F) → SectH om(F,F)

defined by

(i,m) 7→ m ◦ (i⊗ id)− id .

Thus, A lgF is represented by the closed subscheme of SectF ×S SectH om(F,F⊗F) defined by van-

ishing of the equations given by the conditions above. �

We finish the final piece of (1.4.1).

Proposition 1.4.8. H d → F inCovd is an open immersion.

Proof. Let S be a scheme and S → F inCovd a morphism corresponding to an object (P →

P → S;σ;φ : C → P) of F inCovd(S). Let π : P → S be the projection. Denote by Σ ⊂ P the

image in P of the branch divisor of φ. Clearly, the locus S1 ⊂ S over which Σ is disjoint from the

singular locus of P → S and the sections σi is an open subscheme. Over S1, the Cartier divisor

Σ ⊂ P does not contain any components of the fibers and hence it is S1-flat.

Let χ : P → Ad be the morphism corresponding to the degree d cover C → P. Let Iχ → P be

the inertia stack of χ. Then Iχ → P is a representable finite morphism. The set Z ⊂ P over which

Iχ has a fiber of cardinality higher than one is a closed subset and its complement is exactly the

locus where χ is representable. Let S2 = S1 ∩ (S \ π(Z)).
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Then, by definition, H d ×F inCovd S = S2, which is an open subscheme of S. �

We have finished the first part of the proof of Theorem 1.3.8.

Proposition 1.4.9. The morphism br : H d →M is an algebraic stack, locally of finite type.

Proof. The forgetful morphism M →M 0,∗ is represented by algebraic spaces of finite type.

Hence, it suffices to show that H d → M 0,∗ is an algebraic stack, locally of finite type. We have

the sequence of morphisms

(1.4.4) H d → F inCovd → V ectd →M orb →M 0,∗.

Starting from the right, Theorem 1.4.2, Proposition 1.4.4, Proposition 1.4.5 and Proposition 1.4.8

imply that each of the morphisms above is an algebraic stack, locally of finite type. Hence, so is

their composite. �

1.4.3. That br : H d →M is of finite type. The strategy in this section is to study (1.4.4)

more carefully and trim down the intermediate stacks so that they are of finite type.

Proposition 1.4.10. The morphism H d →M orb factors through the open substack M orb≤N

for any N ≥ d!.

As the proof shows, one can do better than d!, but the actual number is not very important.

Proof. Take an object (P → P → S;σ;χ) of H d. Let p be a point of P which is either a

node or a marked point in its fiber. Then χ maps a neighborhood of p into Ed ∼= BSd. Since χ is

required to be representable, we have

Autp(P)↪→Autχ(p)(BSd) = Sd.

In particular, the size of Autp(P) is at most d!. �

Set

H d
b = M b,∗ ×M H d,

and denote by V ectdl,N the open substack of V ectd parametrizing vector bundles of fiberwise degree

l and at most N dimensional space of global sections.

Proposition 1.4.11. The morphism H d
b → V ectd factors through the open substack V ectdl,N

for l = −b/2 and any N ≥ d.



1.4. PROOF OF THE MAIN THEOREM 31

Proof. Consider a geometric point (P → P ;σ;φ : C → P) of H d
b . Then, the branch divisor

of φ, which is a section of detφ∗OC
⊗(−2), has degree b. Hence φ∗OC has degree l. Furthermore,

since C is a reduced curve which is a degree d cover of the connected curve P, we must have

h0(φ∗OC) ≤ d. �

Proposition 1.4.12. The morphism V ectdl,N →M orb is of finite type.

For the proof, we need some results about the boundedness of families of sheaves on Deligne–

Mumford stacks. Let S be an affine scheme and X → S a Deligne–Mumford stack with coarse space

ρ : X → X, and a generating sheaf E . Let OX(1) be an S-relatively ample line bundle on X. Let

U be an S-scheme, not necessarily of finite type, and F a sheaf on XU . We say that the family of

sheaves (XU ,F) is bounded if there is an S-scheme T of finite type and a sheaf G on XT such that

every geometric fiber (Xu,Fu) appearing in (XU ,F) over U appears in (XT ,G) over T . In this case,

we say that (XT ,G) bounds (XU ,F).

Set

FE(−) = ρ∗H omX (E ,−).

Then FE takes exact sequences of quasi-coherent sheaves on X to exact sequences on of quasi-

coherent sheaves on X, because ρ∗ is cohomologically trivial.

Lemma 1.4.13. In the above setup, if the family (XU , FE(F)) is bounded, then the family (XU ,F)

is also bounded.

Proof. Since FE(F) is bounded, we have a surjection

OX(−M)⊕N ⊗S OU � FE(F)

for large enough M and N . Since E is a generating sheaf, this gives a surjection

(1.4.5) E ⊗X OX(−M)⊕N ⊗S OU � F .

Let K be the kernel. Then, (XU , FE(K)) is also bounded, and by the same reasoning as above, we

have a surjection

(1.4.6) E ⊗X OX(−M ′)⊕N
′
⊗S OU � K
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for large enough M ′ and N ′. Combining (1.4.5) and (1.4.6), F can be expressed as the cokernel

E ⊗X OX(−M ′)⊕M
′
⊗S OU → E ⊗X OX(−M)⊕M ⊗S OU � F .

Set

H = H omX

(
E ⊗X OX(−M ′)⊕N

′
, E ⊗X OX(−M)⊕N

)
,

and T = SectH/S . By Lemma 1.4.7, T → S is of finite type. Letting G be the cokernel of the

universal homomorphism on XT , we see that (XT ,G) bounds (XU ,F). �

Remark 1.4.14. In the case of a curve X → S, the family (XU , FE(F)) is bounded if the degree,

rank and h0 of FE(F)u are bounded for u ∈ U .

We now have the tools to prove Proposition 1.4.12.

Proof of Proposition 1.4.12. Let S be a connected affine scheme and S → M orb a mor-

phism given by the pointed orbinodal curve (P ρ→ P → S;σ). We must prove that V ectdl,N ×Morb

S → S is of finite type. After passing to an étale cover of S if necessary, assume that

(1) P → S is projective with relatively ample line bundleOP (1) (this is possible by Lemma 1.4.1),

(2) We have a generating sheaf E on P (this is possible by Proposition 1.4.3).

Set E = ρ∗E . Since E ⊗ ρ∗OP (−1) is also a generating sheaf, by twisting E by ρ∗OP (−1) enough

times, assume that we have a surjection O⊕MP → E for some M .

Let U → V ectdl,N ×Morb S be a surjective map from a scheme (not necessarily of finite type),

given by the family (PU → PU → U ;σ;F).

Claim. (PU ,F) is a bounded family of sheaves.

Proof. Set

F = FE(F) = ρ∗H omP(E ,F).

By Remark 1.4.14, it suffices to show that thee degree, rank and h0 of Fu are bounded. The rank

of Fu is constant; the degree of H om(E ,F)u is constant. It is easy to see that the degree of

H om(E ,F)u and the degree of Fu differ by a bounded amount, depending only on P → P and E .

Hence the degree of Fu is bounded. Likewise, it is easy to see that h0(Fu) and h0(H om(ρ∗E , ρ∗F)u)
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differ by a bounded amount, depending only on P → P and E . On the other hand,

H0(H om(ρ∗E , ρ∗F)u) = Hom(Eu, ρ∗Fu)

⊂ Hom(O⊕MPu , ρ∗Fu)

= H0(Fu)⊕M .

By hypothesis, the final vector space has dimension at most MN . It follows that h0(Fu) is bounded.

�

Let T → S be of finite type and (PT ,G) a family that bounds (PU ,F). By shrinking T if

necessary, G is a vector bundle of rank d with fiberwise degree l and dimension of global sections at

most N . Then we have a surjective map T → V ectdl,N ×Morb S. It follows that the latter is of finite

type. �

We have now finished the second part of the proof of Theorem 1.3.8.

Proposition 1.4.15. br : H d →M is of finite type.

Proof. Since the open substacks M b,∗ cover M for b = 0, 1, 2, . . . , it suffices to show that

br : H d
b = H d ×M M b,∗ →M b,∗ is of finite type. With l = −b/2, and N large enough, we have

the following diagram,

H d
b F inCovd

V ectdl,N V ectd

M b,∗ M 0,∗ M orb≤N M orb

0

1

3

2

4

.

The thick arrows in the diagram are known to be of finite type: (0) is an open immersion, (1) is of

finite type by Proposition 1.4.5, (2) by Theorem 1.4.2, and (3) by Proposition 1.4.12. Recall that

for algebraic stacks X , Y, Z, all locally of finite type, and morphisms X → Y → Z, we have the

following:

(1) If X → Y and Y → Z are of finite type, then X → Z is also of finite type;

(2) If X → Z is of finite type, then X → Y is also of finite type.

Using the two repeatedly reveals that (4) is also of finite type. �
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1.4.4. That br : H d →M is Deligne–Mumford.

Proposition 1.4.16. br : H d →M is represented by Deligne–Mumford stacks.

Proof. The proof is straightforward. By Theorem 1.4.2, it suffices to check that H d →M orb is

represented by Deligne–Mumford stacks. In other words, we want this morphism to have unramified

inertia. This can be checked on points. Let (P → P → Spec k;σ; C → P) be a geometric point of

H d. We must show that C has no infinitesimal automorphisms over the identity of P. As C → P is

a finite cover, these automorphisms are classified by HomC(ΩC/P , OC). Since C → P is unramified

on the generic points of the components, ΩC,P is supported on a zero dimensional locus. Since C is

reduced, it follows that HomC(ΩC/P , OC) = 0. �

1.4.5. That br : H d →M is proper. We check that br is proper by verifying the valuative

criterion. Two pieces of notation will be helpful. If S is the spectrum of a local ring, denote by S◦

the punctured spectrum

S◦ = S \ {closed point of S}.

For a Deligne–Mumford stack X with coarse space X → X and a geometric point x→ X, set

Xx = X ×X SpecOX,x.

It will be convenient to work with the spectrum of a henselian DVR. The reader unfamiliar with

this notion should imagine it to be a small (in particular, simply-connected) complex disk.

We begin with a simple lemma about the following setup. Let r be a positive integer and G

a finite group. Let R be a henselian DVR with residue field k and uniformizer t. Let OS the

henselization of R[x, y]/(xy − tr) at the point corresponding to (t, x, y). For a positive integer a

dividing r, define a finite extension Sa → S by

OSa = OS [u, v]/(ua − x, va − y, uv − tr/a).

We have an action of µa on Sa over the identity of S by u 7→ ζu and v 7→ ζ−1v.

Lemma 1.4.17. Let χ : S◦ → BG be a morphism given by a G torsor E → S◦. Then χ extends

to a morphism [Sr/µr]→ BG. More generally, χ extends to a morphism [Sa/µa]→ BG if and only

if the pullback of E to Sa
◦ is trivial. Furthermore, in this case the extension of χ is representable if

and only if a is the smallest with the above property.
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Proof. To extend χ, we may work étale locally on the source. We use the étale cover Sa →

[Sa/µa]. Note that Sa is simply connected (it is henselian). Hence the pullback of E to Sa
◦ extends

to Sa if and only if this pullback is trivial. Being trivial over Sr
◦ is automatic, since Sr

◦ is simply

connected.

Note that Sr
◦ → S◦ is the universal covering space—it is a µr-torsor where the source Sr

◦ is

simply connected. The G torsor E → S◦ corresponds to a homomorphism µr → G. By the theory

of covering spaces, the pullback of E along Sa
◦ → S◦ is trivial if and only if µr → G factors as

(1.4.7) µr → µa → G,

where µr → µa is the map ζ 7→ ζr/a. As we saw, in this case, we get a morphism χ : [Sa/µa] →

BG. Let s → [Sa/µa] be the stacky point. Observe that the map on automorphism groups

Auts([Sa/µa])→ Auts(BG) is exactly the map µa → G in (1.4.7). Since χ is representable precisely

when Auts([Sa/µa])→ Auts(BG) is injective, the result follows. �

Proposition 1.4.18. br : H d →M is separated.

Proof. As br is of finite type, we may use the valuative criterion. Let R be a henselian DVR

with residue field k, fraction field K and uniformizer t. Set ∆ = SpecR. Denote the special, the

general and a geometric general point of ∆ by 0, η and η respectively. Let (Pi → Pi → ∆;σ;χi : Pi →

Ad), for i = 1, 2, be two objects of H d(∆) over an object (P ; Σ;σ) of M (∆). Let φi : Ci → Pi be

the corresponding degree d covers and let

ψ : (C1 → P1)|η → (C2 → P2)|η

be an isomorphism over the identity of P . We must show that ψ extends to an isomorphism of the

orbinodal curves P1 → P2 and the covers C1 → C2 over all of ∆. Recall that P gen is the complement

of the markings σj in the smooth locus of P → ∆.

Step 1: Extending ψ : C1 → C2 over P gen: Since Ci → P is étale over the generic points of

the components of P|0, the map ψ : C1 → C2 extends, except possibly at finitely many points on the

central fiber. As a result, on P gen we get an isomorphism of vector bundles

ψ# : φ2∗OC2 |P gen → φ1∗OC1 |P gen
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away from a locus of codimension two. Since P gen is smooth, by Hartog’s theorem, this isomorphism

extends over all of P gen. The extension must also be an isomorphism of algebras by continuity.

Step 2: Extending ψ : P1 → P2 at the non-generic nodes: Let p→ P |0 be a node not in

the closure of P |sing
η . It suffices to extend ψ étale locally around p. The local ring OP,p must be the

strict henselization of the ringR[x, y]/(xy−tr) at the point corresponding to (t, x, y) for some positive

integer r. Recall that the χi are required to map the nodes to the substack Ed ∼= BSd corresponding

to étale covers. By the first step, the two maps χi : SpecO◦P,p → BSd are isomorphic. Since both

χi are representable, the structure of orbinodal curves (Proposition 1.2.2) and Lemma 1.4.17 imply

that

(P1)p ∼= (P2)p ∼= Spec[OP,p[u, v]/(ua − x, va − y, uv − tr/a)/µa],

for some divisor a of r. Thus, we can get an extension ψ : P1 → P2.

Step 3: Extending ψ : P1 → P2 at the marked points: Let p→ P |0 be one of the marked

points σj(0). Then OP,p is the henselization of R[x] at (t, x). Let σj be a geometric generic point of

P over σj : η → P |η. By the structure of orbinodal curves (Proposition 1.2.2) for p and σj , we have

the picture for i = 1, 2:

Pi,p SpecOP,p

[SpecR[v]
sh
/µri ] SpecR[x]

sh

[SpecK[v]
sh
/µri ] SpecK[x]

sh

Pi,σj SpecOP,σj
,

where µri acts by v 7→ ζv. The isomorphism P1|η → P2|η gives an isomorphism P1,σj → P2,σj . In

particular, we get r1 = r2 = r. Furthermore, it is easy to see that an isomorphism [SpecK[v]
sh
/µr]→

[SpecK[v]
sh
/µr] over the identity of the coarse spaces SpecK[x]

sh → SpecK[x]
sh

must be of the

form v 7→ ζv for some rth root of unity ζ. Clearly, such an isomorphism can be extended to an

isomorphism [SpecR[v]
sh
/µr]→ [SpecR[v]

sh
/µr].

Step 4: Extending ψ : P1 → P2 at the generic nodes: This step mirrors the previous step;

only the orbinodal structures are a little different. We give the details for completeness.

Let p→ P |0 be a node in the closure of P |sing
η . Then OP,p is the henselization of R[x, y]/xy at

(t, x, y). Since ∆ is henselian, we have a section σ : ∆→ P sing with σ(0) = p. Let σ be a geometric
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generic point of P |η over σ : η → P |η. By the structure of orbinodal curves (Proposition 1.2.2) for

p and σ, we have the picture for i = 1, 2:

Pi,p SpecOP,p

[SpecR[ui, vi]
sh
/(uivi, ui − xri , vi − yri)/µri ] Spec (R[x, y]/xy)

sh

[SpecK[ui, vi]
sh
/(uivi, ui − xri , vi − yri)/µri ] Spec (K[x, y]/xy)

sh

Pi,σ SpecOP,σ
.

The isomorphism ψ : P1|η → P2|η gives an isomorphism P1,σ → P2,σ. In particular, we get r1 =

r2 = r. Furthermore, see that an isomorphism ψ : P1,σ → P2,σ over the identity of the coarse spaces

P1,σ → P1,σ must be of the form u1 7→ ζ1u2 and v1 7→ ζ2v2 for some rth roots of unity ζ1 and ζ2.

Such an isomorphism can be extended to an isomorphism P1,p → P2,p.

Step 5: Extending ψ : C1 → C2: By Step 2, Step 3 and Step 4 , we have an isomorphism

ψ : P1 → P2. By Step 1, we also have an isomorphism ψ : C1 → C2 except over the node points and

the marked points of Pi|0. However, Ci → Pi is étale over these points; hence ψ must extend to an

isomorphism ψ : C1 → C2.

�

The crucial ingredient for properness is the following theorem of Horrocks [20].

Proposition 1.4.19. [20, Corollary 4.1.1] Let S be the spectrum of a regular local ring. If

dimS = 2, then every vector bundle on the punctured spectrum S◦ is trivial.

Proof. We only describe the main idea. See [20] for the full details.

Denote by i : S◦ → S the inclusion map. Let E be a vector bundle on S◦. If dimS ≥ 2,

then i∗E can be shown to be a coherent sheaf on S with depth at least 2. If dimS = 2, by the

Auslander–Buchsbaum formula, we conclude that i∗E is free. As every vector bundle on S is trivial,

we conclude that E is trivial. �

Proposition 1.4.20. br : H d →M is proper.
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Proof. A large chunk of the proof is identical to the proof in the paper of Abramovich and

Vistoli [1, Proposition 6.0.4]. The final step is new; it uses Proposition 1.4.19 and the expression of

Ad as the quotient of an affine scheme by Gld.

As br is of finite type, we may use the valuative criterion. As before, let R be a henselian DVR

with residue field k, fraction field K and uniformizer t. Set ∆ = SpecR. Denote the special, the

general and a geometric general point of ∆ by 0, η and η respectively. Let (P → ∆; Σ;σ) be an

object of M (∆) and (P|η → P |η;σ;χ) an object of H d(η). We want to extend it to an object over

all of ∆, possibly after a base change.

Step 1. Extending χ at the generic points of the components: This step follows Step

2 in [1, Proposition 6.0.4].

We work étale locally. Let ζ be a geometric generic point of a component of P |0. Then the local

ring OP,ζ is also a DVR. Since the branch divisor Σ does not contain any component of P |0, the

morphism χ sends the punctured spectrum P ◦ζ to Ed. We must extend it to a morphism χ : Pζ → Ed.

Since Ed ∼= BSd is a proper Deligne–Mumford stack, such an extension is possible after passing to

a finite cover P̃ζ → Pζ . By Abhyankar’s lemma, there is an n such that P̃ζ → Pζ is isomorphic to

Pζ×SpecRSpecR[ n
√
t]→ Pζ . Thus, by passing to a sufficiently big cover SpecR[ N

√
t]→ SpecR = ∆,

we can extend χ along the generic points of all the components of P |0. Henceforth, replace R by

R[ N
√
t].

At this point, we have a morphism χ : P → Ad defined away from finitely many points on P |0.

Step 2. Extending χ at the non-generic nodes: This step follows Step 3 in [1, Proposi-

tion 6.0.4].

Let p → P |0 be a node not in the closure of Pη|sing. We must describe an orbinodal structure

at p and a representable extension of χ. It suffices to do both things in the étale topology. The

stalk OP,p is isomorphic to R[x, y]
sh
/(xy − tr) for some r ≥ 1. Since Σ is supported away from the

nodes, the morphism χ sends the punctured spectrum P ◦p to Ed ∼= BSd. As in Lemma 1.4.17, let a

be the smallest integer dividing r such that χ extends to a morphism

χ : [SpecOP,p[u, v]/(ua − x, va − y, uv − tr/a)/µa]→ Ed ∼= BSd,

where µa, as usual, acts by u 7→ ζ and v 7→ ζ−1v. Construct P over P such that

Pp = [SpecOP,p[u, v]/(ua − x, va − y, uv − tr/a)/µa].
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By Lemma 1.4.17, we have a representable extension χ : Pp → Ed ∼= BSd..

Step 3: Extending χ at the generic nodes and marked points: This step follows Step

4 in [1, Proposition 6.0.4].

Let p → P |0 be in the closure of P |sing
η . First, we extend the orbinode structure P|η over p.

Note that OP,p is isomorphic to the henselization of R[x, y]/xy at (t, x, y). Since ∆ is henselian, we

have a section σ : ∆→ P sing with σ(0) = p. Letting σ be a geometric generic point of this section,

we get by Proposition 1.2.2

Pσ ∼= [SpecK[u, v]
sh
/(uv, ua − x, va − y)/µa],

for some positive integer a. We extend P over Pp by the same formula

Pp ∼= [SpecR[u, v]
sh
/(uv, ua − x, va − y)/µa].

Having defined the orbinodal structure, we must extend χ. Again, note that χ sends a neigh-

borhood of p to the étale locus Ed ∼= BSd. We must find an extension χ : Pp → Ed. We may work

étale locally on the source, in particular, on the étale cover SpecOP,p[u, v]/(uv, ua−x, va−y)→ Pp.

We already have χ on the punctured spectrum (SpecOP,p[u, v]/(uv, ua − x, va − y))◦. Since this

punctured spectrum is simply connected, χ extends to a map χ : OP,p[u, v]/(uv, ua−x, va−y)→ Ed.

The case of marked points p = σj(0) is entirely analogous, if not easier.

Step 4. Extending χ over all of P: By the previous steps, we have a pointed orbinodal

structure P → P and an extension of χ on P away from finitely many smooth, unmarked (i.e. differ-

ent from σj) points of P |0. Let p→ P |0 be a smooth, unmarked point. Recall that Ad
∼= [Bd/Gld],

where Bd is an affine scheme (Proposition 1.1.2). The morphism χ : P ◦p → Ad is equivalent to a

Gld torsor E∗ → P ◦p and a Gld equivariant morphism E∗ → Bd. However, by Proposition 1.4.19,

there are no nontrivial Gld torsors on P ◦p . In particular, E∗ extends to a Gld torsor E → Pp. Next,

E∗ ⊂ E is the compliment of the codimension two locus E|p. Since E is smooth and Bd affine, we

have an extension E → Bd by Hartog’s theorem. The extension is Gld equivariant by continuity.

Thus, we get an extension χ : Pp → Ad.

Finally, note that the two divisors χ∗Σd and Σ are supported in the general locus P gen and are

equal, by construction, on the complement of a codimension two set. Hence, they must be equal.

�
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Remark 1.4.21. It may be helpful to recast Step 4 in terms of finite covers. Let p → P |0 be

a smooth, unmarked point. Assume that we have a finite cover φ : C → U \ {p}, where U is a

neighborhood of p. We wish to extend it to a cover over all of U . By Proposition 1.4.19, the vector

bundle φ∗OC extends to a vector bundle over U . Next, we must extend the OP algebra structure

of φ∗OC . The algebra structure is specified by maps of vector bundles, which all extend over p by

Hartog’s theorem. The extensions continue to satisfy the identities to be an algebra by continuity.

The result is an extension of φ over all of U .

The proof of the main theorem is now complete. We recall the statement and collect the pieces

of the proof.

Theorem 1.3.8 (Main). H d is an algebraic stack, locally of finite type. The morphism

br : H d →M

is represented by proper Deligne–Mumford stacks.

Proof. That br is an algebraic stack, locally of finite type is the content of Subsection 1.4.2,

culminating in Proposition 1.4.9. That br is of finite type is done in Subsection 1.4.3, culminating

in Proposition 1.4.15. That br is Deligne–Mumford is Proposition 1.4.16. Finally, the properness is

checked in Subsection 1.4.5 in Proposition 1.4.18 and Proposition 1.4.20. �

1.5. The local structure of H d

In this section, we analyze the local structure of H d. The main consequence of our analysis is

that H d is smooth for d = 2 and 3 (Theorem 1.5.5). Throughout the section, we use the formulation

of H d in terms of finite covers instead of in terms of maps to Ad.

We recall the standard setup of deformation theory. Let k be an algebraically closed field over

K. Denote by Artk the category of local Artin rings with residue field k. For any object (A,m)

of Artk, denote by 0 the special point of SpecA. Let (A,m) and (A′,m′) be two object of Artk

related by an exact sequence

0→ J → A′ → A→ 0.

Say that A′ is a small extension of A by J if m′ · J = 0.

We denote by DefX the standard functor on Artk classifying deformations of X:

DefX(A) = {(XA → SpecA, i)},
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where XA → SpecA is a flat morphism and i : XA|0 → X an isomorphism. We often shorten

(XA → SpecA, i) to just XA, and call it a deformation of X over A.

Likewise, for a morphism φ : X → Y , we denote by Defφ the functor classifying deformations

of φ (allowing both X and Y to vary):

Defφ(A) = {(XA → SpecA, YA → SpecA, φA : XA → YA, iX , iY )},

where XA → SpecA and YA → SpecA are flat morphisms and iX : XA|0 → X and iY : YA|0 → Y

are isomorphisms making the obvious commutative diagram

(1.5.1)

XA|0 YA|0

X Y

φA|0

φ

iX iY

.

We often shorten the unwieldy (XA → SpecA, YA → SpecA, φA : XA → YA, iX , iY ) to just (φA : XA →

YA) and call it a deformation of φ over A.

Let ξ = (P → P ;σ1, . . . , σn;φ : C → P) be such that (P → P ;σ1, . . . , σn) is a (not necessarily

proper) pointed orbinodal curve over k and φ : C → P a finite cover, étale over the nodes and the

marked points of P . Denote by Defξ the functor classifying deformations of ξ:

Defξ(A) = {(PA → PA → SpecA;σi,A;φA : CA → PA, iC , iP )},

where (PA → PA → SpecA;σi,A) is a (not necessarily proper) pointed orbinodal curve, φ : CA → PA

a finite cover, and iP : PA|0 → P and iC : CA|0 → C isomorphisms commuting with φA and φ as in

(1.5.1).

If ξ corresponds to a point of H d, then we have a formally smooth morphism

Defξ →H d.

Our goal is to understand Defξ.

Following Fedorchuk [9, § 4.1], we first simplify the task of studying the deformations of ξ into

the study of its deformations on Zariski local pieces. Following his terminology from [9, § 4.1], let

{Ui} be an adapted affine open cover of P . This means that each Ui contains exactly one from the
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following: a node, a marked point or a point of supp(brφ). Set

Ui = Ui ×P P

Vi = C ×P Ui

φi = φ|Vi : Vi → Ui

ξi = (Ui → Ui;σi;φi : Vi → Ui).

In the last equation, σi is ignored if Ui does not contain any marked point. Set Uij = Ui ∩ Uj ,

Vij = Vi ∩Vj , Uijk = Ui ∩Uj ∩Uk, and so on. Observe that Uij does not contain orbinodes, marked

points or branch points. To emphasize that the multiple intersections are schemes, we denote them

by roman letters Uij , Vij , Uijk, and so on.

We have restriction maps Defξ → Defξi .

Proposition 1.5.1. With the above notation, the map Defξ →
∏
i Defξi is formally smooth.

Proof. Let 0 → k → A′ → A → 0 be a small extension. Assume that we are given a

deformation ξA of ξ on A. Denote the restriction of ξA over Ui by ξi,A; it is a deformation of ξi.

Suppose, furthermore, that we are given extensions ξi,A′ of ξi,A. We must prove that the ξi,A′ can

be glued to get a global extension ξA′ of ξA.

Note that, by construction, Uij is a nonsingular affine scheme. Therefore, its deformations are

trivial. Let pij : OUi,A′ |Uij → OUj,A′ |Uij be an isomorphism over the identity

OPA |Uij = OUi,A |Uij → OUj,A |Uij = OPA |Uij .

The choice of pij is given by an element of Hom(ΩUij , OUij ). The isomorphisms pij may not be

compatible on the triple overlaps Uijk. However, since

H2(H om(ΩP , OP)) = 0,

the two co-cycle defined by pij + pjk− pik on Uijk is in fact a co-boundary. As a result, by changing

the choice of the pij , we can assure that they are compatible on triple overlaps. Thus, we obtain an

orbinodal curve (PA′ → PA′ ;σA′) over A′ extending (PA → PA;σA) over A. This takes care of one

piece of an extension ξA′ of ξA.
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Having constructed PA′ , we construct CA′ similarly by choosing isomorphisms

cij : OVi,A′ |Vij → OVj,A′ |Vij .

Since φ : Vij → Uij is étale, we have an equality φ∗ΩUij = ΩVij . Observe that if we wish to

extend φA : CA → PA to φA′ : CA′ → PA′ , where PA′ is glued by the pij and CA′ by the cij , then

cij ∈ Hom(ΩVij , OVij ) must be the pullback of pij ∈ Hom(ΩUij , OUij ). By choosing the cij in

this way, we obtain the desired extension CA′ of CA along with an extension φA′ : CA′ → PA′ of

φA : CA → PA, completing the second piece of the extension ξA′ of ξA. �

Next, we analyze Defξi . We use the forgetful morphisms Defξi → DefUi and Defξi → DefVi .

Proposition 1.5.2. Retain the notation of Proposition 1.5.1.

(1) If Ui does not contain a point of brφ, then Defξi is formally smooth.

(2) If Ui contains a point of brφ, then Defξi → DefVi is formally smooth.

Remark 1.5.3. In the second case, Ui does not contain any orbinode or marked point. Hence,

it is a nonsingular scheme and Defξi is simply Defφi .

Proof. In the first case, the map φi : Vi → Ui is étale. Therefore, the forgetful map Defξi →

Def(Ui;σi) is an isomorphism. We are thus reduced to showing that the deformations of the pointed

orbinodal curve (Ui;σi) are unobstructed. This is shown in [2, § 3]. We briefly recall the argument.

The obstructions to the deformations lie in E xt2(ΩUi , OUi). Étale locally, Ui is at worst a nodal

curve; hence E xt2(ΩUi , OUi) = 0.

In the second case, Ui = Ui is a nonsingular affine scheme; its deformations are trivial. To

verify the smoothness of Defφi → DefVi , take an extension of rings in Artk, say A′ → A → 0,

a deformation φi,A : Vi,A → Ui × SpecA of φi over A and an extension Vi,A′ → SpecA′ of Vi,A.

We must construct an extension φi,A′ : Vi,A′ → Ui × SpecA′ of φi,A. By the infinitesimal lifting

property for Ui, the map Vi,A → Ui extends to a map Vi,A′ → Ui, yielding such an extension

φi,A′ : Vi,A′ → Ui × SpecA′. �

Recall that a scheme (stack) is smoothable if it is the flat limit of non-singular schemes (stacks).

Let Hd ⊂H d be the open locus consisting of

(P → P ;σ;φ : C → P),

where C and P are smooth and φ is simply branched.
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Proposition 1.5.4. Retain the notation of Proposition 1.5.1. Let S be the set of indices i for

which Ui contains a point of brφ.

(1) Defξ is smooth if and only if DefVi is smooth for all i ∈ S.

(2) The point of H d given by ξ is in the closure of Hd if and only if Vi is smoothable for all

i ∈ S.

Proof. Proposition 1.5.1 and Proposition 1.5.2 together give a smooth morphism Defξ →∏
i∈S DefVi , proving the first assertion.

For the second assertion, consider the smooth morphism

(1.5.2) Defξ →
∏
i6∈S

DefUi ×
∏
i∈S

DefVi .

For i 6∈ S, the Ui is either a smooth curve or an orbinodal curve. In either case, it is smoothable.

By the smoothness of (1.5.2), if all the Vi are smoothable for i ∈ S then ξ is in the closure of the

locus of

(P → P ;σ;φ : C → P),

with smooth C and P. It is not hard to see that this locus is in the closure of Hd, where the only

additional constraint is that φ be simply branched. �

We record two important special cases.

Theorem 1.5.5. For d = 2 and 3, the stack H d is smooth and contains Hd as a dense open

substack.

Proof. We begin with a general observation. For a finite cover φ : X → Y of degree d, we have

an exact sequence

0→ OY → φ∗OX → F → 0,

split by 1/d times the trace map tr : φ∗OX → OY . Therefore, the vector bundle F admits a map

F → φ∗OX . Since φ∗OX is a sheaf of OY algebras, we get a map Sym∗(F ) → φ∗OX , which is

clearly surjective. In other words, φ : X → Y naturally factors as an embedding

(1.5.3) ι : X↪→SpecY Sym∗(F )

followed by the projection SpecY Sym∗(F )→ Y .
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We return to the proof of Theorem 1.5.5. By Proposition 1.5.4, it suffices to prove that DefVi

is smooth and Vi is smoothable for all i for which φi : Vi → Ui is ramified. In the case of d = 2,

the embedding ι in (1.5.3) exhibits Vi as a divisor in a nonsingular affine surface. It is now well

known that DefVi is smooth. In the case of d = 3, the embedding ι exhibits Vi as a subscheme

of a nonsingular affine threefold. Since Vi is a reduced curve, it is Cohen–Macaulay. Thus Vi is a

Cohen–Macaulay subscheme of codimension two in a nonsingular affine variety. This lets us conclude

that DefVi is smooth (see the book by Hartshorne [17, § 2.8] for a discussion of deformations of

Cohen–Macaulay subschemes in codimension two).

By the embedding ι, we see that the Vi have singularities with embedding dimension at most

three. Such singularities are known to be smoothable by the work of Schaps [35, Theorem 2]. �

1.6. Projectivity

In this section, we prove that the branch morphism is projective on coarse spaces by showing

that the Hodge line bundle is relatively anti-ample. We begin by defining the Hodge bundle.

Let (P → P ;σ;φ : C → P) be the universal object over H d. Let πP : P →H d and πC : C → Hd

be the projections. When no confusion is likely, we denote both projections by π. Define the Hodge

bundle Λ on H d by

Λ = (R1π∗OC)
∨.

Then Λ is a locally free sheaf on H d. Define the line bundle λ by

λ = det Λ.

We use additive notation for λ. So, −λ denotes the dual of λ.

Throughout the section, we use without explicit reference that separated Deligne–Mumford

stacks have coarse spaces [22, Corollary 1.3]. We also repeatedly use that Deligne–Mumford stacks

admit a finite surjective map from a scheme [41, Proposition 2.6]. This is typically used in the

following guise: if we have a map from X to the coarse space Y of a Deligne–Mumford stack Y,

then there is X̃ → X, finite and surjective, such that X̃ → Y lifts to X̃ → Y.

Theorem 1.6.1. Let M be a Deligne–Mumford stack separated over K and let M→M be a

morphism. Set H =M×M H d. Denote by H and M the coarse spaces of H and M respectively.

Then the induced morphism

br : H →M
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is projective. In particular, if M is projective, so is H.

The essential ingredient in the proof is the following lemma.

Lemma 1.6.2. Let s : Spec k → M be a geometric point, and X a scheme with a quasi-finite

morphism X → s×M H d. Then the pullback of −λ to X is ample.

Proof. Without loss of generality, X is reduced and connected. By replacing X by its nor-

malization Xν → X if necessary, assume further that X is normal.

Let (P ; Σ;σ) be the marked nodal curve over k corresponding to the point s and (P → P ×

X;σ ×X;φ : C → P) the family over X giving the map to s×M H d.

Construct C̃ → C by normalizing C over Psm. Explicitly, C̃ is such that we have

C̃ ×P (P \ Σ) = C ×P (P \ Σ), and

C̃ ×P Psm = (C ×P Psm)ν .

By the result of Teissier [39], we conclude that the fibers of C̃ ×P P sm → X are the normalizations

of the corresponding fibers of C ×P P sm → X.

Consider the family of finite covers φ̃ : C̃ → P over X. Let t → X be a k-point. Then C̃t is

smooth except over the nodes of Pt. It is easy to see that there are only finitely many isomorphism

types for the cover Ct → P. Since X is connected, the fibers over X of φ̃ : C̃ → P must all be

isomorphic as finite covers. By replacing X by a finite cover if necessary, we can make φ̃ : C̃ → P a

constant family. In other words, we get φ̃0 : C0 → P0 over k such that

C̃ = C̃0 ×X, P = P0 ×X, and φ̃ = φ̃0 ×X.

In the rest of the proof, we treat OC and OC̃ as bundles on P, omitting φ∗ and φ̃∗ to lighten

notation. Denote by IΣ the ideal of Σ in P. The inclusion OC ⊂ OC̃ is an isomorphism except over

Σ × X. Hence, the quotient OC̃/OC is annihilated by INΣ0×X for N large enough. In other words,

for every point t of X, we have

(1.6.1) INΣ ·OC̃t ⊂ OCt .

As a result, OCt is determined by the subspace H0(OCt/I
N
Σ ·OC̃t) of H0(OC̃t/I

N
Σ ·OC̃t).
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Consider the following sequence on P:

0→ OC/(I
N
Σ×X ·OC̃)→ OC̃/(I

N
Σ×X ·OC̃)→ OC̃/OC → 0.

Applying π∗, we obtain a sequence of vector bundles on X:

(1.6.2) 0→ π∗
(
OC/(I

N
Σ×X ·OC̃)

)
→ π∗

(
OC̃/(I

N
Σ×X ·OC̃)

)
→ π∗

(
OC̃/OC

)
→ 0.

Since C̃ = C̃0 ×X, the middle vector bundle is in fact trivial:

π∗
(
OC̃/(I

N
Σ0×X ·OC̃)

)
= V ⊗OX , where V = H0

(
OC̃0/(I

N
Σ0
·OC̃0)

)
.

The sequence (1.6.2) gives us a morphism µ : X → G, where G is the Grassmannian of quotients of

V of the appropriate dimension. Moreover, by our discussion above, for every point t of X, the fiber

φt : Ct → Pt is determined by µ(t). Since X → s×M H d is quasi-finite, µ must also be quasi-finite.

We conclude that the pullback to X of the Plücker line bundle on G is ample. By (1.6.2), this

pullback is simply detπ∗
(
OC̃/OC

)
. On the other hand, applying π∗ to the exact sequence

0→ OC → OC̃ → OC̃/OC → 0,

and keeping in mind that C̃ = C̃0 ×X is a constant family, we get

detπ∗
(
OC̃/OC

) ∼= detR1π∗OC .

We deduce that the right hand side, which is the pullback of −λ to X, is ample. �

Proof of Theorem 1.6.1. We want to show that br : H →M is projective. Denote also by

λ the pullback to H of λ on H d. Since Pic(H)⊗Q = Pic(H)⊗Q, we may treat λ as a Q line bundle

on H. We claim that −λ is br-ample. It suffices to check this on the fibers of br : H → M . Let

s→M be a k-point and set Hs = br−1(s). Choose a lift s→M of s→M . Then Hs is the coarse

space of s ×M H. There is a scheme X and a finite surjective map X → s ×M H. Lemma 1.6.2

implies that −λ is ample on X. Since X → Hs is finite and surjective, we deduce that −λ is ample

on Hs. �
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1.7. Spaces of weighted admissible covers

The proper morphism H →M lets us construct several compactifications of different variants

of the Hurwitz spaces. Some of these have appeared in literature in different guises. In this section,

we describe a particularly interesting sequence of new projective compactifications.

Let g, h, and b be non-negative integers related by

2g − 2 = d(2h− 2) + b.

Let Mh;b ⊂M be the open and closed substack whose k points correspond to (P ; Σ), where P is a

connected curve of arithmetic genus h and Σ ⊂ P a divisor of degree b. Let Mh;b ⊂ Mh;b be the

open substack where P is smooth and Σ is reduced. Then Mh;b is a smooth stack and it contains

Mh;b as a dense open substack.

Let H d
g/h be the open and closed substack of Mh;b ×M H d whose k points correspond to

(P → P ;φ : C → P) where C is connected. By the Riemann–Hurwitz formula, C has arithmetic

genus g. Observe that the small Hurwitz stack Hdg/h is simply the open substack defined by

Hdg/h =Mh;b ×Mh;b
H d
g/h.

We recall a sequence of open substacks of Mh;b that containMh;b and are proper over the base

field. These are the spaces of weighted pointed stable curves constructed by Hassett [18].

Definition 1.7.1. Let ε be a rational number. Let P be a nodal curve over k and Σ ⊂ P a

divisor supported in the smooth locus. We say that (P,Σ) is ε-stable if

(1) for every point p of P , we have

ε ·multp(Σ) ≤ 1;

(2) the Q line bundle ωP ⊗OP (εΣ) is ample, where ωP is the dualizing line bundle of P .

Denote by Mh;b(ε) ⊂Mh;b the open substack parametrizing ε-stable marked curves.

Recall the main theorem from [18].

Theorem 1.7.2. [18, Theorem 2.1, Variation 2.1.3] Mh;b(ε) is a Deligne–Mumford stack,

proper over K. It admits a projective coarse space Mh;b(ε).
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If deg(ωP (εΣ)) = ε · b + 2h − 2 ≤ 0, then Mh;b(ε) is empty. Otherwise, it contains Mh;b as a

dense open substack.

Definition 1.7.3. Define the stack Hdg/h(ε) of ε-admissible covers by the formula

Hdg/h(ε) =Mh;b(ε)×Mh;b
H d
g/h.

We sometimes call ε-admissible covers weighted admissible covers.

Corollary 1.7.4. Hdg/h(ε) is a Deligne–Mumford stack, proper over K. It admits a projective

coarse space H
d

g/h(ε) and a morphism

br : Hdg/h(ε)→Mh;b(ε).

Proof. Follows directly from Theorem 1.3.8 and Theorem 1.6.1. �

As before, if ε · b+ 2h− 2 ≤ 0, then Hdg/h(ε) is empty. Otherwise, it contains Hdg/h as an open

substack (but it may not be dense; see Example 1.7.9).

1.7.1. Examples. We describe the geometry of the spaces of weighted admissible covers by

some illustrative examples.

These spaces generalize some known compactifications of Hurwitz spaces, mentioned in the

following two examples.

Example 1.7.5 (Twisted admissible covers). Consider the case ε = 1 and the resulting stack of

1-admissible covers Hdg/h(1). It parametrizes (P → P ;φ : C → P), where brφ ⊂ P is étale over the

base. The induced morphism on coarse spaces C → P is an admissible cover in the sense of Harris

and Mumford [15] (but with unordered branch points).

By Proposition 1.5.4, the stack Hdg/h(1) is smooth and contains the small Hurwitz stack Hg/h

as a dense open substack. In fact, Hdg/h(1) is essentially the stack of twisted admissible covers of

Abramovich, Corti, and Vistoli [2]; the only difference is that in [2], the branch points are ordered,

whereas in Hdg/h(1), they are unordered.

Example 1.7.6 (Spaces of hyperelliptic curves). Consider the case h = 0 and d = 2, and

the resulting stacks H2

g(ε) of ε-admissible covers. Consider a k-point of H2

g(ε), given by a cover

(P → P ;φ : C → P). Say b1/εc = n. Away from over the nodes of P, the singularities of C are
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(a) Node (b) Triple ramification (c) Stacked simple ramification

Figure 1. Possible local pictures of φ for 1/3 < ε ≤ 1/2

(étale) locally of the form

y2 − xm,

for m ≤ n. Thus, the spaces H
2

g(ε) are just the spaces of hyperelliptic curves with An singularities

constructed by Fedorchuk [9].

The singularities of C get much more interesting for higher degrees, as illustrated in the next

example.

Example 1.7.7 (Singularities of C). Let (P → P ;φ : C → P) be a k-point of Hdg/h(ε). Notice

that we do not explicitly restrict the singularities of C; the restrictions are imposed indirectly by the

allowed multiplicity of the branch divisor. We list some examples of the singularities that appear

on C for small values of 1/ε and d ≥ 3.

(1) 1/2 < ε ≤ 1

In this case, C is smooth (except, of course, over the nodes of P) and simply branched

over P.

(2) 1/3 < ε ≤ 1/2

In this case, C can have only nodal singularities. Also, the branches of the nodes must

be individually unramified over P as in Figure 1(a). This case also allows certain kinds of

multiple ramification in φ: it can be triply ramified as in Figure 1(b) or it can have two

simple ramification points lying over the same point of P as in Figure 1(c).

(3) 1/4 < ε ≤ 1/3

In this case, C can have nodal and cuspidal (formally kJx, yK/(y2 − x3)) singularities

as in Figure 2(a). This case also allows even more multiple ramification in φ; for example,

it is possible to have ramification types (4), or (3, 2) or (2, 2, 2) in a fiber of φ.

Another interesting possibility is a ramified node (Figure 2(b))—it is a combination

of multiple ramification and the development of a singularity. This is a node on C, one of
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(a) Cusp (b) Ramified node

Figure 2. Some of the possible local pictures of φ for 1/4 < ε ≤ 1/3

Figure 3. Planar triple points are allowed for ε ≤ 1/6

whose branches is simply ramified over P, formally expressed by

kJtK→ kJt, xK/x(x2 − t).

(4) ε ≤ 1/4

In this case, C can have non-Gorenstein singularities. Indeed, the spatial triple point

(formally the union of the coordinate axes in A3) is a branched cover of a line with branch

divisor of multiplicity four. Since multiplicity four is allowed in the branch divisor for

ε ≤ 1/4, the cover C → P can have formal local picture of a spatial triple point:

kJtK→ kJt, x, yK/(xy, y(x− t), x(y − t)).

In the case of admissible covers (ε = 1) and in the case of hyperelliptic curves (d = 2), the

morphism

br : Hdg/h(ε)→Mh;b(ε)

is finite. This is no longer the case if d ≥ 3 and ε is sufficiently small. In fact, as soon as ε ≤ 1/6,

we have positive dimensional fibers, as illustrated in the next example.
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Example 1.7.8 (Non-finiteness of the branch morphism). For every c ∈ k, consider the the

planar triple point expressed as a triple cover of a smooth curve (Figure 3) by the formal description:

(1.7.1) kJtK→ kJt, xK/x(x− t)(x− ct).

The discriminant is the ideal 〈t6〉. Although the rings kJt, xK/x(x− t)(x− ct) are isomorphic for

different choices of c, they are not necessarily isomorphic as kJtK algebras. Said differently, although

the singularities Spec kJt, xK/x(x − t)(x − ct) are isomorphic abstractly, they are not necessarily

isomorphic as triple covers of Spec kJtK. One way to see this is the following. Consider the tangent

space to Spec kJt, xK/x(x− t)(x− ct) at (0, 0). In this two dimensional vector space, there are four

distinguished one dimensional subspaces: the three tangent spaces of the branches and the kernel

of the projection to the tangent space of Spec kJtK. The moduli of the configuration of these four

subspaces depends on c. Up to a finite ambiguity, different choices of c give non-isomorphic triple

covers.

For d ≥ 3, ε ≤ 1/6 and h, b large enough to allow ε · b + 2h − 2 ≥ 0, the formal descriptions

in (1.7.1) are realizable in covers of a fixed genus h curve with a fixed branch divisor. We thus get

infinitely many points in a fiber of br : Hdg/h(ε)→Mh;b(ε).

In the case of admissible covers (ε = 1), the small Hurwitz space Hdg/h is dense in Hdg/h(ε). By

Theorem 1.5.5, this remains the case for arbitrary ε if d ≤ 3. However, this is not true in general,

as illustrated by the following example.

Example 1.7.9 (Extraneous components in Hdg;h(ε)). For a sufficiently large d and a sufficiently

small ε, we exhibit a point in Hdg/h(ε) that is not in the closure of Hdg/h. For simplicity, take h = 0;

the phenomenon is local, so the case of h = 0 can be used to construct examples for any h.

Let C be a reduced, connected curve that is not a flat limit of smooth curves (see the article by

Mumford [29] for the existence of such curves). For sufficiently large d, we have a finite map φ : C →

P1 of degree d. Let ε be so small that ε ·multp(brφ) ≤ 1 for all p ∈ P1. Then (P1;φ : C → P1) is

a point in Hdg(ε) which, by construction, is not in the closure of Hdg . Hence Hdg(ε) has extraneous

components—components other than the closure of Hdg .

Thanks to Theorem 1.5.5, there are no extraneous components for d = 2 or 3. By Proposi-

tion 1.5.4, unsmoothable singularities are the only reason for extraneous components.

We end the chapter with a question prompted by Example 1.7.9.
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Question 1.7.10. For which d, g and h is H d
g/h irreducible? More precisely, for which d, g, h

and ε is Hdg/h(ε) irreducible?



CHAPTER 2

Moduli of d-gonal singularities and crimping

In Chapter 1, we constructed the stack M of divisorially marked, pointed nodal curves and the

stack H d of degree d covers of pointed orbinodal curves. They are related by the branch divisor

morphism

br : H d →M .

The goal of this short chapter is to understand the fibers of this morphism.

Consider a point s : Spec k →M . For simplicity, assume that it corresponds to a smooth curve

P with a marked divisor Σ. The fiber of br over s consists precisely of degree d covers φ : C → P

with brφ = Σ. Let C̃ → C be the normalization. Since C̃ is smooth, the cover C̃ → P is determined

by its restriction C̃|P\Σ → P \ Σ, which is étale. Since there are only finitely many étale covers of

degree d of a smooth curve, there are only finitely many possibilities for φ̃ : C̃ → P . The fiber of

br over s thus decomposes into finitely many (open and closed) components corresponding to the

choice of φ̃ : C̃ → P . Within each component, C → P is obtained by crimping a fixed C̃ → P over

the points of Σ. The crimping can be described formally locally around the points of Σ in P . In

this way, the description of the fibers of br includes the discrete global data of the normalization

and the continuous local data of the crimping.

The chapter is organized as follows. In Section 2.1, we define the functor of crimps of a finite

cover and reduce its study to the study of the functor of crimps over a formal disk. In Section 2.2,

we prove that the functor of crimps over a formal disk is represented by a projective scheme. In

Section 2.3 and Section 2.4, we describe the space of crimps of double and triple covers of a disk,

respectively. In addition to providing explicit examples, the study of crimps of triple covers will be

relevant in the later chapters about the Mori theory of spaces of trigonal curves.

Moduli of singular curves and the phenomenon of crimping have been studied extensively by

van der Wyck [40]. Our study of crimping in the context of finite covers, however, is much more

elementary.

54
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2.1. The space of crimps of a finite cover

Let Y be a reduced, purely one dimensional Deligne–Mumford stack over k and Σ ⊂ Y a Cartier

divisor. Let φ̃ : X̃ → Y a finite cover of degree d, étale over Y \Σ. In all the cases we consider, Y is

either a (pointed) orbinodal curve or the spectrum of a DVR.

Define the functor Crimpφ̃,Σ : Schemesk → Sets of crimps of φ̃ over Σ by

Crimpφ̃,Σ(T ) = {(X̃ × T → X φ→ Y × T )}/Isomorphism,

where φ : X → Y × T is a finite cover of degree d with br(φ) = Σ× T . Two such crimps X̃ × T →

Xi → Y × T , for i = 1, 2, are isomorphic if there is an isomorphism X1 → X2 that commutes with

the relevant maps

X̃ × T X1 Y × T

X̃ × T X2 Y × T
.

We sometimes write Crimp(φ̃,Σ) instead of Crimpφ̃,Σ for better readability.

If Z → Y is a morphism such that ΣZ ⊂ Z is also a divisor, then we have a natural transfor-

mation

Crimp(φ̃,Σ)→ Crimp(φ̃Z ,ΣZ)

defined by

(X̃ × T → X φ→ Y × T ) 7→ (X̃Z × T → XZ
φZ→ YZ × T ).

Let G = Aut(φ̃) be the group of automorphisms of X̃ over the identity of Y. This is a finite

group, which acts on Crimp(φ̃,Σ) as follows.

G 3 α : (X̃ × T ν−→ X φ→ Y × T ) 7→ (X̃ × T ν◦α−1

−→ X φ→ Y × T ).

Remark 2.1.1. A crimp may be equivalently thought of as a suitable subalgebra φ∗OX of the

algebra φ̃∗OX̃×T on Y × T . Then isomorphism of crimps simply becomes equality of subalgebras.

The action of G is induced by the action of G on φ̃∗OX̃ .

Throughout, we view OX̃×T and OX as sheaves of algebras on Y × T , omitting φ̃∗ and φ∗ to

lighten notation. Observe that the quotient OX̃×T /OX is an OY×T module supported entirely on

supp(Σ)× T . In other words, X̃ × T → X is an isomorphism away from Σ× T .
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Having defined Crimp(φ̃,Σ) in wide generality, we immediately turn to the case of interest. Let

(P → P ;σ1, . . . , σn) be a pointed orbinodal curve and Σ ⊂ P a divisor supported in the general

locus P gen = Psm \ σ1, . . . , σn. Let φ̃ : C̃ → P be a finite cover, étale over P \ Σ. We begin my

making precise our remark that crimps can be described formally locally around the points of Σ.

Proposition 2.1.2. Let φ̃ : C̃ → P and Σ be as above.

(1) Let U ⊂ P be an open set containing Σ. Then the transformation

Crimp(φ̃,Σ)→ Crimp(φ̃U ,Σ)

is an isomorphism.

(2) The transformation

Crimp(φ̃,Σ)→
∏

s∈supp(Σ)

Crimp(φ̃×P SpecOP,s,Σ×P SpecOP,s)

is an isomorphism.

(3) The transformation

Crimp(φ̃,Σ)→
∏

s∈supp(Σ)

Crimp(φ̃×P Spec ÔP,s,Σ×P Spec ÔP,s)

is an isomorphism.

Proof. The last assertion is the strongest, so we prove that. Following Remark 2.1.1, we treat

crimps as subalgebras. For brevity, we set

P̂s = Spec ÔP,s, Σs = Σ×P P̂s, and C̃s = C̃ ×P P̂s,

Given crimps C̃s × T → Cs → P̂s × T for s ∈ supp(Σ), construct a subalgebra OC of OC̃×T as the

fiber product of algebras

OC OC̃×T∏
sOCs

∏
sOC̃s×T

.

We thus get a natural transformation

∏
s∈supp(Σ)

Crimp(φ̃×P Spec ÔP,s,Σ×P Spec ÔP,s)→ Crimp(φ̃,Σ).
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It is easy to check that it is inverse to the transformation in (3). �

2.2. Crimps over a disk

Thanks to Proposition 2.1.2, we now focus on the crimps of covers of the formal disk. Set

R = kJtK and ∆ = SpecR. Let ∆∗ be the punctured disk ∆ \ {0}. Fix a finite cover φ̃ : C̃ → ∆

of degree d, étale over ∆∗, with br(φ̃) given by 〈ta〉. Fix a divisor Σ ⊂ ∆ given by 〈tb〉 and set

δ = (b− a)/2.

Proposition 2.2.1. Let C̃ × T → C
φ→ ∆ × T be a crimp with br(φ) = Σ × T . Set Q =

OC̃×T /OC . Then Q is a T -flat sheaf on ∆ × T annihilated by tb. When restricted to the fibers of

∆× T → T , the sheaf Q has length δ.

Proof. In the proof, all the linear-algebraic operations are over O∆×T .

First, Q is T -flat simply because the inclusion i : OC ↪→OC̃×T remains an inclusion when re-

stricted to the fibers of ∆× T → T . For the rest, consider the diagram

0 O∆×T (detO∨
C̃×T

)⊗2 B̃ 0

0 O∆×T (detO∨C)⊗2 B 0

δ̃

δ

det(i∨)2

.

The horizontal maps δ̃ and δ define the respective branch divisors as in Section 1.1. In particular,

B is annihilated by 〈tb〉. The snake lemma yields the sequence

(2.2.1) 0→ B̃ → B → cok(det(i∨)2)→ 0.

Since tb annihilates B, it annihilates cok(det(i∨)2), hence cok(det(i∨)), hence cok(i∨) and hence

cok i = Q.

To compute the length of Q on the fibers, replace T by a field. By (2.2.1), we get

2 lengthQ = length(cok(det(i∨)2))

= lengthB − length B̃

= b− a = 2δ.

�
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Remark 2.2.2. By Proposition 2.2.1, if C̃ is smooth, then δ is indeed the δ invariant of C.

We now exhibit the space of crimps over a disk explicitly as a projective variety. Set F =

OC̃/t
bOC̃ and denote by Quot = Quot(F, δ) the Quot scheme of length δ quotients of the ∆ module

F . Since suppF is projective (it is finite!), Quot is a projective scheme. The idea is to identify

quotients which arise as OC̃/OC . For this to be true, the quotient must satisfy the following two

properties:

(1) The kernel must be closed under multiplication, to get a subalgebra OC of OC̃ ;

(2) The resulting C → ∆ must have the right branch divisor.

We now formalize both conditions. Let π : ∆×Quot→ ∆ be the projection. On ∆×Quot we have

the universal sequence

0→ S → F ⊗k OQuot → Q→ 0.

The multiplication F ⊗∆ F → F induces maps

S ⊗∆×Quot S → (F ⊗∆ F )⊗k OQuot → F ⊗k OQuot → Q.

Define the closed subscheme X ⊂ Quot as the annihilator of the composite map π∗(S⊗∆×QuotS)→

π∗Q on Quot. This takes care of (1).

On ∆×X, the sheaf S inherits the structure of an O∆×X algebra. Form the subalgebra OC of

OC̃×X as the fiber product

OC OC̃×X

S F ⊗k OX
,

and set C = SpecOC .

Claim. In the above setup, C → ∆×X is flat.

Proof. By the definition of OC , we have the sequence

0→ OC → OC̃×X → Q→ 0.

Since Q is X-flat, we conclude that OC is X-flat and OC → OC̃×X remains an inclusion when

restricted to the fibers of ∆ ×X → X. For every point x ∈ X, the sheaf OCx is a subsheaf of the

free sheaf OC̃ and hence is free. It follows that OC is a locally free ∆×X module. �
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At this point, we have C̃ ×X → C
φ→ ∆ ×X, where C̃ → C is an isomorphism over ∆∗ ×X

and C → ∆×X is finite and flat. We now enforce (2). Define B by

0→ O∆×X
δ→ (detO∨C)⊗2 → B → 0,

where the linear algebraic operations are overO∆×X , and δ is the usual discriminant as in Section 1.1.

Observe that δ remains an injection when restricted to the fibers of π : ∆×X → X, and hence B is

X-flat. By Proposition 2.2.1 applied to a fiber, we conclude that B has fiberwise length b. Define

the closed subscheme Y ⊂ X as the annihilator of

π∗B
tb−→ π∗B.

This condition would be superfluous if X were reduced. However, it appropriately restricts the

non-reduced structure on X, taking care of (2).

By construction, we have a crimp C̃ × Y → C
φ→ ∆ × Y with brφ = Σ × Y . We thus get a

morphism

(2.2.2) Y → Crimp(φ̃,Σ).

Proposition 2.2.3. The morphism Y → Crimp(φ̃,Σ) in (2.2.2) is an isomorphism. In partic-

ular, Crimp(φ̃,Σ) is a projective scheme.

Proof. We construct a transformation Crimp(φ̃,Σ)→ Y , inverse to (2.2.2). Let T be a scheme

and C̃ × T → C
φ→ ∆× T a crimp with branch divisor Σ× T . Define the quotient Q = OC̃×T /OC .

By Proposition 2.2.1, Q is a T -flat quotient of OC̃×T /t
bOC̃×T = F ⊗k OT , fiberwise of length δ.

This gives a map T → Quot(F, δ). Since the kernel of F ⊗k OT → Q is the image of OC , it is closed

under multiplication. Hence T → Quot factors through T → X. Since br(φ) = Σ× T , the cokernel

of

O∆×T
δ→ (detO∨C)⊗2

is annihilated by tb. Therefore, the map T → X factors through T → Y . In this way, we get a

morphism Crimp(φ̃,Σ)→ Y , which is clearly inverse to (2.2.2). �

Corollary 2.2.4. Let C̃ → P be a finite cover of an orbinodal curve and Σ ⊂ P gen a divisor.

Then Crimp(C̃ → P,Σ) is represented by a projective scheme.

Proof. Follows immediately from Proposition 2.1.2 and Proposition 2.2.3. �
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Finally, we relate the spaces of crimps with the fibers of br : H d → M . Let p : Spec k → M

be a point corresponding to a divisorially marked, pointed curve (P ; Σ;σ1, . . . , σn). As usual, we

abbreviate σ1, . . . , σn by σ. Let Γ be the set of (P → P ;σ; φ̃ : C̃ → P), where (P → P ;σ) is a

pointed orbinodal curve and φ̃ a finite cover of degree d such that

(1) C̃ ×P Psm is smooth;

(2) φ̃ is étale over P \ Σ; and

(3) φ̃ corresponds to a representable classifying map P → Ad.

Assume that no two elements of Γ are isomorphic over the identity of P . Then Γ is a finite set. We

have a morphism

(2.2.3)
⊔
Γ

Crimp(φ̃,Σ)→ p×M H d.

given by

(C̃ × T → C φ→ P × T ) 7→ (P × T → P × T ;σ × T ; C φ→ P × T ).

Recall that we have an action of Aut(φ̃) on Crimp(φ̃,Σ). The morphism above clearly descends to

a morphism

(2.2.4)
⊔
Γ

[Crimp(φ̃,Σ)/Aut(φ̃)]→ p×M H d.

Proposition 2.2.5. The morphism in (2.2.3) is finite and surjective. The morphism in (2.2.4)

is representable and a bijection on k-points.

Proof. The statement is true almost by design. The details are straightforward. �

Proposition 2.2.5 is as close as we can come to explicitly identifying the fibers of br : H d →M .

However, this is good enough for determining many crude properties like the dimension.

2.3. Crimps of double covers

Let φ̃ : C̃ → ∆ be a double cover with C̃ smooth. Let Σ ⊂ ∆ be the divisor given by 〈tb〉. In

this section, we describe Crimp(φ̃,Σ). Let the branch divisor of C̃ → ∆ be given by 〈ta〉. Observe

that

a =


0 if φ̃ is étale

1 if φ̃ is ramified.
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Proposition 2.3.1. With the above notation,

Crimp(φ̃,Σ) =


Point if b ≡ a (mod 2)

∅ otherwise.

In the first case, the point corresponds to the cover

R→ R[x]/(x2 − tb−a).

Proof. The restriction on b− a modulo 2 comes from Proposition 2.2.1. The rest is straight-

forward. �

2.4. Crimps of triple covers

Let φ̃ : C̃ → ∆ be a triple cover with C̃ smooth. Let Σ ⊂ ∆ be the divisor given by 〈tb〉. Observe

that there are three possibilities for φ̃:

(1) étale: C̃ = ∆ t∆ t∆→ ∆,

(2) totally ramified: C̃ = SpecR[x]/(x3 − t)→ ∆.

(3) simply ramified: C̃ = ∆ t SpecR[x]/(x2 − t)→ ∆,

In this section, we describe Crimp(φ̃,Σ) for each of the three cases. The description is much more

involved than the case of double covers. Instead of describing Crimp(φ̃,Σ) completely, we describe

a stratification given by a numerical invariant called the µ invariant.

2.4.1. The µ-invariant. Let φ : C = SpecS → ∆ be a cover of degree three and C̃ = Spec S̃ →

C the normalization of C. We first treat the case where C̃ → ∆ is étale. Set

Q = OC̃/OC = (S̃/R)/(S/R).

Then Q is an R-module of finite length and is a quotient of the free R-module S̃/R of rank two. It

follows that

Q ∼= k[t]/tm ⊕ k[t]/tn,

for some m,n ≥ 0. We denote by µ the difference |m− n|

µ(φ) = |m− n|.
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We now the treat the case where C̃ → ∆ is not necessarily étale. In this case, let ∆′ → ∆ be

a finite cover such that ∆′ is smooth and the normalization C̃ ′ of C ′ = C ×∆ ∆′ is étale over ∆′.

Define

µ(φ) = µ(C ′ → ∆′)/ deg(∆′ → ∆).

In general, the µ-invariant is only a rational number. It is easy to check that µ(φ) does not depend

on the cover ∆′ → ∆, as long as C̃ ′ → ∆′ is étale. A canonical choice is simply ∆′ = C̃.

Proposition 2.4.1. µ is a lower semicontinuous function on Crimp(φ̃,Σ).

Proof. It suffices to treat the case where φ̃ : C̃ → ∆ is étale. The remaining two cases follow

after replacing ∆ by an appropriate ∆′.

Let C̃ → C
φ→ ∆ be a crimp. Let Q = OC̃/OC . By Proposition 2.2.1, we see that length(Q) =

b/2. Let

Q ∼= k[t]/tm ⊕ k[t]/tn,

where n + m = b/2 and n−m = µ(φ). Then µ(φ) ≤ l if and only if tdb/4+l/2e annihilates Q. This

is clearly a closed condition. �

Throughout the rest of the section, fix a non-negative rational number l ≥ 0 and a divisor

Σ ⊂ ∆ given by 〈tb〉. Denote by Crimp(φ̃,Σ, l) the locally closed subset of Crimp(φ̃,Σ) consisting

of crimps with µ invariant l. Although we can put a natural scheme structure on Crimp(φ̃,Σ, l),

we only describe the underlying variety. Clearly, the action of Aut(φ̃) on Crimp(φ̃,Σ) preserves the

µ-invariant and hence induces an action of Aut(φ̃) on Crimp(φ̃,Σ, l).

2.4.2. Crimp(φ̃,Σ, l) for φ̃ étale. Fix φ̃ : C̃ = Spec S̃ → ∆, a triple cover with φ̃ étale. Fix an

isomorphism of R-algebras

S̃ ∼= R⊕R⊕R.

Then Crimp(φ̃,Σ, l) can be thought of as the parameter space of certain R-subalgebras of S̃.

Proposition 2.4.2. Let S ⊂ S̃ be an R-module such that

(2.4.1) R ⊂ S and S̃/S ∼= k[t]/tm ⊕ k[t]/tn,

with m ≤ n. Then

(1) S contains tnS̃.
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(2) The quotient S/〈R, tnS̃〉 is an R-submodule of S̃/〈R, tnS̃〉 generated by the image of one

element tmf , for some f ∈ S̃ nonzero modulo 〈R, t〉.

(3) S is an R-subalgebra if and only if t2mf2 ∈ S.

In particular, if 2m ≥ n, then every R-submodule S of S̃ satisfying (2.4.1) is an R-subalgebra.

Proof. From (2.4.1), it follows that S is generated as an R-module by 1, tmf and tng for some

f and g in S̃ such that 1, f and g are linearly independent modulo t. The first two assertions follow

from this observation. For the third, see that S is closed under multiplication if and only if the

pairwise products of the generators lie in S. By (1), this is automatic for all products except t2mf2.

Finally, if 2m ≥ n then the condition (3) is vacuous by (1). �

Using Proposition 2.4.2, we can readily describe Crimp(φ̃,Σ, l).

Proposition 2.4.3. Retain the setup introduced at the beginning of Subsection 2.4.2. Let m, n

be such that

n+m = b/2 and n−m = l.

First, Crimp(φ̃,Σ, l) is non-empty only if m and n are non-negative integers. If this numerical

condition is satisfied, then we have the following two cases:

(1) If 2m ≥ n, then Crimp(φ̃,Σ, l) is irreducible of dimension l. Its k-points correspond to

R-subalgebras of S̃ generated as an R-module by 1, tnS̃ and tmf for some f ∈ S̃ nonzero

modulo 〈R, t〉.

(2) If n > 2m, then Crimp(φ̃,Σ, l) is a disjoint union of three irreducible components of

dimension m, conjugate under the Aut(φ̃) = S3 action. Its k-points correspond to R-

subalgebras of S̃ generated as an R-module by 1, tnS̃ and tmf , where f has the form

f = (1, h,−h) or (h, 1,−h) or (h,−h, 1),

with h ≡ 0 (mod tn−2m).

Proof. Let C̃ → C = SpecS → ∆ be a crimp with µ invariant l and branch divisor Σ. Then

S̃/S ∼= k[t]/tn ⊕ k[t]/tm.

In particular, m and n must be integers.
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The space Crimp(φ̃,Σ, l) may be identified with the space of R-modules S satisfying

(2.4.2) R ⊂ S ⊂ S̃ and S̃/S ∼= k[t]/tn ⊕ k[t]/tm,

satisfying the additional condition that S be closed under multiplication.

Set F = S̃/R. By Proposition 2.4.2 (2), the space of S as in (2.4.2) is simply the space of

submodules of the (R/tn−mR)-module tmF/tnF generated by one element tmf , where f is nonzero

modulo t. To specify such a submodule, it suffices to specify the image f of f in F/tn−mF , such

that it is nonzero modulo t. Two such f define the same submodule if and only if they are related

by multiplication by a unit of R/tn−mR.

In the case 2m ≥ n, the condition of being closed under multiplication is superfluous. Thus,

Crimp(φ̃,Σ, l) may be identified with the quotient

(F/tn−mF )∗/(R/tn−mR)∗ ∼= ((k[t]/tn−m)⊕2)∗/(k[t]/tn−m)∗,

where the superscript ∗ denotes elements nonzero modulo t. This quotient is simply the jet-scheme

of order (n−m−1) jets of P1 = Psub(F/tF ). In particular, it is irreducible of dimension (n−m) = l.

In the case n > 2m, we must check when S is closed under multiplication. It is not too hard to

check that after multiplying by a unit of R/tn−mR, the element f in F/tn−mF can be represented

as the image in F/tn−mF of

(2.4.3) (1, h,−h) or (h, 1,−h), or (h,−h, 1), for some h ∈ R/tn−mR.

It is easy to check that t2mf2 lies in the R-submodule S of S̃ generated by 1, tnS̃ and tmf if and

only if t2mf
2 ∈ R〈tmf〉 in tmF/tnF , or equivalently h ≡ 0 (mod tn−2m). Hence, the choice of f

that gives an R-subalgebra S is equivalent to the choice of h from tn−2mR/tn−mR ∼= km. Also,

see that different choices of h give different S. Hence, Crimp(φ̃,Σ, l) is the disjoint union of three

irreducible components of dimension m corresponding to the three possibilities in (2.4.3). Since the

group S3 acts by permuting the three entries, these three components are conjugate. �

Let us illustrate the µ stratification of Crimp(φ̃,Σ) and the dichotomy in Proposition 2.4.3 in

the example of b = 8 (this is the first non-trivial but manageable case).

Example 2.4.4. We have three choices for (m,n), namely (2, 2), (1, 3) and (0, 4), corresponding

to µ invariants 0, 2, and 4, respectively.
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Crimp(φ̃,Σ, 0): This stratum consists of a single point, corresponding to the R-subalgebra S of S̃

generated as an R-module by 1 and t2S̃. The curve SpecS has a spatial (non-Gorenstein)

singularity; it is given parametrically as the union of the three branches

t 7→ (t, 0, t2), t 7→ (t, t2, 0), and t 7→ (t, 0, 0).

Crimp(φ̃,Σ, 2): This stratum is the disjoint union of three one dimensional components, conjugate

under the S3 action. The points of one of the components correspond to R-subalgebras S

of S̃ generated as an R-module by

1, t(1, at,−at), and t3S̃,

where a ∈ k. For a 6= 0, the singularity of SpecS is planar; it is abstractly isomorphic to

the singularity (u2− v4)(u− v) = 0. For a = 0, the singularity is spatial (non-Gorenstein).

Crimp(φ̃,Σ, 4): This stratum is the disjoint union of three points, conjugate under the S3 action.

One of them is the R-subalgebra S of S̃ generated as an R-module by

1, (1, 0, 0) and t4S̃.

The curve SpecS is disconnected (as the case must be if m or n is zero); it is the disjoint

union of ∆ and SpecR[y]/(y2 − t8).

2.4.3. Crimp(φ̃,Σ, l) for φ̃ totally ramified. Fix φ̃ : C̃ = Spec S̃ → ∆, a triple cover with C̃

smooth and φ̃ totally ramified. Let ∆′ → ∆ be the triple cover given by R → R′ = R[s]/(s3 − t).

Let S̃′ be the normalization of S̃ ⊗R R′ and set C̃ ′ = Spec S̃′. Fix an isomorphism of R algebras

S̃ ∼= R[x]/(x3 − t),

and an isomorphism of R′ algebras

S̃′ ∼= R′ ⊕R′ ⊕R′,

such that the normalization map S̃ ⊗R R′ → S̃′ is given by

x 7→ (s, ζs, ζ2s),

where ζ is a third root of unity. Identify R with its image in S̃ and R′ with its image in S̃′.

Proposition 2.4.5. Let M ⊂ S̃ be an R-submodule of rank three.
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(1) M is spanned by three elements fi(x) ∈ S̃, for i = 1, 2, 3, having x-valuations vi that are

distinct modulo 3.

(2) Set M ′ = M ⊗R R′ and identify it with its image in S̃′. Then

S̃′/M ′ ∼= k[s]/sv1 ⊕ k[s]/sv2 ⊕ k[s]/sv3 .

(3) M contains R and is closed under the multiplication map induced from S̃ if and only if

M ′ contains R′ and is closed under the multiplication map induced from S̃′.

Proof. Take an R-basis 〈fi〉 of M with fi(x) = xvigi(x), where gi(0) 6= 0 and the vi are

distinct. Then M ′ ⊂ S̃′ is spanned by the elements

svi(gi(s), ζ
vigi(ζs), ζ

2vigi(ζ
2s)).

Since the vi are distinct and the three elements above are R′-linearly independent, the three vectors

(gi(0), ζvigi(0), ζ2vigi(0)) must be k-linearly independent. It follows that the vi are distinct modulo

3 and

S̃′/M ′ ∼= k[s]/sv1 ⊕ k[s]/sv2 ⊕ k[s]/sv3 .

For the last statement, see that M contains R if and only if the map M → S̃/R is zero; M is

closed under multiplication if and only if the map M ×R M → S̃/M is zero. Both conditions can

be checked after the extension R→ R′. �

Using Proposition 2.4.5 and our analysis of R′-subalgebras of the étale extension R′ → S̃′ from

Subsection 2.4.2, we get a description of Crimp(φ̃,Σ, l).

Proposition 2.4.6. Retain the setup introduced at the beginning of Subsection 2.4.3. Let m, n

be such that

n+m = 3b/2 and n−m = 3l.

First, Crimp(φ̃,Σ, l) is non-empty only if m and n are non-negative integers distinct and nonzero

modulo 3 and 2m ≥ n. If these numerical conditions are satisfied, then Crimp(φ̃,Σ, l) is irreducible

of dimension blc. Its k-points correspond to R-subalgebras of S̃ generated as an R-module by 1, xnS̃

and xmf ∈ S̃, with f of the form

f = 1 +
∑

0<i<n−m
i≡m (mod 3)

aix
i,
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for some ai ∈ k.

Proof. Let C̃ → C = SpecS → ∆ be a crimp with branch divisor given by 〈tb〉 and µ-invariant

l. Then C̃ ′ → C ×∆ ∆′ → ∆′ is a crimp with branch divisor given by 〈s3b〉 and µ-invariant 3l. Set

S′ = S ⊗R R′. Then

S̃′/S′ ∼= k[s]/sm ⊕ k[s]/sn.

In particular, m and n must be integers. From Proposition 2.4.5, 0, m and n are distinct modulo 3.

Crimp(φ̃,Σ, l) may be identified with the space of R-modules S satisfying

(2.4.4) R ⊂ S ⊂ S̃ and S̃′/S′ ∼= k[s]/sm ⊕ k[s]/sn,

(where S′ = S⊗RR′) with the additional restriction that S be closed under multiplication. Let S be

an R-submodule of S̃ satisfying (2.4.4). From Proposition 2.4.5, S is generated by 1, xmf and xng

where f and g are nonzero modulo x. Then S is determined by the image of f in S̃/xn−mS̃. For S

to be closed under multiplication, the image of x2mf2 in S̃/xnS̃ must be an R-linear combination of

1 and xmf . Since all elements of S lying in R have x-valuation divisible by three, this is impossible

unless x2mf2 ≡ 0 in S̃/xnS̃; that is 2m ≥ n.

For 2m ≥ n, every f ∈ S̃/xn−mS̃ nonzero modulo 〈R, x〉 yields an S satisfying (2.4.4) closed

under multiplication. Two choices f1 and f2 determine the same S if and only if they are related

by

xmf1 = axmf2 + b,

for a, b ∈ R with a invertible. It is not hard to check that f can be chosen uniquely of the form

f = 1 +
∑

0<i<n−m
i≡m (mod 3)

aix
i,

for some ai ∈ k. Therefore, the stratum Crimp(φ̃,Σ, l) is irreducible of dimension b(n −m)/3c =

blc. �

Note that since n and m are distinct modulo 3, the rational number l ∈ 1
3Z is never an integer.

2.4.4. Crimp(φ̃,Σ, l) for φ̃ simply ramified. Fix φ̃ : C̃ = Spec S̃ → ∆, a triple cover with C̃

smooth and φ̃ simply ramified. Let ∆′ → ∆ be the double cover given by R → R′ = R[s]/(s2 − t).

Let S̃′ be the normalization of S̃ ⊗R R′ and set C̃ ′ = Spec S̃′. Set S̃1 = R[x]/(x2 − t) and fix an
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isomorphism of R-algebras

S̃ ∼= S̃1 ⊕R,

and an isomorphism of R′-algebras

S̃′ ∼= R′ ⊕R′ ⊕R′,

with the normalization map S̃ ⊗R R′ → S̃′ given by

(x, 0) 7→ (s,−s, 0) (0, r) 7→ (0, 0, r).

Identify R with its image in S̃ and R′ with its image in S̃′.

Proposition 2.4.7. Let M ⊂ S̃ be an R-submodule of rank three containing R.

(1) M is spanned by three elements: 1, (f1(x), 0) and (f2(x), 0), with the fi(x) having x-

valuations vi that are distinct modulo 2.

(2) Set M ′ = M ⊗R R′ and identify it with its image in S̃′. Then

S̃′/M ′ ∼= k[s]/sv1 ⊕ k[s]/sv2 .

(3) M is closed under the multiplication map induced from S̃ if and only if M ′ is closed under

the multiplication map induced from S̃′.

Proof. Identify S̃/R with S̃1. Then there is an equivalence between submodules of S̃ contain-

ing R and submodules of S̃1. With this modification, the proof is almost identical to the proof of

Proposition 2.4.5, with S̃1 playing the role of S̃. �

Using Proposition 2.4.7 and our analysis of R′ subalgebras of the étale extension R′ → S′ from

Subsection 2.4.2, we get a description of Crimp(φ̃,Σ, l).

Proposition 2.4.8. Retain the setup introduced at the beginning of Subsection 2.4.4. Let m, n

be such that

n+m = b and n−m = 2l.

First, Crimp(φ̃, l) is non-empty only if n and m are non-negative integers distinct modulo 2. If these

numerical conditions are satisfied, then we have the following two cases:

(1) If 2m ≥ n, then Crimp(φ̃,Σ, l) is irreducible of dimension blc. Its k-points correspond to

R-subalgebras of S̃ generated as an R-module by 1, xnS̃ and (xmf, 0) for f ∈ S̃1 of the
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form

f = 1 +
∑

0<i<n−m
i odd

aix
i,

(2) If n > 2m, then we have two further cases:

(a) If m is odd, then Crimp(φ̃,Σ, l) is empty.

(b) If m is even, then Crimp(φ̃,Σ, l) is irreducible of dimension m/2. Its k-points cor-

respond to R-subalgebras of S̃ generated as an R-module by 1, xnS̃ and (xmf, 0) for

f ∈ S̃1 of the form

f = 1 +
∑

n−2m≤i<n−m
i odd

aix
i,

for some ai ∈ k.

Proof. Let C̃ → C = SpecS → ∆ be a crimp with branch divisor given by 〈tb〉 and µ-invariant

l. Then C̃ ′ → C ×∆ ∆′ → ∆′ is a crimp with branch divisor given by 〈s2b〉 and µ-invariant 2l. Set

S′ = S ⊗R R′. Then

S̃′/S′ ∼= k[s]/sm ⊕ k[s]/sn.

In particular, m and n must be integers. From Proposition 2.4.5, m and n are distinct modulo 2.

Crimp(φ̃,Σ, l) may be identified with the space of R-modules S satisfying

(2.4.5) R ⊂ S ⊂ S̃ and S̃′/S′ ∼= k[s]/sm ⊕ k[s]/sn,

(where S′ = S⊗RR′) with the additional condition that S be closed under multiplication. Let S be

an R-submodule of S̃ satisfying (2.4.5). See that S is determined by the image of f in S̃1/x
n−mS̃1.

For S to be closed under multiplication x2mf2 ∈ S̃1/x
nS̃1 must be an R-multiple of xmf in S1/x

nS̃1.

In the case 2m ≥ n, any f ∈ S̃1/x
n−mS̃1 nonzero modulo x yields an S satisfying (2.4.5) closed

under multiplication. Two f1 and f2 give the same S if and only if they are related by

f1 = af2,

for some unit a ∈ R. It is not hard to check that f can be chosen uniquely of the form

f = 1 +
∑

0<i<n−m
i odd

aix
i,
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for some ai ∈ k. Thus, Crimp(φ̃,Σ, l) is irreducible of dimension b(n−m)/2c = blc.

In the case n > 2m, the condition for being closed under multiplication is non-vacuous. For

this to hold, x2mf2 ∈ S̃1/x
nS̃1 must be an R-multiple of xmf . Since elements of R have even

x-valuation, we conclude that m must be even. In this case, x2mf2 ≡ xmfg (mod xn) for some

g ∈ R implies that the image of f in S̃1/x
n−2mS̃1 is contained in the image of R. Thus the unique

choice of f as above must have the form

f = 1 +
∑

n−2m≤i<n−m
i odd

aix
i.

Thus, Crimp(φ̃,Σ, l) is irreducible of dimension m/2. �



CHAPTER 3

Spaces of trigonal curves with a marked unramified fiber

In Chapter 1, we constructed the stack of d-gonal covers H d in wide generality and explained

how it can be used to construct several compactifications of the classical Hurwitz spaces. We

observed that these compactifications are especially well-behaved for d = 2 and 3. In the case of

d = 2, we recovered the spaces of hyperelliptic curves first constructed and studied by Fedorchuk

[9].

We now take up a detailed study of various birational models of spaces of trigonal curves—

degree 3 covers of P1. A particularly interesting picture emerges for the moduli of trigonal curves

along with a marked fiber of the trigonal map to P1. In this and the next chapter, we consider

the case where the marked fiber is unramified. The generalization to the case of a fiber with other

ramification types is carried out in Chapter 5.

The standard compactification of the space of (marked) trigonal curves is the space of (marked)

admissible covers. Using the spaces of weighted admissible covers of Section 1.7, we obtain a sequence

of new birational models. In this chapter, we construct a sequence of yet more birational models that

extends the sequence of the spaces of weighted admissible covers. The extended sequence culminates

in a Fano fibration, in accordance with the Minimal Model Program. The construction of the new

compactifications featurs an interplay of the classical global geometry of trigonal curves and the local

geometry of triple point singularities studied in Chapter 2. The new compactifications are indexed

by a positive integer l; they parametrize the so-called l-balanceed triple covers (Definition 3.2.4).

The condition for being l-balanced involves a global and a local restriction. For a triple cover

φ : C → P1, the global restriction is that the Maroni invariant of φ be at most l; this measures, in

some sense, how “balanced” the vector bundle φ∗OC is. The local restriction only pertains to the

φ for which br(φ) is supported at one point. It requires that the µ invariant of the singularity of C

be greater than l; this measures, in some sense, how “balanced”the singularity is. The main result

of this chapter (Theorem 3.3.4) is that these two restrictions give a proper moduli problem for the

space of triple covers with a marked unramified fiber.

71
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The chapter is organized as follows. In Section 3.1, we give an overview of the weighted ad-

missible cover compactifications of the space of marked trigonal curves and motivate the quest for

yet more compactifications. In Subsection 3.2.1, we define l-balanced covers and state the main

theorem (Theorem 3.3.4). In Section 1.4, we prove the main theorem. This chapter is primarily

about the construction of the new compactifications. The birational geometry of the resulting spaces

is the content of the next chapter. Needless to say, the conventions from Section 0.1 are in force

throughout.

3.1. Background and motivation

Let g be a non-negative integer and set b = 2g + 4. Let

M0;b,1 ⊂M

be the open and closed substack parametrizing (P ; Σ;σ1), where P is a connected curve of arithmetic

genus zero and Σ a divisor of degree b. Recall that σ1 is required to be away from Σ. Then M0;b,1

is an irreducible, smooth algebraic stack, containing as a dense open the stack M0;b,1 where P is

smooth and Σ is reduced.

Let

Tg;1 ⊂H 3 ×M M0;b,1

be the open and closed substack parametrizing covers (P → P ;σ1;φ : C → P), where Autσ1
(P)

is trivial and C is a connected curve. By the Riemann–Hurwitz formula, C has genus g. By

Proposition 1.5.4, Tg;1 is a smooth algebraic stack, containing as a dense open the stack Tg;1 where

P and C are smooth and φ is simply branched. Since Tg;1 is irreducible, so is Tg;1. The stacks Tg;1

and M0;b,1 are related by the branch morphism

br : Tg;1 →M0;b,1

(P → P ;σ;φ : C → P) 7→ (P ; br(φ);σ).

One of the main results (Theorem 1.3.8) of Chapter 1 is that the branch morphism is proper.

Let Tg;1 (resp. M0;b,1) be the coarse space of Tg;1 (respM0;b,1); these are quasi-projective vari-

eties. As described in Section 1.7, compactifications of M0;b,1 give corresponding compactifications

of Tg;1 by taking the preimage under the branch morphism. In particular, the compactifications of
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M0;b,1 given by Hassett’s spaces of weighted marked rational curves give corresponding compactifi-

cations of Tg;1 by the spaces of weighted admissible covers.

Let us first focus on the compactifications M0;b,1(ε) of the branching data. Recall that M0;b,1(ε)

is the coarse space of the open substackM0;b,1(ε) ⊂M0;b,1 that parametrizes ε-stable marked curves.

Also recall that a marked curve (P ; Σ;σ) is ε-stable if ε ·multp Σ ≤ 1 for all p ∈ P and ωP (σ + εΣ)

is ample. For ε ≥ ε′, we have a birational morphism M0;b,1(ε) → M0;b,1(ε′), which sends a marked

curve (P ; Σ;σ) to (P ′; Σ′;σ′), where P ′ is obtained from P by contracting the components on which

ωP (σ+ε′Σ) is not ample (see Figure 1). The resulting morphism M0;b,1(ε)→M0;b,1(ε′) is a divisorial

contraction. Clearly, the only relevant values of ε are reciprocals of positive integers. Furthermore,

we must have b·ε+1 > 2 to have a non-empty space. We thus get the following sequence of divisorial

contractions1:

(3.1.1) M0;b,1(1)→ · · · →M0;b,1(1/j)→M0;b,1(1/(j + 1))→ · · · →M0;b,1(1/(b− 1)).

The first model M0;b,1(1) is simply the Mumford–Knutsen compactification of M0;b,1; in this model,

σ 7→ σ

multiplicity 3

Figure 1. The divisorial contraction M0;b,1(1/3)→M0;b,1(1/4)

Σ is required to be reduced. The last model M0;b,1(1/(b− 1)) is a weighted projective space; in this

model, P ∼= P1 and the only restriction on Σ is that it must not be supported at a single point. The

picture of the alternate birational models of M0;b,1(1) presented in (3.1.1) agrees perfectly with what

is expected by the Minimal Model Program. After all, M0;b,1 is a rational (in particular, uniruled)

variety. According to the Program, we expect to have a sequence of birational transformations of

M0;b,1 that culminates in a Fano fibration. The sequence (3.1.1) is indeed such a sequence.

Having described the geometry of the spaces of the branching data, we now turn to the geometry

of the spaces of covers. Set

T g;1(ε) =M0;b,1(ε)×M Tg;1.

By Theorem 1.3.8, T g;1(ε) is a proper Deligne–Mumford stack. By Theorem 1.5.5, it is smooth and

irreducible. By Theorem 1.6.1, it has a projective coarse space Tg;1(ε). We thus obtain the following

sequence of projective birational models of Tg;1, each lying over the corresponding model of M0;b,1:

1The first map M0;b,1(1) → M0;b,1(1/2) happens to be an isomorphism.
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2

(3.1.2)

T g;1(1) · · · T g;1(1/j) T g;1(1/(j + 1)) · · · T g;1(1/(b− 1))

M0;b,1(1) · · · M0;b,1(1/j) M0;b,1(1/(j + 1)) · · · M0;b,1(1/(b− 1))

The first space T g;1(1) is simply the (twisted) admissible cover compactification; in this model, the

covers are simply branched. The last space T g;1(1/(b− 1)) turns out to be a model of Picard rank

three; in this model, the base of the covers is P1 and the only restriction on the branching is that

the branch divisor must not be supported at a single point. Since T g;1(1/j) is normal, the map

T g;1(1/j) 99K T g;1(1/(j+ 1)) is regular away from a locus of codimension two. However, in general,

it is not regular everywhere. See that the exceptional locus of its inverse is the locus of covers

whose branch divisor contains a (j + 1)-fold point. From our dimension calculation of the spaces of

crimps of triple covers (Proposition 2.4.3, Proposition 2.4.6 and Proposition 2.4.8), it follows that this

exceptional locus has codimension at least two. In this sense, the maps T g;1(1/j) 99K T g;1(1/(j+1))

are divisorial contractions; they contract certain components of the boundary T g;1(1/j) \ Tg;1 to

loci of higher codimension. A component of T g;1(1/j) \ Tg;1 gets contracted precisely if it lies over

a component of M0;b,1(1/j) that gets contracted.

The sequence of birational models of Tg;1 obtained in this way is incomplete in two respects.

First of all, the rational maps T g;1(1/j) 99K T g;1(1/(j + 1)) are, in general, not everywhere regular.

It would be nice to get an explicit, preferably modular, resolution of these intermediate maps.

Secondly, and more importantly, the final model T g;1(1/(b − 1)) is not what is expected to be an

ultimate model according to the Minimal Model Program. It is easy to see that Tg;1 is unirational

(in particular, uniruled). So we expect to arrive at a Fano-fibration. Therefore, it is natural to ask if

(3.1.2) can be extended to reach such a model. The search for the answer to this question motivates

the work in this chapter. The spaces of l-balanced covers constructed in this chapter provide such

an extension.

3.2. The stack T lg;1 of l-balanced covers

The notion of l-balanced covers depends on two invariants: the Maroni invariant and the µ-

invariant.

2Again, the first map T g;1(1) → T g;1(1/2) happens to be an isomorphism.
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3.2.1. The Maroni invariant. Let C be a reduced curve over k of arithmetic genus g and

φ : C → P1 a triple cover. Set F = φ∗OC/OP1 . Then F is a vector bundle on P1 of rank two and

degree −(g + 2). We clearly have H0(F (−1)) = 0. Therefore, we must have

F ∼= OP1(−m)⊕OP1(−n)

for some m,n ≥ 0 with m+n = g+ 2. In this case, we say that the splitting type of φ is (m,n) and

its Maroni invariant is |n−m|. We denote the Maroni invariant by M(φ):

M(φ) = |n−m|.

We say that a cover with a lower Maroni invariant is more balanced than one with a higher Maroni

invariant. By the upper semicontinuity of cohomology, the Maroni invariant is upper semicontinuous.

Remark 3.2.1. The Maroni invariant M(φ) satisfies the following numerical conditions:

0 ≤M(φ) ≤ g + 2 and M(φ) ≡ g (mod 2).

Furthermore, if C is connected then m,n > 0 and hence

0 ≤M(φ) ≤ g.

3.2.2. The µ invariant. Let C be a curve over k of arithmetic genus g and φ : C → P1 a triple

cover such that supp br(φ) = {p} for some point p ∈ P1. In this case, we say that φ has concentrated

branching at p. The µ-invariant of φ is simply the µ invariant of the triple cover Cp → P1
p as defined

in Subsection 3.2.2.

For the convenience of the reader, we recall the definition in the current context. Let C̃ → C

be the normalization and φ̃ : C̃ → P1 the induced map. Then C̃ ∼= P1 t P1 t P1. Consider

the quotient Q = φ̃∗OC̃/φ∗OC . Then Q is an OP1 module of length (g + 2) supported at p.

Since Q = (φ̃∗OC̃/OP1)/(φ∗OC/OP1), the module Q is in fact a quotient of the free OP1 module

φ̃∗OC̃/OP1 of rank two. Therefore, we must have

Q ∼= k[t]/tm ⊕ k[t]/tn,
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for some m,n ≥ 0 with m+ n = g+ 2. In this case, we say that the splitting type of the singularity

of φ over p is (m,n) and its µ-invariant is |n−m|. We denote the µ-invariant by µ(φ):

µ(φ) = |n−m|.

By an argument essentially the same as in Proposition 2.4.1, the µ-invariant is lower semicon-

tinuous in a family of triple covers with concentrated branching.

Remark 3.2.2. The µ invariant satisfies the same numerical conditions as the Maroni invariant,

namely:

0 ≤ µ(φ) ≤ g + 2 and µ(φ) ≡ g (mod 2).

Furthermore, if C is connected then m,n > 0 and hence

0 ≤ µ(φ) ≤ g.

The Maroni invariant and the µ-invariant are related by an inequality.

Proposition 3.2.3. Let C be a curve over k of genus g and φ : C → P1 a triple cover with

concentrated branching. Then

M(φ) ≤ µ(φ).

Proof. Let br(φ) = b · p for some p ∈ P1, where b = 2g + 4. Let the splitting type of the

singularity over p be (m,n), where n ≥ m and n + m = g + 2. Set F = φ∗OC/OP1 . Then

F ∼= OP1(−m′)⊕OP1(−n′) for some n′ ≥ m′ with m′ + n′ = g + 2.

Let C̃ → C be the normalization. We have the sequence

(3.2.1) 0→ F → φ̃∗OC̃/OP1 → k[x]/xm ⊕ k[x]/xn → 0.

Since C̃ ∼= P1 t P1 t P1, the middle term above is simply O⊕2
P1 . It is easy to see that we have a

surjection

H0(O⊕2
P1 (n− 1))� H0(k[x]/xm ⊕ k[x]/xn).

Using the sequence on cohomology of (3.2.1) twisted by OP1(n−1), we conclude that H1(F (n−1)) =

0, or equivalently that n′ ≤ n. It follows that

M(φ) = n′ −m′ = 2n′ − (g + 2) ≤ 2n− (g + 2) = n−m = µ(φ).
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�

3.2.3. The stack of l-balanced covers.

Definition 3.2.4. Let l be an integer. A triple cover φ : C → P1 is l-balanced if the following

two conditions are satisfied:

(1) The Maroni invariant of φ is at most l

M(φ) ≤ l.

(2) If φ has concentrated branching, then its µ-invariant is greater than l

µ(φ) > l.

Definition 3.2.5. Define T lg;1 to be the category whose objects over a K scheme S are

T lg;1(S) = {(P → S;σ;φ : C → P )},

where

(1) P → S is a P1 bundle and σ : S → P a section;

(2) C → S is a curve with geometrically connected fibers of arithmetic genus g;

(3) φ : C → P is a triple cover with br(φ) disjoint from σ(S) such that for all geometric points

s→ S, the cover φs : Cs → Ps is l-balanced.

We often abbreviate (P → S;σ;φ : C → P ) to (φ : C → P ;σ).

We have an obvious morphism T lg;1 → Tg;1, given by

(P → S;σ;φ : C → P ) 7→ (P → P ;σ;φ : C → P ).

Proposition 3.2.6. The morphism T lg;1 → Tg;1 is an open immersion.

Proof. Follows easily from the upper semicontinuity of the Maroni invariant and the lower

semicontinuity of the µ invariant. �

We now state the main theorem.

Theorem 3.2.7. Let l be a non-negative integer. Then T lg;1 is a Deligne–Mumford stack, smooth

and proper over K. It is irreducible of dimension 2g + 2.
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The new content in Theorem 3.3.4 is properness; the rest follows from our work in Chapter 1.

We prove Theorem 3.3.4 in Section 3.3.

Remark 3.2.8. For l ≥ g, we have an equality as substacks of Tg;1:

T g;1(1/(b− 1)) = T lg;1.

Indeed, since the Maroni and the µ invariants lie in the range [0, g] for connected triple covers, both

sides are the open substack of Tg;1 parametrizing (P ;σ;φ : C → P ) where P is smooth and φ does

not have concentrated branching.

Corollary 3.2.9. T lg;1 admits a coarse space T
l

g;1, which is an irreducible algebraic space of

dimension 2g+2 with at worst quotient singularities, proper over K. In particular, it is normal and

Q-factorial.

Proof. The existence of a coarse space is a theorem of Keel and Mori [22]. The listed properties

follow easily from the properties of the corresponding Deligne–Mumford stack. �

A priori, T
l

g;1 is only an algebraic space. However, in Chapter 4 we show that it is in fact a

projective variety by exhibiting ample line bundles on it (Theorem 4.6.2).

Remark 3.2.10. By Remark 3.2.1 and Remark 3.2.2, the only pertinent values of l are the ones

satisfying

0 ≤ l ≤ g and l ≡ g (mod 2).

Henceforth, we assume that l satisfies these conditions.

3.3. Proof of the main theorem

This section is devoted to the proof of Theorem 3.3.4. It suffices to prove the theorem after

passing to an algebraically closed K-field k. Therefore, we work over k in the rest of the chapter.

The proof is quite explicit and elementary. The main ingredient is the behavior of vector bundles

under pull back and push forward along blow ups of smooth surfaces. Throughout, we use without

explicit citation the fact that vector bundles, and hence finite covers, on punctured smooth surfaces

admit unique extensions (Proposition 1.4.19).

Lemma 3.3.1. Let X be a smooth surface, s ∈ X a point, β : BlsX → X the blowup, and

E ⊂ BlsX the exceptional divisor. Let V be a locally free sheaf on BlsX. Denote by e the natural
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map

e : β∗β∗V → V.

Then,

(1) β∗V is torsion free; that is Hom(Os, β∗V ) = 0.

(2) If H0(V |E ⊗OE(−1)) = 0, then β∗V is locally free and e is injective.

(3) If V |E is globally generated, then Riβ∗V = 0 for all i > 0, and e is surjective.

(4) More generally, if l ≥ 0 is such that V |E ⊗ OE(l) is globally generated, then cok(e) is

annihilated by I lE, where IE ⊂ OBlsX is the ideal sheaf of E.

Proof. Without loss of generality, take X to be affine.

(1) We have Hom(Os, β∗V ) = Hom(β∗Os, V ) = 0, since V is locally free.

(2) Set X◦ = X \{s} = BlsX \E and let i : X◦↪→X be the open inclusion. We have a natural

map

(3.3.1) β∗V → i∗i
∗β∗V,

which is injective by (1). The target i∗i
∗β∗V is locally free—it is the unique locally free

extension to X of i∗β∗V = V |X◦ on X◦ (see, for example, Proposition 1.4.19). We prove

that the map (3.3.1) is surjective. Equivalently, we want to prove that every element of

H0(X◦, V ) extends to an element of H0(BlsX,V ). Take f ∈ H0(X◦, V ). Let n ≥ 0 be the

smallest integer such that f extends to a section f̃ in H0(BlsX,V (nE)). The minimality

of n means that the restriction of f̃ to E is not identically zero. If n = 0, we are done.

If n ≥ 1, then the hypothesis H0(V |E ⊗ OE(−1)) = 0 implies that f̃ restricted to E is

identically zero, contradicting the minimality of n.

Since β∗V is locally free, so is β∗β∗V . The map β∗β∗V → V is injective away from E,

and hence injective.

(3) Let V |E be globally generated. By the theorem on formal functions, we have

̂(Riβ∗V )s = lim←−
m

Hi(V |mE).

To get a handle on V |mE , we use the exact sequence

0→ V |E ⊗ Im−1
E → V |mE → V |(m−1)E → 0.
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Since V |E is globally generated, so is V |E ⊗ Im−1
E = V |E ⊗ OE(m − 1), for all m ≥ 1. It

follows by induction on m that Hi(V |mE) = 0 for all m ≥ 1 and i > 0. Thus Riβ∗V = 0.

We now prove that e is surjective. It is an isomorphism away from E. We need to

prove that it is surjective along E. Since V |E is globally generated, it suffices to prove

that β∗V → β∗ (V |E) is surjective. From the exact sequence

0→ IE ⊗ V → V → V |E → 0,

we get the exact sequence

β∗V → β∗ (V |E)→ R1β∗(IE ⊗ V ).

Since (IE ⊗ V )|E = V |E ⊗ OE(1) is globally generated, R1β∗(IE ⊗ V ) vanishes and we

conclude that β∗V → β∗(V |E) is surjective.

(4) Consider the diagram

β∗β∗(I
l
E ⊗ V ) −−−−→ I lE ⊗ V −−−−→ 0y y y

β∗β∗V −−−−→ V −−−−→ Q −−−−→ 0

.

The first row is exact by (3), as (I lE ⊗ V )|E = V |E ⊗ OE(l) is globally generated. It

follows that the multiplication map I lE ⊗ V → Q is zero. Since V → Q is surjective, the

multiplication I lE ⊗Q→ Q is zero as well.

�

Lemma 3.3.1 allows us to analyze the “blowing down” of trigonal curves. This analysis is the

content of the following lemma. Roughly, it says that blowing down a trigonal curve of Maroni

invariant M results in a singularity of µ invariant at most M .

Lemma 3.3.2. Let X, s, β : BlsX → X, E and X◦ be as in Lemma 3.3.1. Let F ⊂ X be

a smooth curve passing through s and F̃ ⊂ BlsX its proper transform. Let f̃ : C̃ → BlsX be a

triple cover, étale over F̃ . Assume that C̃|E is a reduced curve of genus g and φ̃ : C̃|E → E has

Maroni invariant M . Denote by φ : C → X the unique extension to X of φ̃ : C̃|X◦ → X◦. Then

φ : C|F → F is étale except over s, and it has a singularity of µ-invariant at most M over s:

µ(φ|F ) ≤M(φ̃|E).
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The setup is partially described in Figure 2. In this setup, we say that C → X is obtained by

C̃

F̃

E

s̃

BlsX

C

F

s

X

β

Figure 2. The setup of Lemma 3.3.2.

blowing down C̃ → BlsX along E.

Proof. To simplify notation, we drop the φ̃∗ (resp. φ∗) and simply write OC̃ (resp. OC),

considered as a sheaf of algebras on BlsX (resp. X).

We apply Lemma 3.3.1 to the vector bundle OC̃ on BlsX. The condition (2) in Lemma 3.3.1

is clearly satisfied; therefore β∗OC̃ is a locally free sheaf of rank 3. Note that β∗OC̃ is naturally an

OX algebra which agrees with OC on X◦. It follows that

OC = β∗OC̃ .

Since C̃|F̃ → F̃ is étale, C|F → F is étale except possibly over s. Next, set s̃ = F̃ ∩E. Consider

the map of OBlsX algebras

ν : β∗β∗OC̃ = β∗OC → OC̃ .

This is an isomorphism away from E, and hence, when restricted to F̃ , we have a sequence

(3.3.2) 0→ (β∗OC)|F̃
ν|F−→ OC̃ |F̃ → Q→ 0,

where Q is supported at s̃.

The sequence (3.3.2) exhibits OC̃ |F̃ as the normalization of β∗OC |F̃ . Moreover, since β : F̃ → F

is an isomorphism, the algebra β∗OC |F̃ on F̃ can be identified with the algebra OC |F on F via

β. Hence, the splitting type of the singularity of C → F over s is simply the splitting type of the

module Q.
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Let x be a uniformizer of F̃ near s̃. Suppose

Q ∼= k[x]/xm ⊕ k[x]/xn,

and

OC̃|E/OE
∼= OE(−m′)⊕OE(−n′),

for some positive integers m, n, m′ and n′ with m+ n = m′ + n′ = g + 2. By Lemma 3.3.1 (4), the

ideal I
max{m′,n′}
E annihilates the cokernel of ν. Restricting to F̃ , we see that xmax{m′,n′} annihilates

Q. In other words,

max{m,n} ≤ max{m′, n′}.

Since m+ n = m′ + n′, it follows that

µ(φ|F ) = |m− n| ≤ |m′ − n′| = M(φ̃|E).

�

Next, we prove a precise result about the behavior of rank two bundles under elementary

transformations, especially about their splitting type. We first introduce the setup. Let R be a

DVR with uniformizer t, residue field k, and fraction field K. Set ∆ = SpecR. Consider P =

ProjR[X,Y ] = P1
∆ with the two disjoint sections s0 ≡ [0 : 1] and s∞ ≡ [1 : 0]. Denote by F the

central fiber of P → ∆, and by 0 (resp. ∞) the point F ∩ s0 (resp. F ∩ s∞). Consider the map

β : P \ {∞} → P, [X : Y ] 7→ [tX : Y ].

Then β has a resolution (see Figure 3)

P̃

P P

β1 β2

β

.

Here β1 : P̃ → P is the blow up at ∞ and β2 : P̃ → P is the blow up at 0. The central fiber of

P̃ → ∆ is F1 ∪ F2, where Fi is the exceptional divisor of βi. The Fi meet transversely at a point,

say s.
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s∞

s0

∞

0

P

F

s∞

s0

∞

0

P

F

F1

F2

s

P̃

β1

∞←
[ F1

β2

F
2 7→

0

β

Figure 3. Resolution of β : [X : Y ] 7→ [tX : Y ].

Lemma 3.3.3. Let n > m be non-negative integers, and O(1) the dual of the ideal sheaf of s0.

Identify

Ext1(O(−m), O(−n)) = R〈Xn−m−2, . . . , XiY n−m−2−i, . . . , Y n−m−2〉.

Let V be a vector bundle of rank two on P given as an extension

(3.3.3) 0→ O(−n)→ V → O(−m)→ 0,

corresponding to the class e(X,Y ) ∈ Ext1(O(−m), O(−n)). Denote by W the unique vector bundle

on P obtained by extending β∗(V ). Assume that the class tm−n+1e(tX, Y ), lying a priori in K ⊗R

Ext1(O(−m), O(−n)), lies in Ext1(O(−m), O(−n)). Then W can be expressed as an extension

0→ O(−n)→W → O(−m)→ 0,

with class tm−n+1e(tX, Y ). Moreover, in this case, we have an exact sequence

(3.3.4) 0→ (β∗1W )|F2
→ (β∗2V )|F2

→ k[u]/um ⊕ k[u]/un → 0,

where u is a uniformizer of F2 at s.

We say that a class inK⊗RExt1(O(−m), O(−n)) is integral if it belongs to Ext1(O(−m), O(−n)).

The class tm−ne(tX, Y ) is integral if e(X,Y ) is sufficiently divisible by t.

Proof. The proof is by a possibly tedious but straightforward local computation. Write P =

SpecR[x]∪ SpecR[y], where x = X/Y and y = Y/X. To ease notation, write e(x) for e(x, 1). Note
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that

β−1 SpecR[x] = SpecR[x]; β−1 SpecR[y] = SpecK[y].

The union β−1 SpecR[x] ∪ β−1 SpecK[y] is P \ {∞}, as expected.

We can choose local trivializations 〈v1
x, v

2
x〉 and 〈v1

y, v
2
y〉 for V on SpecR[x] and SpecR[y] re-

spectively, such that they are related on the intersection by

(3.3.5)

v1
y

v2
y

 =

 x−n 0

x−n+1e(x) x−m


v1

x

v2
x

 .

The bundle β∗V is trivialized by 〈β∗v1
x, β
∗v2
x〉 on β−1 SpecR[x] and 〈β∗v1

y, β
∗v2
y〉 on β−1 SpecR[y].

The transition matrix on the intersection is simply the pullback of the matrix in (3.3.5):

(3.3.6)

β∗v1
y

β∗v2
y

 =

 t−nx−n 0

t−n+1x−n+1e(tx) t−mx−m


β∗v1

x

β∗v2
x

 .

Construct W by gluing trivializations 〈w1
x, w

2
x〉 on SpecR[x] and 〈w1

y, w
2
y〉 on SpecR[y] by

(3.3.7)

w1
y

w2
y

 =

 x−n 0

tm−n+1x−n+1e(tx) x−m


w1

x

w2
x

 .

Construct an explicit isomorphism ψ : β∗V
∼→W on P \ {∞}, as follows:

ψ :

β∗v1
x

β∗v2
x

 7→
w1

x

w2
x

 on β−1 SpecR[x] = SpecR[x],

ψ :

β∗v1
y

β∗v2
y

 7→
t−nw1

y

t−mw2
y

 on β−1 SpecR[y] = SpecK[y].

(3.3.8)

From the transition matrices (3.3.6) and (3.3.7), it is easy to check that this defines a map ψ : β∗V →

W on P \ {∞}, which is clearly an isomorphism. From (3.3.7), we see that W is an extension of

O(−m) by O(−n) corresponding to the class tm−n+1e(tX, Y ).

Finally, we establish the exact sequence (3.3.4). By Lemma 3.3.1, β1∗β
∗
2V is a vector bundle

which is identical to β∗V on P \ {∞}. Therefore, we must have

W ∼= β1∗β
∗
2V.
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The map β∗1W → β∗2V in (3.3.4) is simply the natural map

(3.3.9) β∗1W = β∗1β1∗(β
∗
2V )

ev−→ β∗2V.

To obtain the cokernel, we express ev in local coordinates around s. Set u = β∗1y; this is a function

on a neighborhood of s in P̃ . A basis for β∗2V around s is given by 〈β∗2v1
x, β
∗
2v

2
x〉. A basis for β∗1W

around s is given by 〈β∗1w1
y, β
∗
1w

2
y〉. From the description of ψ in (3.3.8), it follows that ev is given

by

ev :

β∗1w1
y

β∗1w
2
y

 7→
 un 0

tm−n+1un−1e(t/u) um


β∗2v1

x

β∗2v
2
x

 .

Note that tm−n+1un−1e(t/u) lies in R〈um+1, . . . , un−1〉. Hence, we get

cok(ev|F2) ∼= k[u]/um ⊕ k[u]/un.

Since u|F2 is a uniformizer for F2 around s, the sequence (3.3.4) is established. �

We now have the tools to prove Theorem 3.3.4, which we restate for the convenience of the

reader.

Theorem 3.3.4. Let l be a non-negative integer. Then T lg;1 is a Deligne–Mumford stack, smooth

and proper over K. It is irreducible of dimension 2g + 2.

Proof of Theorem 3.3.4. Without loss of generality, assume that l satisfies the conventions

in Remark 3.2.10, namely 0 ≤ l ≤ g and l ≡ g (mod 2). We divide the proof into steps. Recall that

Tg;1 is the moduli of (φ : C → P ;σ) where P ∼= P1, C is smooth and connected of genus g, φ is a

simply branched triple cover and σ ∈ P \ brφ.

That T lg;1 is smooth, of finite type, and irreducible of dimension 2g + 2: By Proposi-

tion 3.2.6, T lg;1 is an open substack of Tg;1. By Theorem 1.5.5, Tg;1 is smooth, and hence T lg;1 is

smooth.

Again, by Theorem 1.5.5, Tg;1 contains Tg;1 as a dense open substack. Since Tg;1 is irreducible

of dimension 2g + 2, we conclude that T lg;1 is irreducible of the same dimension.

To see that it is of finite type, denote by M s
0;b,1 ⊂ M0;b,1 the open substack parametrizing

(P ; Σ;σ) with P smooth. It is easy to see that M s
0;b,1 is of finite type over K. By the definition of

T lg;1, the open immersion T lg;1↪→Tg;1 factors as

T lg;1↪→M s
0;b,1 ×M0;b,1

Tg;1 ⊂ Tg;1.
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Since Tg;1 →M0;b,1 is of finite type, we conclude that M s
0;b,1×M0;b,1

Tg;1 and hence T lg;1 if of finite

type over K.

That T lg;1 is separated: We use the valuative criterion. Let ∆ = SpecR be a the spectrum of

a DVR, with special point 0, generic point η and residue field k. Consider two morphisms ∆→ T lg;1

corresponding to (Pi → ∆;σi;φi : Ci → Pi) for i = 1, 2. Let ψη be an isomorphism of this data over

η, namely isomorphisms ψPη : P1|η → P2|η and ψCη : C1|η → C2|η over η that commute with φi and

σi. We must show that ψη extends to an isomorphism over all of ∆.

Suppose that ψPη extends to a morphism ψP : P1 → P2 over ∆. Then ψP must be an isomor-

phism, because the Pi → ∆ are P1 bundles and ψPη is an isomorphism. It also follows that ψP must

be an isomorphism of marked curves

ψP : (P1; brφ1;σ1)
∼−→ (P1; brφ2;σ2).

By the separatedness of Tg;1 →M0;b,1, we conclude that we have an extension ψC : C1 → C2 over

ψP .

Therefore, it suffices to show that ψPη extends. Denote by ψP the maximal extension of ψPη .

Since Pi → ∆ are P1 bundles, the rational map ψP has a resolution of the form

(3.3.10)

P̃

P1 P2

ψP

,

where P̃ is smooth and its (scheme theoretic) central fiber is a chain of smooth rational curves

E0 ∪ · · · ∪ En; the map P̃ → P1 blows down En, . . . , E1 successively to a point p1 ∈ P1|0; and the

map P̃ → P2 blows down E0, . . . , En−1 successively to a point p2 ∈ P2|0 (see Figure 4). If n = 0,

then ψP is already a morphism, and we are done. Otherwise, we look for a contradiction.

Since ψPη takes σ1(η) to σ2(η), either p1 = σ1(0) or p2 = σ2(0). By switching 1 and 2 if necessary,

say p1 = σ1(0).

Let C̃ → P̃ be the pullback of C1 → P1. Since C1 → P1 is étale over σ1(0), the cover C̃ → P̃

is étale over E1, . . . , En. Then C2 → P2 is obtained by blowing down C̃ → P̃ successively along

E0, . . . , En−1. Thus, C2|0 → P2|0 is has concentrated branching at p2; let µ be its µ-invariant. On

the other hand, C̃|E0
→ E0 is isomorphic to C1|0 → P1|0; let M be its Maroni invariant. Since both

(Ci → Pi)0 are l-balanced, we have

µ > l ≥M.
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En

E0

P̃

P2

p2

P1

p1

En
∼−→ P2|0

E0, . . . , En−1 7→ p2E0
∼−→ P1|0

En, . . . , E1 7→ p1

Figure 4. The resolution of ψP : P1 → P2

However, by repeated application of Lemma 3.3.2 and Proposition 3.2.3, we get

µ ≤M.

We have reached a contradiction.

That T lg;1 is Deligne–Mumford: Since we are in characteristic zero, it suffices to prove that

a k-point (φ : C
φ→ P1;σ) of T lg;1 has finitely many automorphisms. We have a morphism of algebraic

groups

τ : Aut(φ : C → P1, σ)→ Aut(P1).

The kernel of τ consists of automorphisms of φ over the identity of P1. Such an automorphism is

determined by its action on a generic fiber of φ. Hence ker τ is finite.

Since T lg;1 is separated, Aut(φ : C → P1, σ) is proper. On the other hand, Aut(P1) is affine. It

follows that im τ is finite. We conclude that Aut(φ : C → P1, σ) is finite.

That T lg;1 is proper: Let ∆ = SpecR be as in the proof of separatedness. Denote by η a

geometric generic point. Let (φ : Cη
φ→ Pη;σ) be an object of T lg;1 over η. We need to show that,

possibly after a finite base change, it extends to an object of T lg;1 over ∆. Without loss of generality,

we may assume that the object over η lies in a dense open substack of T lg;1. Therefore, we may

take φ : Cη → Pη to not have concentrated branching. Extend (P ; brφ;σ) to an object (P ; Σ;σ) of

M0;b,1(∆). Since T l
g;1 → M0;b,1 is proper, we get an extension (C → P ;σ) of (C → P ;σ)η over

(P ; Σ;σ), possibly after a finite base change. Assume that C|0 → P |0 satisfies the second condition

of Definition 3.2.4. This can be achieved, for instance, by having Σ|0 not supported at a point.
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If the Maroni invariant of C|0 → P |0 is at most l, we are done. Otherwise, we must modify

C → P along the central fiber to make it more balanced. Fix an isomorphism of P → ∆ with

ProjR[X,Y ]→ ∆ such that the section σ : ∆→ P is the zero section [0 : 1]. Set V = φ∗OC/OP ; it

is a vector bundle of rank 2 on P . Let

V |P0
∼= OP1(−m)⊕OP1(−n),

where m < n are positive integers with m + n = g + 2 and n −m > l. Then we can express V as

an extension

(3.3.11) 0→ OP (−n)→ V → OP (−m)→ 0.

Denote the extension class by

e(X,Y ) ∈ Ext1(OP (−m), OP (−n)) = R〈Xn−m−2, . . . , Y n−m−2〉.

Since Cη → Pη is l-balanced but n−m > l, the class e(X,Y ) is nonzero. However, as the restriction

of (3.3.11) to P0 is split, t divides e(X,Y ). By passing to a finite cover ∆̃ → ∆, ensure that a

sufficiently high power of t divides e(X,Y ), so that tm−n+1e(tX, Y ) is integral.

Consider the rational map β : P 99K P , sending [X : Y ] to [tX : Y ]. Then β is defined away

from [1 : 0] on the central fiber. Let φ′ : C ′ → P be the unique extension of β∗C → P . Then C ′ → P

is isomorphic to C → P on the generic fiber, whereas the central fiber C ′|0 → P |0 is unramified

except at [1 : 0]. The section σ = [0 : 1] of P → ∆ serves as the required marking.

The cover C ′ → P may be thought of in terms of the resolution of β (as in Figure 3)

P̃

P P

β1 β2

β

.

Recall that β1 is the blowup at [1 : 0] and β2 at [0 : 1] on the central fiber, with exceptional divisors

F1 and F2 respectively. Set C̃ = β∗2C. Then C ′ → P is the blowdown of C̃ → P̃ along β1. Set

Ṽ = φ̃∗OC̃/OP̃ and V ′ = φ′∗OC′/OP . Then Ṽ = β∗2V , and V ′ = β1∗Ṽ .

Claim.

(1) V ′ is an extension of OP (−m) by OP (−n) given by e′(X,Y ) = tm−n+1e(tX, Y ).

(2) The splitting type of the singularity of C ′|0 → P |0 over [1 : 0] is (m,n).
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Proof. The first claim is directly from Lemma 3.3.3. For the second, consider the natural map

β∗1OC′ = β∗1β1∗OC̃ → OC̃ .

Its restriction β∗1OC′ |F2
→ OC̃ |F2

expresses OC̃ |F2
as the normalization of β∗1OC′ |F2

. On the other

hand, β1 gives an isomorphism between β∗1OC′ |F2
and OC′ |P0

. Hence, the splitting type of the

singularity of C ′|0 over [1 : 0] is the splitting type of the cokernel of β∗1OC′ |F2 → OC̃ |F2 . We can

factor out the OP̃ |F2
summands, by considering the diagram

β∗1OP |F2
OP̃ |F2

0 β∗1OC′ |F2
OC̃ |F2

Q 0

0 β∗1V
′|F2

Ṽ |F2
= β∗2V |F2

Q 0

Thus, the second claim follows from the last exact sequence in Lemma 3.3.3. �

Returning to the main proof, we see that the operation e(X,Y ) 7→ tm−n+1e(tX, Y ) in coordi-

nates is:

XiY n−m−2−i 7→ tm−n+1+iXiY n−m−2−i, for i = 0, . . . , n−m− 2.

See that the above operation acts by purely “negative weights” tm−n+1+i. It follows that after a base

change ∆̃
tN 7→t−→ ∆ for a sufficiently divisible N and a sequence of transformations [X : Y ] 7→ [tX : Y ]

as above, we can arrange:

(I) The extension class e′(X,Y ) ∈ Ext1(OP (−n), OP (−m)) of V ′ is nonzero modulo t.

(II) The splitting type of the singularity of C ′|0 → P |0 over [1 : 0] is (m,n).

By (I), the new central fiber φ′0 : C ′|0 → P |0 is more balanced than the original C|0 → P |0.

Since l < n − m, the new central fiber also has µ-invariant greater than l. If M(φ′0) ≤ l, then

the new central fiber is l-balanced, and we are done. Otherwise, we repeat the entire procedure.

After finitely many such iterations, we arrive at a central fiber of Maroni invariant at most l and

µ-invariant greater than l. The proof of properness is thus complete.

�



CHAPTER 4

The birational geometry of T
l
g;1

In Chapter 3, we constructed a sequence of proper Deligne–Mumford stacks T lg;1 as compactifi-

cations of the stack Tg;1 of trigonal curves with a marked unramified fiber. Their coarse spaces T
l

g;1

give a sequence of birational models of the space Tg;1:

(4.0.12) T
g

g;1 99K · · · 99K T
l

g;1

βl
99K T

l−2

g;1 99K · · · 99K T
0 or 1

g;1 .

In this chapter, we study these spaces and these birational transformations.

We use Exc to denote the locus where a rational map is not an isomorphism. Thus, Exc(βl) ⊂

T
l

g;1 is the locus of covers of Maroni invariant l and Exc(β−1
l ) ⊂ T

l−2

g;1 the locus of covers with

concentrated branching and µ-invariant l.

Here is a summary of the main results of this chapter.

Theorem 4.0.5. Let l be an integer with 0 ≤ l ≤ g and l ≡ g (mod 2).

(1) The algebraic spaces T
l

g;1 are projective schemes.

(2) The rational map

βg : T
g

g;1 99K T
g−2

g;1

extends to a morphism, which contracts the “hyperelliptic divisor” to a point.

(3) If g is even, then the rational map

β2 : T
2

g;1 99K T
0

g;1

extends to a morphism, which contracts the “Maroni divisor” to a P1.

(4) Except in the two cases mentioned above, the rational maps

βl : T
l

g;1 99K T
l−2

g;1

are isomorphisms away from codimension two. In these cases, Exc(βl) is covered by K-

negative curves and Exc(β−1
l ) by K-positive curves, where K is the canonical divisor.

90
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(5) For even g, the final model T
0

g;1 is the quotient of a weighted projective space by an action

of S3. In particular, it is Fano of Picard rank one.

(6) For odd g, the final model T
1

g;1 admits a morphism to P1 whose fibers are Fano of Picard

rank one.

(7) For 0 < l < g, the rational Picard group of T
l

g;1 has rank two. For g 6= 3 it is generated by

λ and δ. The canonical divisor is given by

K =
2

(g + 2)(g − 3)

(
3(2g + 3)(g − 1)λ− (g2 − 3)δ

)
.

(8) There are elements Dl in the rational Picard group, given in the case of g 6= 3 by(
g − 3

2

)
Dl = {(7g + 6)λ− gδ}+

l2

g + 2
· {9λ− δ} ,

such that the following hold. For l > 0, the interior of the cone 〈Dl, Dl+2〉 is the Mori

chamber associated to the model T
l

g;1. For even g, the cone 〈D0, D2〉 is the Mori chamber

associated to the model T
0

g;1. For even (resp. odd) g, the ray 〈D0〉 (resp. 〈D1〉) is an edge

of the effective cone.

Figure 1 shows a sketch of the Mori chamber decomposition along with an approximate location

of the ray 〈K〉.

−δ

λ

7 +
6
g
∼ 〈D

0〉

8
+

4
g
+
1
∼
〈D
g
+
2
〉

6 ≈ 〈K〉

Dl−2

Dl

Dl+2

Dl+4

T
l
g;1

T
l+2
g;1

T
l−2
g;1

Figure 1. The Mori chamber decomposition of PicQ given by the models T
l

g;1 and
an approximate location of the ray spanned by the canonical class K.

The statements are not proved in the order in which they are stated. In Section 4.1, we recall

some structure theorems for triple covers. In Section 4.2, we use the structure theorems to make
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basic dimension counts and prove that most of the βl are isomorphisms away from codimension

two. The assertion about K-negativity and K-positivity, however, is proved later in Section 4.6. In

Section 4.3, we study the hyperelliptic contraction and in Section 4.4, the Maroni contraction. In

Section 4.5, we compute the Picard group and the canonical divisor. In Section 4.6, we compute

the ample cones. In Section 4.7, we study the final models.

For the convenience of the reader, we list the statements in the main text corresponding to the

statements in the summary above.

(1) Theorem 4.6.2 for 0 < l < g, Theorem 4.7.2 for l = 0. The case l = g follows from the

equality T
g

g;1 = T g;1(1/(b− 1)) (see Remark 3.2.8).

(2) Theorem 4.3.2,

(3) Theorem 4.4.3,

(4) Proposition 4.2.4 and Proposition 4.6.14,

(5) Theorem 4.7.2,

(6) Theorem 4.7.4

(7) Proposition 4.5.1 and Proposition 4.5.4,

(8) Theorem 4.7.5.

Throughout, we work over an algebraically closed K field k. Recall that b = 2g+4 is the degree

of the branch divisor.

4.1. Structure of triple covers

In this section, we recall some structural results for triple covers. The results of this section

hold over Z.

4.1.1. Canonical embedding. Let Y be a scheme and φ : X → Y a triple cover. Assume

that the fibers of φ are Gorenstein. Define F by

(4.1.1) 0→ OY → φ∗OX → F → 0.

Then F is a vector bundle of rank two on Y . Setting E = F∨ and dualizing, we get a morphism

E → φ∗ωφ, where ωφ is the dualizing line bundle of φ. Equivalently, we have a map

φ∗E → ωφ.
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By explicit verification on the geometric fibers of φ, it is easy to check that the above map is

surjective and gives an embedding X↪→PE over Y . We thus get a sequence

(4.1.2) 0→ I → OPE → OX → 0,

where I has degree −3 on the fibers of π : PE → Y . Twisting (4.1.2) by OPE(1) and applying π∗

gives

0→ E → φ∗ωφ → R1π∗(I ⊗OPE(1))→ 0.

Comparing with the dual of (4.1.1), we get an isomorphism R1π∗(I⊗OPE(1))
∼−→ OY . Using Serre

duality for π∗, for which the dualizing line bundle is OPE(−2)⊗ detE, we get an isomorphism

π∗(I
∨ ⊗OPE(−3)⊗ π∗ detE)

∼−→ OY ,

or equivalently, an isomorphism

I
∼−→ OPE(−3)⊗ π∗ detE.

Hence (4.1.2) takes the form

0→ OPE(−3)⊗ π∗ detE → OPE → OX → 0.

4.1.2. Structure theorem. Using the canonical embedding, one can deduce an explicit struc-

ture theorem for triple covers. This result is originally due to Miranda [27]. Our exposition is based

on the letters of Deligne [6, 7] in response to the work of Gan, Gross, and Savin [13].

Let B be the stack over Schemes given by B(S) = {(E, p)}, where E is a vector bundle of

rank two on S and p a global section of Sym3(E)⊗ detE∨. Then B is an irreducible stack, smooth

and of finite type (over Z).

Recall that A3 is the classifying stack of triple covers. We define a morphism B → A3. Let

(E , p) be the universal pair over B. Set P = PE and let π : P→ B be the projection. The section

p gives a map i : OP(−3) ⊗ π∗ det E → OP. Let W ⊂ B be the locus over which this map is

not identically zero. It is easy to see that the complement of W ⊂ B has codimension four. In

particular, i is injective because B is smooth and i is generically injective. Define Q as the quotient

0→ OP(−3)⊗ π∗ det E → OP → Q→ 0.
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Applying π∗, we get

0→ OB → π∗Q → E∨ → 0.

Hence, π∗Q is an OB algebra which is locally free of rank three. We thus get a morphism

(4.1.3) f : B → A3.

Theorem 4.1.1. ([27, Theorem 3.6], [6]) Let B be the stack over Schemes described by B(S) =

{(E, p)}, where E is a vector bundle of rank two on S and p a section of Sym3E ⊗ detE∨. Then

the morphism B → A3 in (4.1.3) is an isomorphism.

We follow the proof by Deligne [7], which is based on the following observation.

Proposition 4.1.2. [34, Proposition 5.1] The stack A3 is smooth. The complement of the

Gorenstein locus U has codimension four.

Proof. We have a smooth and surjective morphism Hilb3 A2 → A3, where Hilb3 A2 is the

Hilbert scheme of length three subschemes of A2. Since the Hilbert scheme of points on a smooth

surface is smooth, we conclude that A3 is smooth.

The only non-Gorenstein subschemes of A2
k of length three are Spec k[x, y]/m2, where m ⊂

k[x, y] is a maximal ideal. The locus of such has dimension two in the six dimensional space

Hilb3 A2. It follows that the complement of U ⊂ A 3 has codimension four. �

Proof of Theorem 4.1.1. We construct an inverse g : A3 → B. Denote by φ : X → A3 the

universal triple cover. Define E by

0→ OA → φ∗OX → E∨ → 0.

Then E is a vector bundle of rank two on A3. We now construct a global section p of Sym3E⊗detE∨.

By the procedure of Subsection 4.1.1, over the Gorenstein locus U , we have an embedding X ↪→P =

PE giving the sequence

0→ OP(−3)⊗ detE → OP → OX → 0.

The map OP(−3)⊗ detE → OP gives a section of Sym3E ⊗ detE∨ over U . Since the complement

of U ⊂ A3 has codimension at least two and A3 is smooth, this section extends to a section p of

Sym3E ⊗ detE∨ over all of A3. The pair (E, p) gives a morphism g : A3 → B.
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We must prove that f : B → A3 and g : A3 → B are inverses. Here is a sketch. Consider the

composite f ◦ g : A3 → A3. It corresponds to a triple cover of A3. To check that f ◦ g is equivalent

to the identity, we must check that this triple cover is isomorphic to the universal triple cover. By

construction, such an isomorphism exists over the Gorenstein locus U . Since the complement of U

has codimension higher than two and A3 is smooth, the isomorphism extends.

For the other direction, consider the composite g ◦ f : B → B. It corresponds to a pair (E ′, p′)

on B, where E ′ is a vector bundle of rank two and p′ a section of Sym3(E ′) ⊗ det E ′∨. To check

that g ◦ f is equivalent to the identity, we must check that this pair is isomorphic to the universal

pair (E , p). By construction, such an isomorphism exists over W . Since the complement of W has

codimension higher than two and B is smooth, the isomorphism extends.

�

4.2. Dimension counts

We return to working over the algebraically closed field k of characteristic zero.

Let 0 ≤ l ≤ g be an integer with l ≡ g (mod 2). Denote by Tg;1(l) ⊂ Tg;1 the locally closed

locus consisting of (P ;σ;φ : C → P ) where P ∼= P1 and φ has Maroni invariant l. Let m ≤ n be

such that

n+m = g + 2 and n−m = l.

Recall that Tg;1 is irreducible of dimension b− 2 = 2g + 2.

Proposition 4.2.1. Let 0 ≤ l ≤ g be an integer with l ≡ g (mod 2). Then Tg;1(l) is irreducible

of dimension given by

dim Tg;1(l) =


2g + 2 if l = 0,

2g + 3− l if 0 < l ≤ (g + 2)/3,

(3g + l)/2 + 1 if (g + 2)/3 < l.

In particular, Tg;1(l) has codimension one in the following two cases: l = g and l = 2 (for even g).

For 2 < l < g, it has codimension at least two.
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Proof. Let E = OP1(m)⊕OP1(n) and set

V = H0(Sym3(E)⊗ detE∨)

= H0 (OP1(2m− n)⊕OP1(m)⊕OP1(n)⊕OP1(2n−m)) .

Using n+m = g + 2 and n−m = l ≥ 0, we get

(4.2.1) dimV =


2(g + 2) + 4 if 2m ≥ n, i.e. l ≤ (g + 2)/3

3(g + l)/2 + 6 if 2m < n, i.e. l > (g + 2)/3

.

Using Theorem 4.1.1, a point v ∈ V gives a triple cover φv : C → P1 with φv∗OC/OP1 = E∨. Let

U ⊂ V ×P1 be the open subset

U = {(v, p) | p 6∈ br(φv)}.

Then we have a surjective morphism U → Tg;1(l). Hence Tg;1(l) is irreducible. The dimension of a

general fiber of U → Tg;1(l) is simply

dim AutE + dim Aut(P1) = dim AutE + 3.

Hence

(4.2.2) dim Tg;1(l) = dimU − dim AutE − 3 = dimV − dim AutE − 2.

Observe that

(4.2.3) dim AutE = dim Hom(E,E) =


4 if l = 0, i.e. m = n

l + 3 if l > 0, i.e. m < n

.

By combining (4.2.1), (4.2.2) and (4.2.3), we get the desired dimension count. �

Denote by T •g;1(l) ⊂ Tg;1 the locally closed locus consisting of (P ;σ;φ : C → P ) where P ∼= P1

and φ has concentrated branching with µ invariant l.

Proposition 4.2.2. Let 0 ≤ l ≤ g and l ≡ g (mod 2). Then T •g;1(l) is irreducible of dimension

given by

dim T •g;1(l) =


l − 1 if l ≤ (g + 2)/3

(g − l)/2 if l > (g + 2)/3

.
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In particular, T •g;1(l) ⊂ Tg;1 has codimension at least two.

Proof. As usual, let m, n be such that n+m = g + 2 and n−m = l. Denote by • ⊂M0;b,1

the closed locus consisting of (P ; Σ;σ), where P ∼= P1 and Σ is supported at a point. Then T •g;1(l)

is contained in • ×M0;b,1
Tg;1. Note that • has a unique k-point, say p : Spec k → M0;b,1 given by

(P1; b · 0;∞). However,

(4.2.4) dim(•) = −1,

because of the automorphism group Aut(P1, 0,∞) = Gm.

Set C̃ = P1 tP1 tP1 and let φ̃ : C̃ → P1 be the projection. Let

Crimpconn(φ̃; b · 0) ⊂ Crimp(φ̃; b · 0)

be the open and closed locus parametrizing crimps C̃ → C
φ→ P1 with brφ = b · 0 and C connected.

By Proposition 2.2.5, we get a bijective morphism

[Crimpconn(φ̃; b · 0)/Aut(φ̃)]→ p×M0;b,1
Tg;1,

Moreover, p×Mb;0,1
T •g;1(l) is simply the locus of crimps with µ-invariant l. From Proposition 2.4.3,

we get

(4.2.5) dim(p×M0;b,1
T •g;1(l)) =


l if 2m ≤ n, i.e. l ≤ (g + 2)/3,

(g + 2− l)/2 if 2m > n, i.e. l > (g + 2)/3.

Proposition 2.4.3 also implies that the locus in [Crimpconn(φ̃; b ·0)/Aut φ̃] of crimps with µ invariant

l is irreducible. By combining (4.2.4) and (4.2.5), we get the desired dimension count. �

Let b = b1 + · · ·+ bn be a partition of b with bi ≥ 1 and n ≥ 2. Denote by M0;b,1({bi}) ⊂M0;b,1

the locally closed locus consisting of k-points (P ; Σ;σ) where P ∼= P1 and Σ has the form Σ =
∑
i bipi

for n distinct points p1, . . . , pn ∈ P1. Set

Tg;1({bi}) = M0;b,1({bi})×M0;b,1
Tg;1.
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Proposition 4.2.3. With the above notation, we have

dim Tg;1({bi}) ≤ n− 2 +
∑
i

bbi/6c.

In particular, Tg;1({bi}) has codimension at least two if n ≤ b− 2.

Proof. First of all, see that dim M0;b,1({bi}) = n − 2. Next, we compute the dimensions

of the fibers of br : Tg;1({bi}) → M0;b,1({bi}). Let p : Spec k → Tg;1({bi}) be a point, given by

(P1;σ;φ : C → P1) with Σ =
∑
i bipi. By Proposition 2.2.5 and Proposition 2.1.2, the dimension

of the fiber of br containing p is simply the dimension of
∏
i Crimp(φ̃i, bi · pi), where φ̃ is the cover

of the disk ∆i around pi obtained by normalizing φ. From the descriptions of Crimp(φ̃i, bi · pi) in

Proposition 2.4.3, Proposition 2.4.6 and Proposition 2.4.8, we see that

dim(Crimp(φ̃i, bi · pi)) ≤ bbi/6c.

The result follows. �

A part of Theorem 4.0.5(4) follows immediately from the dimension counts.

Proposition 4.2.4. For 2 < l < g, the rational map βl : T
l

g;1 99K T
l−2

g;1 is an isomorphism away

from codimension two.

Proof. Exc(βl) is an open subset of the locus of covers of Maroni invariant l. By Proposi-

tion 4.2.1, Exc(βl) ⊂ T
l

g;1 has codimension at least two.

Exc(β−1
l ) is an open subset of the locus of covers with concentrated branching and µ invariant

l. By Proposition 4.2.2, Exc(β−1
l ) ⊂ T l−2

g;1 has codimension at least two. �

4.3. The Hyperelliptic contraction

Let g ≥ 2. In this section, we prove that βg : T
g

g;1 99K T
g−2

g;1 is a divisorial contraction morphism.

The idea is to analyze the exceptional loci Exc(βg) and Exc(β−1
g ); the result follows seamlessly from

this analysis.

Set H = Exc(βg) ⊂ T
g

g;1; this is the locus of curves with Maroni invariant g. By Proposi-

tion 4.2.1, H is irreducible of dimension 2g + 1. In other words, it is an irreducible divisor. We call

H the hyperelliptic divisor. The terminology is justified by the following observation.

Proposition 4.3.1. A (geometric) generic point of H corresponds to a marked cover (P1;σ;φ : C →

P1) of the following form (see Figure 2):
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· · ·
p

E

P

P1
σ

φ

Figure 2. A generic point of the hyperelliptic divisor.

− C = E ∪ P with P ∼= P1 and E ∩ P = {p},

− E is a smooth hyperelliptic curve of genus g and p ∈ E is a non-Weierstrass point,

− φ : E → P1 has degree two and φ : P → P1 has degree one,

− σ 6∈ brφ.

Proof. Let (P1;σ;φ : C = E ∪ P → P1) be such a cover. Then we have

h0(φ∗OC ⊗OP1(1)) = h0(φ∗OP1(1)) = 3,

which implies that φ∗OC ∼= OP1 ⊕ OP1(−1) ⊕ OP1(−g − 1). Hence φ has Maroni invariant g. See

that the covers (P1;σ;φ : C = E ∪ P → P1) as above form a locus of dimension 2g + 1. Since this

locus lies in H, which is irreducible of the same dimension, we conclude that this locus is dense in

H. �

Theorem 4.3.2. The birational map βg : T
g

g;1 99K T
g−2

g;1 extends to a morphism. The exten-

sion contracts the hyperelliptic divisor H to a point. The point βg(H) corresponds to the cover

(P1;σ;φ : C → P1), where φ has concentrated branching and C has a singularity of type D2g+2.

We first prove a lemma (essentially [37, Lemma 4.2]) that gives a simple criterion to check

whether an extension defined on k-points is in fact a morphism.

Lemma 4.3.3. Let X and Y be algebraic spaces over k with X normal and Y proper. Let U ⊂ X

be a dense open set and φ : U → Y a morphism. Let φ′ : X(k) → Y (k) be a function that agrees

with the one given by φ on U(k). Assume that φ′ is “continuous in one-parameter families” in

the following sense: for every ∆ which is the spectrum of a DVR with residue field k, and every

morphism γ : ∆→ X which sends ∆∗ to U , we have

φ′(γ(0)) = (φ ◦ γ)(0),
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where the right hand side is the image of 0 under the unique extension to ∆ of φ◦γ : ∆∗ → Y . Then

φ : U → Y extends to a morphism φ : X → Y that induces φ′ on k-points.

Proof. Let Φ ⊂ X × Y be the closure of the graph Φ of φ : U → Y . Denote by π1 : Φ → X

and π2 : Φ → Y the two projections. Then π1 : Φ → X is proper and an isomorphism over U . We

prove that it is an isomorphism. Then the extension of φ is obtained by composing π−1
1 : X → Φ

with the projection π2 : Φ→ Y .

Since X is normal and π1 : Φ→ X is proper and dominant, by Zariski’s main theorem, it suffices

to prove that π1 is an injection on k-points. Let p1, p2 ∈ Φ(k) be two points with π1(pi) = x ∈ X(k).

Since Φ is dense in Φ, we can choose maps γi : ∆→ Φ which send ∆∗ to Φ and 0 to pi. Since φ′ is

continuous in one-parameter families, we get

π2(pi) = π2 ◦ γi(0) = (φ ◦ π1 ◦ γi)(0) = φ′(x).

Since π1(pi) = x, we get p1 = p2 = (x, φ′(x)). �

Proof of Theorem 4.3.2. Consider the exceptional locus Exc(β−1
g ) ⊂ T g−2

g;1 . Let p : Spec k →

Exc(β−1
g ) be a point, given by a cover (P1;σ;φ : C → P1). Then M(φ) ≤ g − 1 and φ has concen-

trated branching with µ(φ) = g. Without loss of generality, we may take σ = ∞ and brφ = b · 0.

The normalization C̃ of C is the disjoint union P1 tP1 tP1. Let Spec k[x] ⊂ P1 be the standard

neighborhood of 0. From Proposition 2.4.3, we see that, up to permuting the three components of

C̃ over P1, the subalgebra OC ⊂ OC̃ is generated locally around 0 as an OP1 module by

1, xg+1OC̃ , and (x, axg,−axg),

for some a ∈ k. Observe that if a = 0, then M(φ) = g, which is not allowed; hence a 6= 0. However,

two covers given by nonzero a, a′ ∈ k are isomorphic via the morphism induced by the scaling

(P1,∞, 0)→ (P1,∞, 0), x 7→ g
√
a/a′x.

We conclude that Exc(β−1
g ) consists of a single point. Taking a = 1, we see that the map C → P1

is given locally by

k[x]→ k[x, y]/(y2 − x2g)(y − x).

In particular, the singularity of C is a D2g+2 singularity.
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Next, consider the pointwise extension β′g : T
g

g;1(k)→ T
g−2

g;1 (k) which agrees with the one induced

by βg on the complement of H = Exc(βg) and sends all the points of H to the unique point of

Exc(β−1
g ). It is clearly continuous in one-parameter families in the sense of Lemma 4.3.3. Since

T
g

g;1 is normal and T
g−2

g;1 proper, we conclude that βg extends to a morphism that contracts H to a

point. �

4.4. The Maroni contraction

Let g ≥ 4 be even. In this section, we prove that β2 : T
2

g;1 99K T
0

g;1 is a divisorial contraction

morphism. The idea is the same as in the case of the hyperelliptic contraction; we first define

the extension on k-points and then argue that it is a morphism by checking continuity on one-

parameter families. The details are a bit more involved as Exc(β−1
2 ) is not merely a point. The

pointwise extension is obtained by relating the so-called cross-ratio of a marked unbalanced cover

on one side and the so-called principal part of an unbalanced crimp on the other side. We begin by

defining these two quantities.

For use throughout this section, set V = k⊕3/k, where k is diagonally embedded and P =

PsubV/S3, where S3 acts on V by permuting the three coordinates. The two dimensional vector

space V is to be thought of as the space of functions on {1, 2, 3}×Spec k modulo constant functions.

4.4.1. The cross-ratio of a marked unbalanced cover. Consider a point p : Spec k → Tg;1

given by (P1;σ;φ : C → P1). Set F = φ∗OC/OP1 and assume that

F ∼= OP1(−m)⊕OP1(−n) with 0 < m < n.

Define the cross-ratio of φ over σ as a point of Psub(F |σ) as the line given by

k ∼= H0(F ⊗OP1(m))↪→F |σ ⊗OP1(m) ∼= F |σ.

Since the isomorphisms on both sides are canonical up to the choice of a scalar, this line is well

defined. An identification C|σ
∼−→ {1, 2, 3} induces an identification F |σ

∼−→ V and lets us treat the

cross-ratio as a point of PsubV . Let χ(p) be the image of the cross-ratio in P = PsubV/S3. Then

χ(p) is independent of the identification C|σ
∼−→ {1, 2, 3}.

The name “cross-ratio” comes from the following geometric realization of χ(p). For simplicity,

assume that C is Gorenstein. We have the canonical embedding C↪→FM , where M = n −m and
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FM = PF∨ is a Hirzebruch surface. Let τ : P1 → FM be the unique section of negative self-

intersection and P ∼= P1 the fiber of FM → P1 over σ. On P , we have four marked points, namely

the three distinct points of C|σ and the point τ(σ). The element χ(p) is simply the moduli of

(P,C|σ, τ(σ)). Even if C is not Gorenstein, it is Gorenstein over an open set U ⊂ P1 containing σ.

The geometric description of χ(p) goes through if we consider the restricted embedding C|U ↪→FM |U .

4.4.2. The principal part of an unbalanced crimp. Analogous to the cross ratio, there

is a P-valued invariant of a cover with concentrated branching. This is a local invariant, so we

consider φ̃ : C̃ → ∆, where ∆ is the disk Spec kJtK and φ̃ an étale triple cover. Let C̃ → C
φ→ ∆ be

a crimp; set F̃ = OC̃/O∆ and F = OC/O∆ and Q = OC̃/OC = F̃ /F . Assume that

Q ∼= k[t]/tm ⊕ k[t]/tn with 0 < m < n.

Then the map i : F → F̃ is divisible by tm and the rank of the induced map

t−mi : F |0 → F̃ |0

is one. Define the principal part of the crimp to be the point of Psub(F̃ |0) given by the image of

t−mi.

More explicitly, from Proposition 2.4.3, we know that OC is generated as an O∆ module by 1,

tmf and tnOC̃ , where f ∈ F̃ is nonzero modulo t. The principal part is simply the line 〈f(0)〉 ⊂ F̃ |0.

Thus, it partially encodes the moduli of a crimp.

Finally, consider a point p : Spec k → Tg;1 given by (P1;σ;φ : C → P1), where φ has concen-

trated branching at 0 with an unbalanced crimp, as above. Identifying C̃|σ
∼−→ {1, 2, 3} lets us treat

the principal part as a point of PsubV . Let ρ(p) be the image of the principal part in P = PsubV/S3.

Then ρ(p) is independent of the identification C̃|σ
∼−→ {1, 2, 3}.

The invariants χ(p) and ρ(p) are equal in a particular case.

Proposition 4.4.1. Let p = (P1;σ;φ : C → P1) be such that φ has concentrated branching and

M(φ) = µ(φ) > 0. Then the cross-ratio equals the principal part:

χ(p) = ρ(p).

Proof. Let C̃ = P1 t P1 t P1 → C be the normalization. Set F = φ∗OC/OP1 and F̃ =

φ̃∗OC̃/OP1 as usual. Let the splitting type of F and the splitting type of the singularity be (m,n)
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with m < n. Suppose supp br(φ) = {0} and let OP1(−1) → OP1 be the ideal sheaf of {0}. The

inclusion i : F → F̃ factors through

i′ : F ⊗OP1(m)→ F̃ ∼= O⊕2
P1 .

Clearly, it is an isomorphism away from 0. Let f be a nonzero global section of F ⊗OP1(m). Now,

χ(p) is defined by the image of f in F ⊗OP1(m)|σ = F̃ |σ and ρ(p) by the image of f in F̃ |0. Since

F̃ is trivial, the two are equal. �

We now relate the cross-ratio and the principal part in the context of the blowing down of a

trigonal curve. Let X be a smooth surface, s ∈ X a point, β : BlsX → X the blowup and E the

exceptional divisor. Let P ⊂ X be a smooth curve through s, P̃ its proper transform and s̃ = E∩ P̃ .

Let C̃ → BlsX be a triple cover, étale over P̃ , and set F̃ = OC̃/OBlsX . Assume that

F̃ |E ∼= OE(−m)⊕OE(−n), with 0 < m < n.

Let C → X be the cover obtained by blowing down C̃ → BlsX along E. Then C|P → P is a

crimp over s with normalization C̃|P̃ . Assume that the singularity of C|P → P over s also has the

splitting type (m,n).

Proposition 4.4.2. In the above setup, the cross-ratio of (E; s̃; C̃|E → E) and the principal

part of (C̃|P̃ → C|P → P ) are equal.

Proof. By Lemma 3.3.2, we have OC = β∗OC̃ . Denote by ν the map

ν : β∗OC |P̃ → OC̃ |P̃ .

This map expresses OC̃ |P̃ as the normalization of β∗OC |P̃ = OC |P . Set F = OC/OX . As the

singularity of C|P → P over s has splitting type (m,n), there is a nonzero section f of F defined

around s such that ν(β∗f |P̃ ) has valuation m with respect to a uniformizer of P̃ at s̃. By shrinking

X if necessary, assume that f is defined on all of X. As F = β∗F̃ , we can interpret f as a section of

F̃ on BlsX. Since F̃ |E ∼= OE(−m)⊕OE(−n), the section f must in fact be the image of a section

f ′ under the inclusion

F̃ ⊗ ImE → F̃ .

Furthermore, since the section f |P̃ has valuation m at s̃, the section f ′|P̃ has valuation zero at s̃.

Said differently, the restriction of f ′ to s̃ is nonzero. We see that the cross-ratio of (E; s̃; C̃|E → E)
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and the principal part of (C̃|P̃ → C|P → P ) are defined by the line spanned by the image of f ′ in

F̃ |s̃. �

4.4.3. The Maroni contraction. We are now ready to tackle β2 : T
2

g;1 99K T
0

g;1. The ex-

ceptional locus Exc(β2) is the locus in T
2

g;1 consisting of covers with Maroni invariant two. By

Proposition 4.2.1, this locus is an irreducible divisor. We call it the Maroni divisor.

Theorem 4.4.3. Let g ≥ 4 be even. The birational map β2 : T
2

g;1 99K T
0

g;1 extends to a mor-

phism. The extension contracts the Maroni divisor to P ∼= P1.

Proof. Set g = 2h. Consider the exceptional locus Exc(β−1
2 ) ⊂ T

0

g;1. Let p : Spec k →

Exc(β−1
2 ) be a point, given by (P1;σ;φ : C → P1). Then M(φ) = 0 and φ has concentrated

branching with µ(φ) = 2. Without loss of generality, we may take σ = ∞ and brφ = b · 0. The

normalization C̃ of C is the disjoint union P1 t P1 t P1. Let Spec k[x] ⊂ P1 be the standard

neighborhood of 0. From Proposition 2.4.3, the subalgebra OC ⊂ OC̃ is generated locally around 0

as an OP1 module by

1, xh+1OC̃ and xh−1f,

for some f ∈ OC̃ whose image in F̃ = OC̃/OP1 is nonzero modulo x. Clearly OC is determined

by f ∈ F̃ /x2F̃ and f only matters up to multiplication by a unit in k[x]/x2. Let f = f1 + xf2,

where fi ∈ F̃ |0 with f1 6= 0. By multiplying by units of k[x]/x2, we see that OC is determined by

a line 〈f1〉 ⊂ F̃ |0 and an element f2 in the one-dimensional k-vector space F̃ |0/〈f1〉. However, if

f2 = 0, then M(φ) = 2, which is not allowed. On the other hand, two covers given by f1 + xf2 and

f1 + axf2, for a ∈ k∗, are isomorphic via the map induced by the scaling

(P1,∞, 0)→ (P1,∞, 0), x 7→ ax.

The upshot is that p ∈ Exc(β−1
2 ) is determined by the line 〈f1〉 ⊂ F̃ |0, or equivalently by the

principal part ρ(p) ∈ P.

We now define an extension β′2 of β2 : T
2

g;1 99K T
0

g;1 on k-points. Let p ∈ Exc(β2) be a point

corresponding to (P1;σ;φ : C → P1) with M(φ) = 2. Let β′2(p) be the unique point of Exc(β−1
2 )

whose principal part equals the cross-ratio χ(p) as points of P.

By Lemma 4.3.3, it suffices to check that β′2 is continuous in one-parameter families. Let

∆ → T
2

g;1 be a map sending ∆∗ to the complement of Exc(β2) and 0 to a point p ∈ Exc(β2). By

replacing ∆ by a finite cover, assume that the map lifts to ∆ → T 2

g;1 and is given by the family
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(P ;σ;φ : C → P ) over ∆. From the proof of the valuative criterion for T lg;1 (Theorem 3.3.4), we

know the procedure to modify (P ;σ;φ : C → P ) so that the central fiber lies in T 0

g;1. After a

sufficiently large base change, it involves blowing up σ(0) and blowing down the proper transform

of P |0, until the central fiber has Maroni invariant 0. Throughout this process, the central fiber

continues to have µ-invariant 2. By repeated applications of Proposition 4.4.1 and Proposition 4.4.2,

we conclude that the principal part of the resulting limit equals the cross-ratio of the original central

fiber. It follows that β′2 is continuous in one-parameter families. �

4.5. The Picard group

In this section, we compute the rational Picard groups and the canonical divisors of T
l

g;1 for

0 < l < g. By Proposition 4.2.4, in this range, all the models T
l

g;1 are isomorphic to one another

away from codimension two. Hence their Picard groups are identical. Denoting by PicQ the rational

Picard group Pic⊗Q, we have the equality

PicQ(T lg;1) = PicQ(T
l

g;1).

Moreover, it is clear that the locus of points with nontrivial automorphisms has codimension at least

two in T lg;1. As a result, the coarse space morphism T lg;1 → T
l

g;1 is an isomorphism in codimension

one. Hence, we may transfer divisors from one to the other without worrying about multiplication

factors.

We begin by defining several classes in PicQ(T lg;1). Let (P;σ;φ : C → P) be the universal family

over T lg;1. Denote by πP : P → T lg;1 and πC : C → T lg;1 the projections. When no confusion is likely,

we denote both projections by π. Let Σ ⊂ P be the branch divisor Σ = brφ.

Define the following:

λ: Observe that R1πC∗OC is a vector bundle of rank g. We define λ as the determinant of its

dual

λ = det(R1π∗OC)
∨.

δ: The locus of points in T lg;1 over which C is singular is a divisor. We define δ to be its class.

T : The locus of points in T lg;1 over which φ has a point of triple ramification is a divisor. We

define T to be its class.

Br2: Define Br2 as the pushforward

Br2 = π∗(Σ
2).
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c21: Define c21 as the pushforward

c21 = π∗
(
c1(φ∗OC)

2[P]
)
.

c2: Define c2 as the pushforward

c2 = π∗ (c2(φ∗OC)[P]) .

σ2: Define σ2 as the pushforward

σ2 = π∗

(
σ(T lg;1)2

)
.

K: Define K to be the canonical divisor

K = KT lg;1
= K

T
l
g;1
.

Proposition 4.5.1. Let 0 < l < g and l ≡ g (mod 2). Then

PicQ(T lg;1) = Q〈c21, c2〉 ∼= Q2.

The reason we prefer c21 and c2 as a basis is that their cohomological nature allows us to compute

intersections with curves very easily.

Proof. We may throw away loci of codimension at least two. Consider the open subset Vg;1

(resp. Ug;1) of T lg;1 consisting of (P ;σ;φ : C → P ) where br(φ) has at least (b− 1) (resp. b) points

in its support. By Proposition 4.2.3, the complement of Vg;1 has codimension at least two. Hence

PicQ(T lg;1) = PicQ(Vg;1).

On the other hand, it is easy to see that the complement of Ug;1 in Vg;1 consists of two irreducible

divisors, namely T (the divisor where φ has a triple ramification point) and δ (the divisor where C

is singular). We thus have an exact sequence

Q〈T, δ〉 → PicQ(Vg;1)→ PicQ(Ug;1)→ 0.

We claim that PicQ(Ug;1) = 0. Indeed, consider the moduli space Ug of unmarked trigonal

curves

Ug = {(P ;φ : C → P )},
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where P ∼= P1, C is a smooth and connected curve of genus g and φ is simply branched. From the

work of Stankova-Frenkel [38, Proposition 12.1] or Bolognesi and Vistoli [4, Theorem 1.1], we know

that PicQ(Ug) = 0. Let φ : C → P be the universal object over Ug. Then P → Ug is a conic bundle

and Ug;1 ⊂ P is the complement of br(φ). We conclude that PicQ(Ug;1) = 0.

At this point, we know that the dimension of PicQ(T lg;1) is at most two. It is easy to verify (for

example, by intersecting with test curves) that c21 and c2 are linearly independent. �

We now express all the divisors described above in terms of c21 and c2. We are particularly

interested in the expressions for λ, δ and K. As in the proof of Proposition 4.5.1, we may throw

away loci of codimension higher than two. Accordingly, let W0;b,1 ⊂ M0;b,1 be the open locus

consisting of points (P ;σ; Σ), where P ∼= P1 and supp Σ has at least (b − 1) points. As before, let

Vg;1 be the preimage of W0;b,1 in T lg;1. Throughout the rest of this section, we work on Vg;1 ⊂ T
l

g;1.

Proposition 4.5.2. Denote by D ⊂ W0;b,1 the divisor consisting of points where Σ is not

reduced. Then

br∗D = 3T + δ.

Proof. Consider a point w of D given by (P ; Σ;σ). Then Σ = 2p + p3 + · · · + pb for distinct

points p, p3, . . . , pb ∈ P . Consider a point v of Vg;1 over (P ; Σ;σ) given by a triple cover φ : C → P .

Then φ either has a triple ramification point or a node over p. Hence,

supp br∗D = suppT ∪ supp δ.

We must verify the multiplicities.

We look at the morphism Defφ → DefP ;σ to compute the multiplicity of br∗D. Let U → P1 be

a neighborhood of p and φU : C|U → U the restriction of φ; it suffices to look at DefφU → DefU,Σ|U .

In fact, we may even restrict to an étale neighborhood.

Take the case where v ∈ T . Then, étale locally around p, the cover φ has the from φ ≡

Spec k[x, y]/(x − y3) → Spec k[x]; the branch divisor is given by Σ = x2. A versal deformation of

the subscheme Σ ⊂ Spec k[x] can be given over R = k[u, v] as the family

SpecR[x]/(x2 + ux+ v).
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The divisor D ⊂ SpecR corresponding to non-reduced Σ is given by 〈u2−4v〉. A versal deformation

of φ can be given over S = k[a, b] as the family

SpecS[x, y]/(x− y3 − ay − b)→ SpecS[x].

The divisor T ⊂ SpecS corresponding to covers with a triple ramification point is given by 〈a〉. On

the other hand, the branch divisor in SpecS[x] is 〈27(x− b)2 + 4a3〉. Thus, under the induced map

SpecS → SpecR, the pullback of 〈u2 − 4v〉 is 〈a3〉. In other words, T appears with multiplicity

three in br∗D.

The case where v ∈ δ is similar. Étale locally around p, the cover φ has the form φ ≡ Spec k[x]t

Spec k[x, y]/(x2 − y2) → Spec k[x]. A versal deformation of φ can be given over S′ = k[c] as the

family

SpecS′[x] t SpecS′[x, y]/(x2 − y2 − c)→ SpecS′[x].

The divisor δ ⊂ SpecS′ corresponding to singular covers is given by 〈c〉. On the other hand, the

branch divisor in SpecS′[x] is 〈x2−c〉. Thus, under the induced map SpecS → SpecR, the pullback

of 〈u2 − 4v〉 is 〈c〉. In other words, δ appears with multiplicity one in br∗D. �

Another proof of Proposition 4.5.2 over C. Assume that k = C. In this case, we can

compute the multiplicities of T and δ in br∗D by a beautiful topological argument due to Joe Harris.

Take a point w ∈ D and let v ∈ Vg;1 be a point over w. The idea is to compute the multiplicity of

the component of br∗D containing v by analyzing the monodromy of Vg;1 →W0;b,1 around w near

v. Concretely, this can be done by lifting a (real) loop around w, beginning at a point near v.

Let w ≡ 2p+ p3 + · · ·+ pb. Take a nearby point w′ ≡ p1 + p2 + p3 + . . . pb, where p1 6= p2. Take

a loop γ in W0;b,1 based at w′ that exchanges p1 and p2 in the standard way:

•p1 •p2

Set π1 = π1(P1 \ {p1, . . . , pb}). Take a point v′ over w′ near v. Then v′ is determined by some

monodromy data π1 → S3. Choose a basepoint O in P1 and represent the generators of π1 by the
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standard circuits around pi:

•
p1

•
p2

•
O

Express the monodromy π1 → S3 by the b-tuple (σ1, . . . , σb) where σi is the image of the standard

loop around pi described above. Observe that the lift of γ which starts at v′ ≡ (σ1, σ2, . . . ) ends at

v′′ ≡ (σ2, σ
−1
2 σ1σ2, . . . ). The order of the operation v′ 7→ v′′ is the multiplicity of the component of

br∗D containing v.

For v ∈ δ, we can take

σ1 = σ2 = (12).

Then v′ = v′′, and hence δ appears with multiplicity one in br∗D.

For v ∈ T , we can take

σ1 = (12), σ2 = (23).

Then v′ 7→ v′′ has order three; the cycle is given by

(12), (23) 7→ (23), (13) 7→ (13)(12) 7→ (12), (23).

Hence T appears with multiplicity three in br∗D. �

Proposition 4.5.3. Let l be such that 0 < l < g and l ≡ g (mod 2). Then the following

relations hold in PicQ(T lg;1):

Br2 = 4c21,

λ =
g + 1

2(g + 2)
c21 − c2,

T = 3c2,

δ =
4g + 6

(g + 2)
c21 − 9c2,

σ2 = − 1

(g + 2)2
c21.

Proof. The relations follow from straightforward Chern class calculations. The first few are

scattered throughout [38]. We present the details for completeness.
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Take a one-parameter family of triple covers

C
φ→ P

π→ B,

where B is a smooth projective curve, P → B a P1 bundle and C → B a family of connected

curves of genus g. Let Σ = brφ ⊂ P . Set E = (φ∗OC/OP )∨. Then c1(φ∗OC) = −c1(E) and

c2(φ∗OC) = c2(E). Choose a (possibly rational) class ζ on P which has degree one on the fibers of

π and satisfies ζ2 = 0.

In the calculations that follow, we omit writing pullbacks or push-forwards where they are clear

by context. We use [ ] to denote the class of a divisor in the Chow ring. Chern classes are understood

to be applied to the fundamental class.

Since Σ = brφ is the zero locus a section of (detφ∗O
∨
C)
⊗2

, we have

[Σ] = 2c1(E).

This gives the first relation.

Using that Σ has relative degree b = 2(g + 2) over B and ζ2 = 0, we get

(4.5.1) [Σ] · ζ =
c21(E)

g + 2
and c1(E) · ζ =

c21(E)

2(g + 2)
.

From Grothendieck–Riemann–Roch applied to π : P → B, we get

ch(Rπ∗OC) = g + λ

= π∗ (ch(φ∗OC) · td(P/B))

= π∗

((
1− c1(E) +

c21(E)− 2c2(E)

2

)
· (1− ζ)

)
.

Combining with (4.5.1), we get the second relation

λ =
c21(E)

2
− c2(E) + Σ · ζ

=
g + 1

2(g + 2)
c21 − c2.
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We have an embedding C↪→PE over P that exhibits C as the zero locus of a section α of the

line bundle L = OPE(3)⊗ detE∨. Set ξ = c1(OPE(1)). Then ξ satisfies the equation

ξ2 − c1(E)ξ + c2(E) = 0.

Let J3L be the bundle of order three jets of L along the fibers of πE : PE → P . More precisely,

J3L = π1∗ (π2
∗L⊗O3∆) ,

where πi are the two projections PE ×P PE → P and ∆ ⊂ PE ×P PE the diagonal divisor. Then

the locus T ⊂ B of points b ∈ B over which C|b → P |b has a triple ramification point is simply

the image in B of the zero locus of the section J3α of J3L induced from the section α of L. In

particular,

deg T = c3(J3L).

Since J3L = L + L ⊗ ΩPE/P + L ⊗ Ω⊗2
PE/P in the Grothendieck group of sheaves on PE and

c1(ΩPE/P ) = −2ξ + c1(E), we get the third relation

deg T = πE∗(3ξ − c1(E)) · ξ · (−ξ + c1(E))

= 3c2(E) = 3c2.

Our next goal is to compute the divisor br∗D. This is simply the branch divisor of Σ → B.

The ramification divisor of Σ→ B is given by ωΣ/B . By adjunction, we have

ωΣ/B = (ωP/B + c1(Σ))|Σ

= (−2ζ + 2c1(E)) · 2c1(E)

=
4g + 6

g + 2
c21(E),

and hence br∗D = 4g+6
g+2 c

2
1. Using Proposition 4.5.2, we get the third relation

δ = br∗D − 3T

=
4g + 6

g + 2
c21 − 9c2.

For the last relation, assume furthermore that we have a section σ : B → P disjoint from Σ.

Abusing notation, also denote by σ the image σ(B) ⊂ P . Now, [σ] and c1(E)
g+2 are two divisor classes

on P that have degree one on the fibers and their product is zero. The last relation follows. �
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Proposition 4.5.4. Let 0 < l < g and l ≡ g (mod 2). The canonical divisor of T lg;1 (or T
l

g;1)

is given by

K = −2(g + 3)(2g + 3)

(g + 2)2
c21 + 6c2

=
2

(g + 2)(g − 3)

(
3(2g + 3)(g − 1)λ− (g2 − 3)δ

)
.

Proof. Retain the notation introduced just before Proposition 4.5.2. We restrict to the open

subset Vg;1. Let KV (resp. KW ) be the canonical divisor of Vg;1 (resp. W0;b,1). Since the finite

morphism Vg;1 →W0;b,1 is étale except over D ⊂W0;b,1 and br∗D = 3T + δ, we have

(4.5.2) KV = br∗KW + 2T.

We first compute KW in terms of D. Let w be a point of W0;b,1 corresponding to the data (P ; Σ;σ).

We have the following canonical identification of the tangent space to W0;b,1 at w:

TwW0;b,1 = Hom(IΣ/I
2
Σ, OΣ)⊕Hom(Iσ/I

2
σ, Oσ).

With this, the relation between D and KW follows from an easy test-curve calculation. Here are

the details. Take a one parameter family (π : P → B;σ; Σ) giving a map f : B →W0;b,1, where B is

a smooth projective curve. Set ζ = [σ]
2 + [Σ]

2b . Then ζ has degree one on the fibers of π and satisfies

ζ2 = 0. Hence ωP/B = −2ζ. By adjunction

degωΣ/B = (−2ζ + [Σ]) · [Σ] =
b− 1

b
· Σ2.

Therefore,

degD = degωΣ/B =
b− 1

b
· Σ2.

On the other hand, we have

f∗TW0;b,1
= π∗H omΣ(IΣ/I

2
Σ, OΣ)⊕ π∗H omσ(Iσ/I

2
σ, Oσ).

Observe that

deg π∗H omΣ(IΣ/I
2
Σ, OΣ) = deg

(
H omΣ(IΣ/I

2
Σ, OΣ)

)
−

degωΣ/B

2

= Σ2 − degD

2
=

b+ 1

2(b− 1)
degD.
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Using σ2 = −Σ2/b2 = −degD/(b(b− 1)), we get

−degKW = deg f∗TW0;b,1

= deg π∗H omΣ(IΣ/I
2
Σ, OΣ) + deg π∗H omσ(Iσ/I

2
σ, Oσ)

=
b+ 1

2(b− 1)
degD + σ2 =

b+ 2

2b
· degD.

Using (4.5.2) and Proposition 4.5.2, we get

KV = −b+ 2

2b
· (3T + δ) + 2T.

Substituting T and δ from Proposition 4.5.3 and using b = 2g + 4 yields the result. �

4.6. The ample cones

In this section, we identify the cone of ample divisors on T
l

g;1. We retain the notation, especially

the list of divisors, introduced at the beginning of Section 4.5.

Define the divisor Dl by the formula

Dl = (4c2 − c21) +

(
2l

b

)2

c21,

where b = 2g + 4, as usual. Recall that a Q-Cartier divisor on a space is nef if it intersects non-

negatively with all complete curves in that space. The bulk of the section is devoted to proving that

certain divisors on T
l

g;1 are nef.

Theorem 4.6.1. Let 0 < l < g and l ≡ g (mod 2). A divisor is nef on T
l

g;1 if and only if it is

a non-negative linear combination of Dl and Dl+2.

The proof is the content of Subsection 4.6.1 and Subsection 4.6.2.

Using the Nakai–Moishezon criterion for ampleness, we then deduce projectivity.

Theorem 4.6.2. Let 0 < l < g and l ≡ g (mod 2). A divisor is ample on T
l

g;1 if and only

if it is a positive linear combination of Dl and Dl+2. In particular, the algebraic space T
l

g;1 is a

projective scheme.

The proof is the content of Subsection 4.6.3.

In terms of the more standard generators λ and δ, the divisor Dl admits the following expression:(
g − 3

2

)
Dl = ((7g + 6)λ− gδ) +

l2

g + 2
· (9λ− δ) .
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4.6.1. Positivity for families with Br2 ≥ 0. We prove that Dl and Dl+2 are non-negative

on one-parameter families in T
l

g;1 with non-negative Br2.

Proposition 4.6.3. Let B be a smooth projective curve and π : P → B a P1 bundle with a

section σ : B → P . Let φ : C → P be a triple cover, étale over σ. Assume that on the generic point

of B, we have

φ∗OC/OP ∼= OP (−m)⊕OP (−n),

where m ≤ n are positive integers. Assume, furthermore, that br(φ)2 ≥ 0. Set ci = ci(φ∗OC). Then(
4c2 − c21 +

(
n−m
n+m

)2

c21

)
[P ] ≥ 0.

Corollary 4.6.4. Assume that 0 < l < g and l ≡ g (mod 2). Let B be a projective curve and

f : B → T
l

g;1 a morphism such that f∗(Br2) ≥ 0. Then

f∗Dl+2 ≥ f∗Dl ≥ 0.

Proof. By replacing B by a finite cover and normalizing, we may assume that we have a map

B → T lg;1 and B is smooth. Then Proposition 4.6.3 applies. Since Br2 = 4c21, and Br2 ≥ 0, we have

c21 ≥ 0. Hence f∗Dl+2 ≥ f∗Dl. Putting n + m = b/2 in the conclusion of Proposition 4.6.3 and

using l ≤ n−m (as the curves are l-balanced) we conclude that f∗Dl ≥ 0. �

We give two proofs of Proposition 4.6.3. We freely use the divisor relations from Proposi-

tion 4.5.3.

4.6.1.1. First proof. The underlying tool in the first proof is the following result, coupled with

an amusing “balancing trick” (Lemma 4.6.6).

Proposition 4.6.5. Let B be a smooth projective curve, P → B a P1 bundle, and E a vector

bundle of rank r on P . If the restriction of E to any fiber of P → B is balanced, then the class

π∗(2rc2(E)− (r − 1)c21(E)) on B is non-negative.

Recall that E is balanced if E ∼= O(d)⊕r for some d. The result is a special case of a result of

Moriwaki [28, Theorem A]. Stankova-Frenkel [38, Proof of Proposition 12.2] proves the particular

case (r = 2) that we need. Nevertheless, here is an independent proof.
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Proof. Observe that 2rc2(E)− (r−1)c21(E) is unaffected if E is replaced by E⊗L for any line

bundle L. Thus, possibly after replacing B by a finite cover, assume that detE ∼= OP . We must

conclude that π∗c2(E) ≥ 0.

That E is generically balanced and detE = OP forces Eb ∼= O⊕rPb for a generic b ∈ B. Then

π∗E is a vector bundle of rank r on B. Since π∗π∗E → E is generically an isomorphism and

detE = OP , it follows that c1(π∗E) ≤ 0. Since R1π∗E is supported on finitely many points, we

evidently have c1(R1π∗E) ≥ 0. Therefore, c1(Rπ∗E) ≤ 0. But Grothendieck–Riemann–Roch shows

that c1(Rπ∗E) = −π∗c2(E). �

The following lemma lets us cook up a balanced vector bundle from a possibly unbalanced

cover. We will use the lemma for L = OC . It is formulated more generally because the proof is by

induction.

Lemma 4.6.6. Let φ : C → P1 be a triple cover, s ∈ P1 a point over which φ is étale, {t1, t2, t3}

an ordering of φ−1(s) and L a line bundle on C. Assume that

φ∗L ∼= OP1 ⊕OP1(−m)⊕OP1(−n),

for some positive integers m ≤ n. Then there is an effective divisor D of degree n−m supported on

{t1, t2, t3} such that

φ∗(L(D)) ∼= OP1 ⊕OP1(−m)⊕OP1(−m).

Proof. The proof is by induction on n−m. If n = m, take D = 0.

Let n−m ≥ 1. Set OC(1) = φ∗OP1(1). Consider the chain of inclusions

L↪→L(t1)↪→L(t1 + t2)↪→L(t1 + t2 + t3) = L⊗OC(1),

and the induced inclusions on global sections

H0(L⊗OC(m− 1))
ι1
↪→ H0(L(t1)⊗OC(m− 1))

ι2
↪→ H0(L(t1 + t2)⊗OC(m− 1))

ι3
↪→ H0(L(t1 + t2 + t3)⊗OC(m− 1)) = H0(L⊗OC(m)).

From φ∗L = OP1 ⊕OP1(−m)⊕OP1(−n), and n > m, we see that

h0(L⊗OC(m))− h0(L⊗OC(m− 1)) = 2.
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Therefore, at least one of the ιj is an isomorphism. For such a j, the inclusion

H0(L⊗OC(m− 1))↪→H0(L(tj)⊗OC(m− 1))

must be an isomorphism. This isomorphism implies that

φ∗L(tj) ∼= OP1 ⊕OP1(−m)⊕OP1(−n+ 1).

The induction step is thus complete. �

Remark 4.6.7. In Lemma 4.6.6, the support of D cannot be all of {t1, t2, t3}. Otherwise,

φ∗(L(D)) will contain φ∗L ⊗ OP1(1) and hence also OP1(1), contradicting the conclusion of the

lemma.

First proof of Proposition 4.6.3. After a base change if necessary, assume that we have

three distinct sections τi : B → C lying over σ, for i = 1, 2, 3. For a generic b ∈ B, we have

φ∗OCb
∼= OPb ⊕OPb(−m)⊕OPb(−n).

By Lemma 4.6.6, there is an effective linear combination D of the sections τi(B) of degree n −m

such that

φ∗OCb(D) = OPb ⊕OPb(−m)⊕OPb(−m).

Consider the map OP → φ∗OC(D) adjoint to the map OC
D→ OC(D). The map of vector bundles

OP → φ∗OC(D) on P is fiberwise nonzero, since D does not contain any fiber of C → P , by

Remark 4.6.7. Define V as the cokernel

0→ OP → φ∗OC(D)→ V → 0.

Then V is locally free of rank 2. The restriction of V to Pb is balanced. Hence, by Proposition 4.6.5,

we have

(4.6.1) 4c2(V )− c21(V ) ≥ 0.

We compute the Chern classes of V in terms of those of φ∗OC . Throughout, we abbreviate ci(φ∗OC)

by ci, and omit writing pullback or pushforward symbols where they are clear by context. Note

that c1 · σ = 0 since φ is étale over σ.
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Say D = aτ1 + bτ2, where a and b are positive integers with a+ b = n−m. We have the exact

sequences

0→ OC → OC(aτ1)→ Oaτ1(aτ1)→ 0, and

0→ OC(aτ1)→ OC(D)→ Obτ2(D)→ 0.

Here aτ1 denotes the subscheme of C defined by the ath power of the ideal of τ1, and likewise for

bτ2. Pushing forward along φ, we get a relation in the Grothendieck group of P :

φ∗OC(D) = φ∗OC + φ∗Oaτ1(aτ1) + φ∗Obτ2(D).

Since φ is étale over σ, and τ1, τ2 are disjoint, we have φ∗Oaτ1(aτ1) ∼= Oaσ(aσ) and φ∗Obτ2(D) ∼=

Obσ(bσ). Therefore,

c(V ) = c(φ∗OC(D))

= c(φ∗OC) · (1 + aσ) · (1 + bσ)

= 1 + (c1 + (n−m)σ) + (ab · σ2 + c2).

Using (4.6.1), we obtain

(4.6.2) 4c2 + ab · σ2 − c21 − (n−m)2σ2 ≥ 0.

Since ab ≥ 0 and σ2 = Br2/b2 ≥ 0, we conclude that

4c2 − c21 +

(
n−m
n+m

)2

c21 ≥ 0.

�

4.6.1.2. Second proof. The second proof resembles the proof of positivity in the Br2 < 0 case.

Although it is somewhat less elegant, it is more transparent. The underlying idea is to use, in some

form, the morphism to P1 given by the cross-ratio.

Second proof of Proposition 4.6.3. Assume, possibly after a finite base change, that we

have three disjoint sections τi : B → C lying over σ, for i = 1, 2, 3. For a generic b, we have

φ∗OCb
∼= OPb ⊕OPb(−m)⊕OPb(−n).



4.6. THE AMPLE CONES 118

If m = n, then by Proposition 4.6.5, we get 4c2 − c21 ≥ 0. Since Br2 = 4c21 ≥ 0, this implies the

desired result. Henceforth, assume that m < n.

Set F = φ∗OC/OP , and consider the map

χ : π∗(F ⊗OP (mσ))→ π∗(F |σ ⊗OP (mσ)).

Note that π∗(F ⊗ OP (mσ)) is a line bundle on B. Since φ−1σ = τ1 t τ2 t τ3, the bundle F |σ is

trivial. Clearly, over the points b ∈ B where F ∼= O(−m)⊕ O(−n), the map χ is injective. Hence,

there is a map p : O⊕2
σ = F |σ → Oσ such that the induced map

p ◦ χ : π∗(F ⊗OP (mσ))→ π∗(Oσ(mσ))

is an isomorphism at the generic point of B.

Denote by (n−m)σ the scheme defined by the (n−m)th power of the ideal of σ. Consider the

diagram of vector bundles of rank (n−m− 1) on B:

(4.6.3)

π∗(F ⊗OP (m))⊗ π∗OP ((n−m− 1)σ) π∗Oσ(mσ)⊗ π∗OP ((n−m− 1)σ)

π∗(F ⊗OP ((n− 1)σ)) π∗O(n−m)σ((n− 1)σ)
.

The top and the left maps are clear. The bottom one is the composition

π∗(F ⊗OP ((n− 1)σ))→ π∗(F |(n−m)σ ⊗OP ((n− 1)σ)
p→ π∗(O(n−m)σ((n− 1)σ)).

The one on the right is induced by the map of rings

Oσ → O(n−m)σ

dual to the projection (n − m)σ → σ. The map on the right is an isomorphism; the rest are

isomorphisms generically on B. In particular, we conclude that

(4.6.4) deg π∗O(n−m)σ((n− 1)σ) ≥ deg π∗(F ⊗OP ((n− 1)σ)).

We compute both sides in terms of ci(φ∗OC) = ci(F ), henceforth abbreviated by ci. The left side

is easy from the exact sequences

0→ Oσ((m+ i)σ)→ O(n−m−i)σ((n− 1)σ)→ O(n−m−i−1)σ((n− 1)σ)→ 0,
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for 0 ≤ i ≤ n−m− 1. So we have

deg π∗O(n−m)σ((n− 1)σ) = ((n− 1)σ + (n− 2)σ + · · ·+mσ) · σ

=

(
(n+m− 1)(n−m)

2

)
σ2

= −
(

(n+m− 1)(n−m)

2(n+m)2

)
c21.

(4.6.5)

For the right side, apply Grothendieck–Riemann–Roch, keeping in mind

ωπ · σ = −σ2, σ2 = − c21
2(n+m)

, ωπ · c1 = − c21
(n+m)

, and c1 · σ = ω2
π = 0.

The result is

ch(Rπ∗(F ⊗OP ((n− 1)σ)))

= π∗
(
chF · chOP ((n− 1)σ) · tdP/B

)
= π∗

((
2 + c1 +

c21
2
− c2

)
·
(

1 + (n− 1)σ +
(n− 1)2σ2

2

)
·
(

1− ωπ
2

))
,

so that

c1(Rπ∗(F ⊗OP ((n− 1)σ)))

=

(
(n+m)2 + (n+m)− 2(n− 1)2 − 2(n− 1)

2(n+m)2

)
c21 − c2

= −
(

(n−m)(n+m− 1)− 2mn

2(n+m)2

)
c21 − c2.

(4.6.6)

See that R1π∗(F ⊗OP ((n− 1)σ)) is supported on finitely many points of B. Hence

c1(π∗(F ⊗OP ((n− 1)σ))) ≥ c1(Rπ∗(F ⊗OP ((n− 1)σ))).

Combining with (4.6.4), we arrive at

c1(π∗OP ((n− 1)σ)|(n−m)σ) ≥ c1(Rπ∗(F ⊗OP ((n− 1)σ))).
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Substituting the left side from (4.6.5) and the right side from (4.6.6), we get

−
(

(n+m− 1)(n−m)

2(n+m)2

)
c21 ≥ −

(
(n−m)(n+m− 1)− 2mn

2(n+m)2

)
c21 − c2

=⇒ 4c2 −
(

4mn

(n+m)2

)
c21 = (4c2 − c21) +

(
n−m
n+m

)2

c21 ≥ 0.

The proof is thus complete. �

Remark 4.6.8. Let us examine the proof to determine when equality holds. This is the case if

and only if π∗(F ⊗OP ((n−1)σ))→ π∗O(n−m)σ((n−1)σ) is an isomorphism and R1π∗(F ⊗OP ((n−

1)σ)) = 0. Then the splitting type of Fb is (m,n) for all b ∈ B. Therefore, all the maps in (4.6.3)

are isomorphisms. In particular, we have an isomorphism π∗(F ⊗ OP (m)) ∼= Oσ(mσ). Hence the

map

π∗(F ⊗OP (m))→ π∗(F |σ ⊗OP (m)),

which defines the cross-ratio, is equivalent to a (nonzero) global section of

H omB(π∗(F ⊗OP (m)), π∗(F |σ ⊗OP (m))) ∼= O⊕2
B .

The upshot is that C → P is a family of triple covers with a constant Maroni invariant l = n −m

and a constant cross-ratio.

Retracing the steps, it is easy to see that for such a family C → P with a constant Maroni

invariant l = n−m and a constant cross-ratio, equality holds; that is, the pullback of Dl is zero.

4.6.2. Positivity for families with Br2 < 0. Having taken care of families with Br2 ≥ 0, we

now consider families with Br2 < 0.

Proposition 4.6.9. Let B be a smooth projective curve and π : P → B a P1 bundle with a

section σ : B → P . Assume that Br2 < 0 and let ζ be the unique section of π of negative self-

intersection. Let φ : C → P be a triple cover étale away from ζ. Assume that the splitting type

of the singularity of C → P over ζ is (m,n) over a generic point of B, where m < n are positive

integers. Then (
4c2 − c21 +

(
n−m
n+m

)2

c21

)
[P ] ≥ 0.
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Corollary 4.6.10. Assume that 0 < l < g and l ≡ g (mod 2). Let B be a projective curve

and f : B → T
l

g;1 a morphism such that f∗Br2 < 0. Then

f∗Dl ≥ f∗Dl+2 ≥ 0.

Proof. Since 4c21 = Br2 and Br2 < 0, we have c21 < 0. Therefore f∗Dl ≥ f∗Dl+2. Hence, it

suffices to prove that f∗Dl+2 ≥ 0.

By replacing B by a finite cover and normalizing if necessary, we may assume that f lifts to a

map f : B → T lg;1 and B is smooth. Say f is given by (P ;σ;φ : C → P ). Since 4c21 = Br2 < 0, the

branch divisor of φ must be supported on the section ζ of P → B of negative self-intersection. Thus,

Proposition 4.6.9 applies. Since our family consists of l-balanced covers, we have n −m > l, and

hence n−m ≥ l+ 2 because n−m ≡ l ≡ g (mod 2). Using n+m = b/2, c21 < 0 and n−m ≥ l+ 2

in the conclusion of Proposition 4.6.9, we conclude that

f∗Dl+2 ≥ 0.

�

Proof of Proposition 4.6.9. By making a base change if necessary, assume that we have

three sections τi : B → C over σ, for i = 1, 2, 3. Let C̃ → C be the normalization and φ̃ : C̃ → P

the corresponding map. By [39], the fibers are C̃ → B are normalizations of the fibers of C →

B. Therefore, C̃ is the disjoint union of three copies of P , each containing one section τi. Set

F = φ∗OC/OP , and E = φ̃∗OC̃/OP . Note that E ∼= O⊕2
P . The inclusion φ∗OC ↪→φ̃∗OC̃ induces an

inclusion F ↪→E, which is an isomorphism away from ζ. We think of F as a subsheaf of E via this

inclusion.

Since the generic spitting type of the singularity of the fibers of C → B over ζ is (m,n), we

have the inclusions

Inζ · E ⊂ F ⊂ Imζ · E.

Let F = F/
(
Inζ · E

)
and E =

(
Imζ /I

n
ζ

)
·E. Both F and E are supported on ζ, are π-flat, and their

π-fibers have lengths (n−m) and 2(n−m) respectively. Pushing forward F → E, we get

i : π∗F → π∗E,
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a map of locally free sheaves on B of rank (n −m) and 2(n −m), respectively. The target π∗E is

isomorphic to π∗(I
m
ζ /I

n
ζ )⊗ (O⊕2

B ).

We examine i explicitly over a point b ∈ B where the splitting type of the singularity is (m,n).

Let x be a local coordinate for Pb near ζ(b). Since the singularity of Cb → Pb is of type (m,n), the

subalgebra OCb ⊂ OC̃b = O⊕3
P is generated as an OP1

b
module, locally around x, by 〈1, xmf, xnO⊕3

Pb
〉,

where the image of f in Eb is nonzero modulo x. Therefore,

F b = k〈xmf, xm+1f, . . . , xn−1f〉.

Since the image of f in E|ζ(b) is nonzero, it is nonzero in one of the projections p : O⊕2
ζ(b) = E|ζ(b) →

Oζ(b). It follows that the composite jb = p ◦ ib gives an isomorphism

jb : F b
∼−→ Imζ(b)/I

n
ζ(b).

Consequently, the composition j = p ◦ i is an isomorphism on the generic fiber:

j : π∗F → π∗(I
m
ζ /I

n
ζ ).

We conclude that

(4.6.7) deg π∗(I
m
ζ /I

n
ζ ) ≥ deg π∗F .

We compute both sides in terms of ci(φ∗OC), abbreviated henceforth by ci. Since P → B is a P1

bundle with two disjoint sections σ and ζ of positive and negative self-intersection, respectively, we

have

ωP/B = −σ − ζ.

By Grothendieck–Riemann–Roch,

ch(π∗(I
m
ζ /I

n
ζ )) = π∗(ch(Imζ /I

n
ζ ) · tdP/B)

= π∗
(
(ch Imζ − ch Inζ ) · tdP/B

)
= π∗

((
(n−m)ζ +

(m2 − n2)ζ2

2

)
·
(

1 +
σ + ζ

2

))
;

c1(π∗E) =

(
m2 − n2 + n−m

2(n+m)2

)
c21.

The last equality uses ζ2 = −σ2 = c21/(n+m)2.
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Similarly, using c1 = −(m+ n)ζ and Grothendieck–Riemann–Roch,

ch(π∗F ) = π∗(chF · tdP/B)

= π∗((chF − 2 ch Inζ ) · tdP/B)

= π∗

((
c1 + 2nζ +

c21
2
− c2 − n2ζ2

)
·
(

1 +
ζ + σ

2

))
;

c1(π∗F ) =

(
m2 − n2 + 2mn+ n−m

2(m+ n)2

)
c21 − c2.

Substituting into (4.6.7), we get

4c2 −
(

4mn

(m+ n)2

)
c21 = 4c2 − c1 +

(
n−m
m+ n

)2

c21 ≥ 0.

�

Remark 4.6.11. Let us examine the proof to determine when equality holds. This is the case

if and only if the map F → Imζ /I
n
ζ is an isomorphism. Then fiber Cb → Pb has a singularity of

splitting type (m,n) for all b ∈ B. Furthermore, the map F |ζ → E|ζ , which defines the principal

part, is equivalent to a (nonzero) global section of

H om(F |ζ , E|ζ) ∼= O⊕2
ζ .

The upshot is that the family C → P has singularities of a constant µ invariant l = n −m and a

constant principal part.

Retracing the above steps, it is easy to see that for such a family C → P of covers with

concentrated branching with singularities of a constant µ invariant l = n − m and a constant

principal part, equality holds; that is, the pullback of Dl is zero.

We have essentially finished the proof of Theorem 4.6.1; it is now a matter of collecting the

pieces. We recall the statement for the convenience of the reader.

Theorem 4.6.1. Let 0 < l < g and l ≡ g (mod 2). A divisor is nef on T
l

g;1 if and only if it is

a non-negative linear combination of Dl and Dl+2.

Proof. By Corollary 4.6.4 and Corollary 4.6.10 we conclude that Dl and Dl+2 are non-negative

on any complete curve in T
l

g;1. Hence, every non-negative linear combination of Dl and Dl+2 is nef.
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It remains to show that Dl and Dl+2 are indeed the edges of the nef cone. For that, it suffices

exhibit curves on which Dl is zero and Dl+2 is positive, and vice-versa. Remark 4.6.8 and Re-

mark 4.6.11 tell us how to construct such curves. We explain the constructions briefly. Let m < n

be such that n+m = g + 2 and n−m = l.

For the edge 〈Dl〉, we construct a family of covers with constant Maroni invariant l and constant

cross-ratio. Such a family can be constructed, for example, as follows. Let C → P2 be a connected,

generically étale triple cover with

OC/OP2 ∼= OP2(−m)⊕OP2(−n).

Let p ∈ P2 be a point over which C → P2 is étale. Let P = Blp P2 and set C ′ = C×P2 Blp P2. Then

P → P1 is a P1 bundle with a section σ given by the exceptional divisor. The family (P ;σ;C ′ → P )

gives a curve in T
l

g;1. The pullback of Dl to this curve is zero and the pullback of Dl+2 is positive.

For the edge 〈Dl+2〉, we construct a family of covers with concentrated branching having µ-

invariant l+ 2 and constant principal part. To construct such a family, consider the two-parameter

family of sub-algebras S(a, b) of O⊕3
P1 , where S(a, b) is generated locally around 0 as an OP1 module

by

1, (xm−1 + axn−1 + bxn, 0, 0), and xn+1O⊕3
P1 .

Via the scaling x 7→ tx, we have an isomorphism

S(a, b)
∼−→ S(tn−ma, tn−m+1b).

The resulting family on (k⊕2 \ 0)/Gm gives a curve in T
l

g;1. The pullback of Dl+2 to this curve is

zero and the pullback of Dl is positive. �

4.6.3. Projectivity. In this section, we prove that divisors in the interior of the nef cone of

T
l

g;1 are indeed ample. This would follow from Kleiman’s criterion if we knew that T
l

g;1 is a scheme.

However, it is a priori only an algebraic space. Kleiman’s criterion can fail for algebraic spaces, as

pointed out by Kollár [24, § VI, Exercise 2.19.3]. Recall, however, that Nakai–Moishezon’s criterion

is still true.

Theorem 4.6.12 (Nakai–Moishezon criterion for ampleness). [23, Theorem 3.11] Let X be an

algebraic space proper over an algebraically closed field and H a Cartier divisor on X. Then H is
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ample if and only if for every irreducible closed subspace Y ⊂ X of dimension n, the number Hn ·Y

is positive.

To deduce that divisors in the interior of the nef cone are ample, we need a mild extension of a

result of Fedorchuk and Smyth [11, Lemma 4.12].

Lemma 4.6.13. Let X be an algebraic space proper over an algebraically closed field. Suppose

X satisfies the following: for every irreducible subspace Y ⊂ X, there is a finite surjective map

Z → Y and a Cartier divisor D on X whose pullback to Z is numerically equivalent to a nonzero

and effective divisor. Then any Cartier divisor in the interior of the nef cone of X is ample.

Proof. The proof follows the proof of [11, Lemma 4.12] almost verbatim. In what follows,

“divisor” means a Q-Cartier divisor. Let H be a divisor in the interior of the nef cone. By the

Nakai–Moishezon criterion, it suffices to prove that for every n-dimensional closed subspace Y ⊂ X,

the number Hn · Y is positive. We induct on n; the case n = 0 is trivial.

Let Z → Y be as in the hypothesis and denote by f the finite map Z → X. Say

D · [Z] ≡
∑
i

ai[Zi],

where ai > 0 and Zi ⊂ Z are reduced and irreducible divisors. Let fi : Zi → X be the restriction of

f . Then fi is also a finite map.

Since H is in the interior of the nef cone, for a sufficiently small ε > 0, the divisor H − εD is

nef. Since H and H − εD are nef, we have

Hn−1(H − εD) · [Z] ≥ 0.

Therefore,

(deg f) ·Hn · [Y ] = Hn · [Z] ≥ εHn−1D · [Z]

= ε
∑
i

aiH
n−1 · [Zi]

= ε
∑
i

ai(deg fi) ·Hn−1[fi(Zi)] > 0,

where the last inequality is by the induction hypothesis. The induction step is complete. �

We now have the tools to prove Theorem 4.6.2. We recall the statement for the convenience of

the reader.



4.6. THE AMPLE CONES 126

Theorem 4.6.2. Let 0 < l < g and l ≡ g (mod 2). A divisor is ample on T
l

g;1 if and only

if it is a positive linear combination of Dl and Dl+2. In particular, the algebraic space T
l

g;1 is a

projective scheme.

Proof. We check that X = T
l

g;1 satisfies the hypothesis of Lemma 4.6.13. Let Y ⊂ X be an

irreducible closed subspace. Choose a finite surjective map Z → Y such that Z is a normal scheme

and Z → X lifts to Z → T lg;1, given by a family (π : P → Z;σ;φ : C → P ). Set Σ = br(φ) ⊂ P .

Then Σ is a π-flat divisor of degree b, disjoint from σ. By passing to a finite cover of Z if necessary,

assume that we have three disjoint sections τ1, τ2, τ3 : Z → C over σ and sections σ1, . . . , σb : Z → P

such that

Σ = σ1(Z) + · · ·+ σb(Z)

as divisors on P . Observe that all the σi are disjoint from σ, and hence are linearly equivalent to

each other. Furthermore, π∗[σ
2
i ] = −π∗[σ2].

We exhibit a divisor class on X whose pullback to Z is nonzero and effective.

Case 1: σi are not all coincident. Without loss of generality, σ1 6= σ2 at a generic point of

Z. If σ1(z) 6= σ2(z) for all z ∈ Z, then we have three disjoint sections σ, σ1 and σ2 of the P1 bundle

P → Z. Hence P → Z is trivial and Σ ⊂ P is a constant family. In other words, the map Z → T lg;1

lies in a geometric fiber of br : H 3 →M . By Lemma 1.6.2, the pullback of −λ is ample on Z. In

particular, some multiple of −λ pulls back to a nonzero and effective divisor.

If σ1(z) = σ2(z) for some z ∈ Z, then π∗(σ1 · σ2) is a nonzero and effective divisor on Z. Since

σ1 ∼ σ2 ∼ −σ, the divisor π∗(σ1 · σ2) is equivalent to the pullback of the divisor −σ2 on T
l

g;1.

Case 2: σi are all coincident. Say σi = ζ for i = 1, . . . , b. In this case, we have a family of

covers with concentrated branching. We begin as in the proof of Proposition 4.6.9.

Let the splitting type of the singularity over a generic z ∈ Z be (m,n), with m < n. Let C̃ → C

be the normalization. By [39], the fibers of C̃ → Z are the normalizations of the corresponding

fibers of C → Z. In particular, C̃ ∼= P t P t P . Set

F = φ∗OC/OP and E = φ̃∗OC̃/OP
∼= O⊕2

P .

We have inclusions

Inζ E ⊂ F ⊂ Imζ E.
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Set

F = F/Inζ E and E = Imζ E/I
n
ζ E.

Then we have an induced map F → E. Also, see that E ∼= (Imζ /I
n
ζ )⊕2. Since the generic splitting

type of the singularity is (m,n), there is a projection E → Imζ /I
n
ζ such that F → Imζ /I

n
ζ is an

isomorphism over the generic point of Z. Suppose F → Imζ /I
n
ζ is not an isomorphism over all of Z.

Then we get a map of line bundles on Z:

detπ∗F → detπ∗(I
m
ζ /I

n
ζ )

whose vanishing locus is a nonzero effective divisor. The class of this vanishing locus can be expressed

as a pullback of c21 and c2; in fact, it is precisely Dn−m, as computed in the proof of Proposition 4.6.9.

We are thus left with the case where F → Imζ /I
n
ζ is an isomorphism. In this case, F and E

are vector bundles on (n−m)ζ of rank one and two respectively. The map F → E is just a global

section f of V = H om(n−m)ζ(F ,E) ∼= O⊕2
(n−m)ζ . The restriction f |ζ is a section of O⊕2

ζ , and hence

it is constant. We are thus dealing with a family of covers with concentrated branching, a constant

µ-invariant and a constant principal part.

Set G = IsomZ((P, ζ, σ), (P1, 0,∞)). Then G → Z is a Gm torsor. We have a canonical

isomorphism

(PG, ζG, σG)
∼−→ (P1 ×G, 0×G,∞×G).

Let x be a uniformizer of P1 around 0. Then V G ∼= (k[x]/xn−m)
⊕2 ⊗k OG. We can interpret the

global section fG of V G as a Gm equivariant map φG : G→ (k[x]/xn−m)⊕2, where Gm acts on the

k vector space (k[x]/xn−m)⊕2 by t : xi 7→ tixi. Since the restriction of fG to ζ is constant, φG has

the form φG = (c + ψG), where c ∈ k⊕2 is a constant and ψG : G → (xk[x]/xn−m)⊕2. Explicitly,

over a point b ∈ G, the subalgebra OCb ⊂ OC̃b is generated as an OPb module, locally around 0, by

1, xnOC̃b and xm(c+ ψG(b)).

Since the Maroni invariant of the resulting cover is less than n −m, we conclude that ψG(b) 6= 0

for any b ∈ G. Furthermore, since the map Z → T
l

g;1 is quasi-finite, so is the map ψG : G →

(xk[x]/xn−m)⊕2. We thus have a finite map

ψ : Z → [(xk[x]/xn−m)⊕2 \ 0/Gm],
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where the right side is a weighted projective stack. We conclude that ψ∗O(1) is ample. But ψ∗O(−1)

is the line bundle associated to G→ Z, which is P \ σ → Z. Therefore,

c1(ψ∗O(1)) = c1(ζ∗OP (−ζ))

= π∗(−ζ2) = π∗(σ
2).

In particular, the pullback to Z of some multiple of the divisor σ2 on T
l

g;1 is effective.

The proof of Theorem 4.6.2 is complete. �

As a result of the positivity of the interior of the cone spanned by Dl and Dl+2, we can easily

deduce the following.

Proposition 4.6.14. Let 0 < l < g and l ≡ g (mod 2). Consider the map βl : T
l

g;1 99K T
l−2

g;1 .

Then Exc(βl) is covered by K-negative curves. If l > 0, then Exc(β−1
l ) is covered by K-positive

curves.

Proof. Exc(βl) is the locus of (P ;σ;φ : C → P ) where φ has Maroni invariant l. This locus

is covered by curves S in which the cross-ratio is constant. Similarly Exc(β−1
l ) is the locus of

(P ;σ;φ : C → P ) where φ has concentrated branching and µ invariant l+ 2. For l > 0, this locus is

covered by curves T in which the principal part is constant. By Remark 4.6.8 (resp. Remark 4.6.11),

the divisor Dl (resp. Dl+2) is zero on such S (resp. T ). Since Dl+2 and K are on the opposite sides

of the line spanned by Dl in PicQ, the claim follows. �

4.7. The final model

In this section, we prove that for even g, the final model T
0

g;1 is Fano and for odd g, the final

model T
1

g;1 is a Fano fibration over P1.

4.7.1. The case of even g. Let g = 2(h − 1), where h ≥ 1. Fix an identification P1 =

Proj k[X,Y ] and set 0 = [0 : 1] and ∞ = [1 : 0]. Let G = Aut(P1,∞); this is the group of affine

linear transformations µα,β : (X,Y ) 7→ (X + βY, αY ), where α ∈ k∗ and β ∈ k. Let Λ be the two

dimensional k vector space Λ = ker(tr : k⊕3 → k), where tr is the sum of the three coordinates. Λ

should be thought of as the space of traceless functions on {1, 2, 3} × Spec k.
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Set Γ = Λ⊗k OP1(h) and

V = H0
(
Sym3 Γ⊗P1 det Γ∨

)
= (Sym3(Λ)⊗k det Λ∨)⊗k H0(OP1(h)).

By the structure theorem of triple covers (Theorem 4.1.1), balanced triple covers of P1 of arithmetic

genus g correspond precisely to elements of V . Note that V admits a natural action of Gl(Λ)×G.

Indeed, Gl(Λ) = Gl2 acts naturally on the first factor in V , whereas G acts on the second factor by

µα,β : p(X,Y ) 7→ p ◦ µ−1
α,β(X,Y ).

Let v1, v2 ∈ V be two points and C1 → P1 and C2 → P1 the corresponding balanced triple

covers. Using the point ∞ ∈ P1 as the additional marked point, treat them as marked triple covers

(Ci → P1;∞). We observe that these two marked covers are isomorphic if and only if v1 and v2

are related by the action of Gl2×G. Thus, we might expect T 0

g;1 to be the quotient [V/Gl2×G].

However, this is not quite true since not all elements of V give an element of T 0

g;1. Firstly, the cover

must be étale over ∞ and secondly, it must not have µ-invariant 0. Thus, we expect

T 0

g;1 = [U/Gl2×G],

for a suitable open U ⊂ V . In what follows, we prove that this is indeed the case. Along the way,

we also simplify the presentation [U/Gl2×G].

The first step is to exhibit a morphism T 0

g;1 → [V/Gl2×G]. Let S be a scheme and S → T 0

g;1

a morphism given by (P ;σ;φ : C → P ). Let E = (φ∗OC/OP )∨. By the structure theorem for triple

covers (Theorem 4.1.1), the cover C → P gives a global section v of Sym3(E)⊗ detE∨. Set

T = IsomS(σ∗E,Λ)×S IsomS((P, σ), (P1,∞)).

Then T → S is a Gl2×G torsor. Over T , we have canonical identifications

σ∗TET
∼−→ Λ⊗k OT and (PT , σT )

∼−→ (P1 × T,∞× T ).

Since C → P is a family of balanced triple covers, E is fiberwise isomorphic to Γ. On T , the

isomorphism σ∗ET
∼−→ Λ⊗k OT gives a canonical isomorphism

ET
∼−→ ΓT .
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Thus, we may treat vT as a global section of Sym3 ΓT ⊗ det Γ∨T , or equivalently as a map T → V .

By construction, this map is Gl2×G equivariant. We thus have a morphism

(4.7.1) q : T 0

g;1 → [V/Gl2×G].

Proposition 4.7.1. The morphism q in (4.7.1) is representable and an injection on k-points.

Recall that k-points of [X/H] are just orbits of the action of H(k) on X(k).

Proof. Let p : Spec k → T 0

g;1 be a point. For representbility, we must show that the map

Autp → Autq(p) is injective. Say p is given by (P ;σ;φ : C → P ). Set E = (φ∗OC/OP )∨ and pick

identifications E|σ ∼= Λ and (P, σ) ∼= (P1,∞). Consider an element ψ ∈ Autp. Then ψ consists of

(ψ1, ψ2), where ψ1 : (P1;∞) → (P1;∞) is an automorphism and ψ2 : C → C is an automorphism

over ψ1. To understand the image of ψ in Autq(p), consider the map on algebras

ψ#
2 : ψ∗1φ∗OC → φ∗OC

dual to ψ2 : C → C. The map ψ#
2 induces a map α : E → ψ∗1E. Then the image of ψ = (ψ1, ψ2) is

just (α|σ, ψ1).

Suppose that (α|σ, ψ1) = id. Then ψ1 = id. Furthermore, the fact that E is balanced and

α|σ = id implies that α = id. From the sequence

0→ OP → φ∗OC → E∨ → 0,

it follows that ψ2 = id. Thus Autp → Autq(p) is injective.

It is clear that q is injective on k-points—two sections v1, v2 in the same orbit of Gl2×G clearly

give isomorphic marked covers. �

Theorem 4.7.2. Let g = 2(h− 1), where h ≥ 1. Then

T 0

g;1
∼= [(A2g+3 \0)/(S3 ×Gm)],

where Gm acts by weights

1, 2, . . . , h, 1, 2, . . . , h, 1, 2, . . . , h, 2, 3 . . . , h.
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The space T
0

g;1 is the quotient of the weighted projective space

P (1, . . . , h, 1, . . . , h, 1, . . . , h, 2, . . . , h)

by an action of S3. In particular, T
0

g;1 is a unirational, Fano variety.

We use the following lemma in the proof to simplify a group action.

Lemma 4.7.3. Let X be a normal variety over k with the action of a connected algebraic group

H. Let X ′ ⊂ X be a reduced and irreducible subvariety and H ′ ⊂ H a subgroup such that the action

of H ′ restricts to an action on X ′. If [X ′/H ′] → [X/H] is a bijection on k-points, then it is an

isomorphism.

Proof. The map [X ′/H ′]→ [X/H] is representable. Set Y = X ×[X/H] [X ′/H ′]. It suffices to

prove that Y → X is an isomorphism. We have the diagram

X ′ ×H X ′

Y [X ′/H ′]

X [X/H]
.

The smooth morphism Y → [X ′/H ′] shows that Y is reduced and the surjective morphism X ′×H →

Y shows that it is irreducible. Furthermore, Y → X induces a bijection on k-points. The quasi-finite

map Y → X can be factored as Y ↪→Y → X, where the first is a dense open inclusion and the second

a finite map. Since X is normal, Zariski’s main theorem implies that Y → X is an isomorphism.

But then Y ↪→Y is a bijection on k-points. It follows that Y = Y . �

Proof of Theorem 4.7.2. Retain the notation at the beginning of Subsection 4.7.1. Let

U ⊂ V be the open subset consisting of v ∈ V whose associated triple cover is étale over ∞. Then

U is invariant under the Gl2×G action and q : T 0

g;1 → [V/Gl2×G] lands in [U/Gl2×G].

We now simplify the presentation [U/Gl2×G]. Choose coordinates on Λ: say s = (1,−1, 0) and

t = (0, 1,−1). Write points of V explicitly as

vs,t = (as3 + bs2t+ cst2 + dt3)⊗ (s∗ ∧ t∗),
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where a, b, c, d ∈ H0(OP1(h)). Let a =
∑
aiX

h−iY i, where ai ∈ k, and similarly for b, c and d. Let

W ⊂ U be the closed subvariety defined by

vs,t(1, 0) = st(t+ s)⊗ (s∗ ∧ t∗) and 2a1 + 2d1 − b1 − c1 = 0.

The first equation specifies v over ∞; the second is the result of imposing the condition that the

branch divisor of the triple cover given by v be centered around 0. Explicitly, the points of W have

the form (
h∑
i=1

ah−iX
iY h−i

)
s3 ⊗ (s∗ ∧ t∗)

+

(
Xh +

h∑
i=1

bh−iX
iY h−i

)
s2t⊗ (s∗ ∧ t∗)

+

(
Xh +

h∑
i=1

ch−iX
iY h−i

)
st2 ⊗ (s∗ ∧ t∗)

+

(
h∑
i=1

dh−iX
iY h−i

)
t3 ⊗ (s∗ ∧ t∗).

where 2a1 +2d1− b1− c1 = 0. The action of S3 ⊂ Gl2 by permuting the three coordinates of Λ ⊂ k3

and the action of Gm ⊂ G by scaling (X,Y ) 7→ (X, tY ) restrict to actions on W .

Claim. The map i : [W/S3 ×Gm]→ [U/Gl2×G] is an isomorphism

Proof. By Lemma 4.7.3, it suffices to check that it is a bijection on k-points.

We first check that i is injective on k-points. Said differently, we want to check that two points

of W that are related by the action of Gl2×G are in fact related by the action of S3 ×Gm. Let

w1, w2 ∈ W and ψ = (ψ1, ψ2) ∈ Gl2×G be such that w1 = ψw2. Then the linear isomorphism

ψ1 : k〈s, t〉 → k〈s, t〉 takes st(s + t) ⊗ s∗ ∧ t∗ to itself. It is easy to check that it must lie in the

S3 ⊂ Gl2. Secondly, observe that for ψ2 : (X,Y ) 7→ (X + βY, αY ), we have

(4.7.2) ψ−1
2 (2a1 + 2d1 − b1 − c1) = α(2a1 + 2d1 − c1 − d1)− hβ.

By the second defining condition for W , we must have β = 0. In other words, ψ ∈ S3 ×Gm.

We now check that i is surjective on k-points. Said differently, we want to check that every

Gl2×G-orbit of U has a representative in W . Take a point v ∈ U . Since v describes a cover étale

over∞, the homogeneous cubic in vs,t(1, 0) has distinct roots. By a suitable linear automorphism of
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k〈s, t〉, the element vs,t(1, 0) can thus be brought into the form st(s+ t)⊗ s∗ ∧ t∗. Secondly, (4.7.2)

shows that we can make 2a1+2d1−b1−c1 = 0 after a suitable translation (X,Y ) 7→ (X+βY, Y ). �

Returning to the main proof, we have a morphism

q : T 0

g;1 → [U/Gl2×G] = [W/S3 ×Gm],

which is representable and injective on k-points. Denote by 0 ∈ W the point corresponding to

ai = bi = ci = di = 0 for all i = 1, . . . , h. Its corresponding cover has concentrated branching over

0 ∈ P1 and µ invariant zero. Hence q factors through

(4.7.3) q : T 0

g;1 → [(W \ 0)/(S3 ×Gm)].

The right side [(W \ 0)/(S3×Gm)] is smooth and proper over k. Indeed, it is a weighted projective

stack modulo an action of S3. Thus, the morphism q in (4.7.3) is a representable, proper morphism

between two smooth stacks of the same dimension which is an injection on k-points. By Zariski’s

main theorem, it must be an isomorphism.

Finally, note that

W ∼= A2g+3 = A(a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d2, . . . , dh);

the d1 can be dropped owing to the condition 2a1 + 2d1 − b1 − c1 = 0. The Gm acts by weight i on

ai, bi, ci, di. The proof is thus complete. �

4.7.2. The case of odd g. Let g = 2h − 1. In this case, we do not have quite as explicit

a description of the final model as in the case of even g. Nevertheless, we prove that it is a Fano

fibration over P1.

The morphism to P1 is defined by the cross-ratio as in Subsection 4.4.1. We quickly recall the

construction. Set V = k⊕3/k, to be thought of as the space of functions on {1, 2, 3}×Spec k modulo

the constant functions. Then there is an action of S3 on V and an induced action of S3 on PsubV .

The cross-ratio map

χ : T 1

g;1 → [PsubV/S3]

is defined by the following procedure. Let S → T 1

g;1 be a morphism given by the family (π : P →

S;σ;φ : C → P ). Set F = φ∗OC/OP . Since F is fiberwise isomorphic to O(−h) ⊕ O(−h − 1), we
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see that π∗(F ⊗OP (hσ)) is a line bundle on S. Consider the map

(4.7.4) π∗(F ⊗OP (hσ))⊗ σ∗OP (−hσ)→ σ∗F.

It is easy to see that this remains injective at every point of S. Moreover, passing to Z =

IsomS(C|σ, {1, 2, 3}), we have an identification σ∗ZFZ
∼−→ V ⊗k OZ . Hence (4.7.4) yields a map

Z → PsubV , which is by construction S3 equivariant. We thus get a map S → [PsubV/S3].

The map χ : T 1

g;1 → [PsubV/S3] induces a map on the coarse spaces:

(4.7.5) χ : T
1

g;1 → PsubV/S3
∼= P1.

Theorem 4.7.4. Consider the cross-ratio map χ : T
1

g;1 → P1 as in (4.7.5). Then,

(1) χ∗OP1(1) = 3D1

2 ;

(2) fibers of χ are Fano varieties of Picard rank one.

Proof. We use the setup introduced above, assuming furthermore that S is a smooth curve.

On Z, we have

π∗(F ⊗OP (hσ))⊗ σ∗OP (−hσ)→ σ∗F = V ⊗k OZ .

For the first relation, note that PsubV → PsubV/S3 = P1 is a degree six cover. Hence, it suffices to

prove that the pullback of OPsubV (1) to Z has class D1/4. But the class of this pullback is just

(4.7.6) − c1(π∗F ⊗OP (hσ))− c1(σ∗OP (−hσ)).

SinceR1π∗(F⊗OP (hσ)) = 0, the first summand in (4.7.6) is a simple calculation using Grothendieck–

Riemann–Roch (see (4.6.6) in Subsection 4.6.1.2 for this calculation in a more general case). The

result is

c1(π∗F ⊗OP (hσ)) =
h2

(2h+ 1)2
c21 − c2.

The second summand in (4.7.6) is simply −hπ∗[σ2]. Using Proposition 4.5.3, we get

−c1(π∗F ⊗OP (hσ))− c1(σ∗OP (−hσ)) = c2 −
h2 + h

(2h+ 1)2
c21

=
D1

4
.

The first relation is thus proved.
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Finally, set K = K
T

1
g;1

and let Y ⊂ T 1

g;1 be a fiber of χ. Then all curves in Y have intersection

number zero with D1; it follows that they are (numerically) rational multiples of each other. Hence

the Picard rank of Y is one.

Since 〈D1〉 and 〈D3〉 bound the ample cone of T g;1 and D1|Y ∼= 0, the ray 〈D3〉 must be positive

on Y . But D3 and K are on the opposite sides of the line spanned by D1; hence K|Y = KY is

anti-ample. �

Finally, we collect the pieces together for the chamber decomposition. Recall that the Mori

chamber Mor(β) of a birational contraction β : X 99K Y is the cone spanned by the pullback of the

ample cone of Y and the exceptional divisors of β. If the birational map X 99K Y is clear, we abuse

notation and call Mor(β) the Mori chamber of Y .

Theorem 4.7.5. Let 0 ≤ l < g be such that l ≡ g (mod 2).

(1) For l > 0, the interior of the cone 〈Dl, Dl+2〉 is the Mori chamber of the model T
l

g;1.

(2) For even g, the cone 〈D0, D2〉 is the Mori chamber of the model T
0

g;1.

(3) For even (resp. odd) g, the ray 〈D0〉 (resp. 〈D1〉) is an edge of the effective cone.

Proof. Since the T
l

g;1 are isomorphic to each other away from codimension two for 0 < l < g,

the Mori chamber of T
l

g;1 is simply its ample cone. Hence, (1) follows from Theorem 4.6.2.

In the case of l = 0, consider the Maroni contraction T
2

g;1 → T
0

g;1. It is easy to check that the

pullback of the ample ray of T
0

g;1 is the ray 〈D2〉 and the class of the Maroni divisor is a positive

multiple of D0 (in fact D0/4); both statements follow from a simple test curve calculation, which

we omit. Hence 〈D0, D2〉 is the Mori chamber associated to T
2

g;1 → T
0

g;1.

For the last statement, first consider the case of odd g. By Theorem 4.7.4, some positive multiple

of D1 is the pullback of OP1(1) along the cross-ratio map. Hence the ray 〈D1〉 must be an edge of

the effective cone.

For even g, some positive multiple of D0 is the class of the Maroni divisor. Since the Maroni

divisor is the exceptional locus of the birational morphism T
2

g;1 → T
0

g;1, it follows that the ray 〈D0〉

must be the edge of the effective cone. �



CHAPTER 5

Spaces of trigonal curves with a marked (ramified) fiber

The spaces of weighted admissible covers and the spaces of l-balanced covers together provide a

beautiful picture of the birational geometry of the space of trigonal curves with a marked unramified

fiber. The spaces of weighted admissible covers T g;1(ε) give a sequence of divisorial contractions

(5.0.7) T g;1(1)→ · · · 99K T g;1(1/j) 99K T g;1(1/(j + 1)) 99K · · · 99K T g;1(1/(b− 1)),

which is followed by a sequence of flips, given by the spaces of l-balanced covers

(5.0.8) T g;1(1/(b− 1)) = T
g

g;1 99K T
g−2

g;1 99K · · · 99K T
1 or 0

g;1 ,

culminating in a Fano-fibration, as expected from the Minimal Model Program.

In this chapter, we indicate how to generalize the above picture to the case of the space of

trigonal curves with a marked fiber of a given ramification type. To mark such a fiber, we use

pointed orbi-curves, as explained in Remark 1.3.7. Let 1 ≤ r ≤ 3, and let Tg;1/r ⊂ H 3 be the

open and closed substack whose geometric points parametrize covers (P → P ;σ1;φ : C → P), where

Autσ1(P) = µr and C is a connected curve of genus g. If r = 1, then we recover the previous

case. Consider the case r > 1. Let p : Spec k → Tg;1/r be a geometric point given by the cover

(P → P ;σ;φ : C → P). Let C → C be the coarse space and consider the induced cover φ : C → P .

Since C → P is étale around σ and σ is in the smooth locus of P, the curve C is nonsingular over

a neighborhood of σ. Furthermore, since Autσ(P) = µr, the monodromy of C → P around σ is

an r-cycle in S3. Thus, if r = 2, then C → P has ramification type (2, 1) over σ and if r = 3,

then C → P has ramification type (3) over σ. By the Riemann–Hurwitz formula, we see that

deg brφ+ r − 1 = 2g + 4. Set b = 2g + 5− r. Then we have a morphism

Tg;1/r →M0;b,1,

which is proper by Theorem 1.3.8.

136
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The recipe for constructing the first sequence of divisorial contractions analogous to (5.0.7) is

straightforward. Recall that M0;b,1(ε) ⊂ M0,b,1 is the open substack of ε-stable marked rational

curves in the sense of Hassett [18]. In analogy with T g;1(ε), set

T g;1/r(ε) =M0;b,1(ε)×M0;b,1
Tg;1/r.

Then T g;1/r(ε) is a smooth, proper, Deligne–Mumford stack which projective coarse space T g;1/r(ε).

We thus get a sequence of divisorial contractions

T g;1/r(1)→ · · · 99K T g;1/r(1/j) 99K T g;1/r(1/(j + 1)) 99K · · · 99K T g;1/r(1/(b− 1)),

analogous to (5.0.7).

It is natural to wonder if we can continue this sequence by constructing a sequence of flips as in

(5.0.8). In the case of an unramified fiber, such a sequence displayed an interplay between the global

geometry of covers and the local geometry of tri-branch triple points. For the ramified case, should

we expect an analogous interplay between the global geometry of covers and the local geometry of

unibranch or bi-branch triple points? It turns out that this is indeed the case! Again, the key is to

look at the splitting type of the structure sheaf φ∗OC , encoded by a refined Maroni invariant and the

splitting type of a singularity of a cover with concentrated branching, encoded by the µ invariant.

In this short chapter, we construct proper moduli stacks T lg;1/r, which generalize T lg;1 and whose

coarse spaces T
l

g;1/r provide the analogue of (5.0.8). The birational geometry of the resulting spaces

and rational maps can be studied by the same methods as used for the study of (5.0.8) in Chapter 4;

we do not undertake this task.

The chapter is organized as follows. In Section 5.1, we recall some facts about the orbi-curve

(P;σ) with Autσ P = µr, which is the base in our families of triple covers. In Section 5.2, we define

the Maroni invariant for a cover of (P;σ) and relate it to the classical geometry of the induced cover

on the coarse spaces. In this section, we also recall the µ invariant of a cover with concentrated

branching. In Section 5.3, we define l-balanced covers and prove the main theorem. The proof is

by a formal reduction to the case r = 1; there is little extra work.

5.1. The teardrop curve P

In this section, we work over an algebraically closed K field k.
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^ 2π/r

Figure 1. The “teardrop curve” P1( r
√
∞) over C

Consider the orbi-curve P with coarse space ρ : P → P1, where the local picture of ρ over

∞ ∈ P1 is given by

(5.1.1) [Spec k[v]/µr]→ Spec k[x],

where µr acts by v 7→ ζv and x = vr. The curve P can also be described as the root stack

P = P1( r
√
∞)

or as a weighted projective stack

P = [A2 \0/Gm],

where Gm acts by weights 1 and r. The name “teardrop curve” is inspired by the picture for k = C,

where P is imagined to be a ‘pinching’ of the Riemann sphere to make it have conformal angle 2π/r

at ∞ (see Figure 1).

Let ξ ⊂ P be the reduced preimage of ∞ ∈ P1. In the explicit description of P in (5.1.1), this

is the closed substack defined by v = 0. Let L be the dual of the ideal sheaf of ξ in P and set

OP(d) = L⊗dr,

for d ∈ 1
rZ. Thus, L = OP(1/r).

Proposition 5.1.1. With the notation above,

(1) Pic(P) is generated by OP(1/r).

(2) The degree of OP(d) is d, for every d ∈ 1
rZ.

(3) The canonical sheaf (which is also the dualizing sheaf) of P is OP(−1− 1/r).

(4) We have

ρ∗OP1(n) = OP(n), for n ∈ Z,
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and

ρ∗OP(d) = OP1(bdc), for d ∈ 1

r
Z.

(5) Every vector bundle on P is isomorphic to a direct sum of line bundles.

Proof. All of these statements are easy to see, except possibly the last one. The proof for the

case of P1 sketched by Hartshorne [16, V.2, Exercise 2.6] works verbatim. We present the details

for lack of a reference.

Let E be a vector bundle on P. Since the degree of subsheaves of ρ∗E is bounded above, the

degree of subsheaves of E is also bounded above. Let L ⊂ E be a line bundle of maximum degree.

Then the quotient E′ = E/L is locally free. We claim that Ext1(E′, L) = 0. Then E = E′⊕L, and

the statement follows by induction on the rank.

By duality, Ext1(E′, L) = Hom(L(1 + 1/r), E′)∨. Since we have an inclusion Hom(L(1 +

1/r), E′) ⊂ Hom(L(1/r), E′), proving that the latter vanishes implies that the former vanishes. On

one hand, we have the exact sequence

Hom(L(1/r), E)→ Hom(L(1/r), E′)→ Ext1(L(1/r), L) = Hom(L,L(−1))∨ = 0.

On the other hand, we know that Hom(L(1/r), E) = 0 by the maximality of degL. We conclude

that Hom(L(1/r), E′) = 0. �

5.2. The refined Maroni invariant and the µ invariant

We continue working over an algebraically closed K-field k.

5.2.1. The refined Maroni invariant. Denote by P the teardrop curve P1( r
√
∞) as in Sec-

tion 5.1. Proposition 5.1.1 (5) gives us a way to define the Maroni invariant for triple covers of P.

Definition 5.2.1. Let φ : C → P be a triple cover. Set F = φ∗OC/OP . Then we have

F ∼= OP(−m)⊕OP(−n),

for some m,n ∈ 1
rZ. Define the Maroni invariant of φ to be the difference

M(φ) = |m− n|.

Note that the Maroni invariant lies in 1
rZ.



5.2. THE REFINED MARONI INVARIANT AND THE µ INVARIANT 140

The refined Maroni invariant can be read off from the usual Maroni invariant of a new cover

associated to φ : C → P. We now explain this procedure. Choose a point p ∈ P, away from ξ and

define ψ : P̃ → P to be the cyclic cover of degree r branched over p. Explicitly, P̃ is given by

(5.2.1) P̃ = SpecP

(
r−1⊕
i=0

OP(−i/r)

)
,

where the ring structure is given by a section of OP(1) vanishing at p. It is easy to see that P̃ ∼= P1.

Set

C̃ = C ×P P̃

with the induced map φ̃ : C̃ → P̃ .

Proposition 5.2.2. With the above notation, we have M(φ) = M(φ̃)/r.

Proof. By construction, we have ψ∗OP(d) = OP̃ (dr). Since φ̃∗OC̃ = ψ∗φ∗OC , the statement

follows. �

5.2.2. Relation with the gap sequence. At first sight, the refined Maroni invariant seems

to be an artifact of the stacky way of keeping track of ramification. However, it can be described

purely in terms of the geometry of the cover of the coarse spaces. We now describe this connection.

As before, let ρ : P = P1( r
√
∞) → P1 be the teardrop curve. Consider a k-point of Tg;1/r

given by (P → P1;∞; C → P) and let C → P1 be the induced cover on the coarse spaces. To

lighten notation, we treat OC and OC as sheaves on P and P respectively, omitting the pushforward

symbols. Then OC = ρ∗OC . Therefore, if we have the splitting

OC ∼= OP ⊕OP(−m)⊕OP(−n),

then we deduce the splitting

OC ∼= OP1 ⊕OP1(b−mc)⊕OP1(b−nc).

Thus, the splitting type of C → P determines the splitting type of C → P1. For r > 1, however,

it carries a bit more information. Let us understand what sort of extra information is contained in

this refinement. To that end, observe that the data of the splitting type of C → P1 is equivalent to

the data of the sequence 〈h0(OC(l)) | l ∈ Z〉.
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First consider the case r = 3. In this case, the map C → P1 is totally ramified over∞. Denoting

by x ∈ C the unique point over ∞ ∈ P1, we have OC(1) ∼= OC(3x). Therefore, the data of the

splitting type of C → P1 is the data of the sequence 〈h0(OC(3lx)) | l ∈ Z〉. On the other hand, the

data of the splitting type of C → P is precisely the data of the sequence 〈h0(OC(lx)) | l ∈ Z〉. Thus

the refined Maroni invariant encodes the so-called Weierstrass gap sequence of the point x on C.

Now consider the case r = 2. In this case, the map C → P1 has ramification type (2, 1) over

∞. Let the preimage of ∞ be 2x+ y, where x, y ∈ P1. As before, the data of the splitting type of

C → P1 is the data of the sequence 〈h0(OC(l(2x + y)) | l ∈ Z〉. On the other hand, the splitting

type of C → P encodes, in addition, the data of h0(OC(l(2x+ y)− x)) and h0(OC(l(2x+ y) + x)),

for l ∈ Z.

5.2.3. The µ invariant. Let φ : C → P be a triple cover, étale except possibly over a point

p ∈ P different from ξ. In this case, we say that φ has concentrated branching. Define the µ invariant

of φ to be the µ invariant of the singularity of C → P over p as in Subsection 3.2.2.

We recall the definition in the current context. Let ∆ = Spec ÔP,p be the formal disk around p

and set C = C ×P ∆. Let C̃ → C be the normalization. Then C̃ → ∆ is not necessarily étale. We

choose a cover ∆′ → ∆ of degree d such that the normalization of C ′ = C ×∆′ ∆ is étale over ∆′.

Then, by definition, we have

(5.2.2) µ(C → ∆) =
1

r
µ(C ′ → ∆′).

Note that the µ invariant lies in 1
rZ.

As in the case of the refined Maroni invariant, the µ invariant can be read off from that of the

modified cover φ̃ : C̃ → P̃ . We recall the procedure. Define the cyclic cover P̃ → P ramified only

over p, as in (5.2.1). Set

C̃ = C ×P P̃

with the induced map φ̃ : C̃ → P̃ . Let q ∈ P̃ be the unique point over p ∈ P. See that φ̃ : C̃ → P̃

has concentrated branching over q.

Proposition 5.2.3. With the above notation, we have µ(φ) = 1
rµ(φ̃).

Proof. This follows immediately from (5.2.2). �
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5.3. The stack T lg;1/r of l-balanced covers

Having defined the Maroni invariant and the µ invariant for covers of the teardrop curve, we

are ready to formulate and prove the analogue of Theorem 3.3.4. We begin by defining l-balanced

covers. The definition follows Definition 3.2.4 almost verbatim.

Definition 5.3.1. Let l ∈ 1
rZ be non-negative and P ∼= P1( r

√
∞) the teardrop curve with the

stacky point ξ as in Section 5.1. Let φ : C → P be a triple cover, étale over ξ. We say that φ is

l-balanced if the following two conditions are satisfied.

(1) The Maroni invariant of φ is at most l:

M(φ) ≤ l.

(2) If φ has concentrated branching, then its µ invariant is greater than l:

µ(φ) > l.

We can reduce Definition 5.3.1 to the case of an unramified fiber, namely Definition 3.2.4, by

looking at a modified cover C̃ → P̃ . Let p ∈ P be a point contained in br(φ) and P̃ → P the cyclic

cover of degree r branched over p as in (5.2.1). Set

C̃ = C ×P P̃ ,

with the induced map φ̃ : C̃ → P̃ .

Proposition 5.3.2. With the above notation, the cover φ is l-balanced if and only if the cover

φ̃ is rl-balanced in the sense of Definition 3.2.4.

Proof. Combine Proposition 5.2.2 and Proposition 5.2.3. �

Recall that Tg;1/r ⊂ H 3 is the open and closed substack whose geometric points parametrize

covers (P → P ;σ1;φ : C → P), where Autσ1
(P) = µr and C is a connected curve of genus g.

Definition 5.3.3. Define T lg;1/r to be the category whose objects over a K scheme S are

T lg;1/r(S) = {(P → S;P → P ;σ;φ : C → P )},

such that
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(1) (P → S;P → P ;σ;φ : C → P) is an object of Tg;1/r(S);

(2) P → S is smooth, that is, a P1 bundle;

(3) For all geometric points s→ S, the cover φs : Cs → Ps is l-balanced.

Just as in the case of r = 1 (Proposition 3.2.6), it is easy to see that the morphism T lg;1/r →

Tg;1/r is an open immersion.

We now come to the main theorem of this chapter.

Theorem 5.3.4. Let l ∈ 1
rZ be non-negative. Then T lg;1/r is an irreducible Deligne–Mumford

stack, smooth and proper over K.

By the jugglery of modifying a cover C → P to get a cover C̃ → P̃ used many times in

Section 5.2, the major steps in the proof can be reduced to the analogous steps in the case of r = 1.

As a result, little hard work goes into the proof of Theorem 5.3.4.

Proof. We divide the proof into steps.

That T lg;1/r is smooth and of finite type. We have an open immersion

T lg;1/r↪→Tg;1/r.

Denote by M s
0;b,1 ⊂M0;b,1 the open substack parametrizing (P ; Σ;σ) with P smooth. It is easy to see

that M s
0;b,1 is of finite type over K. By the definition of T lg;1/r, the open immersion T lg;1/r↪→Tg;1/r

factors as

T lg;1/r↪→M s
0;b,1 ×M0;b,1

Tg;1/r↪→Tg;1/r.

Since M s
0;b,1 ×M0;b,1

Tg;1/r is smooth and of finite type over K, so is T lg;1/r. The irreducibility

follows from the irreducibility of Tg;1/r.

That T lg;1/r is separated. We use the valuative criterion. Let ∆ = SpecR be the spectrum

of a DVR, with special point 0, generic point η and residue field k. Consider two morphisms

∆→ T lg;1/r given by (Pi → Pi → ∆;σi;φi : Ci → Pi) for i = 1, 2. Let ψη be an isomorphism of this

data over η. We must show that ψη extends to an isomorphism over all of ∆. We may replace ∆

by a finite cover, if we so desire.

Let Σi ⊂ Pi be the branch divisor of φi. By passing to a cover of ∆ if necessary, assume that

we have sections pi : ∆ → Σi which agree over η, that is ψPη ◦ p1|η = p2|η. Denote by ξi ⊂ Pi the
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reduced preimage of σi and consider the cyclic triple cover P̃i → Pi defined by

P̃i = SpecPi

r−1⊕
j=0

OPi(−ξi)

 ,

where the ring structure is given by a section of OPi(rξi)
∼= OPi(pi) vanishing along pi. Set

C̃i = Ci ×Pi P̃i,

with the induced map φ̃i : C̃i → P̃i. The reduced preimage σ̃i of σi gives a section σ̃i : ∆ → P̃i.

By Proposition 5.3.2, (P̃i; σ̃i; φ̃i : C̃i → P̃i) is a family of rl-balanced covers, for i = 1, 2. We have

an isomorphism ψ̃η of this data over η. By the separatedness in Theorem 3.3.4, ψ̃η extends to an

isomorphism ψ̃ over all of ∆. By descent, we conclude that ψη extends to an isomorphism over all

of ∆.

That T lg;1/r is Deligne–Mumford. Since we are in characteristic zero, it suffices to prove

that a k-point (P → P1;∞;φ : C → P) of T lg;1/r has finitely many automorphisms. We have a

morphism of algebraic groups

τ : Aut(P → P1;∞;φ : C → P)→ Aut(P1),

where the group on the left is proper because T lg;1/r is separated and the group on the right is affine.

It is clear that ker τ is finite. Hence the group on the left is finite.

That T lg;1/r is proper. Let ∆ = SpecR be as in the proof of separatedness. Let (Pη →

Pη;ση;φη : Cη → Pη) be an object of T lg;1/r over η. We need to show that, possibly after a finite

base change, it extends to an object of T lg;1/r over ∆.

By replacing ∆ by a finite cover if necessary, assume that we have a section p : η → brφη. Define

the cyclic cover P̃η → Pη of degree r branched over p, as before. Set

C̃η = Cη ×Pη P̃η,

with the induced map φ̃ : C̃η → P̃η and the sections σ̃η : η → P̃η and p̃η : η → P̃η given by the reduced

preimages of ση and pη, respectively. Then (P̃η; σ̃η; φ̃η : C̃η → P̃η) is a family of rl-balanced covers.

By the properness in Theorem 3.3.4, it extends to a family of rl-balanced covers (P̃ ; σ̃; φ̃ : C̃ → P̃ )

over ∆. The idea is to descend C̃ → P̃ down to C → P, extending Cη → Pη.
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We first extend (Pη, ση, pη) over η to (P, σ, p) over ∆ so that P̃ is the cyclic cover of degree

r of P branched over p. For this, note that Pη → η is a P1-bundle. Possibly after replacing

∆ by a ramified cover of degree r, identify (Pη, ση, pη) with (P1
η,∞, 0) via an isomorphism that

induces an isomorphism (P̃ , σ̃, p)
∼−→ (P̃1

∆,∞, 0), where the latter P̃1 ∼= P1 covers the former P1

by [X : Y ] 7→ [Xr : Y r]. Set P = P1
∆ with two sections σ and p given by ∞ and 0, respectively.

Then (P, σ, p) is an extension of (Pη, ση, pη). Setting P = P ( r
√
σ), we get an extension of Pη. Note

that the covering P̃ → P factors through P̃ → P, extending P̃η → Pη, and exhibiting P̃ → P as a

cyclic triple cover of degree r branched over p.

Let Σ ⊂ P be the unique flat extension of the divisor br(φη) ⊂ Pη. Then the preimage of Σ in P̃

is br φ̃. Since the divisor br φ̃ is disjoint from σ̃, the divisor Σ is disjoint from σ. Thus (P ; Σ;σ) is an

object of M0;b,1(∆). By the properness of Tg;1/r →M0;b,1, we have a unique extension φ : C → P.

It remains to prove that the central fiber is l-balanced.

We claim that we have an isomorphism

(5.3.1) C̃
∼−→ C ×P P̃ over P̃ .

Indeed, by construction, we have such an isomorphism over η. Note that C̃ → P̃ and C ×P P̃ are

covers of P̃ , isomorphic over η, and they have the same branch divisor. By the separatedness of

H 3 →M , we conclude that the isomorphism C̃η → Cη ×Pη P̃η extends over ∆, yielding (5.3.1).

Finally, since the central fiber of φ̃ : C̃ → P̃ is rl-balanced, we conclude that the central fiber of

φ : C → P is l-balanced using Proposition 5.3.2.

The proof is now complete. �
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