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1 THE DECOMPOSITION THEOREM

1 The Decomposition Theorem

Perhaps the most successful application of perverse sheaves, and the motivation for their
introduction, is the Decomposition Theorem. That is the subject of this section.

The decomposition theorem is a generalization of a 1968 theorem of Deligne’s, from a
smooth projective morphism to an arbitrary proper morphism.

1.1 The smooth case

Let X = Y × F. Here and throughout, we use Q-coefficients in all our cohomology theories.

Theorem 1.1 (Künneth formula). We have an isomorphism

H•(X) �
⊕
q≥0

H•−q(Y) ⊗ Hq(F).

In particular, this implies that the pullback map H•(X)� H•(F) is surjective, which is
already rare for fibrations that are not products.

Question. Suppose that f : X → Y is a smooth projective morphism (in particular fx : TxX →
T f (x)Y is surjective). If X ⊃ X is some (smooth) compactification of X, then what is the re-
lationship between the images of H•(X) and H•(X) in H•(F)?

Theorem 1.2 (Cohomological Deligne Decomposition Theorem). Let f : X → Y be a
smooth projective map of complex algebraic manifolds. Then

H•(X) �
⊕
q≥0

H•−q(Y,Rq f∗Q).

Remark 1.3. This is surprising because it fails if one takes any smooth bundle: as we
know, the failure is measured by the Leray spectral sequence. The content of this theorem
is that the spectral sequence degenerates on the E2 page. It is specific to the realm of
complex algebraic geometry (and fails for real algebraic geometry or complex geometry,
for example).

The answer to the question posed above is furnished by the Global invariant cycle
Theorem, which in turn follows from this theorem of Deligne.

Here Rq f∗Q is the qth direct image sheaf, which is locally constant but not constant in
general. It is the sheafification of the presheaf U 7→ Hq( f −1(U)).

Theorem 1.4 (Ehresmann). If f is smooth and proper, then f is a fiber bundle.

Ehresmann’s Theorem implies that on a small enough open subset (where the bundle is
trivialized) Rq f∗Q is a constant sheaf. Therefore, Rq f∗Q is a locally constant sheaf. On the
other hand, a locally constant sheaf is equivalent to the data of a representation of π1(Y).
Intuitively, for a loop on Y we have an action on the fiber obtained by tracing out the loop.
This is a linear action, hence defines a representation of π1(Y).
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1 THE DECOMPOSITION THEOREM

By Deligne’s Theorem, we have a surjective map HqX � H0(Y,Rq). By a simple
exercise, the restriction map identifies H0(Y,Rq) � (Rq

y)π1(Y) ⊂ Rq
y . In particular, the image

of H•(X) in H•(F) is π1-invariant.

Theorem 1.5 (Global invariant cycle theorem). Under the maps H•(X)) → H•(X) →
H•(F) induced by the inclusions F ↪→ X ↪→ X, we have that Im H•(X) coincides with
Im H•(X) in H•(F) as H•(F)π1(Y).

While the first characterization follows from Deligne’s theorem, this follows from that
plus input from the theory of mixed Hodge structures. Since X admits a p, q Hodge de-
composition, this implies that H•(F)π1 also has a p, q Hodge decomposition. This is quite
striking because that is a topological construction.

1.2 Generalization to singular maps

We now want to state a more general cohomological decomposition theorem. To do so, we
need to introduce the intersection cohomology groups, denoted IH•(X). These groups agree
with H•(X) when X is smooth, but not in general.

There is a battery of results when X is projective, generalizing the usual nice properties
from the smooth case.

• Poincaré duality: a perfect pairing IH•(X) × IHn−•(X)→ IHn(X).

• Lefschetz hyperplane theorem: a relation between intersection cohomology of X and
that of a hyperplane section.

• Hard Lefschetz theorem: the action of cupping with η ∈ H2(X) the first chern class
of an ample line bundle is an isomorphism from IH•−n to IH•+n.

This theory is very flexible: it involves the input of a locally constant sheaf. If X◦ ⊂ Xreg
is an open smooth subset and L is a locally constant sheaf on X◦, then we have intersection
cohomology groups IH•(X, L). These satisfy again Poincaré duality, Lefschetz hyperplane
theorem, and Hard Lefschetz theorem under suitable hypotheses on L.

One can’t hope for a naïve version of the decomposition theorem.

Exercise 1.6. To see why, resolve the cone over an elliptic curve.

Theorem 1.7 (Cohomological Decomposition Theorem). We have an isomorphism

IH•(X) �
⊕

q

⊕
(S ,L)∈Eq

IH•−q(S , L)

where Eq ranges over “enriched subvarieties” consisting of pairs (S , L) where S ⊂ Y is a
closed subvariety and L a local system on S ◦.

Deligne’s cohomological decomposition theorem is a special case where the (S , L) are
(Y,Rq).
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1 THE DECOMPOSITION THEOREM

Exercise 1.8. See what this says in the case of a blowup.

If you take a small ball By centered at y ∈ Y , then H•( f −1By) � H•( f −1y). Take a good
point y0 ∈ Y0 lying in the image of the ball, so this admits a map H•( f −1By)→ H•( f −1y0).

Theorem 1.9 (Local invariant cycle theorem). The image of H•( f −1y0) in H•( f −1y) consists
of the π1(Y, y) invariants.

This follows from the cohomological theorem. The proof of the first theorem is purely
cohomological, but the only known proofs of the second theorem use the derived category
and perverse sheaves.

1.3 The derived category

Let f : X → Y be a projective morphism and K a complex of sheaves on X. Then R f∗K is a
complex on Y . Consider the cohomology sheavesHq(R f∗K) = Rq f∗K as before.

Why might one study this? Because we have the (tautological) identity H•(Y,R f∗K) =

H•(X,K). For example, if the direct image complex splits, then we get:

Theorem 1.10 (Deligne’s Theorem in the derived category). If f : X → Y is smooth and
projective, then

R f∗QX �
⊕
q≥0

Rq f∗QX[−q].
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1 THE DECOMPOSITION THEOREM

Furthermore, the sheaves Rq f∗QX[−q] are semisimple.

Remark 1.11. Deligne’s proof is by a trick showing that Hard Lefschetz on fibers splits the
direct image sheaf. There is another proof by Deligne’s theory of weights, by considering
the triangle

R0 f∗Q→ R f∗Q→ R1 f∗Q[−1].

This is classified by an element of Ext1(R1 f∗Q[−1],R0 f∗Q). The weight of R0 f∗Q is 0 and
the weight of R1 f∗Q is 1, but after shifting we have that the weight of R1 f∗Q[−1] is 0. So
the weight of Ext1(R1 f∗Q[−1],R0 f∗Q) is 1. (We are passing to a finite field situation.) On
the other hand, since this can all be defined over some finite field, it is preserved by some
power of Frobenius, meaning that it also has weight 0. That is only possible if the extension
is trivial.

Now we discuss the decomposition theorem in the derived category. There are in-
tersection cohomology groups IH(S , L) = H•(S ,ICS (L)) where ICS (L), the intersection
complex of S with coefficients in L, is some complex of sheaves on S .

Theorem 1.12 (Decomposition Theorem). Let f : X → Y be proper. Then

R f∗ICX �
⊕
q≥0

⊕
(S ,L)∈Eq

ICS (L)[−q].

with L semisimple.
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2 PERVERSE SHEAVES

2 Perverse Sheaves

2.1 The constructible category

Let X be a complex variety. Denote by Shv(X,Q) be the category of sheaves of Q-vector
spaces on X, and by Db(Shv(X,Q)) the bounded derived category of Shv(X,Q).

Definition 2.1. A sheaf F on X is constructible if there exists a stratification X =
∐

Xα into
locally closed non-singular subsets such that F|Xα is locally constant of finite rank (i.e. a
local system).

Definition 2.2. The constructible derived category of sheaves of Q-vector spaces on X is
the full subcategory D(X) ⊂ Db(Shv(X,Q)) whose objects are complexes K with H i(K)
constructible for all i.

Stability. One reason we like the constructible derived category is that it is stable under all
the reasonable operations on sheaves that we meet in algebraic geometry.

• If f : X → Y is a morphism, then R f∗,R f! : D(X)→ D(Y) preserve constructibility.

Remark 2.3. This was implicitly used last time when we discussed why for a proper
map f : X → Y ,

f −1Uy //

��

X

��
Uy // Y

then for y ∈ Y , there exists a neighborhood Uy of y such that

H•( f −1Uy) = H•( f −1y).

Constructibility allows us to talke about “standard neighborhoods Uy(ε)” such that
Hi(Uy(ε),K|Uy(ε)) is “constant in ε.”
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2 PERVERSE SHEAVES

• Another form of stability is under Verdier duality. Namely, there is a duality D(X)opp ∼−→

D(X). If K ∈ D(X), then we denote by K∨ the dual of K, and it satisfies

H•(U,K∨) � H−•c (U,K)∨.

Exercise 2.4. Using this, guess for a smooth manifold X what K∨ should be for
K = QX (answer: Q∨ = Q[2 dim X].)

Examine a singular space to see that this guess cannot hold in general. The reason is
that cohomology is invariant under homothety, so the cohomology around a singular
point is concentrated in degree 0. However, cohomology with compact supports is
sensitive to singularities.

• Also, we have stability under RHom,⊗, etc.

2.2 Perverse sheaves

We will build a (full) subcategory P(X) ⊂ D(X), the category of perverse sheaves. Before
describing them formally, we state some of their properties.
Exercise 2.5. Check that D(X) is not abelian, because it doesn’t admit kernels (since kernels
are forced to split in the derived category, it suffices to produce an indecomposable object
with a morphism with non-zero kernel).

Before we begin the formalism, we discuss some properties that perverse sheaves enjoy
over constructible sheaves.

Artinian. There is an analogy of P(X) with the category of finite dimensional vector spaces.
Indeed, the latter is abelian and noetherian, and so is the category of constructible sheaves
(and hence also P(X)). However, the category of constructible sheaves is not artinian,
whereas P(X) and the category of finite dimensional vector spaces are. This is an important
property which is gained by passing to perverse sheaves.

Artin Vanishing Theorem. Let X be an affine smooth variety of dimension n. Then
H•(X,Q) = 0 if • < [0, n]. Artin generalized this to constructible sheaves F : if X is
affine then H•(X,F ) has the same property. However, there is no vanishing theorem for
compactly supported cohomology. But there is a salvage of Artin’s vanishing theorem to
P(X), for both ordinary and compactly supported cohomology.

Lefschetz Hyperplane Theorem. It is known that the Lefschetz hyperplane theorem fol-
lows formally from Artin’s vanishing theorem (which we shall see later). Since Artin’s
vanishing theorem fails for singular spaces, we don’t get Lefschetz for such spaces, but we
do if we restrict our attention to perverse sheaves.

Poincaré Duality. We get a form of Poincaré duality for perverse sheaves.

Now we are ready to start describing the definition of perverse sheaves.
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2 PERVERSE SHEAVES

Example 2.6. We have C0 ⊂ C1 ⊂ C2. Then a perverse sheaf on C2 is

OC2[2] ⊕ OC1[1] ⊕ OC0[0].

Definition 2.7. K ∈ D(X) satisfies the conditions of support if

dim suppH−i(K) ≤ i

Example 2.8. The complex in Example 2.6 above wouldn’t be perverse if we put in a sum-
mand of OC2[1], since itsH−1 is supported on all of C2.

Definition 2.9. A constructible complex of sheaves K is in P(X) if K and K∨ satify the
conditions of support. By Verdier duality, this is equivalently to K satisfying the conditions
of support and also

dim suppH i
c(K) ≤ n − i.

Example 2.10. In Cn, OCn[n] ∈ P(Cn), and no other shift is perverse.

Exercise 2.11. If X is the cone over a projective manifold, verify that OX[n] has condi-
tions of support, but not conditions of cosupport (by computing the compactly supported
cohomology in the neighborhood of the cone point). ♠♠♠ TONY: [TODO]

2.3 Proof of Lefschetz Hyperplane Theorem

Theorem 2.12 (Artin Vanishing theorem). Let X be affine and P ∈ P(X). Then H>0(X, P) =

0 and H<0
c (X, P) = 0.

Exercise 2.13. Assume the Artin Vanishing theorem for constructible sheaves. Using the
Grothendieck spectral sequence Hp(X,Hq(P)) =⇒ Hp+q(X, P), deduce the Artin Vanish-
ing theorem for perverse sheaves.

Theorem 2.14. Let X be quasiprojective and H ⊂ X a general hyperplane section. Then
for P ∈ P(X) we have that the map induced by restriction

Hi(X, P)→ Hi(H, P|H)

is an isomorphism if i < −1 and injective if i = −1.

Proof. The long exact sequence of a pair in algebraic geometry is promoted in the derived
category to a distinguished triangle. Namely, if we have j : U ↪→ X ←↩ Z : i, with U open
and Z closed, then we get a distinguished triangle

R j! j! → Id→ Ri∗i∗

so on cohomology we get the sequence
For simplicity, we will assume that X is projective. Then in the long exact sequence of

cohomology, we get

H•(X,R j! j!P)→ H•(X, P)→ H•(H, P|H).
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2 PERVERSE SHEAVES

Let’s change to cohomology with compact supports, which doesn’t have any effect on the
sequence above because X is compact. However, it is still useful because it highlights the
compatibility with R f!: just as H•(Y,R f∗K) � H•(X,K) (cleary with the derived functor
definition) we have H•c (Y,R f!K) = H•c (X,K). So the long exact sequence becomes

H•c (Y,R j! j!P) H•(X, P) H•(H, P|H)

H•+1
c (Y,R j! j!P) . . .

δ

Now, H•c (X\H, P|X−H) vanishes in negative degrees by Artin’s Vanishing Theorem, because
X − H is affine. That implies the result. �

Exercise 2.15. Show that Shvc(X) is noetherian. Show that this implies that P(X) is noethe-
rian. Since P(X) is closed under duality (−)∨, which exchanges the ACC and DCC, P(X) is
Artinian.

This means that we have the Jordan-Hölder theorem.

Theorem 2.16. For all P ∈ P(X), there exists a finite increasing filtration

0 ⊂ . . . ⊂ Pi ⊂ Pi+1 ⊂ . . . ⊂ P

such that Pi+1/Pi are simple in P(X).

Perhaps the single most important property of perverse sheaves is that we can even
characterize the simple objects, which are the intersection cohomology sheaves.

Theorem 2.17. If P ∈ P(X) is simple, then there exists a unique pair (S , L) with S ⊂ X
closed and irreducible and S ◦ ⊂ S reg ⊂ S and L a local system on S such that P = ICS (L).
Conversely, if L is simple then ICS (L) is simple.

Remark 2.18. There are some confusing notation conventions. We denote ICS (L) :=
ICS (L)[dim S ]. The complex ICS (L) is in positive degrees, but is not perverse; ICS (L)
is perverse.

2.4 Perverse t-structure

Let K ∈ Db(X). There are truncation functors τi such that

τ≤i+1K →︸︷︷︸
H i(K)[−i]

τ≤iK → . . .

For A→ B→ C a distinguished triangle, we get a long exact sequence in cohomology

. . .→ H i(A)→ H i(B)→ H i(C)→ H i+1(A)→ . . .

9
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A t-structure is an abstraction of a truncation functor. There is a perverse t-structure

pτ≤i+1K →︸︷︷︸
pH i(K)[−i]

pτ≤iK → . . .

leading to perverse cohomology sheaves pH i(K)[−i]. For a distinguished triangle

A→ B→ C,

we again get a long exact sequence of perverse cohomology sheaves

. . .→ pH i(A)→ pH i(B)→ pH i(C)→ pH i+1(A)→ . . .

such that pH i(K[ j]) = pH i+ j(K).

Example 2.19. If K =
⊕

Pi[−i], then pH i(K) = Pi.

We know by semisimplicity that

R f∗ICX(M) �
⊕
i∈Z

⊕
(S ,L)

ICS (L)

 [−i]

and the Decomposition Theorem tells us that

R f∗ICX(M) �
⊕
i∈Z

pH i(R f∗ICX[m])[−i]

which is in complete analogy to Deligne’s theorem. In particular, if X is non-singular then
we recover

R f∗QX �
⊕
q≥0

pH i(R f∗Q)[−i]

2.5 Intersection cohomology

Now, we move on to defining the intersection cohomology sheaves. ICX was originally
defined using a Whitney stratification of X. Starting with a local system on an open stra-
tum, you take a (derived) pushforward across the next layer of strata and then truncate, to
get τ≤?R j∗(?). Then you keep doing this, with ? changing according to some precise recipe.
This was the original definition of MacPherson and Goresky, following a suggestion of
Deligne.

ICS (L) as an intermediate extension. There is another construction of ICS (L).

1. Start with (S ◦, L) and consider j : S ◦ ↪→ S . Then you can take R j∗L[?], with the shift
arranged to make the result perverse. To simplify notation, we’re going to ignore the
shift from now on (but it’s essential).
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2 PERVERSE SHEAVES

2. There is a map R j!L→ R j∗L, since we always have a morphism of functors j! → j∗.
Then by passing to an injective resolution, you get a morphism of functors R j! → R j∗.

3. Taking cohomology, you get a map H0(R j!L) → H0(R j∗L). Since we are in an
abelian category, we get a factorization

H0(R j!L) a //

%% %%

H0(R j∗L)

Im a
+ �

99

We then define ICS (L) := Im a.

Example 2.20. Let Vd ⊂ PN be a projective variety, and Y its projective cone. If U ⊂ Y is
the complement of the cone point, then U is smooth and τ≤dR j∗QU = ICY .

By one of the exercises, R0 j∗QU = QY and Ri j∗QU = Hi(U)prim. You can compute that
H iICY is the primitive cohomology of V for i = 1, . . . , d, and then vanishes.

Exercise 2.21. Show that if you truncate one step later, the sheaf is not self-dual. The
truncation is precisely what’s needed for a self-dual object.
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3 SEMI-SMALL MAPS

3 Semi-small Maps

3.1 Examples and properties

Semi-small maps are a class of maps that behave especially nicely with respect to push-
fowards of perverse sheaves.

Example 3.1. The Springer resolution Ñ → N is semi-small.

This is a special case of a general theorem of Kaledin that holomorphic symplectic
resolutions are automatically semi-small.

X holomorphic symplectic

��
Y singular

In the case of the Springer resolution, Ñ is the cotangent bundle of the flag variety, hence is
symplectic.

Example 3.2. Hilbert schemes of surfaces X[n] π
−→ X(n) are semi-small.

Definition 3.3 (First definition). Let X be smooth and f : X → Y a proper surjection. Then
we say that f is semi-small if dim X ×Y X ≤ dim X.

This is a slick but somewhat opaque definition.

Definition 3.4 (Second definition). Let S k ⊂ Y be the locally closed subscheme of fiber
dimension k:

S k = {y ∈ Y | dim f −1y = k}.

Then f is semi-small if dim S k + 2k ≤ dim X, i.e. codim S k ≥ 2k .

Example 3.5.
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3 SEMI-SMALL MAPS

The blowup of a point in C2 is semi-small. The blowup of a point in C3 is not semi-small.
The blowup of a line in C3 is semismall.

The important property is of semi-small maps is: that the pushforward of perverse
sheaves along semi-small maps is perverse.

Example 3.6. Let X be the blowup of P2 at a point σ. Consider R f∗QX[2]. You can compute
that

R−2 f∗QX[2] � QY

R−1 f∗QX[2] = 0,

R0 f∗QX[2] � Qσ
Ri f∗QX[2] = 0 i > 2.

So is the support condition satisfied? We want to know if

dim suppH−i(R f∗QX[2]) ≤ i?

The only point with non-trivial higher cohomology is σ, and indeed that has dimension ≤ 0,
as required.

Also, R f∗QX[2] is self-dual because we had the duality (QX[2])∨ � QX[2] before push-
forward (as X was smooth), and duality exchanges R f∗ with R f!, which are the same if f is
proper:

(R f∗F )∨ � R f!(F ∨)
f proper

= R f∗(F ∨)

Proposition 3.7. If f : X → Y is semi-small, then R f∗QX[dim X] ∈ P(Y).

3.2 Lefschetz Hyperplane and Hard Lefschetz

Recall that we proved the following form of the Lefschetz Hyperplane Theorem:

Theorem 3.8 (Lefschetz Hyperplane Theorem). If Y is quasiprojective and H is a general
hyperplane in Y, then for P ∈ P(Y) we have that

Hi(Y, P)→ Hi(H, P|H)

is an isomorphism for i ≤ −2 and an injection for i = −1.

We can get more in the setting of a semi-small map. Let f : X → Y be semi-small and
H a general hyperplane section. Then P := R f∗QX[dim X] is perverse by Proposition 3.7,
so we have that

Hi(Y,R f∗QX[dim X])→ Hi(H,R f∗QX[dim X]|H).

is an isomorphism for i < −1 and an injection for i = −1. Now what is R f∗QX[dim X]|H?
Consider the fiber diagram

XH
� � //

g
��

X

f proper
��

H �
� // Y

13



3 SEMI-SMALL MAPS

so by proper base change we have Rg∗(|XH ) = (R f∗)|H . Then we have a commutative dia-
gram

Hi(Y,R f∗QX) // Hi(H,R f∗QX |H)

Hi(X,Q) // Hi(H,Rg∗QXH )

Hi(X,Q) // Hi(X|H ,Q)

Now, the top map is an isomorphism for i < dim Y − 1 and an injection for i = dim Y − 1,
so we deduce the same of the bottom map. This gives a Lefschetz Hyperplane Theorem for
semi-small maps.

Theorem 3.9. Let f : X → Y be a semi-small map where Y is quasiprojective. If H denotes
a generic hyperplane section of Y and XH the pre-image in X, then the restriction map

Hi(X,QX[dim X])→ Hi(XH ,QX[dim X])

is an isomorphism for i < −1 and an injection for i = −1.

Since we have just proved that semi-small maps enjoy a version of the Lefschetz Hy-
perplane Theorem, why not go on and ask if they satisfy a version of the Hard Lefschetz
Theorem?

Example 3.10. Consider the blowup of P2 at a point, and the blowup of P3 at a point. We
ask if cupping with the ith power of the hyperplane class is an isomorphism Hn−i → Hn+i.

In the case of Blp(P2), the assertion is vacuous on H2 and works on H0 → H4, since the
square of the hyperplane class is the fundamental class of the point.

14
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For Blp(P3), cupping does not induce an isomorphism H2 → H4 since the class of the
hyperplane misses the exception divisor, so [H] · [E] = 0.

In the example we saw that Hard Lefschetz formula held when the map was semi-small,
and not failed when it wasn’t. This is a general phenomenon.

Theorem 3.11. Let f : X → Y be a semi-small map and H an ample line bundle on Y. If
L = f ∗H, then Hard Lefschetz holds for L if and only if f is semi-small.

Proof. We argue by induction. Fix a hyperplane section H ⊂ Y and consider the pullback:

XH
� � //

��

X

��
H �
� // Y.

This induces

Hd−iX Li
//

i∗ �
��

Hd+iX

Hd−iXH // Hd+i−2XH

i! �

OO

The Lefschetz Hyperplane Theorem implies that i∗ and i! are isomorphisms for i ≥ 2.
Thinking in homology, the map on the left is induced by intersecting with XH ↔ L, and the
upper map is induced by intersecting with Li, so the bottom horizontal map is L|i−1

H .

Hd−iX Li
//

i∗ �
��

Hd+iX

Hd−iXH �

L|i−1
H // Hd+i−2XH

i! �

OO

Note that the map XH → H is still semi-small for general H, because cutting with a general
hyperplane changes neither the fiber dimensions nor the codimension. Therefore, by the
induction hypothesis the bottom map is an isomorphism, hence so is the top.

When we reach i = 1, we have an interesting coincidence because the bottom two
groups become the same:

Hd−1X L //� s

i∗ %%

Hd+1X

Hd−1XH

i!

99 99

We want to argue that L is an isomorphism. We’ve exhibited as a composition of an injection
and a surjection, but of course this isn’t enough: for instance, why isn’t the composition i!◦i∗
zero? There are two ways to see this.
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3 SEMI-SMALL MAPS

One is Deligne’s theorem on monodromy. Indeed, consider moving H in a pencil. This
presents X as a fibration over P1 minus a finite set of bad points, with fibers being the
hyperplane sections. If we denote by π the projection map {XH} → P

1, then Deligne’s
Theorem tells us that the monodromy Rqπ∗ is semisimple. Therefore, (Rqπ∗)π1 is a direct
summand.

But we know another description of (Rqπ∗)π1 : it is Im Hq(X) ⊂ Hq(X|H) by the global
invariant cycle theorem. So we have

Rqπ∗ = (Rqπ∗)π1 ⊕ . . . .

Now, consider the intersection form on Hd−1XH , which is non-degenerate. The intersection
form is compatible with this splitting, so by linear algebra the intersection form in non-
degenerate on the image in Hd−1(X) ↪→ Hd−1(XH). In particular, if if aH is in the image
then there is some b ∈ Im Hd−1(X) ↪→ Hd−1(XH) such that

0 ,
∫

XH

a|XH ^ b|XH =

∫
X

L ^ a ^ b.

This shows that cupping with L is injective, and its image admits a perfect pairing with
Hd−1(X) via the cup product, so it must be surjective too. �

3.3 Decomposition Theorem

Definition 3.12. Let S k ⊂ Y . Suppose dim S k + 2k ≤ dim X. We say that S k is relevant if
equality holds.

Consider the higher direct image R2k f∗QX with 2k = dim X−dim S k, i.e. Rdim X−dim S f∗QX .
By passing to a dense open subset on the target, we may assume that this sheaf is locally
constant. Then

(Rdim X−dim S f∗QX)s � H2k( f −1(s))

16



3 SEMI-SMALL MAPS

and has a canonical basis (because it is top dimensional) consisting of the fundamental
classes of irreducible components of dimension 2k. (See the exercises.) In particular if S k

is not relevant, then this is 0.
Let A be the set of strata on Y and Arel the relevant strata. For all a ∈ Arel, we have an

enriched variety (S a,Rdim X−dim S a =: La).

Theorem 3.13 (Decomposition theorem for semi-small maps). If f is semi-small, then we
have

R f∗Qx[dim X] �
⊕
a∈Arel

ICS a
(La).

Remark 3.14. La is a semisimple representation of π1(S a), which is actually a finite group.
More precisely,

La =
⊕

χ∈Irr(π1(S a))

La,χ ⊗ Ma,χ.

This allows us to rewrite the conclusion of the theorem as

R f∗Qx[dim X] �
⊕

a

⊕
χ

ICS a
(La,χ ⊗ Ma,χ).

This has the following important consequence.

Question. If S ,T ⊂ Y then what are maps ICS (L)→ ICT (M)?

Proposition 3.15 (Schur’s Lemma for IC sheaves). If S , T, and L,M are local systems
on S and T , respectively, then there are no non-zero maps ICS (L) → ICT (M). If S = T,
then all such maps are induced by maps L→ M.

Fact. Another property of intersection cohomology is that if Z ⊂ T is a proper subvariety,
then intersection cohomology on T has no quotient or subobjects supported on Z. (However,
it could have subquotients supported on Z.)

Proof. Indeed, if we had any non-zero map ICS (L) → ICT (M) then the kernel or cokernel
would be supported on S ∩ T , hence 0.

If S = T , then by the same argument any map of IC sheaves is induced by a map
L→ M. �

In particular, if S = T and L = M then we find that End(ICS (L)) � End(L). If L is
simple, then End(L) is a Q-division algebra.

Exercise 3.16. (Warm-up) Recall that B (the Borel subgroup of GL2) is not semisimple.
Use this to prove that for the projection map P1 × P1 → P1, we have R f∗QP1×P1 = K where
End(K) is not semisimple. ♠♠♠ TONY: [TODO]

17



3 SEMI-SMALL MAPS

Theorem 3.13 tells us that R f∗QX[dim X] is semisimple. Therefore,

EndP(Y)(R f∗QX[dim X]) =
∏

End(La,χMa,χ).

Now End(La,χ) is a division algebra, so End(La,χMa,χ) is a matrix algebra over a division
algebra, hence semisimple by Artin-Wedderburn.

Here’s an application. We know that the group algebra Q[W] is semisimple. In fact, it
coincides with End(Rπ∗QÑ), where π : Ñ → N is the Springer resolution. . The fact that
they are the same contains the Springer correspondence (see the notes of Zhiwei Yun). The
geometric interpretation is

End(Rπ∗QÑ) � HBM
2 dimN (Ñ ×N Ñ).

How does this work? Fix a cohomology class γ ∈ HBM
2 dimN (Ñ ×N Ñ), which we want

to interpret as an element of End(Rπ∗QÑ). For α ∈ H•(Ñ,Q
Ñ

) we can pull back α to a
cohomology class of Ñ ×N Ñ and then cap with γ to get another class in H•(Ñ,Q

Ñ
). If we

interpret this endomorphism as an element of the Weyl group algebra, then we obtain the
Springer correspondence.

18



4 THE DECOMPOSITION THEOREM

4 The Decomposition Theorem

4.1 Symmetries from Poincaré-Verdier Duality

Let f : X → Y be a proper map. Consider an intersection complex ICX(M), where M is self-
dual local system (in the sense of representations). Then it is simple to observe that ICX(M)
is also self-dual. There are many ways to see this, for instance: ICX(M) is characterized by
being the unique (up to isomorphism) perverse sheaf extending M with the properties:

• ICX(M)|X◦ = M[dim X]

• dim suppH−iICX(M) < i for i ∈ [− dim X + 1, . . . ,−1, 0], and the support condition
for the dual ICX(M)∨.

Since the dual of ICX(M) also clearly satisfies the above properties, we see that ICX(M) is
self-dual.

Therefore, R f∗ICX(M) is self-dual (using that f is proper), by the functoriality of
Verdier duality. The decomposition theorem tells us that

R f∗ICX(M) �
⊕
b∈Z

⊕
S∈Vb

ICS (L)[−b]

Here we’ve conglomerated all the IC sheaves coming from local systems on S into L, so
that L is semisimple (not necessarily simple). We know that the left hand side is self-dual,
so the right hand side should be as well:

R f∗ICX(M)∨ �
⊕
b∈Z

⊕
S∈Vb

IVS (L)[−b]∨

�

⊕
b<0

⊕
Vb

ICS (L)[−b]

 ⊕ (
⊕

V0

ICS (L)) ⊕

⊕
b<0

⊕
Vb

ICS (L∨)[b]


This presentation is called the “BBD symmetry” of the decomposition theorem.

Theorem 4.1. Let f : X → Y be a proper, surjective morphism of pure relative dimension
d with X smooth. Let S be a subvariety in Y appearing in the Decomposition Theorem for
R f∗QX[dim X]. Then codimY (S ) ≤ d.

Proof. There is a largest b ∈ Z, call it b+
S , such that some local system supported on S ap-

pears in R f∗QX[dim X]. By the BBD symmetry, this b+
S is non-negative (since if ICS (L)[−b]

appears, then so does ICS (L∨)[b]). So for some local system L, we have that ICS (L)[−b+
S ]

is a direct summand of R f∗QX[dim X].
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4 THE DECOMPOSITION THEOREM

By definition, there is some dense open subset S ◦ ⊂ S on which L is a local system.
Then we can consider

XU //

��

X

��
U // Y

S ◦ //

OO

S

OO

By proper base change, the decomposition is preserved by restriction to U. On U, we
obviously have ICS (L)|U � L, so we have that L[dim S ][−b+

S ] is a direct summand of
R f∗QXU [dim X]. In particular the cohomology sheaf Hb+

s −dim S R f∗QXU [dim X] has L as a
summand. By proper base change again, we have for s ∈ S

(Hb+
s −dim S R f∗QXU [dim X])s � Hdim X+b+

s −dim S ( f −1(s))

and dim f −1(s) = d. Therefore, the index dim X + b+
s − dim S is at most 2d, so

dim X − dim S + b+
S ≤ 2d.

Since b+
S is non-negative, and dim X = dim Y + d, we find that

dim Y + d = dim X − dim S ≤ dim X − dim S + b+
s ≤ 2d.

�

Remark 4.2. What happens when we have equality? Then S ⊃ S ◦ such that R2d f∗Q has
as a direct summand a sheaf supported on S . So what? The point is that the sheaf R2d f∗Q
is a sheaf of sets, whose stalks are the generated by the fundamental classes of the fibers,
which is a fairly accessible description. Thus even if L has complicated monodromy, it can
be realized inside a relatively simple sheaf.

IfM is self-dual, then applying the perverse cohomology sheaves to the identity

R f!ICX(M)∨ � (R f∗ICX(M))∨

gives
pH−b(R f!ICX(M)) � pHb(R f∗ICX(M))∨ .

This is the classical expression of Poincaré-Verdier duality.

4.2 Hard Lefschetz

Let X be a smooth projective manifold and η ∈ H2(X,C) the class of an ample divisor. Then
Poincaré duality says that

Hd−i(X) � (Hd+i(X))∨
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4 THE DECOMPOSITION THEOREM

and Hard Lefschetz says that

Hd−i(X)
ηi

−→ Hd+i(X).

These offers the same identification of Betti numbers, but the second theorem tells us more:
by the primitive decomposition, it implies unimodality of the Betti numbers (i.e. they in-
crease monotonically until half the dimension, and then decrease monotonically).

Now suppose f : X → Y is a projective morphism and η ∈ H2(X,Q) is the first Chern
class of a line bundle N on X which is ample on the fibers of f . Then η corresponds to a
map

QX
η
−→ QX[2].

Tensoring with K, we get a map
K

η
−→ K[2].

That induces R f∗K
η
−→ R f∗K[2], hence pHi(R f∗K)

η
−→ pHi+2(R f∗K). Iterating, we get

pH−b(R f∗K)
ηb

−−→ pHb(R f∗K) for all b ≥ 0.

Theorem 4.3 (Relative Hard Lefschetz). The map

pH−b(R f∗)
ηb

−−→ pHb(R f∗)

is an isomorphism for all b ≥ 0.

Taking f to be the projection to a point, we obtain the Hard Lefschetz Theorem for
IH•(X,Q) for projective X.

Surprise application. There is a surprising application of intersection cohomology to a
conjecture of McMullen. To a rational, simplicial polytope P in Rd one can associate a
face vector f (P) = ( f0, f1, . . . , fd−1), and to a face vector one can associate a corresponding
h-vector h(P) = (h0, . . . , hd).

McMullen made a conjecture concerning which vectors can be the face vectors of a
polytope. He conjectured that necessary and sufficient properties for an f -vector to be the
f -vector associated to a polytope were that the corresponding h-vector satisfied hi = hd−i,
and unimodality.

For any such vector, one can conjecture that there is a projective variety with these Betti
numbers. It was proved by geometric methods that the conditions were sufficient. For the
necessity, from P we can construct a simplicial, projective toric variety XP. Then Stanley
showed that this variety has ICXP = QXP[dim XP], and that the h-vector is the vector of Betti
numbers of XP. This completes the proof of McMullen’s conjecture.
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4 THE DECOMPOSITION THEOREM

4.3 An Important Theorem

Theorem 4.4. Let f : X → Y be a proper morphism. Then IC f (X) is a direct summand of
R f∗ICX .

An important special case is when f is a resolution of singularities, where it says that
IH•(Y) is a direct summand of H•(X).

Remark 4.5. The direct sum decomposition is not canonical. However, there is something
canonical here, which we try to explain. Recall that we have

τ≤iK → K

inducing H•(Y, τ≤iK)) ⊂ H•(Y,K). You can do the same thing with perverse cohomology:

pτ≤iK → K

indces H•(Y, τ≤iK)) ↪→ H(Y,K).
There is a perverse filtration P on H•(K). If K = R f∗C, then P is called the perverse

Leray filtration (in analogy with the usual Leray filtration).
The decomposition theorem tells you the associated graded of the perverse filtration :

Pi+1/Pi = H•(Y, pHi(R f∗ICX)).

The non-canonical nature of the direct sum decomposition is precisely the non-canonical
nature of the vector space isomorphism between a filtered vector space and its associated
graded.

This means that the intersection cohomology downstairs isn’t canonically a summand
of the cohomology upstairs, but a subquotient.

Proof. First reduction: by replacing Y by f (X), we may assume that f is surjective. Then
we need to show that ICY is a direct summand of R f∗ICX .

There are three ingredients:

Step 1: IC localization principle. Consider ICS (L). We claim that for all open subset
U ⊂ Y meeting S , we have

ICS∩U(L|S ◦∩U) � ICS (L)|U .

The content here is a theorem that if L is a local system on S ◦ ⊃ (S ◦)′ and L′ = L|(S ◦)′
then ICS (L) � ICS (L′). This is not a tautology, but it does follow immediately from the
characterization of IC sheaves that we gave at the beginning of the section.

Step 2: IC normalization principle. If X̂ → X is a normalization, then ν∗ICX̂ = ICX .
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4 THE DECOMPOSITION THEOREM

Since ν is finite, Rν∗ = ν∗. This follows again from the conditions of support and by
restricting the morphism to an open dense set where it is an isomorphism.

Step 3: Decomposition Theorem localization principle. ICS (L) appears as a summand in
the decomposition theorem if and only if ICS (L)|U appears on some U meeting S in the
decomposition theorem applied to f −1(U)→ U.

This is obvious from the decomposition theorem (including its uniqueness), but with-
out it is very deep. (Go back to the example of the Hopf surface to see that it fails without
delicate hypotheses.)

Now we commence the proof. By the Decomposition Theorem,

R f∗ICX �
⊕
q≥0

⊕
(S ,L)∈Eq

ICS (L)[−q].

Let’s throw away all the proper closed subsets of Y , since they don’t matter for our purpose.
Replacing Y with the complement of all proper subvarieties S appearing in the decomposi-
tion theorem, we have

R f∗ICX �
⊕
q≥0

⊕
L

ICY (L)[−q].

Shrinking Y again, we may assume that each ICY (L) is even a local system. So then

R f∗ICX �
⊕

q

Lq[−q].

In particular, we have that ICY = QY . Now we can replace X by the normalization,

X̂

f̂ ��

ν // X

f
��

Y

since R f̂∗ICX̂ = R f∗Rν∗ICX̂ = R f∗ICX . This allows us to assume that X is normal, hence
that QX

∼
−→ H0ICX is an isomorphism (the normalization is necessary because this will fail

if X has branches - consider the normalization of a nodal curve).
We always have a map QX → ICX , but because QX � H

0(ICX) we get that

QX → ICX → τ≥1ICX

is a distinguished triangle, so pushing it down gives

R f∗QX → R f∗ICX → R f∗τ≥1ICX ,

hence R0 f∗QX � H0R f∗ICX . This reduces to showing that QY is a direct summand of
R f0ICX � R0 f∗QX . That is nice, because we can get a handle on f∗QX .
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4 THE DECOMPOSITION THEOREM

Now Stein factorize X → Y into

X
g
−→ Z

h
−→ Y

where h is finite and g has connected fibers. This reduces to the case where f is finite or f
has connected fibers. When f has connected fibers, we’re done because then (R0 f∗QX)s �

H0( f −1(s),QX) � QX , which shows that R0 f∗QX � QY .
Finally, we consider the case where f is finite. We want to show that f∗QX has QY as

a direct summand. But if we can shrink again until Z → Y is a topological covering, this
will be obvious. In characteristic 0, this is easy. In characteristic p, factor Z → Y into
inseparable and étale parts, and notice that the inseparable part is irrelevant. The étale part
then follows from a standard trace argument. �
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5 The Perverse (Leray) Filtration

5.1 The classical Leray filtration.

Let π : E → B be a fiber bundle. Suppose we have a filtration on the base, perhaps coming
from a CW complex structure. If Bp is the pth skeleton, and the filtration is

. . . ≤ Bp ≤ Bp+1 ≤ . . .

such that Bp/Bp−1 =
∧

S p, then we get a spectral sequence H•(Bp, Bp−1) =⇒ H•(B).
The differentials all vanish, so this actually degenerates to a complex, which is the familiar
cellular complex.

This is all more interesting if you pull the filtration back to the total space. Then you
get an honest spectral sequence H•(Ep, Ep−1) =⇒ H•(E). On the first page, one gets
H•(Bp, Bp−1) ⊗ H•(F). On the second page one gets H•(B,H(F)), which is the Leray
spectral sequence.

The point is that you can show that the Leray filtration L?H•(E) can be described as the
kernel of the restriction maps H•E → H•E?. We won’t figure out the indices explicitly. We
just want to emphasize the story of how the filtration arose: by finding a filtration on the
base, which lifted to a filtration on the total space.

5.2 The perverse filtration

We want to replicate this picture in the context of algebraic geometry and perverse sheaves.

Example 5.1. Let Y be the cone over P1 × P1 ↪→ P3 and X be the big blow up, so its
exceptional fiber is P1 × P1.

Then R f∗QX � Qv[−2]⊕ICY ⊕Qv[−4]. The firstQX[−2] can be thought of the fundamental
class of the exceptional divisor, and the other skyscraper is the H4 of the exceptional divisor.
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5 THE PERVERSE (LERAY) FILTRATION

From an exercise on the problem sheets, we know that H2X � Q, generated by the
primitive second cohomology in E � P1 × P1.

Remark 5.2. This was all in non-perverse notation. To make things perverse, we would
have to shift by dimC X = dimC Y = 3. Recall that ICY [−3] = ICY .

So we have by the decomposition theorem,

R f∗ICX �
⊕

pHb[−b].

In Example 5.1 above we had b = 2, 3, 4.
From the truncation functors pτ≤i, for all K on X we get a perverse Leray filtration on

P• ⊂ H•(X,K) by taking the images of H•(Y, pτ≤iR f∗K) ⊂ H•(X,K).

Definition 5.3. If K := R f∗ICX , and ϕ is a choice of decomposition then we define the
perverse Leray filtration by

PbH•(X,K) = ϕ

⊕
b′≤b

H•−b′(Y, pHb′(R f∗K))

 .
Although ϕ is not natural, the filtration is.

Going back to Example 5.1, the perverse filtration in degree 2 is morally given by
Qv[−2], and in degree 3 by Qv[−2] ⊕ ICY .

2 3 4
R f∗QX Qv[−2] ICY Qv[−4]

How do we actually describe the filtration intrinsically? In the classical Leray filtration, we
lifted a filtration on the base to a filtration on the total space. Can we try to do something
similar here?

Example 5.4. Consider as in Example 5.1 Y = the affine cone over P1 × P1 in C4.
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5 THE PERVERSE (LERAY) FILTRATION

Choose general A3,A2,A1,A0 inside A4, and filter by cutting:

(Y = Y0) ⊃ (Y1 = Y ∩ A3) ⊃ (Y2 = Y ∩ A2) ⊃ (Y ∩ A1) ⊃ Y4 = ∅.

Now let’s try pulling this all back to X, so we get a filtration

X = X0 ⊃ X1 ⊃ X2 ⊃ X3 ⊃ X4 = ∅.

We know that P2H2(X) � H2(Y,Qv[−2]) and P3H2(X) � H2(Y,Qv[−2]) ⊕ H2(Y,ICY ).
We want to describe P3H2(X) as the kernel of some map, which must be the zero map.

Looking above at the H2 of the filtration, we see that ♠♠♠ TONY: [TODO: verify this]

X0 X1 X2 X3 X4

H2(Xi) Q ⊕ Q Q 0 0 0

So if we want P3H2(X) to be realized as the kernel of a restriction to some filtered piece, a
natural choice is X2: we set

P3H2(X) := ker(H2(X)→ H2(X2)).

This suggests a guess that PbH2(X) = ker(H2(X) → H2(Xb−2+1)). Let’s check this in the
next case: is H2(Y,Qv[−2]) � P2H2(X) = ker H2(X) → H2(X1)? We claim so. Indeed, this
restriction map may be identified with

H2(Y,Qv[−2]) ⊕ H2(Y,ICY )→ H2(Y1,Qv[−2]) ⊕ H2(Y1,IC|Y1).

The map on first factors is 0, because Y1 is the intersection with a general hyperplane, which
doesn’t even meet v. The map on second factors is injective by the Lefschetz Hyperplane
Theorem. So the kernel is indeed identified with H2(Y,Qv[−2]).

We can extrapolate the general formula from this example:

PbH• = ker(H• → H•|Xb−•+1).

Theorem 5.5. Let Y be affine in AN (or more generally, quasiprojective) and f : X → Y be
any map. If K ∈ D(X), then for all general flags Y• of linear sections of Y, we have

PbH•(X,K) = ker(H•(X,K)→ H•(Xb−•+1,K|Xb−•+1).

Remark 5.6. We do not assume that f is proper or that K splits, and the result is non-trivial
even if f is the identity morphism!

Proof sketch in a special case. Suppose K =
⊕

Qb[−b] where Qb ∈ P(Y). Let Y• ⊂ Y be
a filtration on some Yn ⊂ AN . Then

H•(Y,C) �
⊕

b

H•−b(Y,Qb).
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Consider the filtered piece Pb, which is the image of the boxed summands below:

. . . ⊕ H•−b+1(Y,Qb−1) ⊕ H•−b(Y,Qb) ⊕ H•−b−1(Y,Qb+1) ⊕ . . . (1)

We want to show that Pb can be distinguished by the Artin Vanishing theorem and the
Lefschetz Hyperplane Theorem. We have a restriction map from(1) to the cohomology of
YK :

. . . ⊕ H•−b+1(Yk,Qb−1|Yk ) ⊕ H•−b(Yk,Qb|Yk ) ⊕ H•−b−1(Yk,Qb+1|Yk ) ⊕ . . .

The Artin Vanishing theorem says that the restriction map kills the boxed groups to the
left of a certain k. If we knew that Qb+1|Yk were perverse, then the Lefschetz hyperplane
theorem implies the restriction map is injective on the groups right of a certain k. It turns
out that the correct k is precisely − • +b + 1.

Thus, the proof will be completed if we can that the restriction of a perverse sheaf to
a general hyperplane section is still perverse. For Q on Y , and a H ⊂ Y , does Q|H[−1]
satisfy the conditions of support? It turns out that Q|H[−1] satisfies conditions of support in
general, but not the conditions of cosupport. However, if H is general then you do get the
conditions of cosupport. (This isn’t easy to see.) Iterating, we find that for general choices
Q|Yk [−k] ∈ P(Yk).

Remark 5.7. It is always true that the restriction of a simple perverse sheaf (admittedly a
very strong condition, which doesn’t apply here) to any divisor is perverse.

We want to show that restriction to H•−b+ε(Yb−•+1,QY ) is 0 if ε ≥ 0. But this is just
the cohomology of QYb−•+1[• − b + ε][b − • + 1], so Artin Vanishing implies that this whole
group is 0 for any ε ≥ 0.

�

5.3 Hodge-theoretic implications

For compactly supported cohomology, there is a dual story.

Corollary 5.8. For Y quasiprojective and f : X → Y any map, the spectral sequence

Ep,q
2 = Hp(Y, pRq f∗Q) =⇒ Hp+q(X,Q)

is a spectral sequence in the category of mixed Hodge structures.

Then PbH(X,Q) has a sub-mixed Hodge structure, hence so does the quotient PbH(X,Q)/Pb−1H(X,Q).
If f is proper and X is smooth, then this quotient is precisely

PbH(X,Q)/Pb−1H(X,Q) � H•(Y, pHb) =
⊕

IH•(S , L).

Since the left hand side has a mixed Hodge structure, a natural question if if we can put a
mixed Hodge structure on each IH•(S , L) such that this is even an isomorphism of mixed
Hodge structures.
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Said differently, can we choose ϕ : R f∗ICX �
⊕
ICS (L) such that ϕ : IH(S , L) →

IH(X) is a map of mixed Hodge structures? The answer is yes.
Let’s go to the situation of the decomposition theorem: let f : X → Y be proper, so we

know that there exists ϕ such that

ϕ : IH•(X) �
⊕
q>0

⊕
(S ,L)

IH•−q(S , Lq) of mixed Hodge structures.

So we can form a projection map

IH•(X) π //

&& &&

IH•(X)

ϕIH(S , LQ)
+ �

88

Since X is smooth projective, the map π : H•X → H•X is equivalent to a cohomology class
π ∈ H2 dim X(X × X). Since the maps are compatible with the Hodge structures, furthermore
know that π is a Hodge (n, n) class.

According to the Hodge conjecture, any such class is algebraic. We might ask if we can
see this in this special construction. However, that appears to be very hard.

Remark 5.9. If X → Y is the resolution of a cone over a projective manifold, then one of
these classes π being algebraic implies the Grothendieck standard conjecture of Lefschetz
type. However:

1. The answer is known for semi-small maps.

2. Pick an automorphism σ : C
∼
−→ C which induces Xσ

fσ
−−→ Yσ, and also H•(X × X)

∼
−→

X•(Xσ × Xσ). This destroys the Q-structure and the p, q decomposition.

Deligne has introduced a notion of “absolute Hodge” classes which remain Hodge
under Galois. One can ask if our classes π are absolute Hodge. One can show that ϕ
can be chosen so that π 7→ πσ, so it is the case that π is absolute Hodge.
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