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Introduction

The 21st of Hilbert’s problems was about finding a proof of the existence
of linear differential equations having a prescribed monodromic group. The
problem itself was solved very early (a first solution appeared in 1908), but
in recent times the theory of D-modules brought attention to the topic again,
and provided a generalization to every dimension and in the derived context,
the Riemann-Hilbert correspondence. This amazing result connecting alge-
braic and analytic geometry was proved independently by Kashiwara ([3])
and Mebkhout ([4]) in 1980, and it is stated in terms of an equivalence of
categories between derived categories of regular holonomic D-modules and
of constructible sheaves. In this minor thesis, we will define all such objects,
and give a sketch of the proof of the correspondence in the case of an alge-
braic variety, illustrating everything with some examples (but missing many
proofs on the way). Notations and structure will follow those from [2].
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1 The theory of algebraic D-modules

In this section we will describe the theory of D-modules on a smooth alge-
braic variety X, following step by step the theory of coherent sheaves. In
that case, the central role is played by the sheaf of commutative rings OX ;
let’s define the main object in this case, the sheaf of differential operators.

1.1 Definitions and examples

Definition 1.1. On a smooth algebraic variety X, the sheaf of differential
operators is the sheaf of (noncommutative) graded rings DX generated inside
EndCX

(OX(U)) by OX and the sheaf of derivations (that is, the tangent
sheaf).

This sheaf is quasicoherent, and there is a natural grading on it, given
by the filtration

OX = F0DX ⊆ F1DX ⊆ . . . ⊆ FnDX ⊆ . . . ⊂ DX
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where FkDX has sections ξ such that [fk, . . . , [f1, [f0, ξ]]] = 0 where f0, . . . , fk ∈
OX . The associate graded sheaf of commutative rings grDX is canonically
isomorphic to π∗OT ∗X , for π the projection T ∗X → X from the cotangent
bundle of X.

Example 1.2. If X = Anxi , the sheaf of derivation (the tangent sheaf) is
free of rank n, generated by n sections ∂1, ∂2, . . . , ∂n; as OX -module, so, DX

is generated by monomials in ∂1, ∂2, . . . , ∂n; its global sections are given by
the ring

C[x1, . . . , xn, ∂1, . . . , ∂n]

with commutation relationships [xi, xj ] = 0, [∂i, xj ] = δij and [∂i, ∂j ] = 0.
We can see (and this is a general fact) that the filtration is just given by
the order of differential operators; the graded module has space of global
section the commutative ring

C[x1, . . . , xn, y1, . . . , yn]

that is, exactly coming from A2n
xi,yi , the total space of T ∗X.

Definition 1.3. A left (resp. right) D-module is a sheaf M of left (right)
DX-modules; in fact, it is sufficient to specify the action of OX and ΘX .
We will denote by Mod(DX) the category of left D-modules.

Key example 1.4. Let ξ be a differential operator, and let’s consider the
left D-module DX/(DX ·ξ); in this case, the sheafHomDX

(DX/(DX ·ξ),OX)
is the sheaf of solutions of the differential equation ξf = 0 as sections of OX .
Riemann-Hilbert correspondence is just a generalization of this fact; there
is a “solution functor” that serves as an equivalence of categories between
“sufficiently nice” D-modules and some “sheaves of solutions”.

Key example 1.5. If a D-module M is locally free of finite rank (as OX -
module), we will call it integrable connection, and the category of such ob-
jects will be called Conn(X); indeed, this is precisely the algebraic counter-
part of vector bundles with a flat connection. In this case, we can describe
explicitly the Riemann-Hilbert correspondence; given an integrable connec-
tion M , we can construct a sheaf of vector spaces, also called local system,
corresponding to horizontal or parallel sections, that are, sections on which
the connection vanishes; conversely, given such a sheaf L (that is not an
OX -module, just of C-modules), we can get an integrable connection con-
sidering OX ⊗CX

L, that inherits a natural DX -module structure; this two
functors gives us the equivalence between Conn(X) and Loc(X), the cate-
gory of local systems (this is indeed not entirely correct; the definitions and
a precise statement will follow in chapter 3).
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Remark 1.6. As the structure sheaf OX has a natural structure of left
D-module, the canonical line bundle ΩX =

∧dim(X) T ∗X has a natural
structure of right D-module; in this way, if M is a left D-module we have
a right module structure of ΩX ⊗OX

M ; this gives in fact an equivalence of
categories between left and right D-modules.

Definition 1.7. A coherent D-module is a D-module that is finitely gener-
ated over DX ; a quasi coherent D-module is one that is quasi-coherent as
OX-module (that is, a quasi coherent sheaf). We will denote by Modc(DX)
(resp. Modqc(DX)) the category of coherent (resp. quasi-coherent) D-
modules, and by Db

c(DX) (resp. Db
qc(DX)) the derived category of bounded

complexes having as cohomology coherent D-modules (resp. quasi-coherent)
D-modules.

We will see that coherent D-modules behave, in some sense, better that
coherent sheaves.

1.2 Functors

Given a map between smooth algebraic varieties f : X → Y , we will define
functors of inverse image and direct image of D-modules; a little bit of
attention between left and right modules should here be paid. Let’s first see
what happens to the sheaf of differentials.

Definition 1.8. We will denote by DX→Y the sheaf

f∗DY = OX ⊗f−1OY
f−1DY .

This is a left DX module, and a right f−1DY module.

This double module structure allows us to pass from a DY -module struc-
ture to a DX -module structure; in fact, this module is called transfer mod-
ule. As an example, if X → Y is a closed embeding, then DX→Y is the
DX -module containing OX and formal derivatives in the normal directions
in Y .

Definition 1.9. Given M ∈ Mod(DX), his inverse image is defined as
f∗M = DX→Y ⊗f−1DY

f−1M .

The left DX -module structure on f∗M is given by the left action on
DX→Y , and the tensor product “cancels” out the two (right and left) f−1DY

actions.
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Proposition 1.10. This functor is right exact, and his derived functor Lf∗

sends Db
qc(DY ) to Db

qc(DX). Moreover, we will call

f † = Lf∗[dimX − dimY ].

Lf∗ does not send Db
c(DY ) to Db

c(DX), as for instance happens for closed
embeddings; the derivatives in the normal directions gives here an infinite
set of generators, so in this case DX→Y = f∗DY is not DX -coherent.

To define direct image, a little more work is needed. The main issue
here is that direct image is more naturally defined as functor between right
modules; a reason for this can be found thinking at what happens in the C∞

setting: functions (a natural left C∞-module) can be pulled back, distribu-
tions (a natural right C∞-module) can be pushed forward integrating along
fibers; this will be reflected in the notation we will use for direct image.
What we need to do for a left module is to reduce to the right module case,
taking the natural direct image, and then going back to a left module, using
remark 1.6.

Definition 1.11. If M is a right DX module, then his direct image is
f∗(M ⊗DX

DX→Y ).
If M is a left DX module, then his direct image is∫

f
M = f∗((ΩX ⊗OX

M)⊗DX
DX→Y )⊗OY

Ω⊗−1
Y .

Calling DY←X = ΩX⊗OX
DX→Y ⊗f−1OY

f−1Ω⊗−1
Y , and using the projection

formula, we get finally ∫
f
M = f∗(DY←X ⊗DX

M)

If M · is a complex, then we define∫
f
M · = Rf∗(DY←X ⊗LDX

M)

Example 1.12. If f : {0} → A1
x, let’s consider

∫
f O{0}; its direct image can

be seen as a distribution supported in the point, and is the left D-module
DA1/(DA1 · x); in fact, the formal solution in distribution theory to the
equation x · f = 0 (it would be better to express it as f · x = 0) is Dirac’s
delta δ0.
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Key example 1.13. Let i : Z → X be a closed embedding; then the func-
tors i† and

∫
i are inverse one each other, giving an equivalence of categories

between Db
h(DX , Z) of DX -modules supported in Z, and Db

h(DZ): this is
called Kashiwara equivalence. This allows us also to define D-modules
on singular algebraic varieties, after an embedding in smooth ones, as D-
modules with constrained support.

The proof of the following fact is surprisingly nontrivial.

Proposition 1.14.
∫
f sends Db

qc(DY ) to Db
qc(DX); if f is proper, then

∫
f

sends Db
c(DY ) to Db

c(DX).

Last functor in this section will be duality. A duality functor is not
really present in the theory of coherent sheaves; it would be useful as part of
a theory including also a functor f! of direct image with compact support,
to get a Verdier duality type statement f! = DY ◦ f∗ ◦ DX . The problem is
that in the category of O-modules the functor f∗ maps coherent sheaves into
quasicoherent sheaves, and duality is not defined for quasicoherent sheaves,
and we would not be able to compose DY to f!. In the case of D-modules,
however, we do have a partial result in this direction: we just saw that if
f is proper f∗ does preserve coherent objects in this category. We will see
in next section that refining more the condition on D-modules (considering
holonomic ones instead of just coherent) we will get all of this straight.

Definition 1.15. Let M · is an element of D−(DX), then its dual is the
element of D+(DX) defined as

DM · = RHomDX
(M ·, DX)⊗OX

Ω−1
X [dX ].

The reason for the shifting relies again in the theory of holonomic D-
modules, that we are about to present. The reason of the tensor product
by Ω−1

X is, of course, because otherwise we land in right D-modules; the left
module structures on M · and DX get canceled out by the RHom functor, so
the only module structure remaining is the right one on DX . The following
proposition is now not totally unexpected.

Proposition 1.16. Duality functor preserves Db
c(DX), and on Db

c(DX) we
have D2 = Id.

The following is a tecnical fact that we will need in the future, that
relates the derived homomorphism functor to the dual just defined.
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Lemma 1.17. We have the following isomorphisms

RHomDX
(M ·, N ·) ∼= ((ΩX ⊗LOX

DXM ·)⊗LDX
N ·)[−dx].

Note that on this sheaf is not anymore defined any DX -module structure
or OX -module structure, because they get canceled out; this is in fact just
a sheaf of vector spaces. This will come out again in chapter 3.

1.3 Holonomic D-modules

The definitions in this subsection are fundamental in order to achieve Riemann-
Hilbert correspondence. First, we need to define a subclass of objects, that
are, in some sense, those on which it makes more sense to consider their
“solutions”, that are, holonomic D-modules. To define them we first need
to introduce the notion of singular support.

Definition 1.18. Given M a coherent D-module, we can consider its graded
module grM ; this is naturally a coherent sheaf over the total space of the
cotangent bundle T ∗X. Its support is called the singular support SS(M),
a subvariety of T ∗X. A D-module is called holonomic if the dimension
of all irreducible components of SS(M) is the same as the dimension of X,
or if SS(M) is empty. We will call Modh(X) the category of holonomic
D-modules, and Db

h(DX) the category of complexes having as cohomology
holonomic modules.

Example 1.19. If M is an integrable connection, then SS(M) is just the
zero section of T ∗X (potentially with a nonreduced structure), that is, X,
so it is holonomic.

Example 1.20. For the D-module DA1/(DA1 · x) from example 1.12, the
singular support is the whole fiber of T ∗A1

C over the origin; the D-module
is then holonomic.

Example 1.21. If Z
i−→ X is a closed embedding and M is an integrable

connection on Z, then
∫
iM is an holonomic D-module; in fact, its singular

support is Z and his whole conormal bundle inside T ∗X; the dimension is
then dZ + (dX − dZ) = dX .

One fundamental property of holonomic D-modules is that they are a
“very stable” subcategory.

Proposition 1.22. Direct and inverse image preserve Modh(DX) and Db
h(DX).

Duality preserves Db
h(DX), and in particular the dual complex of an holo-

nomic D-module has only cohomology in degree 0, that is another holonomic
D-module.
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Note that the last statement of this proposition is the reason for which
we added the shifting [dX ] to the definition of dual D-module; in this way,
the dual is a functor Modh(DX)→Modh(DX).

Example 1.23. We will show an example in which holonomic D-modules
behave better than coherent sheaves. Consider the open embedding

U = A1 \ {0} j−→ A1 = X,

and let’s consider
∫
j OU . Given that DX←U = DU , we have that the direct

image as D-module correspond, as a sheaf, to the direct image as coherent
O-module, that is, OX [x−1]; now, this is not anymore a coherent O-module,
but it is a coherent D-module; in fact, using notation of the example 1.4,
this module is the cyclic left D-module DX ·x−1 ∼= DX/(DX · ∂xx); one can
see it by the fact that the function x−1 is actually killed by the operator
∂xx.

Given this, we actually are in a better setting than coherent sheaves; we
can give two more straight definitions.

Definition 1.24. Let f : X → Y a morphism of smooth algebraic varieties;
we define functors ∫

f !

= DY
∫
f
DX : Db

h(DX)→ Db
h(DY )

f? = DXf †DY : Db
h(DY )→ Db

h(DX)

These functors provide adjoint functors to f † and
∫
f .

Proposition 1.25. For M · ∈ Db
h(DX) and N · ∈ Db

h(DY ), we have natural
isomorphism

RHomDY

(∫
f !

M ·, N ·
)
∼−→ Rf∗RHomDX

(M ·, f †N ·)

Rf∗RHomDX
(f?N ·,M ·)

∼−→ RHomDY

(
N ·,

∫
f
M ·
)
.

Proof. We will prove this fact, because the proof of Riemann-Hilbert cor-
respondence will be a proof of this kind. We have the following chain of
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isomorphisms

Rf∗RHomDX
(M ·, f †N ·)[−dX ] ∼=

∼= Rf∗((ΩX ⊗LOX
DXM ·)⊗LDX

f †N ·)[−dX ] ∼= (1.17)
∼= Rf∗((ΩX ⊗LOX

DXM ·)⊗LDX
DX→Y ⊗Lf−1DY

f−1N ·)[−dY ] ∼= (1.9)
∼= Rf∗((ΩX ⊗LOX

DXM ·)⊗LDX
DX→Y )⊗LDY

N ·[−dY ] ∼=
∼= (ΩY ⊗LOY

∫
f DXM

·)⊗LDY
N ·[−dY ] ∼= (1.11)

∼= (ΩY ⊗LOY
DY DY

∫
f DXM

·)⊗LDY
N ·[−dY ] ∼= (1.16)

∼= (ΩY ⊗LOY
DY
∫
f !M

·)⊗LDY
N ·[−dY ] ∼= (1.24)

∼= RHomDY
(
∫
f !M

·, N ·). (1.17)

The second statement can be obtained by dualizing the first.

1.4 Minimal extensions

Let’s conclude this introduction giving a more concrete description of holo-
nomic D-modules, in order to get generators of the category Db

h(DX). Let’s
start with a theorem characterizing holonomic modules in two other ways.

Theorem 1.26. Let M ∈ Modc(DX) be a coherent D-module; then the
following are equivalent:

• M ∈Modc(DX) ;

• there exists a stratification of X

X = X0 ⊃ X1 ⊃ . . . ⊃ Xm ⊃ Xm+1 = ∅

by closed subvarieties such that the spaces Xk \Xk+1 are smooth and

the sheaves Hj(i†kM) are all integrable connection, where ik is the
inclusion of Xk \Xk+1 into X;

• for every point x ∈ X the cohomologies Hj(i†xM) are finite dimen-
sional vector spaces, where ix is the inclusion of x in X.

So, for every holonomic D-module M , we have an open set U ⊆ X
such that the restriction j†M is an integrable connection; more in general,
considering the support Y (as a sheaf) of M , we have an open set V ⊆ Y
such that the restriction to V is a positive rank integrable connection.

Now, we can try to work in the other way, trying to build up D-modules
by pushing forward integrable connections from locally closed subsets. This
fact comes out to be true, after the definition of a third kind of direct image
of D-modules, that in some sense lies between

∫
f and

∫
f !; to define it, we

need a preparatory lemma.
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Lemma 1.27. Given a locally closed embedding i : V ↪→ X and an holo-
nomic D-module M on V , we have a natural map∫

i!

M →
∫
i
M.

Proof. We have isomorphisms

HomDb
h(DY )(

∫
f !
M ·,

∫
f
M ·) ∼= HomDb

h(DY )(M
·, i†

∫
f
M ·) ∼= HomDb

h(DY )(M
·,M ·)

where the first one is given by the adjunction formula 1.25; about the second
one, it comes from f †

∫
f M

· ∼= M · that is true both for closed embeddings (by

Kashiwara equivalence, example 1.13) and for open embeddings (by coherent
sheaf theory), and indeed a locally closed embedding is a composition of
them. Then, a natural element can be chosen corresponding to the identity
in the right hand side.

Definition 1.28. In this setting, the image of this natural map will be called
minimal extension of M in X.

Example 1.29. Let’s consider again the pushforward∫
j
OU = DX/(DX · ∂xx)

in Example 1.23. In this way we get a decomposition

0→ OX → DX/(DX · ∂xx)→ DX/(DX · x)→ 0

telling us that this module is not simple, and has a submodule isomorphic
to OX , that still restricts to OU in U ; note that the cokernel is the “Dirac’s
delta” D-module in example 1.20, supported in 0 (hence, outside U). So, if
we are looking for an extension of OU that is “minimal”, we should take OX
instead of

∫
j OU ; in fact, we will see now that OX is the minimal extension

we have just defined. It is easy to see that∫
j!
OU = DX/(DX · x∂x),

and that we have a decomposition

0→ DX/(DX · x)→ DX/(DX · x∂x)→ OX → 0.

Now, the map
∫
j!OU →

∫
j OU is the one having Dirac’s module as both

kernel and cokernel, and its image is precisely OX , as we wanted to show.
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So, we are ready to give a structure theorem for holonomic D-modules.

Theorem 1.30. Let X be a smooth variety. Then

(i) Every holonomic D-module M is of finite lenght, meaning that every
sequence of submodules of M is finite.

(ii) For an exact sequence of coherent D-modules

0→M ′ →M →M ′′ → 0

we have that M is holonomic if and only if M ′ and M ′′ are.

(iii) Every simple holonomic D-module is the minimal extension of an in-
tegrable connection on a locally closed subset V of X.

Remark 1.31. We saw that for the embedding of the punctured affine line
in the affine line, the minimal extension of the structure sheaf is still the
structure sheaf. This holds more in general; if the closure V̄ of a locally
closed V in X is smooth, than the minimal extension of OV in X is the
same as the minimal extension of its closure, OV̄ . If V̄ is not smooth,
otherwise, the minimal extension of OV on V̄ will be a complex, whose
name is intersection cohomology sheaf.

2 Analytic D-modules

In this section we are going to say something about D-modules in the ana-
lytic setting; these will serve as “bridge” in the Riemann-Hilbert correspon-
dence between algebraic D-modules and “sheaves of solutions” that will be
defined in the following section. The present section is meant to be a gentle
introduction (avoiding as much as possible technical details) to the analytic
setting for people with a more algebraic background. Let’s start with one
example, that should show why it is really necessary to go in the analytic
category.

Key example 2.1. Let’s consider the algebraic D-modules on the punc-
tured affine line

DX/(DX · (x∂x − λ)) λ ∈ C \ Z.

Notice that varying λ these modules will not be isomorphic each other. The
associated differential equation is xf ′ = λf , whose local solutions are the
determinations of the function xλ; the sheaf

HomDX
(DX/(DX · (x∂x − λ)),OX)
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is only the zero sheaf, because there are no regular functions satisfying the
differential equation, and futhermore they wouldn’t be defined over Zariski
open sets. So, to have this solution functor to really remember the structure
of the original D-module, we have to include analytic solutions, and pass
to the analytic topology on X; for this reason, we are going to show in
this chapter the theory of analytic D-modules. We will come back to this
example later.

2.1 Definitions and examples

Let X be a complex manifold, with topology inherited from the Euclidean
topology in Cn. On X we have the sheaf of holomorphic functions OX ,
and the sheaf of holomorphic tangent vector bundles ΘX ; as in the previous
section, we define DX as the subsheaf of the sheaf of rings EndCX

(OX)
generated by OX and ΘX . We will see that the theory of D-modules built
on this objects is surprisingly similar to the algebraic one.

Example 2.2. If X = C, then global sections of OX are converging power
series in one variable C[[z]]; we can then find also holomorphic functions like
ez and sin(z) that are not global sections in the algebraic case, because they
are not regular, meaning, algebraic; the problem of finding regular functions
among holomorphic ones is a task that can be better achieved compactifying
X (in this case, to the projective line, and checking which one have a pole of
finite order at infinity); we will see again such an issue when defining regular
D-modules, that will be the main aim of section 4.

Definition 2.3. Given a complex manifold X, a left (resp. right) analytic
D-module on X is a sheaf of left (resp. right) DX-modules. The category of
left D-modules will be denoted again by Mod(DX).

We have the following facts/definition in parallel with the algebraic case.

• There is a filtration {FiDX}i≥0 of DX such that the graded module
is the same as the (sheaf) pushforward π∗OT ∗X ; for every D-module,
we have a filtration {FiM}i≥0, and the support SS(M) in T ∗X of
the graded module grM is called the singular support of M ; if the
dimension of SS(M) if either 0 or dX , and M is coherent, than we will
call the module holonomic.

• A D-module that is locally free of finite rank will be called integrable
connection.
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• The tensor product (over OX) by ΩX =
∧dX Θ∗X gives an equivalence

of categories between left and right D-modules.

• Given a morphism of complex manifold f : X → Y , we define as in
the previous section the modules DX→Y and DY←X , and functors

f∗ : Mod(DY )→Mod(DX)∫
f

: Mod(DX)→Mod(DY ).

• CoherentD-modules are defined in the same way, as well asModc(DX),
Modh(DX), Db

c(DX), Db
h(DX) and the derived functors f † = Lf∗[dX−

dY ] and
∫
f

f † = Lf∗[dX − dY ] : Db(DY )→ Db(DX)∫
f

: Db(DX)→ Db(DY ).

• Dual D-modules are defined in the same way, and in Db
c(DX) duality

is an involution.

In the analytic setting, holonomic modules are preserved under duality
and inverse image.

Theorem 2.4. Let M be an holonomic D-module on a complex manifold
X. Then the dual DXM has only cohomology in degree 0, and is another
holonomic D-module. More in general, duality preserves Db

h(DX).

Theorem 2.5. Let f : X → Y be a morphism of complex manifolds, then
f∗ preserves Modh(DX) and f † preserves Db

h(DX).

For direct image, this is not true anymore, as the following example
shows.

Example 2.6. Let again j : C∗ → C be the open embeddinge, and let’s
pushforward the sheaf of holomorphic functions on C∗. Now, the pushfor-
ward is not anymore OC[z−1], because in global sections we can find also
functions with essential singularity at 0, such as e1/z; the module

∫
j OC∗ is

so not even a coherent D-module anymore (as it would be the D-module
OC[z−1], for the same reason as in example 1.23).

We actually have a partial result in this direction, if the morphism is
proper and another technical hypothesis holds (the module has to admit a
so called good filtration for the map).
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2.2 Algebraic to analytic

As we saw, we are going to use analytic D-modules as bridge to Riemann-
Hilbert correspondence; so, let’s describe how one can pass from algebraic
D-modules to analytic D-modules.

Let X be an algebraic variety, Xan the complex manifold of its closed
points. Despite the very different topologies, we have a continuous map of
topological spaces ι : Xan → X, and a morphism of sheaves (on X) OX →
ι∗OXan , that injects regular sections into holomorphic sections in Zariski
open subsets; the data of these two morphisms is exactly the definition of
a map between locally ringed spaces (Xan,OXan)→ (X,OX). In the other
direction, consider the sheaf ι−1OX on Xan: sections of it are harder to
describe, because on every (Euclidean) open set U , sections are direct limits
of sections of OX in Zariski open sets containing U . It’s easy to see that we
also have a canonical morphism ι−1OX → OXan of sheaves on Xan, and in
the same way a canonical morphism ι−1DX → DXan . Using this morphisms,
we get functors

Mod(OX)
an−→ Mod(OXan)

F 7−→ F an = OXan ⊗ι−1OX
ι−1F

Mod(DX)
an−→ Mod(DXan)

M 7−→ Man = DXan ⊗ι−1DX
ι−1M

.

This functors turn out to be exact, because of the flatness of ι−1OX → OXan

and ι−1DX → DXan ; we then get functors

(·)an : Db(OX)→ Db(OXan)

(·)an : Db(DX)→ Db(DXan).

Let’s analyze now properties of this last functor; again, there’s a little failure
regarding direct image.

Proposition 2.7. If M · ∈ Db
c(DX), then we have (DXM ·)an ∼= DXan(M ·)an.

Proposition 2.8. If f : X → Y is a morphism of smooth algebraic varieties,
then

i) if M · ∈ Db(DY ), we have (f †M ·)an ∼= (fan)†(M ·)an;

ii) if M · ∈ Db(DX), we have a canonical morphism (
∫
f M

·)an →
∫
fan(M ·)an,

and this is an isomorphism if f is proper and M ∈ Db
c(DX).
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The failure of analytification functor to commute with direct image can
be checked again in our usual example.

Example 2.9. Let again j : U ↪→ X be the open embedding of the punc-
tured affine line in the affine line, such that we have jan : C∗ ↪→ C; let’s
consider the structure sheaf of U . On one hand, we have that(∫

j
OU
)an
∼= (OX [x−1])an ∼= OC[z−1] ∼= DC/DC · (∂zz).

On the other hand, we have already seen in example 2.6 that
∫
jan OC∗ is

much bigger, so we only can get an injective map.

2.3 Serre’s GAGA

We will recall now (part of) Serre’s GAGA for coherent sheaves.

Theorem 2.10. Let X, Y be smooth algebraic varieties, and Xan and Y an

their complex manifolds of closed points.

i) If f : X → Y is a proper morphism, and F a coherent sheaf on X
then (f∗F )an is isomorphic to fan∗F an; more in general, we have

(Rif∗F )an ∼= Rifan∗F an.

ii) If X is proper and R is an analytic coherent sheaf on Xan, then there
exists an algebraic coherent sheaf F on X such that F an ∼= R.

iii) If X is proper, F and G are algebraic coherent sheaves on X, and
r : F an → Gan a morphism between their analytifications, then there
exists a morphism f : F → G in the category of algebraic coherent
sheaves such that fan ∼= r.

Remark 2.11. By point i), if Y is a point, we get that H i(X,F ) ∼=
H i(Xan, F an) for every i; in particular, if F is a line bundle, meromorphic
functions with given pole along a (algebraic) divisor D are the same.

Remark 2.12. Points ii) and iii) may be stated in a shorter way, that is
the following. If X is a proper algebraic varieties, then analytification gives
an equivalence of categories

Modc(OX) ∼= Modc(OXan).

We could try to extend these results to D-modules; we will see tough in
section 4.3 that we are going to need it only for integrable connections.
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3 Local systems and constructible sheaves

Let’s now finally describe the “sheaves of solutions” we longed so much, and
describe the functor that will give us Riemann-Hilbert correspondence.

3.1 Definitions

Let X be a complex manifold, and let CX be the costant sheaf with complex
coefficients. We will build a theory of CX -modules, that is, just sheaves of
vector spaces. This is indeed what we expect for a sheaf of solutions to
a differential equation: over an open set, being a finite dimensional vector
space. So, let’s start again with our tour of definitions.

We will indicate by Mod(CX) the category of such sheaves. Let f : X →
Y a morphism of analytic spaces. Then we have functors

f−1 : Mod(CY )→Mod(CX)

f∗ : Mod(CX)→Mod(CY )

f! : Mod(CX)→Mod(CY )

directly from the definitions in sheaf theory, the first being exact, the latters
left exact. In this way we get functors on derived categories:

f−1 : Db(CY )→ Db(CX)

Rf∗ : Db(CX)→ Db(CY )

Rf! : Db(CX)→ Db(CY ).

As right adjoint of Rf!, we get also the functor

f ! : Db(CY )→ Db(CX).

About duality, we need a further object, namely the dualizing sheaf.

Definition 3.1. Given an analytic space X, let’s consider the map onto a
point q : X → {pt}; the dualizing complex of X is ω·X = q!C.

Definition 3.2. Let F · be a complex in Db(CX); then the dual complex
is defined by

DXF · = RHomCX
(F ·, ω·X)

Now, let’s give the definition that in some sense corresponds to that of
holonomic D-modules.
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Definition 3.3. Given a complex manifold X, a local system is a CX
module that is locally free of finite rank; we will call Loc(X) the category of
such objects. A CX-module F is called constructible if there is a stratifica-
tion of X by locally closed analytic smooth subsets such that all restrictions
to strata are local systems. If X carries also an algebraic structure and
the stratification is algebraic, the sheaf will be called algebraically con-
structible. We will denote by Db

c(X) the category of bounded complexes
having as cohomology algebraically constructed sheaves; note that here X is
the algebraic space, even if Db

c(X) is defined as subcategory of Db
c(CXan).1

Example 3.4. Let’s consider again, as in key example 2.1, the differential
equation over C∗

zf ′(z)− λf(z) = 0

with λ is not an integer; we will show that its sheaf of solutions is indeed a
local system. This equation has as solutions the function zλ only on open
sets on which such a function is defined, that are, sets not winding around
the origin; to be precise, open sets U ⊂ C∗ such that π1(U)→ π(C∗) is the
zero map. The “sheaf” of solutions of such an equation is then a sheaf being
the vector space Czλ on such open sets, and zero otherwise. So, this sheaf is
actually locally free of rank one (as sheaf of vector spaces) and so is a local
system.

Remark 3.5. Let’s consider again the sheaf in the previous example. The
function zλ may be defined maximally over C∗ minus one half line coming out
from the origin; the function may be extended further, but taking different
values from the original one; more precisely, such a function is globally
defined only on the universal cover; so, we can ask how the fundamental
group, exchanging the sheets of the universal cover, changes the value of the
function; in this case, “winding around” the origin changes the value of the
function by a multiplication by e2πλi. More in general, whenever we have
a local system of rank k on C∗, there is an element of GLk(C) obtained in
the same way; this linear transformation is called the monodromy of the
system; more in general, for an arbitrary manifold X, monodromy is defined
as a map π1(X)→ GLk, that, is, a representation of π1(X). This gives us the
formal setting in which Hilbert’s 21st problem was stated: he asked whether
every local system with a prescribed monodromy around the origin in C∗
might be obtained as a solution of a linear differential equation. In the case
of rank one linear systems, any monodromy action is just the multiplication
by a scalar, so varying λ we can obtain all such monodromy actions as sheaf

1If this last sentence seems obscure, it may become clearer right before theorem 5.2.
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of solutions of the differential equation zf ′−λf = 0: Hilbert’s 21st problem
is then proved, in the case of rank one linear systems on C∗.

Again, let’s prove that constructible sheaves are a “stable” subcategory.

Proposition 3.6. (i) Let X be a complex manifold. Then duality pre-
serves Db

c(X), and is an involution on it.

(ii) Let f : X → Y be a morphism between complex manifold; then the
functors f−1, f ! preserve constructible sheaves, and f ! = DX◦f−1◦DY .

(iii) Let f : X → Y be a proper morphism between complex manifold;
then the functors Rf∗, Rf! preserve constructible sheaves, and Rf! =
DY ◦Rf∗ ◦ DX .

(iv) If f is actually an algebraic morphism of smooth algebraic varieties,
all functors preserve also algebraically constructible sheaves, and we
have the result of (iii) without the properness hypothesis.

(v) Tensor product of two constructible sheaves is again a constructible
sheaf; the same holds for the left derived tensor product in Db

c(X).

3.2 Solution and de Rham functors

We are now ready to define the functor of solutions of an analytic D-module.

Definition 3.7. Let X be a complex manifold, and M · ∈ Db(DX); then the
solution complex is

SolX(M ·) = RHomDX
(M ·,OX)

where OX is given the usual left DX action.

Note that this sheaf has only the structure of CX -module. For Riemann-
Hilbert correspondence, anyways, we are going to use the following functor,
that we will see is not so far from the previous one.

Definition 3.8. Let X be a complex manifold, and M · ∈ Db(DX); then the
de Rham complex is

DRX(M ·) = ΩX ⊗LDX
M ·.

where ΩX is given the usual right DX action.
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Remark 3.9. By a slight abuse of notation, when X is an algebraic variety
and M · ∈ Db

c(DX), we define

DRX(M ·) = ΩXan ⊗LDXan (M ·)an

and we will denote this functor by the de Rham functor (thus including the
analytification functor); from here to the end of the section though, X will
be a complex manifold.

The following proposition, given the properties of tensor product and
Hom, is not completely unexpected.

Proposition 3.10. For M · ∈ Db
c(DX), we have

DRX(M ·) ∼= SolX(DXM ·)[dX ]

The following proposition, giving a resolution of ΩX in free right D-
modules, turns out to be very useful for explicit calculations.

Proposition 3.11. We have an exact sequence of right DX-modules

0→ Ω0
X ⊗OX

DX → Ω1
X ⊗OX

DX → . . .→ . . .ΩdX
X ⊗OX

DX → ΩX → 0

where Ωi
X is the (coherent) sheaf of degree i differential forms, and the action

of DX is given by right multiplication on the right factor.

Using this proposition, we have the following isomorphisms in the derived
category; given M a D-module, we have

DRX(M) = ΩX ⊗DX
M ∼= [(Ω·X ⊗OX

DX)⊗DX
M ][dX ] ∼= [Ω·X ⊗OX

M ][dX ].

This tells us that if M is a coherent D-module, its de Rham complex will
have cohomology only in degrees −dX to 0.

Example 3.12. Let’s make an example explicitly; let X be C, and M the
holonomic D-module DX/(DX ·∂zz), the analytic analogue of examples 1.23
and 1.29; let’s apply the de Rham functor. We have ΩX

∼= OX , so by the
previous contruction the de Rham complex of M is

0→M
∂z ·−−→M → 0

where the central map is the left multiplication by ∂z, so that the map is
not an either left or right D-modules map. Working very explicitly, the only
operators in DX/(DX · ∂zz) killed by left multiplication by ∂z are scalar
multiples of z, so we have H−1(DRX(M)) = CX . In the same way, looking
at the cokernel of the map, one can check that H0(DRX(M)) is the sheaf
i∗Cp where i : p ↪→ X is the immersion of the origin.
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Remark 3.13. From the previous example we saw that if we start from
an holonomic D-module, the de Rham complex may have many nonzero
cohomologies; if we want it to be an equivalence of categories then, this
can hold only if we take the whole derived categories (or restrict further
to integrable connections, as we will see in the following example). This
complexes, tough, are quite special, and we can describe them more precisely.
We saw that in our case we had the dimension of the support of H−1 is 1-
dimensional, and that of H0 is 0; this is true more in general: let’s denote
by perverse sheaves the complexes F · ∈ Db

c(X) such that

dimsupp(H−i(F ·)) ≤ i

dimsupp(H−i(DXF ·)) ≤ i.
Then, on a smooth algebraic variety X, analytification and the de Rham
functor sends holonomic D-modules into perverse sheaves (see also section
5.2); once we restrict to regular holonomic D-modules (the definition is in
the next section) this functor will be an equivalence.

Key example 3.14. Let’s use the same construction to give a better insight
in the Riemann-Hilbert correspondence in case of integrable connections, as
in key example 1.5. Let’s consider now an integrable connection M ; from
what we have seen, the sheaf of solution (without taking the right derived
functor) is the kernel of the map

∇ : M ∼= Ω0
X ⊗OX

M → Ω1
X ⊗OX

M

that is exactly how a connection on a vector bundle is defined; kernel of this
map is then the sheaf of sections that are horizontal for this section, and by
the classical Frobenius theorem this is actually a local system (that means,
is locally free of finite rank). So, we have a functor

H−dX (DRX(·)) : Conn(X)→ Loc(X).

As seen in 1.5, we have an inverse candidate, given by

L 7−→ OX ⊗CX
L

with DX -action given by the left action on OX . It’s easy to see that these are
actually inverse one each other, so that the de Rham actually induces a first
version of Riemann-Hilbert correpondence. We then proved the following
theorem.

Theorem 3.15. On a complex manifold X, we have an equivalence of cat-
egories

H−dX (DRX(·)) : Conn(X)
∼−→ Loc(X).

20



4 Regularity of meromorphic connections

So, we described all the categories involved, and we defined the functors; in
particular our strategy is to start with an algebraic D-module, and taking
the de Rham complex (note: of its analitification). Sadly, this is not enough
to give an equivalence of categories, because of the following example.

Key example 4.1. Let X be the affine line A1, and let M be the holonomic
D-module DX/DX · (∂x − 1). It’s easy to see that the solutions of the
associated differential equation are just scalar multiples of the (analytic)
function ez, that is globally defined. So, analytifying M to Man, and taking
the de Rham complex, gives just the constant sheaf CX (in degree -1); this
is a problem, because this is the same answer that we would get performing
the same process on the algebraic holonomic D-module OX , that is not
isomorphic to M . So, this process can’t definitely give a correspondence.
Note that in this example the analytifications Man and (OX)an = OXan are
indeed isomorphic as analytic D-modules.

What we are going to do is to define a subcategory of the category
of holonomic algebraic D-modules (that is, regular holonomic D-modules),
on which this process will actually give an equivalence of categories. In
particular, in the previous example, the module M is not regular.

For sake of brevity, in this section a higher portion of the tecnical details
is going to be spared; we will instead try to explain as much as possible in
words and through examples what is going on.

4.1 Regularity of algebraic integrable connections

In the first part of this section, we are going to define regularity only for
integrable connections, and as it often happened, see what happens in that
case.

Regularity of an integrable connection is something that has to be checked
going into a compactification; on a compatification, an integrable connection
extends to a meromorphic connection. Let’s reduce again the problem, and
consider the case of the space being a curve.

Let C be a smooth algebraic curve, p a point, OC,p the local ring at p,
and KC,p its quotient field; let x be a local parameter around p. Locally,
an integrable connection looks just like a free OC,p module. To have it
meromorphic, we are going to use KC,p instead.
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Definition 4.2. At a point p of a curve C, a local algebraic meromor-
phic connection is a finite dimensional KC,p-vector space M , with a C-
linear map ∇ : M →M satisfying the Leibniz rule, that is,

∇(fu) =
df

dx
⊗ u+ f∇u ∀f ∈ KC,p, ∀u ∈M.

Basically, a situation like this is supposed to happen whenever we have
an integrable connection in C \ p and we push forward it to the whole C, so
that we can’t expect it to keep being locally free.

We can now give the definition of regularity in this case.

Definition 4.3. Let M be a meromorphic connection as before. We will
say M is regular if there exist a OC,p-submodule L of M such that

• L is finitely generated as OC,p module;

• L generates M , meaning, KC,pL = M ;

• L is stable under the operator x∇.

The last condition is the one that more than everything characterize
regular connections. Roughly speaking, this means that the order of pole
of ∇ at p can’t be more than 1, so that the operator x∇ still behaves
“holomorphically” (see example below for a better understanding of this).

We can give now the definition of a regular integrable connection on a
curve. Let C be a smooth curve, let M be an integrable connection, and
let C̄ ⊇ C be a smooth completion of C. We can extend M to

∫
jM by the

open embedding j : C ↪→ C̄; on the points in C̄ \ C, the stalk of
∫
jM is

going to be a local algebraic meromorphic connection.

Definition 4.4. In this setting, we say M is a regular integrable con-
nection on C if for every point p ∈ C̄ \ C the stalk (

∫
jM)C̄,p is a regular

local meromorphic connection.

Before proceeding to the case of a smooth algebraic variety in general,
let’s go back to example 4.1.

Example 4.5. Let’s see then why the integrable connection on the affine
line A1 in example 4.1 is not regular. Compatifying the affine line to P1,
taking coordinates in which the extra point is in the origin, and taking the
direct image, we get the D-module

D1
A/D

1
A · (x2∂x + 1)
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Considering it as a local meromorphic connection on the origin means con-
sidering KA1,0, with a connection given by

∇(1) = −1/x2

(because x2∂ + 1 = 0 on a generator) and extending using the Leibniz rule,
getting the meromorphic connection

∇(f) =
df

dx
− f

x2
.

This connection is then not regular, because there’s not a nonzero coherent
OA1,0-module stable for the operator x∇, because x∇ “goes down in powers
of x”.

For a higher dimensional algebraic variety, we do not have either a local
picture or a canonical smooth completion to work with; we are going to
define regularity using a curve-testing criterion.

Definition 4.6. Let X be a smooth algebraic variety, and M an integrable
connection on it; then M is regular if for every immersion of a smooth
curve i : C ↪→ X the inverse image i∗M is a regular integrable connection.
We will call Connreg(X) the category of such objects.

We have now defined regular integrable connections. Next aim will be
to prove what we suspected in example 4.1, that is, the equivalence between
regular algebraic and analytic, in the case of integrable connections.

Theorem 4.7. Let X be a smooth algebraic variety, Xan the complex mani-
fold of its complex points. Then the analytification functor induces an equiv-
alence of categories

(·)an : Connreg(X)
∼−→ Conn(Xan).

In this proving this, together with theorem 3.15, will give us what is
called Deligne’s Riemann-Hilbert correspondence.

Theorem 4.8 (Deligne, 1970). Let X be an algebraic smooth variety. Then
the de Rham functor gives an equivalence of categories

Connreg(X)
∼−→ Loc(Xan).

The proof of theorem 4.7 will be based on Serre’s GAGA; to work with
it in its full power, we have to lie on a compact manifold, so we will consider
a smooth algebraic completion j : X ↪→ X̄ where D = X̄ \ X is a divisor;
we now just reverted the problem, and we will work with couples (X̄,D);
on them, we consider integrable connections meromorphic along D.
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Definition 4.9. Let X, X̄,D be as before, and let OX̄ [D] be the sheaf j∗OX .
A DX̄-module that is isomorphic to a locally free OX̄ [D]-module, is called an
algebraic meromorphic connection along D. We will say it’s regular
if the restriction to X is a regular integrable connection. We will denote by
Conn(X̄,D) (resp. Connreg(X̄,D)) the category of algebraic meromorphic
connections (resp. regular ones).

There is a reason we introduced these objects: the following lemma.

Lemma 4.10. Restriction gives equivalences of functors

j∗ : Conn(X̄,D)
∼−→ Conn(X)

j∗ : Connreg(X̄,D)
∼−→ Connreg(X).

So, on the algebraic side, we can talk about meromorphic connection on
X̄ along D; if we had it for the analytic side, we could relate structures on
X̄ and X̄an, and invoke Serre’s GAGA. There is a problem tough: there is
nothing like lemma 4.10 in the anaytic setting; more deeply, is not possible
even to give a definition such as definition 4.9, because in the analytic setting
the direct image for an open embedding behaves very badly, as seen in exam-
ple 2.6, because of functions having essential singularities along D. To solve
this issues, we have give a new definition for regular analytic meromorphic
connections along a divisor, that will give us a category Connreg(X̄an, Dan)
to fit in the square

Connreg(X̄,D) Connreg(X̄an, Dan)

Connreg(X) Conn(Xan).

In this square, to prove that the lower arrow is an equivalence, we will
prove that the other three are. The left one is lemma 4.10, and we will see
in the next subsection the upper (that will be some GAGA argument) and
right arrows; in fact, next subsection will be about the refinition of regularity
in the analytic case.

4.2 Regularity of analytic meromorphic connections along a
divisor

Let’s start with the local picture, again. On the complex plane C, let’s
consider the stalk of the sheaf of holomorphic functions at zero (OC)0, and
its function field K.

24



Definition 4.11. A local analytic meromorphic connection is a finite
dimensional K-vector space M with a C-linear map ∇ : M →M satisfying
the Leibniz rule, as in definition 4.2.

Now, we are not going to define what regularity means in this case, it
would require too much further analytical work about (meromorphic) linear
differential equations, and solutions with moderate growth. So we will take a
leaf of faith and we will keep going supposing to have a notion of regularity
in this context too, related to the fact that the singularity can’t be too
bad, but substantially different from the algebraic one (basically, because
of example 4.1). We will though describe it explicitly in one situation in
remark 4.14.

Let’s now take a complex manifold X, and a compactification X̄ by
the divisor D. Remember that our aim is to define regular connections
meromorphic along D. Following definition 4.9, let’s define the sheaf OX̄ [D]
again; in this case, this can’t be defined as the direct image j∗(OX) by the
open embedding j : X ↪→ X̄, because the resulting sheaf is not coherent. In
this case, by OX̄ [D] we mean the sheaf that locally is OX̄ [f−1

D ] where fD is
a function vanishing with order one on D.

Definition 4.12. Let X, X̄,D,OX̄ [D] be as before. A DX̄-module that is
isomorphic to a locally free OX̄ [D]-module, is called an analytic mero-
morphic connection along D.

Definition 4.13. Let M be a meromorphic connection on X̄ along D, and
let B be the unit ball

B = {z ∈ C : |z| < 1}.

We will say that M is regular is for every embedding i : B ↪→ X̄ such
that i−1(D) = {0}, we have that the stalk (i∗M)0 is a regular local analytic
connection. We will call the category of such objects Connreg(X̄,D).

Remark 4.14. If D is a normal crossing divisor, We can give a description
of what regularity means, in terms of logarithmic poles. Let M be a mero-
morphic connection on X̄ along D, and suppose there exist an holomorphic
vector bundle L on X̄ such that M ∼= OX̄ [D]⊗OX̄

L; let p be a point of D,
with local coordinates z1, . . . , zn in which the local equation of D is given
by z1z2 · · · zr = 0, and let e1, . . . , es be local coordinates of L; then, we can
write the connection ∇ of M locally as

∇ei =

1≤k≤n∑
1≤j≤s

akijdzk ⊗ ej
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where akij are functions in OX̄ [D] = OX̄ [z−1
1 , . . . , z−1

r ]. The meromorphic
connection M is said to have a logarithmic pole along D for the line bundle
L if the functions zka

k
ij (1 ≤ k ≤ r) and akij (r < k ≤ n) are holomorphic.

We have, in fact, that all meromorphic connections with logarithmic poles
for a given L are regular.

Using this description, one can formulate the following theorem, in our
humble opinion one of the deepest in the whole theory, one of the main
reasons for all of this to be true.

Theorem 4.15 (Deligne). Let X̄ be a compactification of a compact man-
ifold X by a normal crossing divisor D; let M be an integrable connection
on X. Then there exist a vector bundle L on X̄ such that OX̄ [D]⊗OX̄

L is
a meromorphic connection along D with logarithmic pole for the line bundle
L, and has the structure of a regular D-module such that on X restricts to
M . Furthermore, this L is unique once chosen a (discountinuous) determi-
nation of the logarithm on the complex plane (that means, a discountinuous
function τ : C/Z→ C that is a section of the projection).

The last part of this statement is very misterious (the image of τ deter-
mines where certain eigenvalues are going to lie), but we are not going to
spend time explaining what is going on. The only thing the we would like
to remark, is that this statement does not give a uniqueness statement for
L, that is something we would want to prove an equivalence of categories.
But, as changing the section τ we get many regular D-modules on X̄, they
turn out to be all isomorphic (because twisting by components of D keeps
the restriction to X the same). We have in fact the following.

Corollary 4.16. Let X be a complex manifold, and X̄ a compactification
by a (non necessarily normal crossing) divisor D; then restriction gives an
equivalence of categories

Connreg(X̄,D)
∼−→ Conn(X).

The proof is based on a reduction to the normal crossing case by a
resolution X̄ ′ → X̄, and then using theorem 4.15.

4.3 Proof of Deligne’s Riemann-Hilbert corespondence

We are now ready to prove Deligne’s Riemann-Hilbert correspondence.

Theorem 4.8 (Deligne, 1970). Let X be an algebraic smooth variety. Then
the de Rham functor gives an equivalence of categories

Connreg(X)
∼−→ Loc(Xan).
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By what we saw earlier in this section, we need to prove that in the
commutative square the upper row is an equivalence:

Connreg(X̄,D) Connreg(X̄an, Dan)

Connreg(X) Conn(Xan)

an

an

resres

to get that the bottom one is an equivalence too. Now, in order to do it, we
have to invoke Serre’s GAGA, and are in the right setting because now we
are dealing with the complete algebraic variety X̄; there is a problem tough,
that is the fact that for the first time we have to effectively relate the two
different definitions of regularity (indeed, we haven’t even given the one in
the analytic setting); we are going to do it using the following proposition,
that basically says that the two definitions are strictly related one each other;
we will not prove it, because the proof is based on the reduction to the local
case, and we decided not to go deep in details about local regularity in the
analytic setting.

Proposition 4.17. Let X be a smooth algebraic variety (non necessarily
complete), M an integrable connection; then the following are equivalent:

• M is regular;

• for one completion j : X ↪→ X̄ by a divisor, the analytification of the
direct image (j∗M)an is a regular meromorphic connection.

• for any completion j : X ↪→ X̄ by a divisor, the analytification of the
direct image (j∗M)an is a regular meromorphic connection.

So, if we prove that the analytification

Conn(X̄,D)
an−→ Conn(X̄an, Dan)

is an equivalence, than by proposition 4.17 the subcategories of regular ob-
jects will be equivalent as well. Unfortunately, this functor to be an equiva-
lence is too much to hope (more or less, for the same reason for which this
does not work for integrable connections on X); we have again to define
a subcategory of Conn(X̄an, Dan) to serve as target category to have an
equivalence.
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Definition 4.18. Let M meromorphic connection on X̄an along Dan; we
will call it effective if as OX̄an [Dan]-module it is generated by a coherent
OX̄an-module. We will denote the category of such objects by Conne(X̄an, Dan).

Remark 4.19. Note that such a definition does not make sense in the
algebraic setting, because an algebraic meromorphic connection is always
generated as OX̄ [D]-module by a coherent OX̄ -module. It is true then that
analytification functor maps Conn(X̄,D) into Conne(X̄an, Dan).

Remark 4.20. Note also that any regular analytic meromorphic connection
is indeed effective, by theorem 4.15; so, we get a square

Connreg(X̄,D) Connreg(X̄an, Dan)

Conn(X̄,D) Conne(X̄an, Dan)

an

an

where the lower arrow is well defined from the previous remark, and the
vertical arrows are embeddings of subcategories (the right one because of the
first sentence of this remark). Moreover, the square is commutative, because
of proposition 4.17; so, proving that the lower arrow is an equivalence does
imply that the upper one is too; this is what we are going to do, in order to
prove Deligne’s Riemann-Hilbert correspondence.

Proposition 4.21. In the setting as above, analytification gives an equiva-
lence of categories

Conn(X̄,D)
∼−→ Conne(X̄an, Dan)

We will prove actually a slightly different statement, and leave out some
technical details about differential operators. Let’s consider the categories
Mod(OX̄ [D]) and Mode(OX̄an [Dan]), consisting of algebraic (resp. analytic
effective) coherent OX̄ [D]-modules (resp. Mode(OX̄an [Dan])-modules). Re-
member that an algebraic (resp. analytic regular) meromorphic connection
is the data of such a module and a connection ∇; we have then forgetful
functors

Conn(X̄,D)→Mod(OX̄ [D])

Conne(X̄an, Dan)→Mode(OX̄an [Dan])

“forgetting” the connection. We are only going to prove the equivalence

Mod(OX̄ [D])
∼−→Mode(OX̄an [Dan])
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given by analytification; to conclude the proof, one should also take into
account the connections, and we will not get into the details about it.

Proof. Let’s prove essential surjectivity; given M̃ ∈ Mode(OX̄an [Dan]), we
have a coherent OX̄an-module L̃ such that M̃ ∼= OX̄an [Dan] ⊗OX̄an L̃; by
Serre’s GAGA, now, we have an algebraic coherent sheaf L on X̄ such that
Lan ∼= L̃. So, if we consider M ∼= OX̄ [D]⊗OX̄

L, we have

Man = OX̄an ⊗OX̄
(OX̄ [D]⊗OX̄

L) ∼=

∼= (OX̄an ⊗OX̄
OX̄ [D])⊗OX̄an (OX̄an ⊗OX̄

L) ∼= OX̄an [Dan]⊗OX̄an L̃ ∼= M̃.

Let’s now prove fully faithfulness, that is, given two algebraic coherent
OX̄ [D]-modules M and N , we have an isomorphism

HomOX̄ [D](M,N)
∼−→ HomOX̄an [D](M

an, Nan).

Here, of course, the fact that we take homomorphisms as OX̄ [D]-modules
is pretty far from considering homomorphism in the category Conn(X̄,D);
here we see that a substantial amount of further work is needed to pass to
these categories (considering the morphisms “respecting” also the connec-
tions). Now, let’s consider a coherent sheaf M0 such that M ∼= OX̄ [D]⊗OX̄

M0; we have isomorphisms

HomOX̄ [D](M,N) ∼= HomOX̄
(M0, N)

HomOX̄an [D](M
an, Nan) ∼= HomOX̄an (Man

0 , Nan)

that move us closed to a possible application of Serre’s GAGA again. The
only issue now is that N is not coherent; so, we consider a filtration of N
by coherent OX̄ modules obtained by the order of pole along D

N0 ⊂ N1 ⊂ . . . ⊂ Nk ⊂ . . . ⊂ N

so that we get, to conclude the proof

HomOX̄
(M0, N) ∼=

⋃
i≥0

HomOX̄
(M0, Ni) ∼=

∼=
⋃
i≥0

HomOX̄an (Man
0 , Nan

i ) ∼= (by Serre’s GAGA)

∼= HomOX̄an (Man
0 , Nan).
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5 Riemann-Hilbert correspondence

Let’s prove now the Riemann-Hilbert correspondence in its full generality,
bringing in back algebraic holonomic D-modules, and defining regularity in
this setting.

5.1 Regular holonomic D-modules

Remember that an holonomic D-module is composed by composition factors
that are minimal extensions of integrable connections from locally closed
subvarieties.

Definition 5.1. Let X be a smooth algebraic variety, and M an holonomic
D-module. We will call it regular if all composition factors are minimal
extensions of regular integrable connections. The category of regular holo-
nomic D-modules will be called Modrh(DX); the category of bounded com-
plexes with cohomology in Modrh(DX) will be denoted by Db

rh(DX).

There is a definition of regularity also in the analytic setting, that as it
happened in the previous chapter is harder to define (we have not in fact
either a structure theorem to use to extend the definition from integrable
connections); there is also a (harder) version of Riemann-Hilbert correspon-
dence involving only analytic objects, that we will not show. We are now
ready to state the main theorem of this paper. Remember that the category
of bounded complexes of sheaves on Xan having as cohomology algebraically
constructible sheaves is denoted by Db

c(X) (even if it is actually related with
the topology of Xan rather than that of X).

Theorem 5.2 (Riemann-Hilbert correpondence for D-modules). Let X be
a smooth algebraic variety. Then the de Rham functor give an equivalence
of categories

Db
rh(DX)

∼−→ Db
c(X).

The rest of the section is devoted to a sketch of the proof of this results.
We first need some further technical results. As holonomic D-modules, also
regular holonomic ones are stable under the usual operations.

Theorem 5.3. Let X be a smooth algebraic manifold; then duality func-
tor preserves Db

rh(DX). Let f : X → Y be a morphism of smooth alge-
braic variery; then

∫
f ,
∫
f ! send Modrh(DX) to Modrh(DY ), and f † and f?

send Modrh(DY ) to Modrh(DX); the same holds for the derived categories
Db
rh(DX) and Db

rh(DY ).
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Proof of this, that we will not give because it is basically a long sequence
of reductions, deals again strictly with the definition of regularity; in par-
ticular, is strictly linked with the proof of the following structure theorem.

Theorem 5.4. Let M be an holonomic D-module on a smooth algebraic
variety X; then the following are equivalent:

(i) M is regular;

(ii) i†M is regular for every locally closed embedding of a curve i : C ↪→ X.

The same holds for M · ∈ Db
h(DX); in fact, the following are equivalent

(i) M · ∈ Db
rh(DX) is regular;

(ii) i†M · ∈ Db
rh(DC) is regular for every locally closed embedding of a

curve i : C ↪→ X.

5.2 Kashiwara contructibility theorem and perverse sheaves

At first, we have to prove that the functor is well defined; given a complex
M · ∈ Db

rh(DX), the de Rham complex DRX(M ·) is bounded, and has as
cohomology constructibe sheaves. To prove it, we will show it for an holo-
nomic D-module; as seen in remark 3.13, the objects in Db

c(X) arising as
image of holonomic modules are called perverse sheaves; let’s give again the
definition.

Definition 5.5. Let X be a smooth algebraicvariety; an element F · ∈ Db
c(X)

is called perverse sheaf if

dimsupp(H−i(F ·)) ≤ i

dimsupp(H i(DXF ·)) ≤ i.

We will denote the category of perverse sheaves by Perv(X).

Proposition 5.6 (Kashiwara’s constructibility). Let X be a smooth alge-
braic variety, and M an holonomic D-module; then, the de Rham complex
DRX(M) is in Db

c(X), and in particular is a perverse sheaf.

The proof of this fact is a local check; the algebraic stratification of the
complex of constructible sheaves DRX(M) is of course going to be deter-
mined by the composition factors of theD-moduleM , and more in particular
by the structure of the closures of the locally closed subsets they come from.

As corollary of the full Riemann Hilbert correspondence, so, we get the
following.
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Corollary 5.7. The de Rham functor gives an equivalence of categories

Modrh(X)→ Perv(X).

5.3 Facts about the de Rham functor

We will need some technical facts about the de Rham functor, that will
constitute the proof of the main theorem; in particular, that commutes with
all the functors we described so far.

Let’s recall all the functors we have; first, on a smooth algebraic variety
X, we have the two functors

DX : Db
c(DX)→ Db

c(DX) DX : Db
c(X)→ Db

c(X)

Proposition 5.8. For M · ∈ Db
c(DX) we have a canonical morphism

DRX(DXM ·)→ DX(DRX(M ·)).

If M · ∈ Db
h(DX), then this morphism is actually an isomorphism.

Proof. Given proposition 3.10, a morphism like the one in the proposition
is equivalent to the following

SolX(M ·)[dX ]→ DX(DRX(M ·))

DRX(M ·)⊗Can SolX(M ·)→ Can[dX ]

DX(SolX(DXM ·))⊗Can SolX(M ·)→ Can

DX(RHom(DX(M ·)an,OXan))⊗Can RHom((M ·)an,OXan)→ Can

RHom(OXan , (M ·)an)⊗Can RHom((M ·)an,OXan)→ RHom(OXan ,OXan).

The last one of which is actually canonical. Now, this morphism is obviously
an isomorphism for integrable connections; working a little further, one can
prove that it is an isomorphism for every M · ∈ Db

h(DX).

Furthermore, given a morphism of smooth algebraic varieties f : X → Y ,
we have functors ∫

f
: Db

c(DX)→ Db
c(DY )∫

f !
= DY ◦

∫
f
◦DX : Db

c(DX)→ Db
c(DY )
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f † = Rf∗[dX − dY ] : Db
c(DY )→ Db

c(DX)

f? = DX ◦ f † ◦ DY : Db
c(DY )→ Db

c(DX)

Rf∗ : Db
c(X)→ Db

c(Y )

Rf! : Db
c(X)→ Db

c(Y )

f−1 : Db
c(Y )→ Db

c(X)

f ! = DX ◦ f−1 ◦ DY : Db
c(Y )→ Db

c(X)

Let’s try to match them, and have some commutivity relationships; note
that the shift that we have in f † isn’t in the constructible sheaves counter-
parts f−1 or f !.

Proposition 5.9. Given M · ∈ Db
c(DX) have a canonical morphism

DRY

(∫
f
M ·
)
→ Rf∗(DRX(M ·))

and if M · ∈ Db
rh(X) then this is an isomorphism.

Proof. We have

DRY

(∫
f
M ·
)

= DRY an

(∫
f
M ·
)an
→ DRY an

∫
fan

(M ·)an ∼=

∼= ΩY an ⊗LDY an Rf∗(DY an←Xan ⊗LDXan (M ·)an) ∼=
∼= Rf∗(f

−1ΩY an ⊗Lf−1DY an
DY an←Xan ⊗LDXan (M ·)an) ∼=

∼= Rf∗(ΩXan ⊗LDXan M
·) ∼= Rf∗DRXan(M ·)an = Rf∗DRXM

·.

The only arrow comes from proposition 2.8 ii), and it is an isomorphisms
if the morphism is proper. Then, the result is true for regular integrable
connections (note that this is the only place in which we will use regular-
ity), and as usual one can conlude using the structure theorem for regular
holonomic D-modules.

Corollary 5.10. Given M · ∈ Db
c(DX), we also have a canonical morphism

Rf!(DRX(M ·))→ DRY

(∫
f !
M ·
)

and if M · ∈ Db
rh(DX) then this is an isomorphism too.
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Proof. Everything follows from proposition 5.9 by taking duals, and multiple
use of proposition 5.8.

Let’s go also in the other direction.

Proposition 5.11. If N · ∈ Db
c(DY ) have a canonical morphism

DRX(f †N ·)→ f !DRY (N ·)

that is an isomorphism if N · ∈ Db
h(DY ).

Proof. We have the following morphisms

HomDb
c(DY )(f

†N ·, f †N ·) ∼= HomDb
c(DY )

(∫
f !
f †N ·, N ·

)
→

→ HomDb
c(Y )

(
DRY

(∫
f !
f †N ·

)
, DRYN

·
)
→

→ HomDb
c(Y )

(
Rf!DRX

(
f †N ·

)
, DRYN

·
)
∼=

∼= HomDb
c(X)

(
DRX

(
f †N ·

)
, f !DRYN

·
)

where we used adjunction formulas, so that we have a canonical element
that is image of the identity in the first. The proof of the regular holonomic
case is a little more tricky, and is based on a reduction to the case of f begin
a closed embedding.

Again, we have a corollary obtained considering duals and applying
proposition 5.8.

Corollary 5.12. Given N · ∈ Db
c(DY ), we also have a canonical morphism

f−1(DRY (N ·))→ DRX (f?N ·)

and if N · ∈ Db
h(DY ) then this is an isomorphism too.

We need some further work; in particular, we would like de Rham functor
to commute also with Hom functor, and tensor products. This is very
hard to prove directly; we will use instead the box product, that is more
manageable.
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Definition 5.13. Let M,N be D-modules on a smooth algebraic variety X;
their box product (also called exterior tensor product) is the D-module on
X ×X given by

M �N = DX×X ⊗p−1
1 DX⊗Cp

−1
2 DX

(p−1
1 M ⊗C p

−1
2 N).

Intuitively, this product should be better than the usual tensor product,
because it keeps separated the structure of the two modules. But there’s
more.

Lemma 5.14. The functor � : Mod(DX) ×Mod(DX) → Mod(DX×X) is
exact in each factor. In particular, it induces the functor

� : Db(DX)×Db(DX)→ Db(DX×X).

The two products are related tough, by the following proposition (that
follows from the equivalent for OX -modules).

Proposition 5.15. Let M ·, N · ∈ Db(DX), and let ∆ : X → X ×X be the
diagonal embedding. Then we have canonical isomorphism

M · ⊗LOX
N · ∼= L∆∗(M · �N ·)

As corollary, we have the following, that will be then core of the proof
of fully faithfulness in the main theorem.

Corollary 5.16. In the same setting, if M ·, N · ∈ Db
h(DX) we have also an

isomorphism

RHomDb
c(DX)(M

·, N ·) ∼=
∫
q
(∆†(DXM · �N ·))

where q is the projection of X onto a point.

Remark 5.17. We have an analogous isomorphism for constructible sheaves;
namely, if F ·, G· ∈ Db

c(X), then we define

F · �C G
· = p−1

1 F · ⊗C p
−1
2 G·

and we have an isomorphism

RHomDb
c(X)(F

·, G·) ∼= Rq∗(∆
!(DXM · �C N

·)).

Now that we have this new functor, we can prove that the de Rham
functor commutes with this too.

Proposition 5.18. Let again M ·, N · ∈ Db
h(DX), then we have a canonical

moprhism
DRXM

· �C DRXN
· → DRX×X(M · �N ·)

that is an isomorphism if one between M · and N · is in Db
h(DX).
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5.4 Proof of the main theorem

We are now ready to prove the main theorem of the paper.

Theorem 5.2 (Riemann-Hilbert correpondence for D-modules). Let X be
a smooth algebraic variety. Then the de Rham functor give an equivalence
of categories

Db
rh(DX)

∼−→ Db
c(X).

Proof. Let’s prove essential surjectivity first; let’s take a generator in the
category Db

c(X) of constructible sheaves, that is, the extension Ri∗L of a
local system L for the embedding of a locally closed subvariety i : Z → X;
by Deligne Riemann-Hilbert correspondence, we have a regular integrable
connection N on Z such that DRZ(N) = L[dZ ]. Then if we take M =∫
iN [−dZ ] we have

DRX(

∫
i
N [−dZ ]) ∼= Ri∗(DRZ(N [−dZ ])) ∼= Ri∗L

by the commutativity of the de Rham functor with direct image, proposition
5.9.

Let’s prove now fully faithfulness; let M ·, N · ∈ Db
rh(DX). We need to

prove that the natural map

HomDb
c(DX)(M

·, N ·)→ HomDb
C(X)(DRXM

·, DRXN
·)

is a bijection; we will actually prove something further, that is, that

RHomDb
c(DX)(M

·, N ·) ∼= RHomDb
C(X)(DRXM

·, DRXN
·).

Let’s prove this isomorphism; we will omit to prove that this isomorphism
is actually given by the de Rham functor. We have

RHomDb
c(DX)(M

·, N ·) ∼=
∼=
∫
q(∆

†(DXM · �N ·)) ∼= (proposition 5.16)
∼= DRpt

∫
q(∆

†(DXM · �N ·)) ∼= (DRpt = Id)
∼= Rq∗DRX(∆†(DXM · �N ·)) ∼= (proposition 5.9)
∼= Rq∗∆

!DRX×X(DXM · �N ·) ∼= (proposition 5.11)
∼= Rq∗∆

!DRX×X(DXM · �N ·) ∼= (proposition 5.11)
∼= Rq∗∆

!(DRXDXM · �DRXN
·) ∼= (proposition 5.18)

∼= Rq∗∆
!(DX(DRXM

·) �DRXN
·) ∼= (proposition 5.8)

∼= HomDb
c(X)(DRXM

·, DRXN
·) (remark 5.17)

that completes the proof.
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