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Preface

D-Modules, Perverse Sheaves, and Representation Theory is a greatly expanded
translation of the Japanese edition entitled D kagun to daisugun (D-Modules and
Algebraic Groups) which was published by Springer-Verlag Tokyo, 1995. For the
new English edition, the two authors of the original book, R. Hotta and T. Tanisaki,
have added K. Takeuchi as a coauthor. Significant new material along with corrections
and modifications have been made to this English edition.

In the summer of 1982, a symposium was held in Kinosaki in which the sub-
ject of D-modules and their applications to representation theory was introduced.
At that time the theory of regular holonomic D-modules had just been completed
and the Kazhdan—Lusztig conjecture had been settled by Brylinski—Kashiwara and
Beilinson—-Bernstein. The articles that appeared in the published proceedings of the
symposium were not well presented and of course the subject was still in its infancy.
Several monographs, however, did appear later on D-modules, for example, Bjork
[Bj2], Borel et al. [Bor3], Kashiwara—Schapira [KS2], Mebkhout [Me5] and others,
all of which were taken into account and helped us make our Japanese book more
comprehensive and readable. In particular, J. Bernstein’s notes [Ber1] were extremely
useful to understand the subject in the algebraic case; our treatment in many aspects
follows the method used in the notes. Our plan was to present the combination of
D-module theory and its typical applications to representation theory as we believe
that this is a nice way to understand the whole subject.

Let us briefly explain the contents of this book. Part I is devoted to D-module
theory, placing special emphasis on holonomic modules and constructible sheaves.
The aim here is to present a proof of the Riemann—Hilbert correspondence. Part II
is devoted to representation theory. In particular, we will explain how the Kazhdan—
Lusztig conjecture was solved using the theory of D-modules. To a certain extent we
assume the reader’s familiarity with algebraic geometry, homological algebras, and
sheaf theory. Although we include in the appendices brief introductions to algebraic
varieties and derived categories, which are sufficient overall for dealing with the text,
the reader should occasionally refer to appropriate references mentioned in the text.

The main difference from the original Japanese edition is that we made some new
chapters and sections for analytic D-modules, meromorphic connections, perverse



vi Preface

sheaves, and so on. We thus emphasized the strong connections of D-modules with
various other fields of mathematics.

We express our cordial thanks to A. D’Agnolo, C. Marastoni, Y. Matsui,
P. Schapira, and J. Schiirmann for reading very carefully the draft of the English
version and giving us many valuable comments. Discussions with M. Kaneda,
K. Kimura, S. Naito, J.-P. Schneiders, K. Vilonen, and others were also very helpful
in completing the exposition. M. Nagura and Y. Sugiki greatly helped us in typing
and correcting our manuscript. Thanks also go to many people for useful comments
on our Japanese version, in particular to T. Ohsawa. Last but not least, we cannot ex-
aggerate our gratitude to M. Kashiwara throughout the period since 1980 on various
occasions.

2006 March R. Hotta

K. Takeuchi
College of Mathematics, University of Tsukuba

T. Tanisaki
Faculty of Science, Osaka City University
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Introduction

The theory of D-modules plays a key role in algebraic analysis. For the purposes of
this text, by “algebraic analysis,” we mean analysis using algebraic methods, such
as ring theory and homological algebra. In addition to the contributions by French
mathematicians, J. Bernstein, and others, this area of research has been extensively
developed since the 1960s by Japanese mathematicians, notably in the important
contributions of M. Sato, T. Kawai, and M. Kashiwara of the Kyoto school.

To this day, there continue to be outstanding results and significant theories com-
ing from the Kyoto school, including Sato’s hyperfunctions, microlocal analysis, D-
modules and their applications to representation theory and mathematical physics. In
particular, the theory of regular holonomic D-modules and their solution complexes
(e.g., the theory of the Riemann—Hilbert correspondence which gave a sophisticated
answer to Hilbert’s 21st problem) was a most important and influential result. Indeed,
it provided the germ for the theory of perverse sheaves, which was a natural develop-
ment from intersection cohomologies. Moreover, M. Saito used this result effectively
to construct his theory of Hodge modules, which largely extended the scope of Hodge
theory. In representation theory, this result opened totally new perspectives, such as
the resolution of the Kazhdan—Lusztig conjecture.

As stated above, in addition to the strong impact on analysis which was the initial
main motivation, the theory of algebraic analysis, especially that of D-modules,
continues to play a central role in various fields of contemporary mathematics. In fact,
D-module theory is a source for creating new research areas from which new theories
emerge. This striking feature of D-module theory has stimulated mathematicians in
various other fields to become interested in the subject.

Our aim is to give a comprehensive introduction to D-modules. Until recently,
in order to really learn it, we had to read and become familiar with many articles,
which took long time and considerable effort. However, as we mentioned in the
preface, thanks to some textbooks and monographs, the theory has become much
more accessible nowadays, especially for those who have some basic knowledge of
complex analysis or algebraic geometry. Still, to understand and appreciate the real
significance of the subject on a deep level, it would be better to learn both the theory
and its typical applications.



2 Introduction

In PartI of this book we introduce D-modules principally in the context of present-
ing the theory of the Riemann—Hilbert correspondence. Part II is devoted to explain-
ing applications to representation theory, especially to the solution to the Kazhdan—
Lusztig conjecture. Since we mainly treat the theory of algebraic D-modules on
smooth algebraic varieties rather than the (original) analytic theory on complex man-
ifolds, we shall follow the unpublished notes [Ber3] of Bernstein (the book [Bor3] is
also written along this line). The topics treated in Part Il reveal how useful D-module
theory is in other branches of mathematics. Among other things, the essential useful-
ness of this theory contributed heavily to resolving the Kazhdan—Lusztig conjecture,
which was of course a great breakthrough in representation theory.

As we started Part II by giving a brief introduction to some basic notions of Lie
algebras and algebraic groups using concrete examples, we expect that researchers
in other fields can also read Part IT without much difficulty.

Let us give a brief overview of the topics developed in this text. First, we explain
how D-modules are related to systems of linear partial differential equations. Let X
be an open subset of C" and denote by O the commutative ring of complex analytic
functions globally defined on X. We denote by D the set of linear partial differential
operators with coefficients in . Namely, the set D consists of the operators of

the form
a il a i2 a in
Z fll i2,. (8)(1) (E) (3)(”) (fil,iz,m,in €0)

01,02,.00ip

(each sum is a finite sum), where (x1, x2, ..., X,) is a coordinate system of C". Note
that D is a non-commutative ring by the composition of differential operators. Since
the ring D acts on O by differentiation, O is a left D-module. Now, for P € D, let
us consider the differential equation

Pu=20 (0.0.1)

for an unknown function u. According to Sato, we associate to this equation the left
D-module M = D/DP. In this setting, if we consider the set Homp (M, O) of
D-linear homomorphisms from M to O, we get the isomorphism

Homp (M, ©O) = Homp(D/DP, O)
~{p € Homp(D, O) | p(P) = 0}.

Hence we see by Homp (D, O) >~ O (¢ — ¢(1)) that
Homp(M, O) ~{f € O| Pf =0}

(Pf = Po(l) = ¢(Pl) = ¢(P) = 0). In other words, the (additive) group
of the holomorphic solutions to the equation (0.0.1) is naturally isomorphic to
Homp (M, O). If we replace O with another function space F admitting a natu-
ral action of D (for example, the space of C°°-functions, Schwartz distributions,
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Sato’s hyperfunctions, etc.), then Homp (M, F) is the set of solutions to (0.0.1) in
that function space.
More generally, a system of linear partial differential equations of /-unknown

functions u1, us, ..., u; can be written in the form
1
ZP,-,-u,=o (i=1,2 ...k (0.0.2)
j=1

by using some P;; € D (1 <i <k, 1 < j < ). In this situation we have also a
similar description of the space of solutions. Indeed if we define a left D-module M
by the exact sequence

Dk pl s M—0 (0.0.3)

k k k
Q1. Q2. ..., 0p) = (Z QiPi, Y QiPia, ... Y QiPil> ;
i=1 i=1 i=1

then the space of the holomorphic solutions to (0.0.2) is isomorphic to Homp (M, O).
Therefore, systems of linear partial differential equations can be identified with the
D-modules having some finite presentations like (0.0.3), and the purpose of the the-
ory of linear PDEs is to study the solution space Homp (M, O). Since the space
Homp (M, O) does not depend on the concrete descriptions (0.0.2) and (0.0.3) of
M (it depends only on the D-linear isomorphism class of M), we can study these
analytical problems through left D-modules admitting finite presentations. In the
language of categories, the theory of linear PDEs is nothing but the investigation
of the contravariant functor Homp (e, O) from the category M (D) of D-modules
admitting finite presentations to the category M (C) of C-modules.

In order to develop this basic idea, we need to introduce sheaf theory and homo-
logical algebra. First, letus explain why sheaf theory is indispensable. Itis sometimes
important to consider solutions locally, rather than globally on X. For example, in
the case of ordinary differential equations (or more generally, the case of integrable
systems), the space of local solutions is always finite dimensional; however, it may
happen that the analytic continuations (after turning around a closed path) of a so-
lution are different from the original one. This phenomenon is called monodromy.
Hence we also have to take into account how local solutions are connected to each
other globally.

Sheaf theory is the most appropriate language for treating such problems. There-
fore, sheafifying O, D, let us now consider the sheaf Oy of holomorphic functions
and the sheaf Dy (of rings) of differential operators with holomorphic coefficients.
We also consider sheaves of Dy-modules (in what follows, we simply call them Dyx-
modules) instead of D-modules. In this setting, the main objects to be studied are
left Dx-modules admitting locally finite presentations (i.e., coherent Dy-modules).
Sheafifying also the solution space, we get the sheaf Hom p, (M, Ox) of the holo-
morphic solutions to a Dx-module M. It follows that what we should investigate is
the contravariant functor Homp, (e, Ox) from the category Mod.(Dx) of coherent
Dx-modules to the category Mod(Cyx) of (sheaves of) Cx-modules.
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Let us next explain the need for homological algebra. Although both Mod,.(Dy)
and Mod(Cy) are abelian categories, Hom p, (e, Ox) is not an exact functor. Indeed,
for a short exact sequence

00— M| — M) — M3 — 0 0.04)
in the category Mod.(Dy) the sequence
0 — Homp, (M3, Ox) = Homp,(M>, Ox) — Homp, (M, Ox) (0.0.5)

associated to it is also exact; however, the final arrow Homp, (M2, Ox) —
Homp, (My, Ox) is not necessarily surjective. Hence we cannot recover informa-
tion about the solutions of M» from those of M|, M3. A remedy for this is to consider
also the “higher solutions” Extj)x (M, Ox) (i =0,1,2,...) by introducing tech-
niques in homological algebra. We have 5xt0DX (M, Ox) = Homp, (M, Ox) and
the exact sequence (0.0.5) is naturally extended to the long exact sequence

BN ExtiDX (M3, Ox) — SxtiDX (M, Ox) — 5xtiDX (My, Ox)

— ExtiDJ;l (M3, Ox) — Extgt(l (M, Ox) — legt(l (M, Ox) — -

Hence the theory will be developed more smoothly by considering all higher solutions
together.

Furthermore, in order to apply the methods of homological algebra in full general-
ity, it is even more effective to consider the object RHom p, (M, Ox) in the derived
category (it is a certain complex of sheaves of Cx-modules whose i-th cohomology
sheaf is 5xtiDX (M, Oy)) instead of treating the sheaves ExtiDX (M, Oyx) separately
for various i’s. Among the many other advantages for introducing the methods of ho-
mological algebra, we point out here the fact that the sheaf of a hyperfunction solution
can be obtained by taking the local cohomology of the complex RHom p, (M, Ox)
of holomorphic solutions. This is quite natural since hyperfunctions are determined
by the boundary values (local cohomologies) of holomorphic functions.

Although we have assumed so far that X is an open subset of C", we may re-
place it with an arbitrary complex manifold. Moreover, also in the framework of
smooth algebraic varieties over algebraically closed fields k of characteristic zero,
almost all arguments remain valid except when considering the solution complex
RHompy (e, Ox), in which case we need to assume again that k = C and return to
the classical topology (not the Zariski topology) as a complex manifold. In this book
we shall mainly treat D-modules on smooth algebraic varieties over C; however,
in this introduction, we will continue to explain everything on complex manifolds.
Hence X denotes a complex manifold in what follows.

There were some tentative approaches to D-modules by D. Quillen, Malgrange,
and others in the 1960s; however, the real intensive investigation leading to later
development was started by Kashiwara in his master thesis [Kasl] (we also note
that this important contribution to D-module theory was also made independently by
Bernstein [Berl1],[Ber2] around the same period). After this groundbreaking work,
in collaboration with Kawai, Kashiwara developed the theory of (regular) holonomic
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D-modules [KK3], which is a main theme in Part I of this book. Let us discuss this
subject.

It is well known that the space of the holomorphic solutions to every ordinary
differential equation is finite dimensional. However, when X is higher dimensional,
the dimensions of the spaces of holomorphic solutions can be infinite. This is because,
in such cases, the solution contains parameters given by arbitrary functions unless
the number of given equations is sufficiently large. Hence our task is to look for a
suitable class of Dyx-modules whose solution spaces are finite dimensional. That is,
we want to find a generalization of the notion of ordinary differential equations in
higher-dimensional cases.

For this purpose we consider the characteristic variety Ch(M) for a coherent
Dyx-module M, which is a closed analytic subset of the cotangent bundle 7*X of
X (we sometimes call this the singular support of M and denote it by SS(M)). We
know by a fundamental theorem of algebraic analysis due to Sato—Kawai—Kashiwara
[SKK] that Ch(M) is an involutive subvariety in 7*X with respect to the canonical
symplectic structure of 7*X. In particular, we have dim Ch(M) > dim X for any
coherent Dy-module M # 0.

Now we say that a coherent Dy-module M is holonomic (a maximally overde-
termined system) if it satisfies the equality dim Ch(M) = dim X. Let us give the
definition of characteristic varieties only in the simple case of Dy-modules

M =Dx/I, I=DxPi+DxP,+---+ DxPi
associated to the systems
Piu=Pu=---=Pu=0 (P € Dyx) (0.0.6)

for a single unknown function u. In this case, the characteristic variety Ch(M) of
M is the common zero set of the principal symbols o (Q) (Q € I) (recall that for
Q € Dy its principal symbol o (Q) is a holomorphic function on 7*X). In many
cases Ch(M) coincides with the common zero set of o (P1), o (P3), ..., o (Py), butit
sometimes happens to be smaller (we also see from this observation that the abstract
Dyx-module M itself is more essential than its concrete expression (0.0.6)).

To make the solution space as small (finite dimensional) as possible we should
consider as many equations as possible. That is, we should take the ideal / C Dy
as large as possible. This corresponds to making the ideal generated by the principal
symbols o (P) (P € I) (in the ring of functions on 7*X) as large as possible, for
which we have to take the characteristic variety Ch(M), i.e., the zero set of the
o (P)’s, as small as possible. On the other hand, a non-zero coherent Dx-module is
holonomic if the dimension of its characteristic variety takes the smallest possible
value dim X. This philosophical observation suggests a possible connection between
the holonomicity and the finite dimensionality of the solution spaces. Indeed such
connections were established by Kashiwara as we explain below.

Let us point out here that the introduction of the notion of characteristic varieties
is motivated by the ideas of microlocal analysis. In microlocal analysis, the sheaf
Ex of microdifferential operators is employed instead of the sheaf Dy of differential
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operators. This is a sheaf of rings on the cotangent bundle 7*X containing 7 ~! Dy
(m : T*X — X) as a subring. Originally, the characteristic variety Ch(M) of a
coherent Dx-module M was defined to be the support supp(Ex ®-1p, 7~ 'M) of
the corresponding coherent Ex-module £x ®,-1p, 7~ 'M. A guiding principle of
Sato—Kawai—Kashiwara [SKK] was to develop the theory in the category of Ex-
modules even if one wants results for Dx-modules. In this process, they almost
completely classified coherent £x-modules and proved the involutivity of Ch(M).

Let us return to holonomic D-modules. In his Ph.D. thesis [Kas3], Kashiwara
proved for any holonomic Dy-module M that all of its higher solution sheaves
gxtbx (M, Oyx) are constructible sheaves (i.e., all its stalks are finite-dimensional
vector spaces and for a stratification X = | | X; of X its restriction to each X; is
a locally constant sheaf on X;). From this result we can conclude that the notion
of holonomic Dx-module is a natural generalization of that of linear ordinary dif-
ferential equations to the case of higher-dimensional complex manifolds. We note
that it is also proved in [Kas3] that the solution complex RHom p, (M, Ox) satisfies
the conditions of perversity (in language introduced later). The theory of perverse
sheaves [BBD] must have been motivated (at least partially) by this result.

In the theory of linear ordinary differential equations, we have a good class of
equations called equations with regular singularities, that is, equations admitting
only mild singularities. We also have a successful generalization of this class to
higher dimensions, that is, to regular holonomic Dy-modules. There are roughly two
methods to define this class; the first (traditional) one will be to use higher-dimensional
analogues of the properties characterizing ordinary differential equations with regular
singularities, and the second (rather tactical) will be to define a holonomic Dx-module
to be regular if its restriction to any algebraic curve is an ordinary differential equation
with regular singularities. The two methods are known to be equivalent. We adopt
here the latter as the definition. Moreover, we note that there is a conceptual difference
between the complex analytic case and the algebraic case for the global meaning of
regularity.

Next, let us explain the Riemann—Hilbert correspondence. By the monodromy
of a linear differential equation we get a representation of the fundamental group
of the base space. The original 21st problem of Hilbert asks for its converse: that
is, for any representation of the fundamental group, is there an ordinary differential
equation (with regular singularities) whose monodromy representation coincides with
the given one? (there exist several points of view in formulating this problem more
precisely, but we do not discuss them here. For example, see [AB], and others).

Let us consider the generalization in higher dimensions of this problem. A satis-
factory answer in the case of integrable connections with regular singularities was
given by P. Deligne [Del]. In this book, we deal with the problem for regular
holonomic Dyx-modules. As we have already seen, for any holonomic D y-module
M, its solutions Extbx (M, Oyx) are constructible sheaves. Hence, if we denote
by Df (Cx) the derived category consisting of bounded complexes of Cx-modules

whose cohomology sheaves are constructible, the holomorphic solution complex
RHomp, (M, Ox) is an object of Df((CX). Therefore, denoting by th(DX) the
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derived category consisting of bounded complexes of Dx-modules whose cohomol-
ogy sheaves are regular holonomic Dy-modules, we can define the contravariant
functor

RHomp, (e, Ox) : D%, (Dx) — D!(Cx). (0.0.7)

rh

One of the most important results in the theory of D-modules is the (contravariant)
equivalence of categories th (Dy) ~ Dé’ (Cx) via this functor. The crucial point of
this equivalence (the Riemann—Hilbert correspondence, which we noted is the most
sophisticated solution to Hilbert’s 21st problem) lies in the concept of regularity and
this problem was properly settled by Kashiwara—Kawai [KK3]. The correct formu-
lation of the above equivalence of categories was already conjectured by Kashiwara
in the middle 1970s and the proof was completed around 1980 (see [Kas6]). The
full proof was published in [Kas10]. For this purpose, Kashiwara constructed the
inverse functor of the correspondence (0.0.7). We should note that another proof of
this correspondence was also obtained by Mebkhout [Me4]. For the more detailed
historical comments, compare the foreword by Schapira in the English translation
[Kas16] of Kashiwara’s master thesis [Kas1]. As mentioned earlier we will mainly
deal with algebraic D-modules in this book, and hence what we really consider is a
version of the Riemann—Hilbert correspondence for algebraic D-modules. After the
appearance of the theory of regular holonomic D-modules and the Riemann—Hilbert
correspondence for analytic D-modules, A. Beilinson and J. Bernstein developed the
corresponding theory for algebraic D-modules based on much simpler arguments.
Some part of this book relies on their results.

The content of Part I is as follows. In Chapters 1-3 we develop the basic theory
of algebraic D-modules. In Chapter 4 we give a survey of the theory of analytic D-
modules and present some properties of the solution and the de Rham functors. Chap-
ter 5 is concerned with results on regular meromorphic connections due to Deligne
[Del]. As for the content of Chapter 5, we follow the notes of Malgrange in [Bor3],
which will be a basis of the general theory of regular holonomic D-modules described
in Chapters 6 and 7. In Chapter 6 we define the notion of regular holonomic algebraic
D-modules and show its stability under various functors. In Chapter 7 we present
a proof of an algebraic version the Riemann—Hilbert correspondence. The results in
Chapters 6 and 7 are totally due to the unpublished notes of Bernstein [Ber3] explain-
ing his work with Beilinson. In Chapter 8 we give a relatively self-contained account
of the theory of intersection cohomology groups and perverse sheaves (M. Goresky—
R. MacPherson [GM1], Beilinson—Bernstein—Deligne [BBD]) assuming basic facts
about constructible sheaves. This part is independent of other parts of the book. We
also include a brief survey of the theory of Hodge modules due to Morihiko Saito
[Sal], [Sa2] without proofs.

We finally note that the readers of this book who are only interested in algebraic
D-module theory (and not in the analytic one) can skip Sections 4.4 and 4.6, and need
not become involved with symplectic geometry.

In the rest of the introduction we shall give a brief account of the content of Part IT
which deals with applications of D-module theory to representation theory.
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The history of Lie groups and Lie algebras dates back to the 19th century, the
period of S. Lie and F. Klein. Fundamental results about semisimple Lie groups
such as those concerning structure theorems, classification, and finite-dimensional
representation theory were obtained by W. Killing, E. Cartan, H. Weyl, and others
until the 1930s. Afterwards, the theory of infinite-dimensional (unitary) representa-
tions was initiated during the period of World War II by E. P. Wigner, V. Bargmann,
I. M. Gelfand, M. A. Naimark, and others, and partly motivated by problems in
physics. Since then and until today the subject has been intensively investigated
from various points of view. Besides functional analysis, which was the main method
at the first stage, various theories from differential equations, differential geometry,
algebraic geometry, algebraic analysis, etc. were applied to the theory of infinite-
dimensional representations. The theory of automorphic forms also exerted a signifi-
cantinfluence. Nowadays infinite-dimensional representation theory is a place where
many branches of mathematics come together. As contributors representing the de-
velopment until the 1970s, we mention the names of Harish-Chandra, B. Kostant,
R. P. Langlands.

On the other hand, the theory of algebraic groups was started by the fundamental
works of C. Chevalley, A. Borel, and others [Ch] and became recognized widely
by the textbook of Borel [Borl]. Algebraic groups are obtained by replacing the
underlying complex or real manifolds of Lie groups with algebraic varieties. Over
the fields of complex or real numbers algebraic groups form only a special class of Lie
groups; however, various new classes of groups are produced by taking other fields
as the base field. In this book we will only be concerned with semisimple groups over
the field of complex numbers, for which Lie groups and algebraic groups provide the
same class of groups. We regard them as algebraic groups since we basically employ
the language of algebraic geometry.

The application of algebraic analysis to representation theory was started by the
resolution of the Helgason conjecture [six] due to Kashiwara, A. Kowata, K. Mine-
mura, K. Okamoto, T. Oshima, and M. Tanaka. In this book, we focus however on
the resolution of the Kazhdan—Lusztig conjecture which was the first achievement in
representation theory obtained by applying D-module theory.

Let us explain the problem. It is well known that all finite-dimensional irreducible
representations of complex semisimple Lie algebras are highest weight modules with
dominant integral highest weights. For such representations the characters are de-
scribed by Weyl’s character formula. Inspired by the works of Harish-Chandra on
infinite-dimensional representations of semisimple Lie groups, D. N. Verma proposed
in the late 1960s the problem of determining the characters of (infinite-dimensional)
irreducible highest weight modules with not necessarily dominant integral highest
weights. Important contributions to this problem by a purely algebraic approach
were made in the 1970s by Bernstein, I. M. Gelfand, S. I. Gelfand, and J. C. Jantzen,
although the original problem was not solved.

A breakthrough using totally new methods was made around 1980. D. Kazhdan
and G. Lusztig introduced a family of special polynomials (the Kazhdan—Lusztig
polynomials) using Hecke algebras and proposed a conjecture giving the explicit form
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of the characters of irreducible highest weight modules in terms of these polynomials
[KL1]. They also gave a geometric meaning for Kazhdan—Lusztig polynomials using
the intersection cohomology groups of Schubert varieties. Promptly responding to
this, Beilinson—Bernstein [BB] and J.-L. Brylinski—Kashiwara independently solved
the conjecture by establishing a correspondence between highest weight modules and
the intersection cohomology complexes of Schubert varieties via D-modules on the
flag manifold. This successful achievement, i.e., employing theories and methods,
from other fields, was quite astonishing for the specialists who had been studying
the problem using purely algebraic means. Since then D-module theory has brought
numerous new developments in representation theory.

Let us explain more precisely the methods used to solve the Kazhdan—Lusztig
conjecture. Let G be an algebraic group (or a Lie group), g its Lie algebra and U (g)
the universal enveloping algebra of g. If X is a smooth G-variety and V is a G-
equivariant vector bundle on X, the set I'(X, V) of global sections of V naturally has
a g-module structure. The construction of the representation of g (or of G) in this
manner is a fundamental technique in representation theory.

Let us now try to generalize this construction. Denote by D}f C Endc(V)
the sheaf of rings of differential operators acting on the sections of V. Then D¥ is
isomorphic to V®p, Dx ®p, V* which coincides with the usual Dx when V = Oy.
In terms of D% the g-module structure on I' (X, V) can be described as follows. Note
that we have a canonical ring homomorphism U (g) — I'(X, D%) induced by the
G-action on V. Since V is a D}?—modu]e, r'x, V) isal(X, D%)—module, and
hence a g-module through the ring homomorphism U(g) — I'(X, D}()). From this
observation, we see that we can replace ) with other D%-modules. That is, for any
D%—module M the C-vector space I'(X, M) is endowed with a g-module structure.

Let us give an example. Let G = SL,(C). Since G acts on X = P! = C U {0}
by the linear fractional transformations

ab ax +b ab
(o) w=(5752) ((a)eo wex).

it follows from the above arguments that I'(X, M) is a g-module for any Dx-module
M. Let us consider the Dx-module M = Dx§ given by Dirac’s delta function § at
the point x = oco. In the coordinate z = % in a neighborhood of x = oo, the equation
satisfied by Dirac’s delta function § is

S0 we get
M = Dx/DxZ
in a neighborhood of x = co. Set§, = (%)"8. Then {8,1}3‘;0 is the basis of I' (X, M)
and we have dizén = 841, 26p = —ndy—1.
Let us describe the action of g = s[(C) on I'(X, M). For this purpose consider
the following elements in g:
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10 01 00
=(65) o= (60) 7=(00)
(these elements £, e, f form a basis of g). Then the ring homomorphism U (g) —
I'(X, Dy) is given by

d
h+— 27—, —> 2—, —_ ——.
Zdz ¢ ¢ dz f dz

1\ 1
expi-te) - <Z> - (z/(l - rz)) ’
(24 )
=0 B <Z dz(p @

h-6,=-2(n+1)%5,, e-8 =nn+1)5,_1, f'5n = _8n+la

For example, since

for ¢(z) € Ox we get

_ d Z
<e-¢>(z>—aw(l_tz)

and e — zzd%. Therefore we obtain

from which we see that I" (X, M) is the infinite-dimensional irreducible highest weight
module with highest weight —2.

For the proof of the Kazhdan—Lusztig conjecture, we need to consider the case
when G is a semisimple algebraic group over the field of complex numbers and the
G-variety X is the flag variety of G. For each Schubert variety ¥ in X we consider
a Dx-module M satisfied by the delta function supported on Y. In our previous
example, i.e., in the case of G = SL,(C), the flag variety is X = P! and ¥ = {o0} is
a Schubert variety. Since Schubert varieties ¥ C X may have singularities for general
algebraic groups G, we take the regular holonomic Dx-module M characterized by
the condition of having no subquotient whose support is contained in the boundary
of Y. For this choice of M, I'(X, M) is an irreducible highest weight g-module and
RHomp, (M, Ox) is the intersection cohomology complex of Y. A link between
highest weight g-modules and the intersection cohomology complexes of Schubert
varieties Y C X (perverse sheaves on the flag manifold X) is given in this manner.
Diagrammatically the strategy of the proof of the Kazhdan—Lusztig conjecture can
be explained as follows:

i)

’ D-modules on the flag manifold X ‘

)

’ perverse sheaves on the flag manifold X ‘
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Here the first arrow is what we have briefly explained above, and the second
one is the Riemann—Hilbert correspondence, a general theory of D-modules. The
first arrow is called the Beilinson—Bernstein correspondence, which asserts that the
category of U (g)-modules with the trivial central character and that of Dx-modules
are equivalent. By this correspondence, for a Dx-module M on the flag manifold X,
we associate to it the U (g)-module I'(X, M). As a result, we can translate various
problems for g-modules into those for regular holonomic D-modules (or through the
Riemann—Hilbert correspondence, those for constructible sheaves).

The content of Part II is as follows. We review some preliminary results on
algebraic groups in Chapters 9 and 10. In Chapters 11 and 12 we will explain how
the Kazhdan—Lusztig conjecture was solved. Finally, in Chapter 13, a realization
of Hecke algebras will be given by the theory of Hodge modules, and the relation
between the intersection cohomology groups of Schubert varieties and Hecke algebras
will be explained.

Letus briefly mention some developments of the theory, which could not be treated
in this book. We can also formulate conjectures, similar to the Kazhdan—Lusztig
conjecture, for Kac-Moody Lie algebras, i.e., natural generalizations of semisimple
Lie algebras. In this case, we have to study two cases separately: (a) the case when
the highest weight is conjugate to a dominant weight by the Weyl group, (b) the
case when the highest weight is conjugate to an anti-dominant weight by the Weyl
group. Moreover, Lusztig proposed certain Kazhdan—Lusztig type conjectures also
for the following objects: (c) the representations of reductive algebraic groups in
positive characteristics, (d) the representations of quantum groups in the case when
the parameter ¢ is a root of unity. The conjecture of the case (a) was solved by
Kashiwara (and Tanisaki) [Kas15], [KT2] and L. Casian [Cal]. Following the so-
called Lusztig program, the other conjectures were also solved:

(A) the equivalence of (c) and (d): H. H. Andersen, J. C. Jantzen, W. Soergel [AJS].

(B) the equivalence of (b) and (d) for affine Lie algebras: Kazhdan-Lusztig [KL3].

(C) the proof of (b) for affine Lie algebras: Kashiwara—Tanisaki [KT3] and Casian
[Ca2].



Part 1

D-Modules and Perverse Sheaves



1

Preliminary Notions

In this chapter we introduce several standard operations for D-modules and present
some fundamental results concerning them such as Kashiwara’s equivalence theorem.

1.1 Differential operators

Let X be a smooth (non-singular) algebraic variety over the complex number field C
and Oy the sheaf of rings of regular functions (structure sheaf) on it. We denote by
Oy the sheaf of vector fields (tangent sheaf, see Appendix A) on X:

@X ZDEVCX(Ox)
= {0 € Endc, (Ox) | 0(f8) =0(f)g+ f0(8) (f. 8 € Ox)}.

Hereafter, if there is no risk of confusion, we use the notation f € Oy for a local
section f of Ox. Since X is smooth, the sheaf ®x is locally free of rank n = dim X
over Oy. We willidentify Ox with a subsheaf of Endc,, (Ox) by identifying f € Oy
with [Ox > g = fg € Ox] € Endc,(Ox). We define a sheaf Dy as the C-
subalgebra of Endc, (Ox) generated by Ox and Ox. We call this sheaf Dy the
sheaf of differential operators on X. For any point of X we can take its affine open
neighborhood U and a local coordinate system {x;, 0;}1<i<n On it satisfying

n
xi € Ox(U), ®U=@OU31', [0;,9;1=0, [3,x;]=23;
i=1

(see Appendix A). Hence we have

Dy =Dxly = @ Ovd? (B¢ :=971057 - 35m).

aeN"

Here, N denotes the set of non-negative integers.
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Exercise 1.1.1. Let U be an affine open subset of X. Show that Dx (U) is naturally
isomorphic to the C-algebra generated by elements {f, 6 | f € Ox(U),0 € Ox(U)}
satisfying the following fundamental relations:

D fith=h+f fih=ff  (fi.re0xO))
(2 9:1:1- ézj O+ 62, [61.6:] =161, 6] (01,62 € ©x(U)),
3 fo=r0 _ (f € Ox(U), 6 € Ox(U)),
@ 16, f1=6(F) (f € Ox(U), 0 € Ox(U)).

Exercise 1.1.2. Let {x;, 9; }1<i <, be alocal coordinate system on an affine open subset
UofX. For P = ZaeNn aq(x)0¢ € Dx(U) we define its total symbol o (P)(x, &)
by 0(P)(X, £) = D yopn da(N)EY (€7 = £1&5> -+ £5"). For P, Q € Dx(U)
show that the total symbol o (R)(x, &) of the product R = PQ € Dx(U) is given by

1
o(R)(x,6)= EBQG(P)(x,é)~3§‘0(Q)(x,5),

aeN"

where we set a! = aplap! - - - ! for each o € N” (this is the “Leibniz rule’).

Let U be an affine open subset of X with a local coordinate system {x;, 0;}. We
define the order filtration F of Dy by

FDy = Zouag (leN, |a|=Z(xi).
i

ee| </

More generally, for an arbitrary open subset V of X we can define the order filtration
F of Dx over V by

(F1Dx)(V)
={P e Dx(V) | resl‘;P € F;Dx(U) for any affine open subset U of V},

where res[‘j : Dx(V) — Dx(U) is the restriction map (see also Exercise 1.1.4

below). For convenience we set F,Dx = 0 for p < 0. The following result is
obvious.

Proposition 1.1.3.
(1) {F1}ien is an increasing filtration of Dx such that Dx = UleN FiDx and each
F; Dy is a locally free module over Ox.
(ii) FoDx = Ox, (FiDx)(FuDx) = FrymDx.
(i) If P € FiDx and Q € F,, Dy, then [P, Q] € Fj4—1Dx.

Exercise 1.1.4. Show that the formula
FiDx ={P € Endc(Ox) | [P, fl€ Fi-1Dx (Vf € Ox)} (I € N).

(Note that this recursive expression of F; Dy together with Dy = UleN F; Dy gives
an alternative intrinsic definition of Dy.)
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Principal symbols

For the sheaf (Dy, F) of filtered rings let us consider its graded ring

o0
gr Dy =g Dy =@ er, Dx  (gr; Dx = FiDx/Fi—1Dx, F_1Dx =0).
[=0

Then by Proposition 1.1.3 gr Dy is a sheaf of commutative algebras finitely generated
over Ox. Take an affine chart U with a coordinate system {x;, d;} and set

& :=09; mod FoDy(= Oyp) € gry Dy.
Then we have

gr, Dy = FiDy/Fi-1Dy = @ Out”,

la|=I

grDU = OU[&I,EZ, ""Sﬂ]'

For a differential operator P € F;Dy \ F;—1 Dy the corresponding section o;(P) €
gr; Dy C Oylér, &, ..., & ]is called the principal symbol of P.

We can globalize this notion as follows. Let 7*X be the cotangent bundle of
X and let # : T*X — X be the projection. We may regard &1, ..., &, as the
coordinate system of the cotangent space @?:1 Cdx;, and hence Oylé&y, ..., &]
is canonically identified with the sheaf 7, O7+x|y of algebras. Thus we obtain a
canonical identification

gr Dy >~ 7, Or«x (>~ Symm Q).

Therefore, for P € F;Dx we can associate to it a regular function o;(P) globally
defined on the cotangent bundle 7*X.

1.2 D-modules—warming up

As we have already explained in the introduction, a system of differential equations
can be regarded as a “coherent” left D-module.

Let X be a smooth algebraic variety. We say that a sheaf M on X is a left Dx-
module if M (U) is endowed with a left Dx (U )-module structure for each open subset
U of X and these actions are compatible with restriction morphisms.

Note that Oy is a left Dx-module via the canonical action of Dy.

We have the following very easy (but useful) interpretation of the notion of left
Dx-modules.

Lemma 1.2.1. Let M be an Ox-module. Giving a left Dx-module structure on M
extending the Ox-module structure is equivalent to giving a C-linear morphism

V:0x — Endc(M) (6 +— Vp),
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satisfying the following conditions:

(1) Vy5g(s) = fVa(s) (f€Ox, 0 €Ox, seM),
(2) Vo(fs)=0(f)s+ fVe(s) (f€Ox, 0€Ox, seM),
3) Vig,,0,1(5) = [Ve,, Vo, 1(s) (01,60 € O, s € M).

In terms of V the left Dx-module structure on M is given by

0s = Vo(s) (0e®,seM).

Proof. The proof is immediate, because Dy is generated by Ox, ®x and satisfies
the relation [0, f] = 60(f) (see Exercise 1.1.1). |

The condition (3) above is called the integrability condition on M.

For a locally free left Ox-module M of finite rank, a C-linear morphism V :
Ox — Endc (M) satisfying the conditions (1), (2) is usually called a connection
(of the corresponding vector bundle). If it also satisfies the condition (3), it is called
an integrable (or flat) connection. Hence we may regard a (left) Dy-module as an
integrable connection of an O x-module which is not necessarily locally free of finite
rank. In this book we use the following terminology.

Definition 1.2.2. We say that a Dx-module M is an integrable connection if it is
locally free of finite rank over Oy.

Notation 1.2.3. We denote by Conn(X) the category of integrable connections on X.

Integrable connections are the most elementary left D-modules. Nevertheless,
they are especially important because they generate (in a categorical sense) the cate-
gory of holonomic systems, as we see later.

Example 1.2.4 (ordinary differential equations). Consider an ordinary differential
operator P = a,,(x)3" +---4ap(x) (0 = ;—x, a; € Oc) on C and the corresponding
Dc-module M = Dc/DcP = Dcu. Hereu =1 mod D¢ P, and hence P u = 0.
Thenon U = {x € C | a,(x) # 0} we have M|y =~ @;”:BI Opu® W = y,
u =diyfori =1,2,.. .). Namely, it is an integrable connection of rank m on U.

Correspondence between left and right D-modules

Take a local coordinate system {x;, d;}1<i<, on an affine open subset U of X. For
P(x,9) =), aa(x)3* € Dy consider its formal adjoint

'P(x,d) = Z(—B)“aa(x) e Dy.

Then we have (P Q) = Q' P and we get a ring anti-automorphism P + P of
Dy . Therefore, for a left Dy-module M we can define a right action of Dy on M
by sP :='Psfors € M, P € Dy, and obtain a right Dy-module ' M; however,
this notion depends on the choice of a local coordinate. In order to globalize this
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correspondence M < ' M to arbitrary smooth algebraic variety X we need to use the
canonical sheaf

n
Qx=/\Q (n=dimX)

since the formal adjoint of a differential operator naturally acts on 2x. Recall that
there exists a natural action of & € ®x on Qy by the so-called Lie derivative Lie 0:

((Lie®) w)(0y, 02, ...,60,) :=0(w (01,0, ...,60,)) — Zw(@l, e [0,6i], ..., 6)
i=1

(weQX,Gl,...,Q,ZGGX).

Then we have

(1) (Lie[8;, 02])w = (Lie 81)((Lie 62)w) — (Lie 67) ((Lie 8))w),

(2) (Lied)(fo) = f((Liet)w) +0(f)ow,

(3) (Lie(f6))w = (Lied)(fw)

for6,01,6, € Ox, f € Ox, w € QLx ((1) and (2) hold even when w is a differential
form of any degree; however, (3) holds only for the highest degree case). Hence we
can define a structure of a right Dy-module on Qx by

wb = —(Lief)w (w € Qx,0 € Oy).
Here we have used the following analogue of Lemma 1.2.1.

Lemma 1.2.5. Let M be an Ox-module. Giving a right Dx-module structure on M
extending the Ox-module structure is equivalent to giving a C-linear morphism

V':0x — Endc(M) (6 +— Vp),

satisfying the following conditions:
(1) Vig(s) = Vy(fs) (f €O0x, 0 €Ox, seM),

Q@) Vy(fs)=6(f)s+[Vy(s) (f €Ox, 6€Ox. 5s€M),
B3) Vi o =1[V). V1) (61,62 €Ox, s €M)

In terms of V' the right Dx-module structure on M is given by
56 = =V, (s) e, seM).
The following is obvious from the definition.
Lemma 1.2.6. In terms of a local coordinate system {x;, 9;}, we have
(fdxi A+ Adx)P(x,d) = (P(x,d) f)dx) A---Adx, (f € Oyx).

For a ring R we denote by R°P the ring opposite to R. We have an identification
R 3> a <> a® € R as an abelian group and the multiplication of RP is defined by
a®°b® = (ba)°.

For an invertible Ox-module £ we denote by L&~ its dual Homeo, (L, Ox).
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The right Dx-module structure on x gives ahomomorphism DY — Endc(Q2x)
of C-algebras. Note that we have an isomorphism

Ende(Qx) =~ Qx By Ende(Ox) @0, Q5!

of sheaves of rings, where the left and the right O x-module structure on Endc (Ox) are
given by the left- and right-multiplication of Ox (regarded as a subring of Endc (Ox))
inside the (non-commutative) ring Endc (Oy ), and the above isomorphism is given by
associating o ® F ®1 € Qx ®0, Endc(Ox) @0, Q57" (w € Qx, F € Endc(Ox),
ne Q?fl ) to the section of End (Rx) givenby ' — F((n, @’'))w. By Lemma 1.2.6
(or by Exercise 1.1.4) we have the following.

Lemma 1.2.7. We have a canonical isomorphism
DY ~ Qx ®0, Dx ®oy Q5
of C-algebras.

In terms of a local coordinate {x;, d;} the correspondence in Lemma 1.2.7 is
given by associating P° € DY (P € Dx) to dx ® 'P ® dx®~!, where dx =
dxi A - Adx, € Qx and dx®~1 € Q¥ is given by (dx, dx®~1) = 1.

Notation 1.2.8. For a ring (or a sheaf of rings on a topological space) R we denote
by Mod(R) the abelian category of left R-modules.

We will identify Mod(R°P) with the category of right R-modules. We easily see
from Lemmas 1.2.1 and 1.2.5 the following.

Proposition 1.2.9. Let M, N € Mod(Dx) and M', N’ € Mod(DY’). Then we have

(i) M ®o, N € Mod(Dy); (s ®1) =0(s)®1+5®0(1),
(i) M ®oy, N € Mod(DY); '@ =501t —s' Q 01,
(iliy Homoy (M, N) € Mod(Dx);  (0¥)(s) = 0((s)) — ¥ (O(s)),
(iv) Homo,(M',N') € Mod(Dx); (O¥)(s) = =¥ (s)0 + ¥ (s6),
(v) Homo,(M,N') € Mod(DY);  (¥0)(s) = ¥ (5)8 + ¥ (0(s)).

Here 6 € ©.

Remark 1.2.10. Let X be a smooth algebraic curve X of genus g. Note thatdeg Ox =
0 and deg Qx = 2g — 2. More generally, it is known that an invertible Ox-module
L is equipped with a left (resp. right) Dx-module structure if and only if deg £L = 0
(resp. 2g — 2). This gives an easy way to memorize all of the consequences of
Proposition 1.2.9 (Oda’s rule [O]). It also explains the reason why M’ @, N’ for
M', N’ € Mod(DY) is excluded from Proposition 1.2.9. Even if we do not know
that deg Qx = 2g — 2, we can get the right answer by using the correspondences
“left” <> 0, “right” <> 1 and ® < +, Hom(e, %) = —e + *k.

By Proposition 1.2.9 we easily see the following results.
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Lemma 1.2.11. Let M, N € Mod(Dyx) and M’ € Mod(D;p). Then we have isomor-
phisms

(M"®0y N) ®py M =M’ ®py (M ®0, N) ~ (M @0, M) ®py N
(RN R®s <=5 QR «— (5 ®s)®1)

of C-modules.
Proposition 1.2.12. The correspondence
Qx ®0y (o) : Mod(Dx) —> Mod(DY)
gives an equivalence of categories. Its quasi-inverse is given by
QY7 @0, (o) = Homo, (Qx, ®) : Mod(DY) —> Mod(Dx).

The operations Qx ®@, () and Q?il ®oy (®) exchanging the left and right
D-module structures are called side-changing operations in this book.

1.3 Inverse and direct images I

For a morphism f : X — Y of smooth algebraic varieties, we introduce two opera-
tions on D-modules; the inverse image and the direct image.

Inverse images
Let M be a (left) Dy-module and consider its inverse image
f*M =0x ®-10, f'M
of M in the category of O-modules. We can endow f*M with a (left) Dx-module
structure as follows. First, note that we have a canonical Oy -linear homomorphism

Ox = f*Oy =0x @10, f 'Oy (6 0)

obtained by taking the Ox-dual of Ox ® s-10y, f_lsl%, — Q; Then we can define
a left Dy-module structure on f*M by

Oy ®5)=0) Qs+ Yi(s) @ eB®x, vy €Ox, seM).

Here, if we write § = Zj 9 ®6; (pj € Ox,0; € Oy), we set Vo(s) = Zj Vo ®
0 (s). This is the inverse image of M in the category of D-modules. If we are given a
local coordinate system {y;, d;} of ¥, then the action of & € ®y can be written more
explicitly as

O @) =0)@s+Y Y 0(iof)®ds (Y®seOx®10, f'M)

i=1

(check it!).
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Regarding Dy as a left Dy-module by the left multiplication we obtain a left
Dyx-module f*Dy = Oy R f-10, f~!Dy. Then the right multiplication of Dy on
Dy induces aright f ~1 Dy-module structure on f*Dy:

(p®@P)0=9®PQ  (peOx, p,Q € Dy),
and f*Dy turns out to be a (Dy, f~! Dy)-bimodule.

Definition 1.3.1. The (Dy, f~' Dy)-bimodule Ox ® ;-1, f~'Dy is denoted
by Dx_.y.

It follows from the associativity of tensor products that we have an isomorphism
f*M = Dx_y ®p1p, f7'M
of left Dx-modules. We have obtained a right exact functor
Dx_y ® j-1p, f'(e) : Mod(Dy) — Mod(Dy).

Example 1.3.2. Assume that i : X — Y is a closed embedding of smooth alge-

braic varieties. At any point of X we can choose a local coordinate {yi, dy, }k=1,...n
on an affine open subset of ¥ such that y,4; = --- = y, = 0, gives a defin-
ing equation of X. Set x; = yr oi for k = 1,...,r. This gives a local co-

ordinate {xi, dy }k=1,..., of an affine open subset of X. Moreover, the canonical
morphism Oy — Ox ®;-10, i~ 'Oy is given by Oy > Oy (k = 1,...,r).

Set D' = @, Ordy'---3y" C Dy. By [dy,,d,] = 0 itis a subring of
Dy and we have Dy ~ D’ ®c C[d,,,,, ..., dy,] as a left D’-module. Hence we
have Dx .y =~ (Ox ®;-10, i~'D") ®c Cldy,,,» .., dy,]. Itis easily seen that

Ox®;-10, i~'D’isa Dx-submodule of Dx_, y isomorphic to Dx. We conclude that
Dx_.y = Dx ®c Cldy,,,, ..., dy,] (1.3.1)
as a left Dy-module. In particular, Dx_,y is a locally free Dy-module of infinite

rank (unless r = n).

Direct images

Direct images of D-modules are more easily defined for right D-modules than for
left D-modules. Let M be a right Dy-module. Applying the sheaf-theoretical direct
image functor f; to the right f~! Dy-module M ®py Dx_.y, we obtain a right
Dy-module f.(M ®p, Dx_,y). This gives an additive functor

f+((®) ®py Dx_y) : Mod(DY) — Mod(Dy"),

which may be considered as a candidate for the direct image for right D-modules;
however, unlike the case of the inverse image, this candidate does not suit the homo-
logical arguments since the right exact functor ® and the left exact functor f are both
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involved. The right definition in the language of derived categories will be given later.
Here we consider how to construct direct images for left D-modules. They can be de-
fined by the correspondence (side-changing) of left and right D-modules explained in
Proposition 1.2.12. Namely, a candidate for the direct image Mod(Dy) — Mod(Dy)
is obtained by the commutativity of

Mod(Dx) ——> Mod(Dy)
Qx®ox(0)lz zlﬂy@Joy(O)
Mod(D$f) —— Mod(D})

where the lower horizontal arrow is given by f.((e) ® py Dx_.y). Thus, to a a left
Dx-module M we can associate a left Dy-module

QY ®0, fu((Qx ®0x M) ®py Dyx_oy).
By Lemma 1.2.11 we have an isomorphism
(©2x ®oy M) ®py Dx—y =~ (R2x ®0y Dx—y) ®py M
of right £~! Dy-modules, where f~! Dy acts on (Qyx ®oy Dx—y) ®py M by
(W®R)®S)P=(wQ@RP)®s (weQx,ReDx_y,s e M,P e Dy).
Hence we have
Q87! ®0, f:(Qx ®0y M) ®py Dx_y)

~ Q%7 @0, fi((Qx ®0y Dx—y) ®py M)

~ f((2x ®0y Dx—y @10, £7'Q5 ") @py M).
Definition 1.3.3. We define a (f ~1Dy, Dx)-bimodule Dy _x by

Dy x :=Qx Qoy Dx—y ®-10, fegh

We call Dy _,y and Dy . x the transfer bimodules for f : X — Y.
In terms of Dy .y our tentative definition of the direct image for left D-modules
is given by
fx(Dy < x ®py (8)) : Mod(Dx) — Mod(Dy).

By Dy ~ Qy ®0, Dy ®0, " we have
Dyx = Qx ®0y (Ox ®f-10, f'Dy) ® r-10y fflggfl’
= Qx ®-10, £~ (Dy ®0, QF ),
~Qx ®-10, /(@ ®0, DY)
~ f71(Dy ®o, 9§ ) ® 10, Qx,
where the last isomorphism is given by
w®NAP° > PRNQw  (weQx,ne QY ', PeDy).

Hence we obtain the following different description of Dy .
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Lemma 1.3.4. As a (f_1 Dy, Dx)-bimodule we have
Dy—x ~ f~'(Dy ®0, 9?‘1) Qf-10, Sx.

Here the right-hand side is endowed with a left f~'Dy-module structure induced
from the left multiplication of Dy on Dy. The right Dx-module structure on it is
given as follows. The right multiplication of Dy on Dy gives a right Dy-modules
structure on Dy. By the side-changing operation, Dy ®@, Q(}X,’_l is a left Dy-mod-
ule. Applying the inverse image functor for left D-modules we get a left Dx-module
YDy ®oy Qf?*l) R r-10y Ox. Finally, by the side-changing operation we obtain
a right Dx-module

Dy @0, 957N ® 110, Ox ®0y @x = 71 (Dy ®0, Q5 ) ® 10, Q.

Example 1.3.5. We give a local description of Dy. x for a closed embedding
i : X — Y of smooth algebraic varieties. Take a local coordinate {y, dy, }1<k<n
of Y as in Example 1.3.2, and set x; = yy oi fork =1, ..., r. Note that

Dy—x = (i"'Dy ®-10, Ox) ®0, (i 7'Q¢7" ®;-10, ).
We (locally) identify i’19§_1 ®;-10, 2x with Ox via the section
(@yi A= Ady)® 7 @ (dxy A=+ Aday).
Set D' = @, . &' -8y Oy C Dy. Itis a subring of Dy and we have
Dy ~ (C[Bym, ..., 0y,]1®C D' as aright D’-module. Hence we have

Dycx >~ Cldy,,,,....0,]1®c (i7'D ®-10, Ox). (13.2)

The right Dx-action on the right-hand side is induced from the right Dy-action on
i~'D' ®;-10, Ox given by

(PR 1y, =(Pdy)®1, (PRNp=PR¢=PgR®1 (PecD, ¢cOy),

where ¢ € Oy is such that ¢|y = ¢. Hence we have i ~! D’ ®;i-10, Ox ~ Dy and
we obtain a local isomorphism

Dy x >~ (C[ayrﬂ, B ay,,] ®c Dx.

The left i~!Dy-module structure on the right-hand side can be described as
follows. Note that Dy =~ C[dy,,,...,dy,] ®&c D’. Hence we have i ~!Dy ~
(C[Byrﬂ, ..., 0y, ] ®cC i~1D’.  Therefore, it is sufficient to give the actions of
Cldy,,,, ..., dy,landi"'D" on C[dy,, . ..., dy,] ®c Dx.

The action of C[dy,,,, ..., dy,] is given by the multiplication on the first factor
C[dy,,,» - .-, dy,] of the tensor product. Let Q € i~'D',F ¢ Cldy,,,» ..., dy,] and
R € Dx. If wehave QF =), FiOr (Fx € C[dy,,,,...,dy,], Ok € i~'D’) in the
ring i ~! Dy, then the action of Q € i~'D’ on F ® R € C[dy,,,,...,d,,]1 ®c Dx
is given by Q(F ® R) = ), Fx ® Ok R, where the left i ~1 D’-module structure on
Dy ~i~'D' ®;-10, Oy is given by

QPR =0P®1 (P,QeD.
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1.4 Some categories of D-modules

On algebraic varieties, the category of quasi-coherent sheaves (over Q) is sufficiently
wide and suitable for various algebraic operations (see Appendix A for the notion of
quasi-coherent sheaves). Since our sheaf Dy is locally free over Oy, it is quasi-
coherent over Ox. We mainly deal with Dx-modules which are quasi-coherent
over Oy.

Notation 1.4.1. For an algebraic variety X we denote the category of quasi-coherent
Ox-modules by Mod,.(Ox). For a smooth algebraic variety X we denote by
Mod,.(Dx) the category of Ox-quasi-coherent Dx-modules.

The category Mod,(Dx) is an abelian category.
It is well known that for affine algebraic varieties X,

(a) the global section functor I'(X, e) : Mod,(Ox) — Mod(I'(X, Oy)) is exact,
(b) if I'(X, M) = 0 for M € Mod,(Ox), then M = 0.

In fact, an algebraic variety is affine if and only if the condition (a) is satisfied.
Replacing Oy by Dx we come to the following notion.

Definition 1.4.2. A smooth algebraic variety X is called D-affine if the following
conditions are satisfied:

(a) the global section functor I'(X, ) : Mod,(Dx) — Mod(I'(X, Dx)) is exact,
(b) if I'(X, M) = 0 for M € Mod,.(Dx), then M = 0.

The following is obvious.
Proposition 1.4.3. Any smooth affine algebraic variety is D-affine.

As in the case of quasi-coherent O-modules on affine varieties we have the fol-
lowing.

Proposition 1.4.4. Assume that X is D-affine.

(1) Any M € Mody(Dx) is generated over Dy by its global sections.
(i1) The functor
I'(X, e) : Mod,(Dx) — Mod(I'(X, Dx))

gives an equivalence of categories.

Proof. (i) For M € Mod,.(Dx) let M be the image of the natural morphism Dy ®c¢
I'(X, M) — M in M (the submodule of M generated by global sections). Since X
is D-affine, we obtain an exact sequence

i
0—-TX, My) > I'(X, M) - I'(X, M/My) — 0.

Since i is an isomorphism by the definition of My, we have I'(X, M /My) = 0. Since
X is D-affine, we get M/ My = 0, i.e., M = M.
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(i) We will show that the functor Dy ®rx,py) (¢) : Mod(I'(X, Dx)) —
Mod,(Dx) is quasi-inverse to I'(X, e). Since Dy ®r(x,py) () is left adjoint to
I'(X, o), it is sufficient to show that the canonical homomorphisms

ay : Dx ®rx,py) I'(X, M) — M, Bv :V = I'(X, Dx ®rx,py) V)

are isomorphisms for M € Mody.(Dx), V € Mod(I'(X, Dx)).
Choose an exact sequence

X, Dx)® — X, pDx)® — v —o.

Since X is D-affine, we have that the functor I'(X, Dy ®r(x,py) (®)) is right exact
on Mod(I'(X, Dx)). Hence we obtain a commutative diagram

X, Dx)® — (X, Dx)® — 1% 0

| | L

F(X, Dx)eal —_—> F(X, Dx)eaj —_—> F(X, DX ®I‘(X,DX) V) — 0

whose rows are exact. Hence By is an isomorphism.
By (i) oy is surjective. Hence we have an exact sequence

0— K — Dx®rx,py ' X, M) — M — 0
for some K € Mod,.(Dx). Applying the exact functor I'(X, e) we obtain
0 —TX,K)—TX,M)—T'(X,M)— 0.

Here we have used the fact that Br(x m) is an isomorphism. Hence we have
I'(X, K) = 0. This implies that K = 0 since X is D-affine. Hence ay, is an
isomorphism. O

Remark 1.4.5.

(i) The D-affinity holds also for certain non-affine varieties. In Section 1.6 we will
show that projective spaces are D-affine. (Theorem 1.6.5). We will also show in
Part II that flag manifolds for semisimple algebraic groups are D-affine. This fact
was one of the key points in the settlement of the Kazhdan—Lusztig conjecture.

(i) If X is affine, we can replace Dy with Dy in the above argument. In other
words, smooth affine varieties are also D°P-affine. Note that D-affine varieties
are not necessarily DP-affine in general. For example, P! is not D°P-affine by
(P!, Qp1) =0.

The order filtration F of Dy induces filtrations (denoted also by F') of the rings
Dx(U) and Dy , where U is an affine open subset of X and x € X. By this filtration
we have filtered rings (Dx(U), F) and (Dx y, F) in the sense of Appendix D. Let
{xi, 0i}1<i<n be a coordinate system on U. Then we have

grf Dx(U) = Ox(U)[&1, ..., &), @l Dy, =Ox.lé1,.... 6] (x €X),

where & = o01(0;). In particular, ng Dx(U) and ng Dy . are noetherian rings
with global dimension 2 dim X. Hence we obtain from Proposition D.1.4 and Theo-
rem D.2.6 the following.
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Proposition 1.4.6. Assume that A = Dx (U) for some affine open subset U of X or
A = Dy  for some x € X.

(i) A is a left (and right) noetherian ring.
(1) The left and right global dimensions of A are smaller than or equal to 2 dim X.

Remark 1.4.7. It will be shown later in Section 2.6 that the left and right global
dimensions of the ring A in Proposition 1.4.6 are exactly dim X (see Theorem 2.6.11).

‘We recall the notion of coherent sheaves.

Definition 1.4.8. Let R be a sheaf of rings on a topological space X.

(i) An R-module M is called coherent if M is locally finitely generated and if for any
open subset U of X any locally finitely generated submodule of M|y is locally
finitely presented.

(1) R is called a coherent sheaf of rings if R is coherent as an R-module.

It is well known that if R is a coherent sheaf of rings, an R-module is coherent if
and only if it is locally finitely presented.

Proposition 1.4.9.
(i) Dy is a coherent sheaf of rings.
(i) A Dx-module is coherent if and only if it is quasi-coherent over Ox and locally
finitely generated over Dy.

Proof. The statement (i) follows from (ii), and hence we only need to show (ii).
Assume that M is a coherent Dy-module. By definition M is locally finitely gen-
erated over Dy. Moreover, M is quasi-coherent over Oy since it is locally finitely
presented as a Dx-module and Dy is quasi-coherent over Oy. Assume that M is
a locally finitely generated Dy-module quasi-coherent over Ox. To show that M
is coherent over Dy it is sufficient to show that for any affine open subset U of X
the kernel of any homomorphism « : Dl’} — M|y (p € N) of Dy-modules is
finitely generated over Dy. Since Dy (U) is a left noetherian ring, the kernel of
Dy (U)P — M(U) is a finitely generated Dy (U)-module, and hence we obtain an
exact sequence Dy (U)? — Dy(U)P — M(U) for some g € N. By Proposi-
tion 1.4.3 this induces an exact sequence D}, — D}, — M|y in Modgc(Dy). In
other words Ker « is finitely generated. O

Theorem 1.4.10. A Dy -module is coherent over Oy if and only if it is an integrable
connection.

Proof. 1t is sufficient to show that any Dx-module which is coherent over Oy is a
locally free Ox-module. Let M be a Dy-module coherent over Ox. By a standard
property of coherent Ox-modules, it suffices to prove that for each x € X the stalk
My is free over Oy . Let us take a local coordinate system {x;, 9;} of X such that
the unique maximal ideal m of the local ring Oy , is generated by x1, x2, ..., x, (n =
dim X). Then it follows from Nakayama’s lemma that there exist s1, 52, ..., Sy, €
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My such that My = Y7 Ox csi and 51,52, ..., 5m € My / 21—, x; M are free
generators of the vector space M, / Y xiMy over C = Ox /m. We will show
that {s1, 2, ..., s} is a free generator of the Oy -module M. Assume that there
exists a non-trivial relation

D fisi=0 (fi € Ox.).
i=1

Now we define the order of each f; € Ox , atx € X by ord(f;) = max{/ | fi € m'}.
If we apply the differential operator d; to the above relation, we obtain the new
relation

m m
0=> @;f)si+ fi(@s) = gisi (g € Ox.).
i=1 i=1
Since each d;s; is a linear combination of s1, 52, ..., s, over Ox , we can take a
suitable index j so that we have the inequality

minford(f;) |i =1,2,...,m} > min{ord(g;) |i = 1,2, ..., m}.

By repeating this argument, we finally get the non-trivial relation
m
Y hisi =0 (b € Ox,/m~C)
i=1

in ./\/lx/ ZLI x; M, which contradicts the choice of 51, ..., s;. O
Corollary 1.4.11. The category Conn(X) is an abelian category.

Notation 1.4.12.
(i) We denote by Mod.(Dy) the category consisting of coherent Dy-modules.
(ii) Foraring R we denote the category of finitely generated R-modules by Mod (R).

The category Mod.(Dy) is an abelian category. If R is a noetherian ring,
Mod ¢ (R) is an abelian category.

Proposition 1.4.13. Assume that X is D-affine. The equivalence Mod,c(Dx) =~
Mod(I" (X, Dy)) in Proposition 1.4.4 induces the equivalence

Mod.(Dx) ~ Mod s (T'(X, Dx)).

Proof. ForV € Mod r(I'(X, Dx)) the Dx-module Dx ®r (x,py) V is clearly finitely
generated and belongs toMod.(Dy). Let M € Mod.(Dx). By definition M is locally
generated by finitely many sections. Moreover, the surjectivity of the morphism
Dx ®rx,py) I'(X, M) — M (see Proposition 1.4.4 (i)) implies that we can take
the local finite generators from I'(X, M). Since X is quasi-compact, we see that M
is globally generated by finitely many elements of ['(X, M). This means that we
have a surjective homomorphism Df( — M for some p € N. From this we obtain a
surjective homomorphism I'(X, Dx)? — I'(X, M), and hence I'(X, M) belongs to
Mod ¢ (I'(X, Dx)). O
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Proposition 1.4.14. Any M € Mod,(Dx) is embedded into an injective object I of
Mod(Dx) which is flabby (we do not claim that I is injective in Mod(Dx)).

Proof. Take a finite affine open covering X = (J; U;. Let j; : U; — X be the
open embedding. By Proposition 1.4.3 we can embed j*M into an injective object
I; of Mod,(Dy,). Set I = @; jix1i. Then I is an injective object of Mod,.(Dx).
Moreover, the canonical morphism M — [ is a monomorphism. It remains to show
that 7 is flabby. For this it is sufficient to show that [; is flabby for each i. For any
M € Mod,(Oy,) we have

HomOUi M, I;) ~ HomDUi (Dy; ®OU1’ M, I;),

and hence /; is an injective object of Mod,(Oy;). Hence it is flabby (see, e.g., [Ha2,
I, Proposition 3.4]). O

Corollary 1.4.15. Assume that X is D-affine. Then for any M € Mod,c(Dx) and
i >0wehave H (X, M) = 0.

Proof. By Proposition 1.4.14 we can take a resolution
O—-M-—>1Iy—> I > -,

where [; are injective objects of Mod,(Dx) which are flabby. Since I; are flabby,
H'(X, M) is the ith cohomology group of the complex I'(X, /"). On the other
hand since X is D-affine, the functor I'(X, e) is exact on Mod,.(Dx), and hence
H'(X,M)=0fori > 0. O

The following facts are well known in algebraic geometry (see, e.g., [Ha2, p. 126]).

Proposition 1.4.16.
(i) Let F be a quasi-coherent Ox-module. For an open subset U C X consider a
coherent Oy -submodule G C F|y of the restrlctlon Fly of F "o U. Then G can
be extended to a coherent Ox-submodule GCF of F (i.e., G|U = G).
(i) A quasi-coherent O x-module is a union of coherent Ox-submodules.

Corollary 1.4.17.
(i) A coherent Dx-module is (globally) generated by a coherent Ox -submodule.
(ii) Let M € Mod,:(Dx) and let U be an open subset of X. Then any coherent
QU-submodule N of M|y is extended to a coherent Dx-submodule N of M (i.e.,
Nly = N).
(iii) Any M € Modyc(Dx) is a union of coherent Dx-submodules.

Proof. (i) Let M be a coherent Dy-module. Take a finite affine open covering X =
\J; Ui of X such that M|y, is finitely generated over Dy,. Then M|y, is generated
by a coherent Oy, -submodule F; C M|y,. By Proposition 1.4.16 (i) we can take
an extension F, C M of F;, which is coherent over Oyx. Then the sum ) ; 17, is
coherent over Oy and generates M over Dy. The proofs for (ii) and (iii) are similar
and omitted. O
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Proposition 1.4.18. Assume that X is quasi-projective (that is, isomorphic to a lo-
cally closed subvariety of a projective space).

(1) Any M € Mod,.(Dx) is a quotient of a locally free (= locally projective =
flat) Dx-module.
(i) Any M € Mod.(Dy) is a quotient of a locally free Dx-module of finite rank.

Proof. (i) Let M € Mod,(Dyx). Take a quasi-coherent Ox-submodule F' of M
satisfying M = Dy F (we can take, e.g., F = M). It is sufficient to show that F is a
quotient of a locally free Ox-module Fy. In fact, from such F, we obtain a sequence

Dx @0y Fo—>Dx ®oy F—>M = DxF

of surjective Dx-linear morphisms, and Dx ®o, Fy is clearly a locally free Dx-
module. Choose a locally closed embedding i : X — Y = P". We have only to
show that the Oy-module i, F is a quotient of a locally free Oy-module. Since i, F'
is a quasi-coherent Oy-module, it is a sum of coherent Oy-submodules. Hence by
Serre’s theorem i, F is a quotient of a sum of invertible Oy-modules of the form
O(m) forsomem. LetY = UZ:O Uy be the standard affine open covering of Y = P
(Ur = A"). Then O(m)|y, is free for any m and k. Hence i F is a quotient of a
locally free Oy-module.

(i) If M is coherent, one can take F in the proof of (i) to be a coherent O x -module.
Hence the assertion can be proved using the argument in (i). O

Assumption 1.4.19. Hereafter, all algebraic varieties are assumed to be quasi-projec-
tive.

Corollary 1.4.20. Let M € Mod,(Dx).
(1) There exists a resolution
- — P] — P() — M — 0

of M by locally free Dx-modules.
(1) There exists a finite resolution

0O—P~P,— - —P—P—M—70

of M by locally projective Dx-modules.
If M € Mod.(Dyx), we can take all P;’s as in (i) and (ii) to be of finite rank.

Proof. (i) follows from Proposition 1.4.18.

(i1) Take a resolution as in (i) and set Q = Coker (P> dim x+1 — P2dimx). Itis
sufficient to show that Q is locally projective. Let U be an affine open subset. By
Proposition 1.4.3 we have a resolution

0— QU) — Prgimx—1(U)
— - — P(U) — Py(U) — MU) — 0,
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where P; (U)’s are projective Dy (U)-modules. Since the global dimension of Dy (U)
is smaller than or equal to 2dim X, we easily see that Q(U) is also projective by a
standard argument in homological algebra. Hence Q|y is a projective object in
Mod,.(Dy) (a direct summand of a free Dy-module), in particular a projective Dx-
module. O

1.5 Inverse images and direct images I1

In this section we shall define several functors on derived categories of D-modules
and prove fundamental properties concerning them.

Derived categories

Notation 1.5.1. For aring R (or a sheaf R of rings on a topological space) the derived
categories D(Mod(R)), DT (Mod(R)), D~ (Mod(R)), DP”(Mod(R)) of the abelian
category Mod (R) are simply denotedby D(R), D™ (R), D™ (R), DY (R), respectively.

The following well-known fact is fundamental.

Lemma 1.5.2. Let R be a sheaf of rings on a topological space X.

(i) For any M € Mod(R) there exists a monomorphism M — [ where I is an
injective object of Mod(R).

(i) For any M € Mod(R) there exists a epimorphism F — M where F is a flat
R-module.

In particular, any object M~ of DV (R) (resp. D™ (R)) is quasi-isomorphic to a
complex I (resp. F’) of injective (resp. flat) R-modules belonging to DV (R) (resp.
D™ (R)).

Let f : X — Y be a continuous map between topological spaces, and let R be a
sheaf of rings on Y. The direct image functor f, : Mod(f “1R) — Mod(R) is left
exact and we can define its right derived functor

Rf.: D*(f7'R) > DT(R)
by using an injective resolution of M . In the case R = Zy this gives a functor
Rf: : D (Sh(X)) — D (Sh(Y)),
where Sh(Z) denotes the category of abelian sheaves on a topological space Z.
Since any injective f~!R-module is a flabby sheaf (see, e.g., [KS2, Proposi-

tion 2.4.6]), we have the following.

Proposition 1.5.3. Let f : X — Y be a continuous map between topological spaces,
and let R be a sheaf of rings on Y. Then we have a commutative diagram
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D+(f71R) R—f*) D+(R)

l l

D (Sh(X)) R—f> Dt (Sh(Y)),

where the vertical arrows are the forgetful functors.

Proposition 1.5.4. Let f : X — Y be a morphism of algebraic varieties, and let R
be a sheaf of rings on Y. Then Rf; sends D’(f~'R) to D"(R) and commutes with
arbitrary direct sums.

Proof. By Proposition 1.5.3 we may assume that R = Zy. Then the assertion fol-
lows from the well-known corresponding fact concerning R f for abelian sheaves on
noetherian topological spaces (see, e.g., [Ha2, III, Theorem 2.7, Lemma 2.8]). O

In the rest of this section X denotes a smooth algebraic variety.

Notation 1.5.5. For § = +, —, b we denote by DgC(DX) (resp. DE(DX)) the full
subcategory of D*(Dy) consisting of complexes whose cohomology sheaves belong
to Mody.(Dy) (resp. Mod.(Dx)).

The categories DgC(DX) and DS(DX) are triangulated categories. Those trian-
gulated categories and certain full triangulated subcategories of them will play major
roles in the rest of this book.

By Proposition 1.4.6 and Corollary 1.4.20 we have the following (see also [KS2,
Proposition 2.4.12]).

Proposition 1.5.6. Any object of D?(Dx) (resp. DZC(DX)) is represented by a
bounded complex of flat Dx -modules (resp. locally projective Dx-modules belonging
to Mod,.(Dx)).

We note the following result due to Bernstein (see [Bor3]). It will not be used in
what then follows and the proof is omitted.

Theorem 1.5.7. The natural functors

D (Mody(Dx)) —> D.(Dx),
D’ (Mod,.(Dx)) — DZ(Dx)

give equivalences of categories.

Inverse images
Let f : X — Y be amorphism of smooth algebraic varieties. We can define a functor
Lf*:D"(Dy) > D'(Dx) (M +— Dy y @5, f7'M)

by using a flat resolution of M".
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Proposition 1.5.8. Lf* sends D (Dy) to D}.(Dx).

Proof. As a complex of Ox-module (that is, applying the forgetful functor
D?(Dx) — D?(Ox)) we have

Dx—y ® 1 7'M = (Ox @10, D)@y 7'M
= (Ox &%, fT'DY &%, M
=O0x ®% 1, 7'M,
and hence the assertion follows from Proposition 1.5.9 below. O

For an algebraic variety Z and § = +, —, b, # we denote by D;C((’)Z) (resp.

Dg((’)z)) the full subcategory of D?(0z) consisting of F* € D*(Oz) such that
H'(F) € Mody(Oz) (resp. Mod.(O7)) for any i.

Proposition 1.5.9. The functor Ox ®]L(_10Y f~Ye) : D™(Oy) - D~ (Ox) sends
Dq_c(OY) (resp. D (Oy)) to D;C(OX) (resp. D (Ox)).

Proof. Let F' € Dq_C(Oy) (resp. D (Oy)). Using the arguments in Proposi-
tion 1.4.18 we see that F" is represented by a complex of locally free Oy-modules
(resp. locally free Oy-modules of finite ranks). Hence the assertion is obvious. O

Remark 1.5.10. Note that Lf*Dy = Dx_,y ®§‘*1Dy f Dy = Dx_y. If fis
a closed embedding with dim X < dim Y, then the Dyx-module Dy_.y is locally

free of infinite rank (see Example 1.3.2). We see from this that the functor Lf* for
f : X — Y does not necessarily send D?(Dy) to Df (Dx).

We call Lf* the inverse image functor on derived categories of D-modules. We
will also use the shifted inverse image functor

¥ = Lf*[dim X — dim Y] : D*(Dy) — D*(Dyx).

defined by f*M" = Lf*M [dim X — dim Y]. The shifted one will be more practical
in considering the Riemann-Hilbert correspondence.

Proposition 1.5.11. Let f : X — Y and g : Y — Z be morphisms of smooth
algebraic varieties. Then we have

L(go f)*~Lf*oLg*, (gof) ~flog
Proof. We have
Dx_.y ®jLHDY f'Dy_;
= (Ox ®s-10, ™' Dy) ®§HDY Oy @410, 87 ' D2)
= (Ox ®p-10, DY) &%), (fT'0y ®opy-io, (80 )7 D2)
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= Ox @1, D&%, (fT'Oy®f, 10, (80 7' D2)
~ Ox ®(y 10, (8 /) Dz
= Ox ®gop)-10, (8 © £ 'Dy
=Dx_z.
Here we have used the fact the D is a locally free O-module. Hence we obtain
isomorphisms
Dx—z = Dx—y ®1p, [~ Dy—z = Dxoy ®f 1), f'Dy_.,
of (complexes of) (Dx, (go f Y~ D,)-bimodules. Therefore, we have
L(go [)"(M) = Dx—z @,y 1p, (g0 )M
~ (Dx-y ®JLc—1DY f'Dy_2) ®JLc—1g—1DY e m
= Dx_y ®§—|Dy f T (Dyoz ®5L'—‘Dy g M)
= Lf*(Lg"(M")).
This completes the proof. O

Example 1.5.12. Assume that U is an open subset of a smooth algebraic variety X.
Let j : U — X be the embedding. Then we have Dyy_,xy = j~'Dyx = Dy and
hence

jT=Lj*= 7' (the restriction to U).

Proposition 1.5.13. Assume that f : X — Y is a smooth morphism between smooth
algebraic varieties.

(i) For M € Mod(Dy) we have H (Lf*M) = 0 for i # 0 (hence we write f* for
Lf™* in this case).
(ii) For M € Mod.(Dy) we have f*M € Mod.(Dy).

Proof. (i) The assertion follows from the flatness of Oy over f 'Oy and Lf*M ~
Ox ®§“—1(’)y f~'m.

(i1) It is sufficient to show that the canonical morphism Dy — Dyx_.y =
Ox R r-10y f~'Dy (P — P(1 ® 1)) is surjective. Since the question is local,
we may assume that X and Y are affine and admit local coordinates {x;, Oy, }i=1,...x
and {y;, dy, }i=1,...,m» Tespectively, such that

,,,,,

1 ® 0y, (1<i<m)
ax,- > N
0 m+1<i<n)

under the canonical morphism Oy — f*©y = Oy ® r-10y f_1 ®y. Then we have

— "L gt
Dx_y = @ Oxay) -+ 0y,
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and the canonical homomorphism Dy — Dx_.y = Ox ®-1p, f~ Dy is given
by 0y} -+ 0" > 8p,p s etr,00y) - - - Oy, from which the assertion follows. O

Let us give a description of the cohomology sheaves of Li*M for M €
Mod,(Dx). We have a locally free resolution

0—>K,,—--—>K —Ky—>0Ox—>0 (1.5.1)

of the i _IOy-module Ox (Koszul resolution, see, e.g., [Matm, Theorem 43]). In
terms of a local coordinate {y;, dy,} in Example 1.3.2, we have

J n

K;= /\ @ i_IOydyk

k=r+1

The morphism Ko(= i~10y) — Oy is the canonical one, and K; - K; is
given by

J
fdye A Ay — Y (=DP Py fdyg A Adyg, A A
p=1
If we take another coordinate {z;, d;,} such that z,4; = --- = z, = 0 gives a
defining equation of X, then we can write y; = Z;’:H_l cuzr r+1 <k < n),
and the correspondence dyy +—> Z?:r L1 ¢udz (r +1 < k < n) gives the canonical
identification. From this resolution we obtain a locally free resolution of the right
i~'Dy-module Dy _, y:

0— Knr ®-10, i 'Dy = -+ > Ko ®; 10, i "' Dy = Dx_y — 0.
Hence Li*M is represented by the complex
> 0> Koy @10, i M > > Ko®jo10, i M —> 00— -

In terms of the local coordinate the action of Dx on the cohomology sheaf
HI(K. ®;-10, i~'M) is described as follows. Let D’ be the subalgebra of Dy

generated by Oy and 9y, ..., d,,. Note that the homomorphism i~'D — Dy in-
duced by the identification Ox ®;-10), i ~ID’ ~ Dy is aring homomorphism. Hence
we can regard Dy _,y as a (~'D’,i ' Dy)-bimodule. Moreover, our resolution of
Dx_ yisthatof (' D’, i~ Dy)-bimodules, where i ~! D’ acts on K;i®;-10, i~'Dy
via the left multiplication on i ~! Dy. Hence K. ®; 1 Oy i~'M is acomplex of i "1 D'-

modules. Then the actions of i D’ on H/ (K. ®;-10y i~ M) factors through Dy
and this gives the desired Dy-module structure.

Proposition 1.5.14. Let i : X — Y be a closed embedding of smooth algebraic
varieties. Set d = codimy (X).

(i) For M € Mod(Dy) we have H/ (Li*M) = 0 unless —d < j < 0.
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(ii) For M" € D™ (Dy) we have a canonical isomorphism
Li*M' >~ RHom;-1p,(Dy«x, i~'M)[d]

in D*(Dyx), where the left Dx-module structure on the right-hand side is given
by the right action of Dx on Dy x.

Proof. The statement (i) is already shown. In order to show (ii) it is sufficient to
show the isomorphism

RHom;-1, (Dyx.i~ ' Dy) ~ Dx_.y[—d]. (1.5.2)
Indeed, from (1.5.2) we obtain
Li*M = Dx_y ®l.L,1DY i~'m
=~ RHom-1p, (Dy<x,i”' Dy) ®,, i”'Mld]
~ RHom;-1, (Dyx.i~ ' M)[d].

Here the last equality is shown similarly to Lemma 2.6.13 below. Note that (1.5.2)
is equivalent to

RHom; 1 pow(Dx—y. i~ Dy) = Dy —x[~d] (15.3)
by the side-changing operation. Let us show (1.5.3). We have
RHomi,lD(y,p(DX%Y’ i~'Dy)
= RHomi—lD;’,P(OX ®;-10, i~'Dy,i"'Dy)
~ RHom;-10,(Ox, i~ Dy)
~i Dy ®;-10, RHom; -1, (Ox, i~1oy).

By using the Koszul resolution (1.5.1) of the i~'Oy-module Ox we see that
RHom;-1,(Ox, i~'Oy) is represented by the complex

[Ky = K — - — KJ],

where Kj = Hom;-1p, (K}, i~1Oy). Note that K is a locally free i ~' Oy-module
of rank one and we have a canonical perfect paring K ; ®;-10, Ka—j — K for each
J. Hence we have K7 ~ K4 j ®;-10, K. Then we obtain

[Kg — KT — = K;] ~[Ky—> Kg_1 — - — K0]®i*1(’)y K;
~ Ox @10, Kj[—d1 =i 'QY ' ®;,10, Qx[-d].
Therefore, we have
RHom,- pop(Dx—y. i~ ' Dy) =i~ ' Dy @10, i7'Q7 7 @10, Qx[—d]
~ Dy x[—d]

by Lemma 1.3.4. O
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Definition 1.5.15. For a closed embedding i : X — Y of smooth algebraic varieties
we define a left exact functor

i’ : Mod(Dy) — Mod(Dy)
by i'"M = Hom,-1p, (Dyx,i~'M).
Proposition 1.5.16. Leti : X — Y be a closed embedding. Then we have
i"M ~ RHom;-1p, (Dyx.i 'M) ~ Ri"M

forany M- € DT (Dy).

Proof. The first equality is already shown in Proposition 1.5.14. Let us show the
second one.
We first show that

i"M ~ Hom;1p (Dy—x,i 'Tx(M)) (1.5.4)

for M € Mod(Dy), where I'x (M) denotes the subsheaf of M consisting of sec-
tions whose support is contained in X. For this it is sufficient to show that
Y(s) € i~'Tx(M) for any ¢ € Hom;-1p, (Dy—x,i 'M) and s € Dyx.
Since the question is local, we can take a local coordinate as in Example 1.3.5.
Then we have Dy. x =~ C[dy,.,,...,0y,] ®c Dx. Since the i~ Dy-module
(C[ayM, ..., 0y,]1 ®c Dy is generated by 1 ® 1, we may assume that s = 1 ® 1.
Let 7 C Oy be the defining ideal of X. By (i~'7)s = 0 we have (i "' 7) ¥/ (s) = 0.
It implies that ¥ (s) € i ~'T'x(M). The assertion (1.5.4) is shown.
We next show that
Ri*M" ~ RHom;-1p, (Dy«x, i"'RTx(M")) (1.5.5)
for M" € DT (Dy). For this it is sufficient to show that if I is an injective Dy-module,
theni~ Ty (1) is an injective i~ Dy-module. This follows from
Hom; 1, (K, i"'Tx(1)) = Hom; 15 (i ~'iK, i ' Tx (1)
~ Homp, (ix K, ixi "'Tx(I))
~ Homp, (i+K,'x (1)) ~ Homp, (i+K, I)
for any i ! Dy-module K.
It remains to show that the canonical morphism

RHom; 1, (Dy—x,i 'RUx(M")) — RHom; 1, (Dy—x,i~'M)

is an isomorphism. Let j : ¥ \ X — Y be the complementary open embedding. By
the distinguished triangle

RTx(M') — M' —> Rj,j~'M" =5
(see Proposition 1.7.1 below) it is sufficient to show that
RHom;-1p, (Dy—x,i~ ' juj ' M) (= i"Rjsj~'M) =0.

This follows from Lemma 1.5.17 below. |
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Lemma 1.5.17. Let i : X — Y be a closed embedding of algebraic varieties. Set
U =Y\ X and denote by j : U — X the complementary open embedding. Then
forany K* € DP(Oy) we have Ox ®iL—IOy i~'Rj,K =0.

Proof. We have
. L —1p- . L .  ps a1 L _
i+(Ox ®i_]Oy iT RjxK) = i.Ox ®(f)y Rj.K = Rj.(j i.Ox ®OY\X K)=0.
Here we have used the projection formula for O-modules (see, e.g., [Hal, II, Propo-

sition 5.6]). O

Tensor products
The bifunctor
(8) ®0y () : Mod(Dx) x Mod(Dx) — Mod(Dx) ((M,N)+— M ®o, N)
is right exact with respect to both factors, and we can define its left derived functor as
(8) ®f, (o) : D"(Dx) x D"(Dx) — DP(Dx) (M',N) > M ®p N)

by using a flat resolution of M or N'. Since a flat Dx-module is flat over Oy, we
have a commutative diagram

OLMO)
D’(Dx) x D*(Dy) ———— D”(Dx)

l l

L
©8k, (®

D (Ox) x DP(Ox) —— D"(Ox),
where vertical arrows are forgetful functors. In particular, the functor (e) ®(L9X (o)
sends Db (Dx) x D}.(Dx) to D}.(Dx).
Let X and Y be smooth algebraic varieties and let p; : X x ¥ — X,

p2 : X xY — Y be the first and the second projections, respectively. For
M € Mod(Ox) and N € Mod(Oy) we set

MR N :=Oxxy ®, oy (py'M ®&c py ' N) € Mod(Oxxy).

' Oxecp;
This gives a bifunctor
(o) X (o) : Mod(Oyx) x Mod(Oy) —> Mod(Oxxy).-

Since the functor (e) X (e) is exact with respect to both factors, it extends immediately
to a functor
() X (o) : D*(Ox) x D*(Oy) —> D"(Oxxy)

for derived categories.
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Let M € Mod(Dyx) and N € Mod(Dy). Then the Dy y-module
—1 -1
DXXY ®Pf1DX®CP;1DY (pl M ®(C p2 N)
is isomorphic as an Oy xy-module to M X N by
-1 -1
Dxxy = Oxxy ® 10, gcp'0y P1 Dx ®C Py Dy-

This Dy xy-module is again denoted by M X N, and is called the exterior tensor
product of M and N. The bifunctor

(o) X (o) : Mod(Dyx) x Mod(Dy) —> Mod(Dxxy)
is exact with respect to both factors, and it extends to a functor
(0) X (o) : D"(Dx) x D"(Dy) —> D"(Dxxy)
for derived categories such that the following diagram is commutative:

(0)X(o)
D’(Dx) ® D*(Dy) ——— D’(Dxxy)

l l

[ ] & [ ]
Db (Ox) ® DP(Oy) =L Db(Ox,y),

where vertical arrows are forgetful functors. It is easily seen that the functor
(e) X (o) sends Db (Dx) x D).(Dy) (resp. D2(Dx) x D2(Dy)) to Db (Dxxy)
(resp. Df(DXXy)). We also note that

piM ~ M K Oy, P3N ~Ox K N.

Let X be a smooth algebraic variety and let Ax : X — X x X (x — (x,x))
be the diagonal embedding. For M, N € Mod(Dy) we easily see that M ®¢, N is
isomorphic to A*X(M X N) as a Dx-module. Moreover, if P; and P, are a flat Dy, -
module and a flat Dy,-module, respectively, then Py XI P, is a flat Dy, »y,-module.
Hence for M', N' € D? (Dyx) we have a canonical isomorphism

. oL o~ . .
M ®p, N ~ LAY (M KN
in D?(Dy).

Proposition 1.5.18.
() Let fi : X1 — Yy and f>» : Xo — Y2 be morphisms of smooth algebraic
varieties. Then for M| € Db(DYl ), M € Db(DYZ), we have

L(fi x f)"(M] ® My) = Lfi'M; X Lf3M;.



40 1 Preliminary Notions

(ii) Let f : X — Y be a morphism of smooth algebraic varieties. Then for M, N* €
Db(Dy), we have

Lf*(M ®p, N) ~ Lf*M ®p Lf*N.

Proof. The statement (i) follows from (f; x f2)*(M| X M3) >~ f*M X f; M, for
M € Mod(Dy,), M € Mod(Dy,). The statement (ii) follows from (i) as follows:

Lf*(M ®{, N) >~ LFf*LAy(M B N') ~ LAYL(f x f)*(M B N')
~ LAY (Lf*M R Lf*N') ~ Lf*M ®p Lf*N. O

Proposition 1.5.19. Let M',N' € D”(Dx) and L' € D”(DY). Then we have
isomorphisms

L ®€’)x N) ®§)X M ~L ®Iéx M ®Iéx N) = (L ®€9x M) ®15X N
of Cx-modules.

Proof. By taking flat resolutions of M, N°, L' we may assume from the beginning
that M = M, N = N € Mod(Dx)and L' = L € Mod(DE)(p). Hence the assertion
follows from Lemma 1.2.11. O

Direct images

Let f : X — Y be a morphism of smooth algebraic varieties. We can define functors

D"(Dx) > M'+— Dy_x ®p M € D’(f~'Dy),
D"(f~'Dy) > N'+— Rf.(N') € D"(Dy)

by using a flat resolution of M~ and an injective resolution of N'. Therefore, we
obtain a functor

/ : D*(Dx) — D’ (Dy)
f

given by
/ M- = Rf(Dy x ®5 M) (M € D"(Dy)).
f

It is true that f ¥ sends D(];C(DX) to DZC(DY); however, unlike the case of inverse
image functors it does not immediately follow from Proposition 1.5.20 below. We
will prove this non-trivial fact later (Proposition 1.5.29).

Proposition 1.5.20. The functor Rf, : D’(Ox) — D?(Oy) sends DSC(OX) to
DZC(Oy). If f is proper; it sends Df(OX) to Df((’)y).
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(See, e.g., [Ha2, III, Corollary 8.6, Theorem 8.8].)

For an integer k we set
k
/ M‘:Hk</ M),
f f

Note that we also have a functor [ IE D’ (DY) — DP(DyP) defined by

f M = Rf.(M ®5_ Dx_y) (M € D"(DY)).
f
By an argument similar to those in Section 1.3 we have a commutative diagram

D?(Dy) I, D?(Dy)

Qx®0y (-)Jz zl9y®oy (®)

D*(DY) T) DP(D}P).
’

Proposition 1.5.21. Let f : X — Y and g : Y — Z be morphisms of smooth
algebraic varieties. Then we have

L=L)

Proof. Similar to the proof of Proposition 1.5.11, we have isomorphisms
Dzex~f'"Dzy®p1p, Dyex ~ f'Dzey ®§-71Dy Dy x

of (complexes of) ((g o f)_lDZ, Dyx)-bimodules.
For M" € Db(DX) we have

// M = Rg,(Dz—y ®}, Rf(Dyx ®p, M)
§f

by definition. We claim that the canonical morphism
Dzey ®p, Rfs(Dyex ®p, M) — Rfi(f'Dzey ®} 1, (Dyex ®p, M)
is an isomorphism. In fact, we show that the canonical morphism

F ®p, Rf(G) — Rf(fT'F ®7,, G)

is an isomorphism for any F" € Dq_C(D?,p), G € D’(f~'Dy). Since the question is
local, we may assume that Y is affine. Then by Remark 1.4.5 we can replace F~ with
a complex of free right Dy-modules belonging to D‘]_C(Dﬁp). Hence we have only to

show our claim for F~ = D;‘?' , where I is a (possibly infinite) index set. Then we
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have F* ®F, Rfi(G) = Rf(G)®  and RE(fT'F @Y, ) G) = RE(G)H®).

Therefore, the claim follows from Proposition 1.5.4 (for R = Zy). Hence we have

// M x~ Rg*Rf*(f_lDZeY ®?’*1Dy (Dy«x ®%X M)
§df '

~ R(go ful(f ' Dzey ®1)y Dyox) ®p, M)
~ R(go [)«(Dzx ®p, M)
= M.

gof

This completes the proof. O

Example 1.5.22. Assume that U is an open subset of a smooth algebraic variety X.
Let j : U < X be the embedding. Then we have Dx. y = j~' Dy = Dy and

[
J

(note that [ i M = Rj,M may have non-trivial higher cohomology groups R’ j. M,
i >0).

Example 1.5.23. Assume thati : X — Y is a closed embedding of smooth algebraic
varieties. Take a local coordinate {y, dy, }1<k<n of Y suchthaty, ;1 =--- =y, =0
gives a defining equation of X. By Example 1.3.5 we have the following local
description of [; M for M € Mod(Dx):

k 0
f M =0 (k #0), / M ~C[d,,,,...,03,]®c ixM.
1 1

The action of Dy on C[dy, _, ..., dy,] ®c i+ M is given by the following. The action
of 9y, for k > r is given by the multiplication on the first factor C[d,,,, ..., dy,].
Hence it remains to describe the action of ¢ € Oy and 9y, fork <ronl®i.M C
Clo .., 0y,] ®c i+M. Itis given by

V1ot

p(l®@m)=1Q (p|x)m (¢ € Oy),
Iy, (1@m)=1® dym (I1<k<r).

The above local consideration gives the following.

Proposition 1.5.24. Let i : X — Y be a closed embedding of smooth algebraic
varieties.

(i) For M € Mod(Dyx) we have fikM = 0 for k # 0. In particular, fl.o
Mod(Dyx) — Mod(Dy) is an exact functor.

(i) [ sends Modg(Dx) to Modge(Dy).
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Proposition 1.5.25. Let i : X — Y be a closed embedding of smooth algebraic
varieties.

(i) There exists a functorial isomorphism

RHomp, (/M N') ~ i,RHomp, (M, Ri*N")
(M € D™ (Dx), N € D" (Dy)).

(i) The functor Ri% : Db(Dy) — Db(DX) is right adjoint to fl . DP(Dy) —
Db (Dy).

Proof. The statement (ii) follows from (i) by taking HO(RT'(Y, e)) (note that
HO(R Homp, (K", L)) =~ Home(Dy)(K', L")). Let us show (i). Note that for
M € Mod(Dy), N € Mod(Dy) there exists a canonical isomorphism
Hompy (M, Hom; -1, (Dy—x,i” 'N)) = Hom;-1p, (Dyx ®py, M,i ' N)
(¢ <— V)
given by
(@()(R) =y (R®s) (s €M, Re Dyx).

From this we obtain
RHomp,(M', RHom;-i,, (Dyx.i"'N))
~ RHom;-1p, (Dy x ®p, M,i"'N')

for M € D™ (Dx), N° € DV (Dy) (see the proof of [KS2, Proposition 2.6.3]).
Therefore, we have

RHomp, ([M', N')

~ RHomp, (ix(Dy —x ®le M), N")

~ RHomp, (ix(Dy—x ®5 M), RTx(N"))

~ RHomp, (i(Dy<x ®p, M), i,i ' RTx(N))

~ iyRHomp, (i"'i,(Dyx ®p, M),i"'RTx(N"))
~ iyRHom;-1p, (Dy —x ®p, M .i"'RTx(N"))

~ iyRHompy(M", RHom;-1 1, (Dy —x,i 'RTx(N")))
~ iyRHomp, (M, Ri"N").

Here the last equality follows from Proposition 1.5.16 and its proof. O

Corollary 1.5.26. Let i : X — Y be a closed embedding of smooth algebraic vari-
eties.
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(i) There exists a functorial isomorphism

0
Hom p, (/ M, N) ~ i,Homp, (M, i*N)
i
(M € Mod(Dyx), N € Mod(Dy)).
(ii) The functor i® : Mod(Dy) — Mod(Dy) is right adjoint to j}o : Mod(Dyx) —
Mod(Dy).

In order to analyze the direct images for projections ¥ x Z — Z we need the
following.

Lemma 1.5.27. We have the following locally free resolutions of the left Dx-module
Ox and the right Dx-module Qx :

n 0
0 — Dx ®0y [\ Ox— - —>Dx ®0y [\ Ox—>0x — 0, (15.6)
0 — Q% ®oy Dx— -+ >y ®o, Dx—>Qx — 0, (15.7)

where n = dim X, and Q]§( = /\k Q;foro <k <n. Here
0
Dx ®0, [\ ©x(= Dx) - Ox

and

Q';( ®oy Dx(= Qx ®o, Dx) — Qx
are given by P +— P(1) and w ® P +— wP, respectively, and

k k—1
d: Dx ®oy /\@X — Dx ®0y /\®X

and

d: Q’)‘( ®oy Dx — Ql§(+1 ®0, Dx
are given by
d(P @01 A--- Ab)
=S 1t Po @6, NN N

1

o~

Y DT PRI OIAO A A A A,
i<j
d(w®P)=dw®P+Zdz,-/\w®8iP,
i

respectively, where {z;, 9;} is a local coordinate of X (we call (1.5.6) the Spencer
resolution of Oy).
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Proof. The assertion for Qy follows from the one for Oy using the side-changing
operation. In order to show that the complex

n 0
N = |:DX ®OX /\®X_>"'_>DX ®OX /\®X_)OX:|

is acyclic we consider its filtration {F, N} ,:

n 0
FPN. — |:FanX ®OX /\@X_> —)Fp(Dx) ®OX /\@X—)FP(OX)1| ,

where F,(Ox) is Ox for p > 0 and is 0 for p < 0. Then it is sufficient to show that
the associated graded complex gr N isacyclic. Letwr : T*X — Xandi : X — T*X
be the projection and the embedding by the zero-section, respectively. Then we have
gr N' >~ m, L with

n 0
L = |:OT*X ®r-10y /\”_1®X—> < =>O0r+x Q10 /\ﬂ_l®x—>i*@x:| ,

where Or+x ®,-10,, /\On_l®x(= Or+x) — i,Ox is given by ¢ — i, (¢ oi) and
d:Or+x ®,-10, ANr=lexy — Orx ®r-10y A 21Oy is given by

dp@O1 A AO) =Y (D eo1(0) @01 A+ AB; - by

1

It is well known that the complex L’ is acyclic (the Koszul resolution of the Orx-
module i, Oy; see, e.g., [Matm, Theorem 43]). Since 7 is an affine morphism, 7, L’
is also acyclic. O

Let Y and Z be smooth algebraic varietiesandset X =Y x Z. Let f : X = Y
and g : X — Z be the projections. We consider ff M = Rfy(Dyx ®gx M) for
M € Mod,(Dy) in the following. To compute Dy . x ®%X M we use the resolution
of the right Dx-module Dy. x = Dy X Q7 induced by the resolution of the right
Dz-module 27 given in Lemma 1.5.27. Set n = dim Z(= dim X — dim Y) and
Qlj(/y =0y KX QIE for0 < k < n. For M € Mod,(Dx) we define its (relative) de
Rham complex DRy (M) by

ATy oy M (—n <k <0),

DRy (M) :=
(DRx/y(M)) 0 (otherwise),

n
dw®s)=do®s+ Y (dzj Aw) ® d;s.

i=1

Here {z;, 0;}1<x is a local coordinate of Z. Note that each term (DR, y (M ))k =
g*19%+k Q®q-10, M is an £~ Dy-module by
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Pw®s)=w®(P®1)s) (Pef'Dy, weg QL™ sem),

where we denote by P — P ® 1 the canonical homomorphism f~!Dy — Dy.
Thus DRy, y (M) is a complex of f ~1 Dy -modules. By the above lemma we have

Dy x ®1L)X M >~ DRyx;y (M)

in the derived category consisting of complexes of f~! Dy-modules.

Proposition 1.5.28. Let Y and Z be smooth algebraic varieties, and let [ : X =
Y x Z — Y be the projection.

(i) For M € Mod(Dyx) we have ff M >~ Rf.(DRx/y(M)).
(ii) For M € Mod(Dy) we have f]{ M =0 unless —dim Z < j < dim Z.
(iii) The functor ff sends DZC(DX) to DSC(Dy).

Proof. The assertion (i) follows from the above consideration and the definition of f Iz
and (ii) is a consequence of (i) since f, has cohomological dimension dim Z. In order
to show (iii) it is sufficient to show for M € Mod,(Dx) that R’ f,(DRx vy (M)¥) is
a quasi-coherent Oy-module for any i and k. This follows from Proposition 1.5.20
since DRx/y (M )k is a quasi-coherent Ox-module. m]

Note that any morphism f : X — Y of smooth algebraic varieties is a composite
of aclosed embeddingi : X — Y x X (x — (f(x), x)) and the projection ¥ x X —
Y. Hence by Proposition 1.5.21, Proposition 1.5.24 and Proposition 1.5.28 we obtain
the following.

Proposition 1.5.29. Let f : X — Y be a morphism of smooth algebraic varieties.
Then ff sends DSC(DX) to D(lj’c(Dy).

Proposition 1.5.30. Let f| : X1 — Y1 and fr : X2 — Y2 be morphisms of smooth
algebraic varieties. Then for M| € D(I;C(Dxl), M, € D(II’C(sz) the canonical

mOrphism
J ll )’2 J ll XJ .2

is an isomorphism.

Proof. By decomposing fi X f> into the compositeof X| x Xy — Y x Xy — Y xY>
it is sufficient to show that for a morphism f : X — Y of smooth algebraic varieties
and a smooth algebraic variety T the canonical morphism

</ M') XN — (M®RN) (M e D).(Dx).N e D).(T))
f [fxidr

is an isomorphism. By decomposing f into the composite of X — X x Y (x —
(x, f(x)) and the projection X x ¥ — Y we may assume that f is either a closed
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embedding or a projection. Moreover, we may assume M~ = M € Mody(Dx),
N = N € Mod,(Dy).

Assume that i : X — Y is a closed embedding. Since the question is local,
we may take a local coordinate {yx, dy, };<z<, of Y such that y,,1, ..., y, give the
defining equations of X. Then by Example 1.3.5 we have

(fM) XN = (C[dy,,,, -, dy,] Oc ixM) XN

~ C[d ., 0y,1®c (0 x D)y (M KX N)

Yr+10°

~ f (MR N).
ixidy

Assume that f : X — Y is the projection. Then we have
(/ M) X N =~ Rfx(DRx/y(M)) XN,
f
| BN = RG X D DR (BN,
fxidr

Since DRy ;y (M )k is a quasi-coherent Ox-module, we have
Rf«(DRxy(M)) ®IN = R(f x idr)s(DRyx;y (M)*) K N)
= R(f x id)«(DRxx1/vx1(M K N)Y),
and hence
Rf«(DRx;y(M)) XN =~ R(f x id7)«(DRxx1/vx7(M K N)).
The proof is complete. O
In the proof of Proposition 1.5.30 we have used the following.

Lemma 1.5.31. Let f : X — Y be a morphism of algebraic varieties and let T be an
algebraic variety. For M™ € Dfl’c((’)x) and N € D(?C(OT) the canonical morphism

Rfs(M)YX N — R(f xidr)«(M X N")
is an isomorphism.

Proof. Since the question is local, we may assume that 7 is affine. Then there exists
an isomorphism F~ >~ N’ in DSC(OT) such that F¥ is a direct summand of a free
Or-module for any k and F*¥ = 0 for |k| > 0. Hence we may assume from the
beginning that N' = Or. Consider the cartesian square

XxT —2 5 x

fxidrl lf

YxT — Y,
q
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where p: X xT — Xandq : Y x T — Y are the projections. Then we have

Rf (M) R Or >~ q*Rfo (M) = R(f x id7)«p* (M) =~ R(f x id7).(M K Or)
by the base change theorem (see [Ha2, 11, Proposition 5.12]) for O-modules. 0

Remark 1.5.32. One can investigate some problems in integral geometry such as
those for Radon transforms in a purely algebraic (functorial) way using the operations
of D-modules explained above (see, for example, [Br], [D], [DS2], [Gon], [KT4],
[Mar], [MT)).

1.6 Kashiwara’s equivalence

In Proposition 1.5.24 we saw that for a closed embedding i : X < Y the directimage
functor fl.o : Modg(Dx) — Mod,(Dy) is an exact functor. In this case, the image
of a Dy-module by fio is a Dy-module supported by X. Let us denote by Mod;(C(Dy)

(resp. Modf (Dy)) the full subcategory of Mod(Dy) (resp. Mod.(Dy)) consisting
of Dy-modules whose support is contained in X. Then we have the following theorem
which plays a fundamental role in various studies of D-modules.

Theorem 1.6.1 (Kashiwara’s equivalence). Leti : X — Y be a closed embedding.

(i) The functor fio induces equivalences

Mod,c(Dx) — Mod,).(Dy).
Mod,.(Dx) —> ModX (Dy)

of abelian categories. Their quasi-inverses are given by i = HOT,
(ii) Forany N € Modffc(Dy) we have H/iTN =0 (Jj #0).

Proof. In order to show (i) for Mod,, it is sufficient to show that the canonical
homomorphisms

0 0
M — i”/ M, / i"N >N (M €Mody(Dx), N € Mod,).(Dy))
1 1

are isomorphisms (see Corollary 1.5.26). The assertion for Mod, follows from that
for Mod, if we can show that fl.o sends Mod.(Dy) to Modf (Dy) and that i % sends
Modf (Dy) to Mod.(Dy). Hence our problem is local. Since (ii) is also a local
problem, we may shrink Y if necessary. Moreover, by induction on the codimension of
X we can assume that X is a hypersurface. We use the local coordinate {yy, dy, }1<k<n
of Y usedin Example 1.3.5 (X is defined by y, = 0). Wesety = y,, d = 9,,,60 = yd.
Then we have
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0
f MZ(C[B] ®(C l*M (M EMOqu(DX))v
l
HY%'N =N =Ker(y:i"'N - i"'N) (N € ModX.(Dy)),
HYTN = Coker(y : i 'N — i~'\) (N € Mod,..(Dy)),
HITN — 0 (j #0.—1, N € Mod.(Dy)).

Let N € Mod;(c(Dy). Consider the eigenspaces
N/ :={seNl|bs=js} (jeZ)

of 6 in N. By the relation [9, y] = 1 we get yN/ < N/*!, 9N/ < N/~ and
¢ induces an isomorphism jx : N/ 5 NI for Vj # 0. Therefore, dy = 0 + 1 :
N7/ — N7 isanisomorphism for ¥ j # —1. In particular, if j < —1, both morphisms

LYy . a .
N/ — NJ*+! - NJ are isomorphisms.
Let us show that
N=EN". (D

Since N is a quasi-coherent Oy-module supported in X, any s € N is annihilated by
y¥ for a sufficiently large k. Hence it suffices to prove the following assertion:

k
Ker(¥: N> Nyc PN (k=1 2)
j=1
This is true for k = 1 because the condition ys = 0 implies s = (dy — 1)s = —s.

Assume that & > 1 and that (2) is true for k — 1. Then for a_section s € Ker(yF :
N — N) we have y*s = y*~I(ys) = 0 and ys € EBIJ‘;} N7/ by the hypothesis of

induction. Hence dys € @];:2 N~/ and

k
0s+s=y8s+s=8yse@N_j. 3)
j=2

On the other hand, we have y*~1 (05 +ks) = y*ds +ky*~ls = dyks = 0. Therefore,
again by the hypothesis of induction we get

k—1
Os+kse PN (4)
Jj=1
The difference (4)-(3) gives (k — 1)s € @];:1 N7J/. By k > 1 we finally obtain

s € @;{:1 N~ and the proof of (1) is complete.
By (1) we easily see that H'iTN = 0, and (ii) is proved. We see also from (1) that
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_ —1 a1 ar—1
N=C[0]®c N, i"N=i N

From this we easily obtain Mod . (Dyx) >~ Mod;(C(Dy).

It remains to show that /}0 sends Mod.(Dy) to Modg( (Dy) and that i% sends
Modf(Dy) to Mod.(Dyx). We may shrink Y if necessary. If M € Mod,.(Dy) is
finitely generated over Dy, then fl.o M = C[0] ®c i+M is clearly finitely generated
over Dy. Assume that N € Mode(C(Dy) is finitely generated over Dy. By N =

C[d] ®c N ~! the Dy-module N is generated by finitely many sections s, ..., s,
contained in N~'. Then i®N = i~! N~ is generated as a Dx-module by the sections
S1, ..., 8. The proof is complete. O

Denote by Dé”CX(Dy) (resp. Df’X(Dy)) the subcategory of D(ljc(Dy) (resp.
Df(Dy)) consisting of complexes N° whose cohomology sheaves H*(N") are sup-
ported by X.

Corollary 1.6.2. For t = gc or c the functor

f : D{(Dx) — D" (Dy)

1

gives an equivalence of triangulated categories. Its quasi-inverse is given by
Ri* =i : D)X (Dy) — D} (Dy).

Proof. Itis easily seen that fl sends Dé’ (Dx) to Dg’X(Dy) and Ri” sends Dé”X(Dy)
to Dé’ (Dx). By Proposition 1.5.25 we have canonical morphisms

M — Ri" /M', /Ri”N‘ — N (M e DiDx).N e D} (Dy)).
i i

We have only to show that those morphisms are isomorphisms. Let us show that
M — Ri’ fl M is an isomorphism for M" € Dé’(Dx). We proceed by induction on
the cohomological length [(M") := Max{i | H'(M") # 0} —Min{ j | H/ (M) # 0}
of M". Assume that/(M") = 0. Then we have M~ = M[k] for some M € Mod(Dx)
and k € 7, and hence we may assume that M" = M € Mod;(Dy) from the beginning.
In this case the assertion is already proved in Theorem 1.6.1. Assume that/(M") > 0.
In this case there exists some k € Z such that l(rng') < I(M") and l(r>kM') <
[(M"), where 7K and 7% are the truncation functors (see Appendix B). By applying
Ri* [; to the distinguished triangle

. . .o+l
SV s M —s R S

we obtain a distinguished triangle

Ri“/r<"M' N Ri“/M' N Ri”/t>kM' L
i i i
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Moreover, we have a commutative diagram

+1
TSEM — M — kmr

‘| d d
Ri* [[tSkM' —— Ri* [ M" —— Ri® [,v7km —1

By our hypothesis on induction « and y are isomorphisms. Hence § is also an isomor-
phism (see Appendix B). We can also show that fl Ri*N' — N’ is an isomorphism
by a similar argument. O

Remark 1.6.3. In this book we will frequently use the argument in the proof of
Corollary 1.6.2, reducing assertions on complexes to those on objects of abelian
categories (regarded as a complex concentrated at degree 0) by induction on the

cohomological length.

Example 1.6.4. Consider the Dy-module

0
BX\Y :f Oy € MOde(C(Dy).

Take a local coordinate system {y;, d;}1<;j<u of ¥ such that
X={yj=0|j>=m+1}
Then we have

Jj=m+1

m
Bxy = Dy / <Z Dyo; +
=1

In particular for X = {p} (one point), we get B,y = Dy/Dym, = Dyé, =~
Cloy, 92, ..., 0,18y, wherem,, = (y1, ¥2, ..., y) is the maximal ideal at p and 6, =
1 mod m, € By, y. Here, we have used the notation §, since the corresponding
system y;u = 0 (1 < j < n) of differential equations is the one satisfied by the
Dirac delta function supported by {p}. By Kashiwara’s equivalence, we have the
correspondence

Mod({]’;}(Dy) >~ {the category of C-vector spaces} (B, )y <— O).
Hence objects of Mod({/z.} (Dy) are direct sums of Bypy.
We will give an application of Kashiwara’s equivalence.

Theorem 1.6.5. A product of a projective space and a smooth affine variety is D-af-

fine.
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Proof. LetY be asmooth affine algebraic variety. Weset X = P"(C)x Y,V = C**1,
Ve =V \{0}. Letm X =V'xY > P"(C) x Y be the projection. Then for
M € Mod,.(Dx) we obtam a natural action of the complex multiplicative group
C* on the space I'(X, 7*M) of the global sections of its inverse image 7*M =
O% ®r-10, T M e Mod,(Dy), because F(X, O%) has a natural action of C*.

Considering I'(X, 7*M) as a C*-module, we get its weight space decomposition
NX. 7*M) =P ron®,
IeZ

where z € C* acts on y (M) by z'. In particular, I'(X, M) = y(M)©. Now let us
consider the Euler vector field 0 = Z?:o x;0; (here {x;} is a linear coordinate system
of V and 9; = 9/dx;) on V. If we define the action of 6 on 7*M by 6 ® Id, we have

yM)O = eT X, 7*M) | 6u = lu}.
Moreover, we can easily check
xi(yDy cyn™V ) iy Dy c ),

SetZ:{O}XYCVxY,andletj:if—>VxYandk:ZL)Vbeethe
embeddings.
Let us show that I' (X, ) is exact on Mod,.(Dy). Let

0— My — My — Mz — 0
be an exact sequence in Mod,.(Dx). Since 7 is smooth, the sequence
0— "My — 7*Mr, — 7*M3 — 0
is also exact. Hence we obtain the long exact sequence
0> jut*M; — jut*My — jum*M3 — R'j,m*M; — - -

in Modyc(Dy xy). On the other hand, the supports of the first cohomology sheaves
fjl T*M; = le*n*Mi (i = 1,2, 3) arecontained in Z. Therefore, by Kashiwara’s
equivalence (Theorem 1.6.1), there exists a unique Dz-module N € Mod,(Dz)
such that

0
R'j.w M, ~ / N ~ C[do, 31, 2, ..., 0] ®C N
k
As we have seen in Example 1.3.5 the action of Dy on C[dy, 91, 92, ..., 93] ®c N

is given by x,-(af Qu) = —k8,-j(8j?_1 ®u) (u € N) for k > 0 (5;; is Kronecker’s
delta). So the Euler operator € acts on it by

0(0° @u) = —(la| + (n+1))(0" ®u) (u € N).

Hence the eigenvalues of the actionof 6 on I'(V x Y, fko N)=T(V xY, R j.*M)
are negative integers. Since V x Y is affine, I'(V x Y, e) is an exact functor and we
get a long exact sequence
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0— I'(V XY, jt*M) —> -+ —> I(V x Y, R' j,7*M}) —> - -

Note that I'(V x Y, ju,w*M;) = F()?,n*Mi), and the eigenvalues of 6 on
I['(V x Y, R'j,w*Mj) are negative integers. Hence taking the O-eigenspaces of
0 in the above long exact sequence, we finally obtain the exact sequence

0— yM)? — y(M)® — y(M)® — 0
ie.,
0—TI'(X, M)) —TI'(X, M) — I'(X, M3) — 0.

The exactness of I'(X, o) on Mod,.(Dy) is verified.
Let us show that I'(X, M) = 0 for M € Mod,.(Dx) implies M = 0. Assume
M # 0. As before, let us consider the eigenspace decomposition

rX, 7*M) =Py n®
=/

with respect to the 0-action. Since M # 0 and X — X is a smooth surjective
(hence, faithfully flat) morphism, we get 7*M # 0. As a consequence, there exists
an integer [y € Z satisfying y (M) £ 0. Assume Iy > 0, and take a section
u#0eyMU. If d;u = 0 for any i, then we get Ou = 0 and it contradicts
our assumption /o > 0. So for some i we should have 0 # d;u € y(M)(ZO’]).
By repeating this procedure, we can show I'(X, M) ~ y(M)©® £ 0. This is a
contradiction. Next assume [y < 0, y(M )(ZO) # 0, and take a non-zero section
0#£uce y(M)(l") If xju =0(0 <i <n), then supp u C Z and u should be zero
globally on X. This implies x;u € y (M)%+D =£ 0 for some x;. We can repeat this
argument until we get I'(X, M) ~ y (M )@ =£ 0. This is also a contradiction. Hence
we have M = 0. O

1.7 A base change theorem for direct images

Let X be a topological space, Z a closed subset, and U = X \ Z the complementary
open subset of X. We denotebyi : Z — X and j : U — X the embeddings

z<5 x <.
Then for an injective sheaf F on X we get an exact sequence
0—Tz2(F)— F — j,j 'F — 0,

where I'z(F) is the sheaf of sections of F supported by Z. Hence for any F~ €
DP(Cy), there exists a distinguished triangle

RTZ(F) —s F' —> Rj,j ' F 5

Considering this distinguished triangle in the case where X is a smooth algebraic
variety and F~ € DP(Dy), we obtain the following.
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Proposition 1.7.1. Let X be a smooth algebraic variety and let Z be its closed subset.
SetU = X\ Z. Denotebyi : Z — X and j : U — X the embeddings.

(i) For M" € DSC(DX) we have a canonical distinguished triangle
RT (M) — M' —> /jTM' =L
J

(i) Assume that Z is smooth. Then for M™ € DSC(DU) we have

iT/M':o.
j

(iii) Assume that Z is smooth. Then for M" € DZ (Dx) we have

RT (M) ~ fﬂM'.

1

Proof. We have

Lj*M = j'M = j~'M" (M € D"(Dx)),
{fj N = RjN' (N € D*(Dy)).
Hence for M € D”(Dy) wehave Rj,j~'M" ~ fj jTM-. The assertion (i) is proved.
The statement (ii) follows from Lemma 1.5.17.
Let us show (iii). Since [; JTM belongs to Db (Dx), we have RT'z(M") €
Dé”CZ(DX). Hence we obtain RI['z (M) =~ fl.(iTRFZ(M')) by Corollary 1.6.2.
Therefore, it is sufficient to show i TR z(M*) ~ i" M. Tt is seen by applying i to

the distinguished triangle in (i) that this assertion is equivalent to i " Rj,(j ~'M") = 0.
This follows from (ii). O

Remark 1.7.2. In some literature, f i jTM' is denoted by RI'x1z(M").
Now let us state our main theorem in this section.
Theorem 1.7.3 (Base change theorem). Fortwo morphisms f : Y — X, g1 Z —

X of algebraic varieties consider the fiber product (cartesian square)

Yy, —5 5y

1L

7z —% . x

(Yz :=Y xx Z). Assume that the four varieties X, Y, Z and Yz are smooth. Then
there exists an isomorphism

g"‘/f :/fg"‘ : Db.(Dy) — D}.(Dz) (1.7.1)

of functors.
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Proof. We can decompose the morphism g : Z — Xasg:Z —> Zx X — X,
where Z — Z x X is the graph embedding of g and Z x X — X is the projection.
Hence by Proposition 1.5.11 it is enough to prove the theorem in the case where g is
a projection or a closed embedding (such that Y is smooth).

(i)Letg =pry : Z =T x X — X be a projection (T is smooth). In this case
we have a cartesian square

Txy —— v
.fl lf
g

T xX —— X,

where g = pry, f =1idr x f. Then for M € D;’C(Dy) we have
/jM'[—dimT] :/ (Or®M) ~ Or &/ M :g*/ M [—dim T].
7 idpx f f f

(i) Leti = g : Z — X be a closed embedding such that Y7 is smooth. Then we
have the two cartesian squares

Yz =f"12) Y V= f"'U)
7| ]
z L x L _v=x\z

By Kashiwara’s equivalence we have i ' j; ~ Id and hence

/jT:iT//jT:iT/ﬁZT.
! iJf rJi

Hence the canonical morphism f; i" — Id (see Proposition 1.7.1) yields the morphism
J7i" = i [,. We need to show

iT//j'*M':iT/M'
fJi f

for M" € Dye(Dy). Applyingi' [ 1 to the distinguished triangle
T ag . T,
(T — m— | fim 2
i J

we see tflat our assertion is equivalent to ;" ff ff j'M = 0. Byi' ff f; J'M =
i f; [, "M’ this follows from Proposition 1.7.1 (ii). o

Corollary 1.7.4. We keep the notation of Theorem 1.7.3. If g(Z) N f(Y) = @, then
we have ffg* =0.
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Corollary 1.7.5 (Projection formula). Let f : X — Y be a morphism of smooth
algebraic varieties. Then for M € Dé’c(Dx), N e Dgc(Dy) we have

/(M ®p, LI*N) ~ (/ M) ®p, N. (1.7.2)
f f

Proof. Applying Theorem 1.7.3 to the cartesian square

id o
X (idx x f)oAx X x Y

X
fl leidy

we have

/(M@é)x Lf*N):/L((idx x f)oAX)*(MgN):LA;/ (M X N)
f f

fxidy
~ L
o~ (/f M) ®p, N-

The proof is complete. O

Remark 1.7.6. It is not obvious whether the isomorphism (1.7.1) constructed in the
proof of Theorem 1.7.3 is actually canonical. Our proof of Theorem 1.7.3 only implies
that the canonicality is ensured when we restrict ourselves to the case g is a closed
embedding. In particular, the isomorphism (1.7.2) giving the projection formula is
canonical.
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Coherent D-Modules

As described in the introduction, any system of linear partial differential equations
can be considered as a coherent D-module. In this chapter we focus our attention
on coherent D-modules and study their basic properties. Among other things, for
a coherent Dy-module M we define its characteristic variety as a subvariety of the
cotangent bundle 7*X of X. This plays an important role for the geometric (or
microlocal) study of M.

2.1 Good filtrations

Recall that the ring Dy has the order filtration {F; Dy };c7 such that the associated
graded ring ng Dy = EB?iO F;Dx/F;_1 Dy is naturally isomorphic to the sheaf
7. Or+x of commutative rings consisting of symbols of differential operators, where
w : T*X — X denotes the cotangent bundle (see Section 1.1). By the aid of the
commutative approximation gr’ D of the non-commutative ring D, we will deduce
various results on D using techniques from commutative algebra (algebraic geome-
try).

We note that some of the results in this chapter can be formulated for more general
filtered rings, in which cases they are presented and proved in Appendix D. Hence
readers should occasionally consult Appendix D according to references to it in this
chapter.

Our first task is to give a commutative approximation of modules over D. Let M
be a Dy-module quasi-coherent over Ox. We consider a filtration of M by quasi-
coherent Ox-submodules F; M (i € Z) satisfying the conditions:

FiM C FiM,

FFM =0 (i<0),

M :UieZ M,
(FjDx)(FiM) C FiyjM.

In this case, we call (M, F) a filtered Dx-module; the module



58 2 Coherent D-Modules

earf M= @ FM/Fi_\M
i€Z

obtained by F is a graded module over gr’ Dy = m,Or+x. This module is clearly
quasi-coherent over Ox.

Proposition 2.1.1. Let (M, F) be a filtered Dx-module. Then the following condi-
tions are equivalent to each other:

@) ng M is coherent over w,Op=x.
(ii) F; M is coherent over Oy for each i, and there exists ig > 0 satisfying

(FiDx)(FiM) = FjiM (j =0, i = o).

(iii) There exist locally a surjective Dy -linear morphism ® : D;‘?’" — M andintegers
n; (j=1,2,...,m) such that

®(Fi—p Dx ® FioyDx @ -+~ ® Fi_p, Dx) = M (i € 7).

Proof. By Proposition D.1.1 the conditions (i) and (iii) are equivalent. It is easily
checked that (iii) holds if and only if F; M is coherent over Oy for each i and one
can find i¢ as in (ii) locally on X. Then the global existence of iy follows from this
since X is quasi-compact. O

Definition 2.1.2. Let (M, F) be a filtered Dx-module. We say that F is a good
filtration of M if the equivalent conditions in Proposition 2.1.1 are satisfied.

Theorem 2.1.3.

(1) Any coherent Dx-module admits a (globally defined) good filtration. Conversely,
a Dx-module endowed with a good filtration is coherent.

(ii) Let F, F' be two filtrations of a Dx-module M and assume that F is good. Then
there exists ig > 0 such that

FEM C Fi’+i0M (ieZ).
If. moreover, F' is also a good filtration, there exists i > 0 such that

F ;M C F,M C F]

ivigM (€.

Proof. (i) By Corollary D.1.2 an object of Mod,.(Dy) is coherent if and only if it
admits a good filtration locally on X. Hence it is sufficient to show that any coherent
Dy -module M admits a global good filtration. By Corollary 1.4.17 (i), M is generated
by a globally defined coherent Ox-submodule My. If we set FiM = (F;iDx)My
(i € N), then this is a global good filtration of M. The statement (ii) follows from
Proposition D.1.3. O
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2.2 Characteristic varieties (singular supports)

Let M be a coherent D x-module and choose a good filtration F on it (Theorem 2.1.3).
Letm : T*X — X be the cotangent bundle of X. Since we have ng Dy >~ 1,Or=x,
the graded module gr/ M of M obtained by F is a coherent module over 7, O7+x by
Proposition 2.1.1. We call the support of the coherent O7+x-module

gf M = Orex ®p-1p,0,,, 7 (e M)

the characteristic variety of M and denote it by Ch(M) (it is sometimes called the
singular support of M and denoted by SS(M)). As we see below Ch(M) does

not depend on the choice of a good filtration F on M. Since grf M is a graded
module over the graded ring O7+x, Ch(M) is a closed conic (i.e., stable by the scalar
multiplication of complex numbers on the fibers) algebraic subset in 7% X.

Let U be an affine open subset of X. Then 7*U is an affine open subset of 7*X
with coordinate algebra gr’ Dy (U), and Ch(M)NT*U coincides with the support of
the coherent Q7+« -module associated to the finitely generated ng Dy (U)-module
grf M(U). Hence in the notation of Section D.3 we have

Ch(M)NT*U ={peT U | f(p)=0(Nf€uw)l

and its decomposition into irreducible components is given by

ChM)NT*U= | ] {peT*U|f(p)=0(Nfep)
PESSO(M(U))

By Lemmas D.3.1 and D.3.3 we have the following.

Theorem 2.2.1.
(i) Let M be a coherent Dx-module. Then the set Ch(M) does not depend on the
choice of a good filtration F.
(ii) For a short exact sequence

O— M —N—L—0
of coherent Dx-modules, we have
Ch(N) = Ch(M) U Ch(L).

By the above theorem, the characteristic variety is a geometric invariant of a
coherent D-module.

From now on we introduce the notion of the characteristic cycle, which is a finer
invariant of a coherent D-module (obtained by taking the multiplicities into account).

Let V be a smooth algebraic variety and assume that we are given a coherent
Oy-module G. Then we can define an algebraic cycle Cyc G associated to G as
follows. Denote by I (supp G) the set of the irreducible components of the support
of G. Let C € I (supp G). Take an affine open subset U of V suchthat CNU = C,
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and denote the defining ideal of C N U by pc C Oy (U). Then we obtain a local ring
Ou (U)yp with maximal ideal pc Oy (U)y and an Oy (U)p-module G (U)y.. Note
that Oy (U)p and G(U)y. do not depend on the choice of U (in scheme-theoretical
language they are the stalks of Oy and G at the generic point of C). By a standard
fact in commutative algebra G (U);,. is an artinian Oy (U)p-module, and its length
mc(G) is defined. We call it the multiplicity of G along C. For an irreducible
subvariety C of V with C ¢ supp G we set mc(G) = 0. We call the formal sum

Cyc G = Z mc(G)C
Cel(supp G)

the associated cycle of G.
Let M be a coherent Dx-module. By choosing a good filtration F of M we can

consider a coherent Or+x-module grf” M. By Lemma D.3.1 the cycle Cyc(grf M)
does not depend on the choice of a good filtration F.

Definition 2.2.2. For a coherent Dy-module M we define the characteristic cycle of
M by

CC(M) := Cyc(grf M) = Z mc(grf M)C,
Cel(Ch(M))

where F' is a good filtration of M. For d € N we denote its degree d part by

CCaM):= Y me(arl M)C.
Cel (Ch(M))
dim C=d
By Lemma D.3.3 we have the following.

Theorem 2.2.3. Let
O— M —N—L—0

be an exact sequence of coherent Dx-modules. Then for any irreducible subvariety
C of T*X such that C € I1(Ch(N)) we have

me(grt N) = me(grf M) +me(gr? L).
In particular, for d = dim Ch(N) we have
CCy(N) =CCy(M) + CC4(L).

Example 2.2.4. Let M be an integrable connection of rank » > 0. Set ;M = 0
(i <0),F;M = M (i > 0). Then F defines a good filtration on M and ng M >~ M ~
O holds locally. Moreover, since ®x C Anng, o, (grf M), we get Ch(M) =
TiX =s(X) = X (s : x = (x,0), the zero-section of T*X) and CC(M) =r T{X.

Conversely, integrable connections are characterized by their characteristic vari-
eties as follows.
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Proposition 2.2.5. For a non-zero coherent Dx-module M the following three con-
ditions are equivalent:

(i) M is an integrable connection.
(ii) M is coherent over Oy.
(iii) Ch(M) = T¢ X = X (the zero-section of T*X).

Proof. Since the equivalence (i) <> (ii) is already proved in Theorem 1.4.10 and (i)
= (iii) is explained in Example 2.2.4, it remains to prove the part (iii) = (ii). Since
the problem is local, we may assume that X is an affine algebraic variety with a
local coordinate system {x;, d; }1<i<n. Then we have 7*X = X x C". Assume that
Ch(M) = T¢X. This means that for a good filtration F' of M we have

\/AnnOX[Els--wEn](ng M) = Z OX[S] st .

i=1

Here we denote by &; the principal symbol of 9;, and we identify 7, O7+x with
Oxl[&1, ..., & ]. Now letusset I = Y [, Ox[£]&;. Since the ideal [ is noetherian,
we have

1™ C Annoy e, g (et M)

for mg >> 0. Since the set {§* | || = mg} generates the ideal /™°, we have
8aFjMC Fj+m071M (|C(| = my).

On the other hand, since F is a good filtration, we have FiDx F;M = F; ;M
(j > 0). It follows that

FungtjM = (Fuy Dx)(Fj M)
= Y Oxd“FiM

lae|<mpg

C Fjymey—1M (j > 0).

This means Fj 1M = F;M = M (j > 0). Since each F; M is coherent over Oy,
M is also Ox-coherent. |

Exercise 2.2.6. For a coherent Dy-module M = Dxu ~ Dyx/I (I = Annp, u)
consider the good filtration F;M = (F;Dx)u. If we define a filtration on / by
F;I := F;Dx N I, we have gr’ M ~ gr’ Dyx/grf I. In this case, the graded ideal
af 1 = Y i=o Fil/F;_11 is generated by the principal symbols o (P) of P € I.
Therefore, for an arbitrary chosen set {o (P;) | 1 <i < m } of generators of ng I, we
have I = )"/ | DxP; and

Ch(M) ={(x,§) e T*X | o(P)(x,8) =0, 1 =i <m}.

However, for a set {Q;} of generators of 7, the equality
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Ch(M) ={(x,8) | 0(Q(x,§) =0,1<i <m}
does not always hold. In general, we have only the inclusion
Ch(M) C{(x,8) [0(Qi)(x,§) =0, 1 =i =m}.
Find an example so that this inclusion is strict.

Remark 2.2.7. In general, itis not easy to compute the characteristic variety of a given
coherent D-module as seen from Exercise 2.2.6. However, thanks to recent advances
in the theory of computational algebraic analysis we now have an effective algorithm
to compute their characteristic varieties. Moreover, we can now compute most of the
operations of D-modules by computer programs. For example, we refer to [Oal],
[Oa2], [SST], [Ta]. Itis also an interesting problem to determine various invariants of
special holonomic D-modules introduced in the theory of hypergeometric functions
of several variables (see [AK], [GKZ])).

2.3 Dimensions of characteristic varieties

One of the most fundamental results in the theory of D-modules is the following
result about the characteristic varieties of coherent D-modules.

Theorem 2.3.1. The characteristic variety of any coherent Dx-module is involutive
with respect to the symplectic structure of the cotangent bundle T*X.

This result was first established by Sato—Kawai—Kashiwara [SKK] by an analytic
method. Different proofs were also given by Malgrange [Ma5], Gabber [Ga], and
Kashiwara—Schapira [KS2]. Here, we only note that in view of Lemma E.2.3 it is
a consequence of Gabber’s theorem (Theorem D.3.4), which is a deep result on a
certain class of filtered rings (the proof of Theorem D.3.4 is not given in this book).

An important consequence of Theorem 2.3.1 is the following result.

Corollary 2.3.2. Let M be a coherent Dx-module. Then for any irreducible compo-
nent A of Ch(M) we have dim A > dim X. In particular, we have dim Ch(M) >
dim X if M # 0.

Remark 2.3.3. Note that Corollary 2.3.2 is weaker than Theorem 2.3.1; however, the
weaker statement Corollary 2.3.2 is almost sufficient for arguments in this book. In
fact, we will need the stronger statement Theorem 2.3.1 (or rather its analytic counter-
part Theorem 4.1.3 below) only in the proof of Kashiwara’s constructibility theorem
for solutions of analytic holonomic D-modules (Theorem 4.6.3 below). Since we will
also present a proof of the corresponding fact for algebraic holonomic D-modules
due to Beilinson—Bernstein without using Theorem 2.3.1 (see Theorem 4.7.7 below),
the readers who are only interested in algebraic D-modules can skip Section 4.6.

In the rest of this section we will give a direct proof of Corollary 2.3.2 following
Kashiwara [Kas16].
We first establish the following result.
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Theorem 2.3.4. For any coherent Dx-module M there exists a canonical filtration
0=C2imXtlycc?dimXpyc...cc'Mmcc®™M=m
of M by coherent Dx-modules such that any irreducible component of
Ch(C*M/C*' M)
is s-codimensional in T*X.

Proof. Let U be an affine open subset of X. We apply the resultin Section D.5to A =
Dyx (U). Then by Lemma D.5.1 and Theorem D.5.3, together with Proposition 1.4.13,
we obtain a filtration

0= (My) c 2 My) € - € COMIy) = My

of M|y by coherent Dy-modules such that any irreducible component of
Ch(C*(M|y)/Cst1(M|p)) is s-codimensional in T*U. We see by the cohomo-
logical description of the filtration given in Proposition D.5.2 that it is canonical and
globally defined on X. O

Lemma 2.3.5. Let S be a smooth closed subvariety of X and let M be a coherent

Dg-module. Set N = fl.o M, where i : S — X denotes the embedding. Let p; :
SxxT*X = T*Sandletw; : S xx T*X — T*X be natural morphisms induced
by i. Then we have

Ch(N) = @;p; ' (Ch(M)).

Proof. Note that the problem is local on S. By induction on the codimension of §
one can reduce the problem to the case where S is a hypersurface of X (see Proposi-
tion 1.5.21 and Lemma 2.4.1 below). Assume that S is a hypersurface of X defined
by x = 0. Take a local coordinate {x;, 0;}1<;<, of X such thatx = x| and set 9 = 9.
Then we obtain a local identification N >~ C[d] ®c i+ M (see Section 1.5). Take a
good filtration G of M such that G_; M = 0, and define a filtration F of N by

j
FiN =YY "Co*®i.G;_(M).
=0 k<l

Then F is a good filtration of N satisfying

j
FiN/Fi N =@ Cd ®i(G;-/M/Gj1M).
=0

Hence we have
g’ N ~ Clg]1 ®c gr® M ~ (Clx, £]/Clx, £]x) ®c g M,

where & is the principal symbol of d. From this we easily see that

Ch(N) = suppgrf N = w;p; ' (supp gr® M = w;p; ' (Ch(M)).

The proof is complete. O
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Proof of Corollary 2.3.2. By Theorem 2.3.4 we have only to show that
dim Ch(M) > dim X

for any non-zero coherent Dy-module M. We prove it by induction on dim X. It is
trivial in the case dim X = 0. Assume that dim X > 0. If supp M = X, then we have
Ch(M) D T¢X, and hence dim Ch(M) > dim T¢X = dim X. Therefore, we may
assume from the beginning that supp M is a proper closed subset of X. By replacing
X with a suitable open subset (if necessary) we may further assume that supp M is
contained in a smooth hypersurface S in X. Leti : S — X be the embedding. By
Kashiwara’s equivalence there exists a non-zero coherent Dg-module L satisfying
M = fio L. Then by Lemma 2.3.5 we have Ch(M) = w,-pf](Ch(L)) and hence
dim Ch(M) = dim Ch(L) 4+ 1. On the other hand, the hypothesis of induction
implies dim Ch(L) > dim § = dim X — 1. It follows that dim Ch(M) > dim S + 1
= dim X. O

Definition 2.3.6. A coherent Dx-module M is called a holonomic Dx-module (or a
holonomic system, or a maximally overdetermined system) if it satisfies dim Ch(M) <
dim X.

By Theorem 2.3.1 characteristic varieties of holonomic D-modules are C*-
invariant Lagrangian subset of 7*X.

Holonomic Dyx-modules are the coherent D yx-modules whose characteristic va-
riety has minimal possible dimension dim X. Assume that the dimension of the
characteristic variety Ch(M) is “small.” This means that the ideal defining the cor-
responding system of differential equations is “large,”” and hence the space of the
solutions should be “small.” In fact, we will see later that the holonomicity is related
to the finite dimensionality of the solution space.

Example 2.3.7. Integrable connections are holonomic by Proposition 2.2.5.

Example 2.3.8. The Dx-module By|x for a closed smooth subvariety ¥ of X is
holonomic (see Example 1.6.4). In this case the characteristic variety Ch(By|x) is
the conormal bundle 77 X of Y in X.

2.4 Inverse images in the non-characteristic case

We have shown in Proposition 1.5.13 that the inverse image of a coherent D-module
with respect to a smooth morphism is again coherent; however, the inverse images
with respect to non-smooth morphisms do not necessarily preserve coherency as we
saw in Example 1.5.10. In this section we will give a sufficient condition on a coherent
D-module M so that its inverse image is again coherent.

For a morphism f : X — Y of smooth algebraic varieties there are associated
natural morphisms

"X <2 x xy Ty =2 Ty
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Note thatif f is a closed embedding (resp. smooth), then p ¢ is smooth (resp. a closed
embedding) and @ s is a closed embedding (resp. smooth). We set

TyY = p;‘(T;;X) C X xy T*Y.

When f is a closed embedding, TY is the conormal bundle of X in Y.
The following is easily checked.

Lemma24.1. Let f : X — Y and g : Y — Z be morphisms of smooth algebraic
varieties. Then we have the natural commutative diagram

T*X <2 X xyT*Y <« — X x,T*Z

- I

T*Y «— Y xzT*Z

Pg
[=
T*Z

suchthat py o ¢ = pgof, Wg 0 Y = Wy, and the square in the right upper corner
is cartesian.

Definition 2.4.2. Let f : X — Y be a morphism of smooth algebraic varieties and
let M be a coherent Dy-module. We say that f is non-characteristic with respect to
M if the condition

wA;I(Ch(M)) NTEY C X xy T}Y

is satisfied.

Remark 2.4.3. We can easily show that if a closed embedding f : X «—— Y is

non-characteristic with respect to a coherent Dy-module M, then py ’w_—l (Ch(m))
!

w;l(Ch(M)) —> T*X is a finite morphism.

This definition is motivated by the theory of linear partial differential equations,
as we see below.

Example 2.4.4. Consider the case where f : X — Y is the embedding of a hyper-
surface. Then the conormal bundle 7Y is a line bundle on X. Let P € Dy be a
differential operator of order m > 0 and set M = Dy /Dy P. In this case Ch(M) is
exactly the zero set of the principal symbol o, (P), and hence f is non-characteristic
with respect to the coherent Dy-module M if and only if

(om(P))(E) #0 (V& € T;Y \ (the zero-section of T§Y)).

Take a local coordinate {z;, d;}1<i<n of ¥ such that z; is the defining equation of X,
and let (z1,...,2n; ¢1, - - -, ¢n) be the corresponding coordinate of 7*Y. Then the
condition can be written as
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om(P)(0,22, ..., 203 1,0,...,0)) #0  (V(z2,...,20)),

or equivalently as

m

arr

In the classical analysis, if this is the case, we say that Y is a non-characteristic
hypersurface of X with respect to the differential operator P.

Let us show that HO(L f*M) is alocally free Dyx-module of rank m. By definition
we have

—— 0 (P)(0, 22, .+ 203 0,...,0) £0  (¥(z2s .-, Z0))-

HO(Lf*M)
= (Dy/z1Dy) ®), (Dy/DyP)
>~ Dy/(z1Dy + Dy P).

Set D' = >, i) (’)yi){z ...8J" C Dy. By the above consideration we may

assume that P is of the form
P=03"+> Pd (PeD).

We will show that

Dg" —— Dy/(ziDy + DyP)
w w

m—1 .
(Q07 Qla"'va—l) > ZO Qjaf
Jj=

is an isomorphism of Dx-modules. For this we have only to show that forany R € Dy

there exist uniquely Q € Dy and Ry, ..., Ry—1 € D’ satisfying
m—1 )
R=QP+ ) R;d.
j=0

Note that Dy = @?ozo D'9]. Hence we can write uniquely that

P
R=Y"S8;3{ (S; e D).
j=0

If p>m, then R — S,8] "P € Z;’;& D’Blj. Hence we obtain the existence of
Q and Ry, ..., Ry—1 as above by induction on p. In order to show uniqueness it
is sufficient to show that Dy P N (27:01 D’Blj) = 0. Assume that for Q € Dy we
have QP € @mfl ’8j If O # 0, we can write Q = Zp_o Tja,.j (T; € D') with
T, # 0. Then we have QP € T), 8m+p + Zm+p 'D 8’ This is a contradiction.
Hence we have Q = 0.



2.4 Inverse images in the non-characteristic case 67

Example 2.4.5. A smooth morphism f : X — Y is non-characteristic with respect
to any coherent Dy-module.

The aim of this section is to prove the following.

Theorem 2.4.6. Let f : X — Y be a morphism of smooth algebraic varieties and let
M be a coherent Dy-module. Assume that f is non-characteristic with respect to M.

() HI(Lf*M) =0for¥j #0.
(i) HO(Lf*M) is a coherent Dx-module.
(iii) Ch(HY(Lf*M)) C pfw;l (Ch M).

For the proof we need the following.

Lemma 2.4.7. Let f : X — Y be an embedding of a hypersurface and let M be a
coherent Dy-module. Assume that f is non-characteristic with respect to M. Then
for any u € M there exists locally a differential operator P € Dy such that Pu = 0
and f is non-characteristic with respect to Dy /Dy P. In particular, there exists
locally an exact sequence

,
& py/DyPi > M — 0,

i=1
where f is non-characteristic with respect to Dy / Dy P; for any i.

Proof. Tt follows from Ch(Dyu) C Ch(M) that f is also non-characteristic with
respect to the Dy-submodule Dyu of M. Note that Ch(Dyu) is the zero-set of ng 1
for I = {Q € Dy | Qu = 0}. Since 7Y is a line bundle on X, there exists locally
P € I such that f is non-characteristic with respect to Dy /Dy P. O

Proof of Theorem 2.4.6.
(Step 1) We first consider the case when X is a hypersurface {z; = 0} of Y.
Let us show (i). Since Lf*M e D?(Dy) is represented by the complex

Ny Vi

concentrated in degrees —1 and 0, it suffices to show that f~!'M SN M is
injective. Assume that u € M satisfies z1(f~'u) = 0. By Lemma 2.4.7 there exists
P € Dy such that Pu = 0 and f is non-characteristic with respect to Dy /Dy P.
Then P € Dy is a differential operator of the form in Example 2.4.4. Let m > 0 be
the order of P and setad;, (P) = [z1, P] =z1P — Pzy € Dy. Then ad;'ﬁ (P) € Dy
is a multiplication by an invertible function. Hence from ad}| (P)u = 0 we obtain
u = 0. The assertion (i) is proved.

Let us show (ii) and (iii). Take a good filtration F of M. Then gr/ M is a coherent
grf” Dy-module such that the support of the associated coherent O7+y-module

n)fl(ng M)

Faf —
gr' M := Orsy ® arF Dy
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is Ch(M), where 7y : T*Y — Y denotes the projection. We set N = f*M
(= HO(Lf*M)) and define a filtration F of N by

F;N =Im(f*F,M — f*M).

It is sufficient to show that gr” N is a coherent gr’ Dy-module such that the support
of the associated coherent O7+x-module

gI‘F N = Orxx ®n;l orF Dy ”;I(ng N)

is contained in pfw;l(Ch(M)). Note that we have a canonical epimorphism
fraf M — grf N. Set

[rgrf M= Orsx ®l arF Dy mi (et .

Since f is non-characteristic with respect to M, we have that the restriction

w;l (suppgrf M) — T*X of psto w;l (supp grf M) is a finite morphism. Hence
it follows from a standard fact in algebraic geometry that

fralt M= (pp)oial M.

In particular, f* gr M is a coherent O7+x-module whose support is contained in

or w;l (Ch(M)). The coherence of f* grf M over Or+x implies the coherence of

f*grf M over grf’ Dx. It remains to show that gr’” N is a coherent gr’ Dx-module.
Since f* grf M is a coherent gr’ Dy-module, it is sufficient to show that F; N is
coherent over Oy for each i (see Proposition 2.1.1). This follows from the definition
of F; N since f*F; M is coherent and f*M is quasi-coherent over Oy.

(Step 2) We treat the case when f : X —> Y is a general closed embedding. We
can prove the assertion by induction on the codimension of X using Lemma 2.4.1 as
follows (details are left to the readers). The case when codimy X = 1 was treated in
Step 1. In the general case, we can locally factorize f : X —— Y as a composite

of X <55 7 CL Y where g and & are closed embeddings of smooth varieties with
codimz X, codimy Z < codimy X. Lemma 2.4.1 and our assumption on M implies
that there exists an open neighborhood U of X in Z satisfying @, ! (Ch(M)NTSY C
U xy TyY. Hence we may assume that Z is non-characteristic with respect to M
from the beginning. Then by our hypothesis of induction we have H' (Lh*M) = 0 for
i #0and L = HY(Lh*M)isacoherent Dz-module with Ch(L) C py, wh_l (Ch(M)).
We easily see by Lemma 2.4.1 that g is non-characteristic with respect to L. Hence
by our hypothesis of induction we have H' (Lf*M) = H'(Lg*L) = 0 fori # 0 and
HO(Lf*M) = H°(Lg*L) is a coherent Dy-module satisfying

Ch(H*(Lf*M)) = Ch(H®(Lg*L)) C pgw, ' (Ch(L))
C pgmg v, | (Ch(M)) = pya ;! (Ch(M)).
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(Step3) If f: X =Y x Z — Y is the first projection, then the assertions follows
easily from the isomorphism Lf*M ~ M X Oy.

(Step 4) To handle the case of a general morphism f : ¥ — X, we may factorize f

asY -5 v x x 2 X, where g is the graph embedding defined by y — (y, f(¥))
and p is the second projection. Then the result follows from Step 2 and Step 3 by
using Lemma 2.4.1 and the arguments similar to those in Step 2. O

Remark 2.4.8. Under the assumption of Theorem 2.4.6 it is known that we have
actually
Ch(HO(Lf*M)) = psw ;' (Ch(M))

(see [Kas8] and [Kas18]).

2.5 Proper direct images

In this section we show the following.

Theorem 2.5.1. Let f : X — Y be a proper morphism. Then for an object M in
Df(DX) the direct image ff M’ belongs to D?(Dy).

Proof. Since we assumed that X and Y are quasi-projective, f is a projective mor-
phism. Namely, f is factorized as

X syxpr Ly

by a closed embedding i (i(x) = (f(x), j(x)), j : X — P") and a projection
p = pry to Y. Hence it is enough to prove our theorem for each case.

(i) The case of closed embeddings i : X < Y: The problem being local on Y,
we may take a free resolution F* >~ M  of M" € Df (Dy) such that each term F/ is
isomorphic to D;j . Using the exactness of the functor fl we have only to prove the
coherence of fl Dy over Dy. We see by

/DX = ix(Dy—x ®py Dx) = ix(i ' (Dy ®0, QF7") ®;-10, £2x)
1
= Dy ®0, (2" ®0, i+2x)

that fl Dy is locally isomorphic to Dy /Dy Ix where Ix C Oy is the defining ideal
of X. In particular, it is coherent.

(ii) The case of projections p : X = ¥ xP" — Y Since the problemislocalonY,
we may assume that Y is an affine variety. By Theorem 1.6.5 and Proposition 1.4.13
there exists a resolution F* >~ M of M in Df (Dx), where F" is a bounded complex
of Dx-modules such that each term F/ of F" is a direct summand of a free D x-module
of finite rank. Then it is sufficient to show fp F/ e Df(Dy) for any j. Assume that

FJ is a direct summand of Dy. Then fp Fl e Dgc(Dy) is a direct summand of
fp D% Hence it is enough to show fp Dx € D’(Dy). By
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—1
Dyx ZQYXP” ®ny]pn P*(DY ®Oy Q? ) :DYIXlQP"’

we have
[ Dx = Rp.Dyx @h, D)~ Rp.(Dy B 2p) = Dy 9 RUE", Q).
P

Now we recall that the only non-vanishing cohomology group of RI'(P", Qpn)
is H"(P*, Qpn) =~ C. Therefore, we get that RT'(P", Qpr) =~ C[—n] and
fp Dy >~ Dy[—n]. O

Remark 2.5.2. Under the assumption of Theorem 2.5.1 it is known that we have
Ch(/ M') C wyp; ! (Ch(M)).
f

As we saw in Lemma 2.3.5 the equality holds in the case where f is a closed embed-
ding. The proof for the general case is more involved.

2.6 Duality functors

We first try to find heuristically a candidate for the “dual” of a left D-module. Let
M be a left Dx-module. Then Homp, (M, Dx) is a right Dx-module by right
multiplication of Dy on Dx. By the side-changing functor ® o, Q%_l we obtain a
left Dx-module Homp, (M, Dx) ®0o, Q%_l. Since the functor Hom py (e, Dx) is
not exact, it is more natural to consider the complex RHomp, (M, Dx) ®o, Qi’_l
of left Dy-modules. In order to judge which cohomology group of this complex
deserves to be called “dual,” let us consider the following example. Let X = C
(or an open subset of C) and M = Dyx/Dx P (P # 0). By applying the functor
Hom p, (e, Dx) to the exact sequence

0 — Dy >k Dy — M — 0
of left Dx-modules we get an exact sequence
0 — Hompy(M, Dx) — Dx Z Dx
(note Homp, (Dx, Dx) ~ Dyx). Hence in this case, we have
Ext)y (M, Dx) = Homp, (M, Dx) = Ker(P : Dx — Dx) =0
and the only non-vanishing cohomology group is the first one
Extl, (M, Dx) ~ Dx/PDx.

The left Dx-module obtained by the side changing ® Q?fl is isomorphic to
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—1
Ext)y (M, Dy) @0y Q5 ' ~ Dx/Dx P*,

where P* is the formal adjoint of P. From this calculation, we see that Ext! is
more suited than £xt° to be called “dual” of M. More generally, if n = dim X
and M is a holonomic Dy-module, then we can (and will) prove that only the
term Ext’l“)x (M, Dy) survives and the resulting left D x-module Extgx (M, Dx)®oy

Q?‘l is also holonomic. Hence the correct definition of the dual DM of a holonomic
Dx-module M is givenby DM = Extgx (M, Dx)®0y Q?’l, For a non-holonomic
Dyx-module one may have other non-vanishing cohomology groups, and hence the
duality functor should be defined as follows for the derived categories.

Definition 2.6.1. We define the duality functorD = Dy : D™ (Dx) — D1 (Dx)°P by
DM := RHomp,(M', Dx) ®p, Q5 '[dim X]
=RHompy (M, Dx ®0, Q7 '[dimX]) (M € D™ (Dx)).

We use the following notation since shifts of complexes by dimensions of varieties
will often appear in the subsequent parts.

Notation 2.6.2. For an algebraic variety X we denote its dimension dim X by dx.

Example 2.6.3. We have

Dx ®0, Q¥ (k= —dy),

H*(DDy) =
®bx) =1, (k # —dy).

Lemma 2.6.4. Let M be a coherent Dx-module. Then for any affine open subset U
of X we have

(Exty (M, Dx))(U) = Ext)y, ) (M(U), Dx(U)).

Proof. Take a resolution P. — M|y of M|y by free Dy-modules of finite rank.
Since U is affine, P.(U) — M(U) gives a resolution of M(U) by free
Dyx (U)-modules of finite rank. By definition we have (Ext’bx (M, Dx)(U) =
(Hi(HomDU (P, Dy))(U). Set L' = Homp,(P., Dy). Since U is affine and
L’ is a complex of coherent right Dy-modules, we have H (L)(U) = H' (L (U))
(see Remark 1.4.5 (ii)). Moreover, we have

L' (U) = Homp, (P., Dy) = Homp, @) (P.(U), Dx(U)).

Here, the first equality is obvious, and the second equality follows easily from the
fact that P° is a complex of free Dy-modules (or one can use the D-affinity of U).
Therefore, we obtain

(Exty, (M, Dx))(U) = H' (Hompy ) (P.(U), Dx(U)))
= Extl, ) (M(U), Dx(U)).

The proof is complete. O
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Proposition 2.6.5.
(i) The functor D sends Dﬁ.’(DX) to Df(DX)OP.
(ii) D?* ~ 1d on Db (D).

Proof. (1) We may assume that M° = M € Mod.(Dyx). Then we see from (the proof
of) Lemma 2.6.4 that H (DM) € Mod.(Dy) for any i. The boundedness of DM
also follows from Lemma 2.6.4 and Proposition 1.4.6 (ii).

(i1) We first construct a canonical morphism M~ — D?*M for M' € D?(Dy).
First note that

DM ~ R'HomD;p(R'HomDX (M, Dx), Dx),

where RHomp, (M', Dx) and Dy are regarded as objects of Db(Dg(P) (complexes
of right Dx-modules) by the right multiplication of Dy on Dy, and the left Dx-
action on the right-hand side is induced from the left multiplication of Dx on Dy.
Set H = RHomp, (M, Dx). By applying H(RT' (X, )) to

RHomDX&CD;p(M' ®c H', Dx) ~ RHomp, (M, RHomD;p(H‘, Dx)),
we obtain
HomDX®CD;p(M' ®c H', Dx) ~ Homp, (M", RHomD;p(H‘, Dx)).

Hence the canonical morphism M* ®c H (= M" ®c RHomp, (M, Dx)) — Dx in
D’(Dx ®c DY) gives rise to a canonical morphism

M" — RHom o (H', Dx)(= D*M)

in D’(Dy). It remains to show that M~ — DM is an isomorphism for M" €
ch (Dy). Since the question is local, we may assume that X is affine. Then we can
replace M" with Dy by Proposition 1.4.13 (see the proof of Theorem 2.5.1). In this
case the assertion is clear. O

Corollary 2.6.6. D is fully faithful on D?(Dx).

The following theorem gives an estimate for the dimensions of the characteristic
varieties Ch(H'(DM)) for M € Mod.(Dy).

Theorem 2.6.7. Let X be a smooth algebraic variety and M a coherent Dx-module.

(i) codimy+x Ch(Extl, (M, Dx) ®o, QF ") = i.
(i) Extl, (M, Dx) =0 (i < codimz«x Ch(M)).

This theorem is a consequence of Theorem D.4.3 and Lemma 2.6.4.

Corollary 2.6.8. Let M be a coherent Dx-module.
(i) H'(DM) = 0 unless —(dx — codimz=x Ch(M)) < i < 0.
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(ii) codimz+x Ch(H! (DM)) > dx +i.
(iii) M is holonomic if and only if H' (DM) = 0 (i # 0).
(v) If M is holonomic, then DM ~ H(DM) is also holonomic.

Proof. The statements (i) and (ii) are just restatements of Theorem 2.6.7. The state-
ment (iv) and the “only if” part of (iii) follows from (i), (ii) and Corollary 2.3.2.
Let us show the “if”” part of (iii). Assume that H/(DM) = 0 (i # 0), ie.,
DM ~ HO(DM). Set M* = HO(DM). Then we have DM* = D?*M ~ M and
HO(DM*) ~ M by the preceding result D?> = Id. On the other hand by (ii) we have
codim Ch(H%(DM*)) > dy, and hence DM* ~ M is a holonomic Dy-module. O

Example 2.6.9. Let X = C and Y = {0}. Then we have By|x >~ Dx/Dxx, where x
is the coordinate of X. Hence by the first part of this section we have

DBy|x ~ Dx/Dxx =~ By|x.

More generally, we have DBy|x =~ By|x for any smooth closed subvariety ¥ of a
smooth variety X. This follows from Example 2.6.10, Theorem 2.7.2 below and
Byx = [; Oy, wherei : Y — X is the embedding.

Example 2.6.10. Let M be an integrable connection. Then by Proposition 1.2.9,
Homeo, (M, Ox) is aleft Dx-module (an integrable connection). Let us show that

DM ~ Homp, (M, Ox).

First consider the locally free resolution

dx
0—>Dx®ox/\®x—>-~-—>Dx®ox®x—>Dx—>Ox—>O

of Ox given in Lemma 1.5.27. Since M is locally free over Ox, Dx ®oy
/\ ®Ox ®p, M is a locally free resolution of M. Using this resolution we can

calculate Exth’; (M, Dyx) by the complex

dx—1

X— dx

A (~)®0M,D)—>H0mD<D®@/\®®oM,D)—>O
dxl—zl dy ll

H(Jl’ﬂ@( A O®p M, D)—)HOmo(/\®®OM, D)

g i

Homp (M, Qix—1 g, D) LN Homp (M, Q% @0 D).

cee = HomD(D R0

On the other hand since M is locally free over Oy, we have an exact sequence

Homo(M, Q' @p D) > Homo(M, Q% @0 D) — Homeo(M, Q%) = 0

of right Dx-modules. Hence as a right Dy-module we have
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Ext™ (M, D) ~ Homo(M, Q%).
Passing to a left Dy-module by the side-changing functor, we finally obtain
DM ~ Homp (M, Q%) @0 (%)%~ ~ Homp(M, O).

Theorem 2.6.11.
(i) The rings Dx (U) and Dx ., where U is an affine open subset of U and x is a
point of X, have left and right global dimensions dx.
(ii) Any M € Mod,.(Dx) admits a resolution

0— Py —-—PL— P —M—0

of length dx by locally projective Dx-modules. If M € Mod.(Dy), we can take
all P;’s to be of finite rank.

Proof. (1) Since the category of right D-modules is equivalent to that of left D-
modules we only need to show the statement for left global dimensions. Since
Dx (U) is aleft noetherian ring with finite left global dimension, its left global dimen-
sion coincides with the largest integer m such that there exists a finitely generated
Dy (U)-module M satisfying Ext’l’;X(U)(M, Dx(U)) # 0. By Theorem 2.6.7 we

have Extli (U)(M , Dx(U)) = 0 for any finitely generated Dy (U)-module M and

i > dx. Moreover, by Example 2.6.10 Ext'g‘x(u)((’)x(U), Dx(U)) = Qx((U) # 0.
Hence the left global dimension of Dy (U) is exactly dx. The statement for Dy
follows from this.

(ii) follows from (i) and the proof of Corollary 1.4.20 (ii).

We note the following basic result, which is a consequence of Proposition D.4.2.

Proposition 2.6.12. Let X be a smooth algebraic variety and M a coherent Dy-
module. Then we have

Ch(M) = U Ch(Sxté)X (M, Dx) ®0y Q%_l)'

0<i<dy

In particular, if M is holonomic, then the characteristic varieties of M and its dual
DM are the same.

In the rest of this section we give a description of RHomp, (M', N°) for M" €
D2(Dx), N € D?(Dy) in terms of the duality functor.

Lemma 2.6.13. For M' € D%(Dx) and N* € D(Dy), we have
RHomp, (M, N') ~ RHomp, (M, Dx) ®p N
Proof. Note that there exists a canonical morphism
RHomp,(M', Dx) ®éx N — RHomp,(M',N").

Hence we may assume that M~ = Dy. In this case the assertion is obvious since both
sides are isomorphic to N'. O
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Proposition 2.6.14. For M" € Df(DX), N° € D’(Dx) we have isomorphisms

RHompy(M', N') ~ (Qx ®%, DxM) ®@p, N'[—dx]
~ Qx ®p, DxM ®p, N)[—dx]
~ RHomp, (Ox, DxM ®% N (2.6.1)

in Db((CX). In particular, we have
RHomp, (Ox, N') ~ Qx ®p, N'[—dx] (2.6.2)
for N' € D’(Dy).

Proof. We first show (2.6.2). By Lemma 2.6.13 we may assume that N' = Dy. In
this case we have

RHomp, (Ox, Dx)

B 0 dx
>~ | Hompy (DX ®0y /\@X,DX) — -+ —> Homp, (DX ®Oy /\@X,DX):|

I

i 0 dx
Hom@, (/\@X,DX) — - = Homg, (/\®X,DX):|

1

0 dy
/\Q}(®OX DX—>“.—>/\Q}(®OX DX:|

~ Qxl[—dx]
by Lemma 1.5.27. The isomorphism (2.6.2) is proved. Let us show (2.6.1). We have
RHomp,(M', N') ~ RHomp, (M, Dx) ®p N’
~ (Qx ®p, DxM) ®p, N'[—dx]

by Lemma 2.6.13. The second and the third isomorphisms follow from Proposi-
tion 1.5.19 and (2.6.2), respectively. O

Applying RI'(X, e) to (2.6.1), we obtain the following.

Corollary 2.6.15. Let p : X — pt be the projection to a point. Then for M" €
DCb(DX) and N’ € Db(DX) we have isomorphisms

RHomp, (M, N') ~ / (DXM' ®(L9X N'> [—dx]
p

~ RHomp, (Ox,DxM ®p N).
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2.7 Relations among functors

2.7.1 Duality functors and inverse images

The main result in this subsection is the following.

Theorem 2.7.1. Let f : X — Y be a morphism of smooth algebraic varieties, and
let M be a coherent Dy-module.

(i) Assume Lf*M € ch(DX). Then there exists a canonical morphism
Dx(Lf*M) — Lf*(DyM).
(ii) Assume that f is non-characteristic with respect to M (hence Lf*M = f*M
and f*M is coherent by Theorem 2.4.6). Then we have
Dx(Lf*M) ~ Lf*(DyM).
Proof. (i) By Proposition 2.6.14 and Proposition 1.5.18 (ii) we have a sequence
Hom py (p, ) (M, M)
~ Hom ps  p, (O, Dy M ®¢ M)
— Hompb(p ) (Lf*Oy., Lf*(Dy M) ®p  Lf*M)
~ Hom oy (Ox., Lf*M ®p  Lf*(Dy M))
~ Hom pp ) (Dx (LF*M), Lf*(Dy M))
of morphisms, and hence we obtain a canonical morphism
Dx(Lf*M) — Lf*(DyM)

as the image of id .

(i) By using the decomposition of f into a composite of the graph embedding
X — X x Y and the projection X x ¥ — Y we may assume that f is either a closed
embedding or a projection.

Assumethat f : X =T x Y — Y is the projection. Since the question is local on
Y, we may assume that Y is affine. In this case we may further assume that M = Dy.
Then we have

Dx(Lf*Dy) =~ Dx(Or K Dy) =~ Oy B (Dy ®0, Q "ldy] =~ Lf*(Dy Dx).

Assume that f : X — Y is a closed embedding. In this case we may assume
that f is an embedding of a hypersurface (see the proof of Theorem 2.4.6). By
Lemma 2.4.7 we may further assume that M = Dy /Dy P. Choose a local coordinate
{zi, 0i}1<i<n as in Example 2.4.4. Then we have DyM =~ Dy/DyP*[dy — 1] =
Dy /Dy P*[dx], where P* is the formal adjoint of P with respect to the chosen
coordinate (see Section 2.6). Denote by m the order of the differential operator P.
By Example 2.4.4 we have

Dy (Lf*M) ~Dx(DY™) ~ DE"[dx],  Lf*DyM) ~ DY"[dx].

The proof that the canonical morphism Dy (Lf*Dy) — Lf*(Dy M) is actually an
isomorphism is left to the readers. O
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2.7.2 Duality functors and direct images

In this section we will prove the commutativity of duality functors with proper direct
images.

Let f : X — Y be a proper morphism of smooth algebraic varieties. We first
construct a morphism

Trfiffox[dx]—> Oy ldy]

in Df(Dy) (dxy = dim X, dy = dim Y), which is called the trace map of f. In the
case of analytic D-modules, this morphism can be constructed using resolutions by
currents (Schwartz distributions) (Morihiko Saito, Kashiwara, Schneiders [Sch] or
see [Bj2, p. 120]). In our situation dealing with algebraic D-modules we decompose
f into a composite of a closed embedding and a projection and construct the trace
map in each case.

First, assume that i : X < Y is a closed embedding. By applying the canonical
morphism [;i" — Id to Oy we get a morphism [;i'Oy — Oy in D2(Dy). By
iTOY =i*Oyldx —dy] = Ox[dx —dy] it gives fl Oxldx —dy] — Oy. We obtain
the required morphism Tr; after taking the shift [dy].

Next consider the case of a projection X = P" x ¥ — Y. By Oy = Opn X Oy
the problem is reduced to the case where Y consists of a single point. So let us only
consider the case p : P" — pt, where pt denotes the algebraic variety consisting of
a single point. In this case fp Opn is given by

RT (P, [0 —> @by — -+ > @)

Hence there exist isomorphisms

HO(/ Opln]) = r>°(f Oplnl) = H"(P", Q)

P p

(use the Hodge spectral sequence). Using the canonical isomorphism
Hn(IP)n, Q[pm) ~C

given by the standard trace morphism in algebraic geometry, we obtain the desired
morphism
f Opn[n] —> r>°</ Opn [n]) ~C = Op.
P P
Let f : X — Y be a general proper morphism of smooth algebraic varieties. We

can decompose f into a composite of a closed embedding i : X — P" x Y and the
projection p : P* x Y — Y. Then the trace morphism

Trf:/foX[dX]—> Oy ldy]



78 2 Coherent D-Modules

is defined as the composite of
f Oxldx] = / fox[dx] — / Opnxyldy +n] — Oyldy].
f pJi p

One can show that the trace morphism Tr s does not depend on the choice of the
decomposition f = p oi and that it is functorial in the sense that for two proper
morphisms f : X — Y and g : Y — Z we have Trgoy = Tr, o]g Tr ;. We omit the
details.

The main result in this section is the following.

Theorem 2.7.2. Let f : X — Y be a proper morphism. Then we have a canonical
isomorphism

/DX AN ID)Y/ : DY (Dy) — D2(Dy)
f f
of functors.

Proof. We first construct a canonical morphism f 7 Dy — Dy f ¥ of functors. Let
M € D’(Dx). By

| Dt = R RHomb, ', Dy) O, Dy—y) B, 25 1dx]
f
= Rf«(RHompy (M, Dx_.y)) ®p, QF'ldx],
Dyf M = RHomp, (/ M, Dy) @b, @' dy],
f !
it is sufficient to construct a canonical morphism

O s RE(RHom by (M Dy—yldx ) — RHomp, ( [ M. Dylay))
f
in Dé’ (D;),p). By the projection formula (Corollary 1.7.5) we have

/DX—>Y[dX /Lf Dyldx] ~ /Ox ldx] ®o Dy

and hence the trace morphism Tr ¢ induces a canonical morphism
/ Dx_yldx] — Dyldy].
f

Using this ®(M") is defined as the composite of
Rf«(RHompy(M", Dx_ yldx]))
— Rf«RHom ;-1p, (Dyx ®éx M, Dyx ®éx Dx_yldx])
— RHOW!DY(Rf*(DYeX ®lbx MA), Rf*(DY<—X ®5X DX—)Y)[dX])
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=R’H0mDy(/fM',/fDx—>Y[dX])

— RHomp, (/f M, DY[dY])-

It remains to prove that ® (M) is an isomorphism for any M". By decomposing
f into a composite of a closed embedding and a projection we may assume from
the beginning that f is either a closed embedding i : X < Y or a projection
p: X =P"'xY — Y. Ineach case there exists locally on Y aresolution F* >~ M~ of
M in ch (Dx), where F" is a bounded complex of Dy-modules such that each term
FJ of F' is a direct summand of a free Dy-module of finite rank. This is obvious in
the case of a closed embedding. In the case of a projection this is a consequence of
Theorem 1.6.5 and Proposition 1.4.13. Therefore, we may assume from the beginning
that M = Dy (see the proof of Theorem 2.5.1).

Leti : X — Y be a closed embedding. In this case ®(Dy) is given by the
composite of

ix(RHomp, (Dx, i* Dy)[dx]

~ RHomp, (/DX, fi*DY>[dX]
= RHomp, ([Dx, fi%Dy)[dY]

— RHomp, (/ Dx, DY)[dY]s

where the first isomorphism is a consequence of Kashiwara’s equivalence. Hence
it is sufficient to show that RHomp, ([: Dx, [; i"Dy) — RHomp, (f; Dx, Dy) is
an isomorphism. Set U = Y \ X and let j : U — X be the embedding. By the
distinguished triangle

/i*DY—>DY—>/jTDYi>
i j

we have only to show that RHom p, (fl. Dy, fj j*Dy) = 0. By Propositions 1.5.25
and 1.7.1 (ii), we obtain

RHomDY(/DX,/j*Dy) :i*RHome(Dx,i‘/j*Dy)

l J J

:i*i!/j*Dy =0.
j

Let p: X =P" x Y — Y be the projection. By Dy = Dpn X Dy the problem is
easily reduced to the case when Y consists of a single point and we can only consider
the case p : X = P" — pt, where pt is the algebraic variety consisting of a single
point. In this case we have Dpn_, , = Opn, Dy pn = Qpn and hence
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Rp«(RHompy (Dx, Dx_.yldx]))
= RHomp,, (Dp», Opn)[n] = RT(P", Opn)[n] >~ Cln],

RHomp, (/ Dx, DY[dY])

P
= RHomc(RT'(P", Qp), C) =~ Homc (C[—n], C) = Cln].

Therefore, it is sufficient to show that ® (Dpx) is non-trivial. Note that ® (Dpn)[—n]
is given by the composite of

R Homp,, (Dpn, Opn)
— R Homc (2pr, Qpr @, Opn)
— RHomc (RT(P", Qpn), RT(P", Qp» @f)w Opn))
— RHomg(RT(P", Qpn), t=" RT(P", Qpn ®ben OF1))
~ RHomc (RT(P", Qpr), C[—n])
~ RHomc(RT(P", Qpn), RT(P", Qpn)).
We easily see that the morphism
R Homp,, (Dpr, Opr) — R Homg (RT(P", Qpn), RT (P", Qpn))

is induced by the canonical morphism Op: — Hom@,, (Qpr, Qpr) and it is non-
trivial. O

Corollary 2.7.3 (Adjunction formula). Let f : X — Y be a proper morphism.
Then we have an isomorphism

RHomp, (/ M, N') ~ Rf,RHomp, (M, fIN")
f

for M € DY(Dx) and N* € D(Dy).
Proof. We have
Rf«RHomp,(M", f'N")
~ Rf((Qx ®p, DxM) @5, Lf*N)[—dy]
~ Rf((Qx ®p, DxM) ®p, Dx .y ® 1)y f7IN)[—dy]
~ Rf.((Qx ®f, DxM") ®%, Dy_y) ®5, N—dy]

=~ /f DxM ®p, N'[—dy]
~ ]D)Y/fM' ®IL)Y N'[—dy]

~ RHomD},(/f M, N')

by Proposition 2.6.14 and Theorem 2.7.2. O
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Holonomic D-Modules

In this chapter we study functorial behaviors of holonomic systems and show that
any simple object in the abelian category of holonomic Dyx-modules is a minimal
extension of an integrable connection on a locally closed smooth subvariety ¥ of X.

3.1 Basic results

Recall that the dimension of the characteristic variety Ch(M) of a coherent Dy-
module M (# 0) satisfies the inequality dim Ch(M) > dim X and that a coherent
Dx-module M is called holonomic if dim Ch(M) = dim X or M = 0.

Notation 3.1.1. We denote by Mod; (Dyx) the full subcategory of Mod.(Dy) con-
sisting of holonomic Dy-modules.

The next proposition implies that Mody, (Dy) is a thick abelian subcategory of
Mod.(Dx).

Proposition 3.1.2.
(i) For an exact sequence
0O—-M-—>N-—-L—>0

in Mod.(Dx) we have
N e Mod,(Dx) <= M, L € Mod,(Dy).

(i1) Any holonomic Dyx-module has finite length. In other words, the category
Mod, (Dy) is artinian.

Proof. The statement (i) is a consequence of Ch(N) = Ch(M) U Ch(L).
The statement (ii) is proved using the characteristic cycle as follows. For a
holonomic Dy-module M consider its characteristic cycle

CCM)= > mc(M)C.
Cel(Ch(M))
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Note that dim C = dx for any C € I (Ch(M)). Define the total multiplicity of M by

mM):= Y mc(M).

Cel(Ch(M))

By Theorem 2.2.3 the total multiplicity is additive in the sense that we have m(M) =
m(L) + m(N) for any short exact sequence

O—-L—->M-—-N-=0

in Mody, (Dyx). Moreover, we have m(M) = 0 <= Ch(M) = ) <= M = 0 by
the definition of characteristic varieties. Hence the assertion follows by induction
onm(M). O

Notation 3.1.3. We denote by DZ (Dx) the full subcategory of Df (Dyx) consisting of

objects M~ € Df(D x) whose cohomology groups are holonomic, that is, H (M) €
Mod,,(Dx) for Vi € 7Z.

We easily see the following from Propositions 3.1.2 and B.4.7.
Corollary 3.1.4. Dg (Dyx) is a full triangulated subcategory of Df (Dx).
Remark 3.1.5. It is known that

D"(Mod;,(Dx)) = Dj(Dx)
(see Beilinson [Bei]).

The following result is the first important step in the study of holonomic D-
modules. Namely, we can say “A holonomic D-module is generically an integrable
connection.”

Proposition 3.1.6. Let M be a holonomic Dx-module. Then there exists an open
dense subset U C X such that M|y is coherent over Oy. In other words, M|y is an
integrable connection on U.

Proof. Let Ty X C T*X be the zero section of T*X and set S := Ch(M) \ T¢X. If
S = @, then M itself is coherent over Ox by Proposition 2.2.5. Assume that § # @.
Since S is conic, the dimension of each fiber of w|g : S — 7(S) (w : T*X — X)is
> 1 and hence dim 7(S) < dim § < dim X. Therefore, there exists an open subset
U C X such that X \ 7(S) D U # @. In this case we have Ch(M|y) \ TjU = @
and hence M|y is coherent over Oy by Proposition 2.2.5. O

The following result, which can be proved by duality, is also important.

Proposition 3.1.7. Let M € Mod,.(Dx). For an open subset U C X suppose that
we are given a holonomic submodule N of M|y. Then there exists a holonomic
submodule N of M such that N|y = N.
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Proof. By Corollary 1.4.17 we may assume that M is coherent and M|y = N. Set
L = H°(DxM). By Corollary 2.6.8 (ii) we have codim Ch(L) > dx and hence
L is a holonomic Dy-module. Moreover, its dual N = Dx L is also holonomic by
Corollary 2.6.8 (vi). By L = HOY(DxM) ~ 129Dy M) we have a distinguished
triangle

K —> DyM —> L =5,
where K* = tS71(Dx M). By applying Dy we obtain

N—)M—)ID)XK'L1>.

Since the duality functors commute with restrictions to open subsets, we have
Y 2
Nly =Dy (Lly) =DyMly) = Mly = N.

It remains to show that the canonical morphism N — M is injective. For this we
have only to show H ' (DxK") = 0. In fact, we will show that

H Dx(Z*Kk))=0 (<0, k>0 3.1.1)
(note that 12 kK ~ K fork > 0). Let us first show
H Dx(HXK)HKk) =0 (<0, k> 0). (3.1.2)

Fork > Owehave H % (K") ~ H *(Dyx M) and hence codim Ch(H % (K ")) > dx —
k by Corollary 2.6.8 (ii). Hence the assertion is a consequence of Corollary 2.6.8 (i).
Now we prove (3.1.1) by induction on k. If k = 1, then we have T2 %K~ =
H’k(K')[k], and hence the assertion follows from (3.1.2). Assume k = 2. By
applying Dy to the distinguished triangle

H MKk — 12 KK — 2~ k=D FL
we obtain a distinguished triangle
Dy (>~ * VK" — Dy (r>*K") — Dy (HF(KH[k]) > .

Hence the assertion follows from (3.1.2) and the hypothesis of induction. O

3.2 Functors for holonomic D-modules

3.2.1 Stability of holonomicity
We first note the following, which is an obvious consequence of Corollary 2.6.8.
Proposition 3.2.1. The duality functor Dy induces isomorphisms

Dy : Mody (Dx) => Modj,(Dx)°P,

Dy : DY(Dx)=>Di(Dx).
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The following is also obvious by Ch(M X N) = Ch(M) x Ch(N).
Proposition 3.2.2. The external tensor product X induces the functors

(e) K (o) : Mody,(Dx) x Mod,(Dy) — Mody(Dxxy),
(o)X (o) : DY (Dx) x D2 (Dy) — DY (Dxxy).

Recall that for a morphism f : X — Y of smooth algebraic varieties we have
functors

/f : D).(Dx) — D).(Dy),
/T2 D! (Dy) — Db.(Dy).

Moreover, if f is proper (resp. smooth), | r (resp. fT) preserves the coherency and
we have the functors '

|+ DD~ DDy esp. £ DDy — DD
f

However, neither f nor fT preserves the coherency for general morphisms f. A
surprising fact, which we will show in this section, is that the holonomicity is never-
theless preserved by these functors for any morphism f : X — Y. Namely, we have
the following.

Theorem 3.2.3. Let f : X — Y be a morphism of smooth algebraic varieties.
(i) [ sends D!(Dx) to D2(Dy).

(i) £ sends D! (Dy) to D2 (Dx).

Corollary 3.2.4. The internal tensor product ®I(‘9X induces the functor

(0) ®, (o) : D(Dx) x Dy(Dx) — Dj(Dx).

Proof. This follows from Proposition 3.2.2 and Theorem 3.2.3 (ii) noting that (e) ®I(‘9X
(o) = LAY o ((o) X (o)), where Ay : X — X x X is the diagonal embedding. O

The proof of Theorem 3.2.3 will be completed in the next subsection. In the rest
of this subsection we reduce it to that of Theorem 3.2.3 (i) in the case when f is the
projection C" — C"~ 1.

Lemma 3.2.5. Let i : X — Y be a closed embedding. Then for M € Df(Dx)
we have

M € D} (Dy) < /M' e D) (Dy).
i
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Proof. Since fl is exact, we may assume that M = M~ € Mod.(Dy). Let
P
T*Y <& X xy T*Y & T*X

be the canonical morphisms. Then we have
Ch(fM) — wp~ ! (Ch(M)),
i

by Lemma 2.3.5. Since @ is a closed embedding and p is a smooth surjective
morphism with one-dimensional fibers, we have

dim Ch(fM) — dim Ch(M) + 1,
I

form which we obtain the desired result. O

Next we reduce the proof of Theorem 3.2.3 (i) to the case when f is the pro-
jection C* — C"~!'. In order to prove Theorem 3.2.3 (i) it is sufficient to show
ff M e DZ(Dy) for M € Mod,(Dy). By considering the decomposition of f into
a composite of a closed embedding and a projection we may assume that f is either a
closed embedding or a projection. The case of a closed embedding has already been
dealt with in Lemma 3.2.5, and hence we can only consider the case when f is the
projection X = Z x Y — Y. Since the problem is local on Y, we may assume that
Y is affine. Take a finite affine open covering Z = | Ji_, Z; of Z such that Z \ Z; is
adivisoron Z foreachi,andset X; = Z; x Y. Then X = U?:o X, is an affine open
covering of X. For 0 <ip < --- < iy <rletji i Xip..ix = ﬂ’;zoXip — X
be the embedding (note that X, _; is affine by the choice of Z;’s). Then M is
quasi-isomorphic to the Cech complex

i 00— C"M) —>C'M) — - — (M) — 0 —> -

with

ig<--<lig

o jlfg i M). Hence it is sufficient to show
iQ)sersif 05000y

Jrotg s FooicM= Sy [y di...sM) € D(Dy) for any (io. ... ). There-
fore, we may assume from the beginning that X and Y are affine. Fix closed embed-

dings o : X — C", B:Y — C™, and consider the commutative diagram

f
X —Y

|

X xY B

laxﬁ

Cn+m 7T>Cm’
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where g is the graph embedding associated to f and p is the projection. By
Lemma 3.2.5 [, M € D}(Dy) if and only if f; [, M € D} (Dcn). Note that

[[u=[ u=[[ —u
BJIf Bof p J(axp)og

Since (@ x B) o g is a closed embedding, we have
/ M € Modj, (Dcn+m)
(axB)og

by Lemma 3.2.5, and hence the problem is reduced to the case when f is the projection
Crtm — C™. Since C*t™ — C™ is a composite of morphisms C¥ — C*~!, the
problem is finally reduced to the case when f is the projection C* — C"~1.

Let us show that Theorem 3.2.3 (i) implies Theorem 3.2.3 (ii). So we assume
that Theorem 3.2.3 (i) holds and show fTM e DZ(DX) for any M € Mod;,(Dy).
By decomposing f into a composite of a closed embedding and a projection we may
further assume that f is either a closed embedding or a projection. Consider first the
case where f is the projection X = Z x Y — Y. Then f* is an exact functor and the
complex "M = f*M[dim Z] is concentrated in the degree — dim Z. Moreover, we
have f*M ~ Oz X M and it is holonomic by

Ch(Oz X M) = Ch(Oz) x Ch(M) = T;Z x Ch(M),

and hence fTM € Dz(D x). Letus consider the case of a closed embedding i : X «—
Y. Letj: U : =Y\ X < Y be the corresponding open embedding. Then by the
results in Section 1.7 there exists a distinguished triangle

/iTM—>M—>/jTMi>.
i j

We have jTM = M|y € Mody,(Dy), and hence (i) implies /jjTM' € D}(Dy).
Therefore, we see by the above distinguished triangle that fl i"M e DZ (Dy). This

implies i"M e Dz(Dx) by Lemma 3.2.5. Theorem 3.2.3 (ii) is verified assuming
Theorem 3.2.3 (i).

3.2.2 Holonomicity of modules over Weyl algebras

In the last subsection the proof Theorem 3.2.3 (i), (ii) was reduced to that of (i) in
the case when f is the projection p : C* = C x C"~! — C"~!. The aim of this
subsection is to prove it using the theory of D-modules on C".

Set
D, :=T(C", Der) = @ Cx*”,
o.p
where x* = x¥'x5? ... xp" for o = (« dat = abralr. . g 4 =
=X X n = (a1, ..., ay) an = 0] 0y h for B =

(B1, -- -, Bn)- The algebra D,, is called the Weyl algebra. Since C" is affine, we have
equivalences of categories
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Mody(Dcr) = Mod (D),
Mod.(Dg¢n) == Mod ¢ (D)

given by M — I'(C", M). For N € Mod(D,) we denote the corresponding Dcn-
module by N. A D,-module N is called holonomic if N is a holonomlc Dcn-module.
Let N be a D,-module. We define its Fourier transform N as follows. As an
additive group N is the same as N, and the action of the generators x;, d; of D, on
Nis given by
Xjos:=—20;s, 0jos:=X;s.

It is easily checked that N is a left D,-module with respect to this action o. This
definition of the Fourier transform N is motivated by the classical Fourier transform.
The Fourier transform induces equivalences of categories

(o) : Mod(D,)) = Mod(D,,),
(o) : Mod £ (D,) <> Mod s (D,).

The corresponding equivalences for the categories of Dcr-modules are also de-
noted by

(o) : Mod,(Dcn) = Mod,e (D),
(o) : Mod, (D) = Mod,(Dcn).
Proposition 3.2.6. Let p : C"(= C x C" ') — C"! be the projection and let i :

C (= {0} xC""!) — C"(= CxC"~') be the embedding. For M € Modc(D¢n)
we have

Hk(/ M) ~ HY(Li* M)
P
for any k.

Proof. Set N =T'(C", M). Since p is an affine morphism, we have

d
/ M =~ Rp, (DR jcn1 (M) = [pM —> p.M],
P

and hence
Ker[N -2 N] k = —1),
(C" Lo ( / M) ) ~ Coker[N AN k=0,
! k £0,—1).

Therefore, we have
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S Ker[l’\7 LN ZV] (k=-1),
r ((C"‘l, Hk(/ M)) ~ 1 Coker[N =5 N] (k =0),
P 0 k #£0,—1),

~ ("', H*(Li*M))
from which we obtain the desired result. O
In proving Theorem 3.2.3 we also need the following results.
Proposition 3.2.7. A coherent Dcn-module M is holonomic if and only if M isas well.

Proposition 3.2.8. Ler j : (C\ {0}) x (C"fl — C" be the embedding. If M is a
holonomic Dcn-module, then so is H° (fj M) (since (C\ {0}) x C*~ is an affine

open subset of C" we have H*( J; JTM) =0 for k # 0).

Let us complete the proof of Theorem 3.2.3 assuming Propositions 3.2.7 and 3.2.8.
By Propositions 3.2.6 and 3.2.7 and the arguments in the last subsection it is sufficient
to show iTM € DZ(D@H) for M € Mody, (Dcn), where i : C*~1 < C" is as in
Proposition 3.2.6. Let j : (C\ {0}) x C"*~! < C" be as in Proposition 3.2.8. By the
distinguished triangle

fﬁM—>M—>/j*Mil>
i j

we obtain an exact sequence

0—>H°</ji*M)—>M—>H°(fj*M)—>H1(fﬂM) —0.

J 1

Since Ho(fj jTM) is holonomic by Proposition 3.2.8, we obtain /i itMe Dz(D(Cn)
(note Hk(fl. i"M) = 0 for k # 0,1). Hence we have iTM € DZ(D@H) by
Lemma 3.2.5.

The rest of this subsection is devoted to proving Proposition 3.2.7 and Proposi-
tion 3.2.8.

In addition to the usual order filtration ', the Weyl algebra D,, has another filtration
B defined by

BiD,:= Y Cx*0f cD,.
loe|+1BI<i

We call it the Bernstein filtration of the Weyl algebra D,,. The graded algebra gr® D,
associated to the Bernstein filtration B is commutative and isomorphic to the poly-
nomial ring Clx, &] (x = (x1,x2,...,xn), &€ = (&1, &2, ...,&,)), as in the case of
the usual order filtration. For a D,,-module M we can also define good filtrations F
on it with respect to the Bernstein filtration B. Any finitely generated D,-module
has a good filtration. The Bernstein filtration has the advantage that for any good
filtration F' of a finitely generated D,,-module M each F; M is finite dimensional over
C. Therefore, we can apply results on Hilbert polynomials to the associated graded
gr? D,-module.
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Proposition 3.2.9.

(i) Let F be a good filtration on a non-zero module M € Mod ¢ (D) with respect to
the Bernstein filtration. Then there exists a unique polynomial x(M, F; T) €
QIT1] such that

x(M, F; i)y=dimc F;M (i > 0).

(11) If the degree of x (M, F; T) isd, then the coefficient of the degree d (the highest
degree) partof x(M, F; T)ism/d! for some integerm > 0. These two integers
d and m do not depend on the choice of the good filtration F. They depend only
on M itself.

Proof. By dim¢c ;M = )", _; dim¢ gr}(F M most of the statements are well known
in algebraic geometry [Ha2, Chapter 1]. Let us show that d and m are independent of
the choice of a good filtration. Let F and F’ be good filtrations of a finitely generated
D,,-module M. By Proposition D.1.3 there exists iy > 0 satisfying

Fl_, M CFMCF M,
and hence
X(M,F';i—io) < x(M, F;i) < x(M, F'; i + i)
for i >> 0. The desired result easily follows from this. O

We call d = dp (M) the dimension of M, and m = m (M) the multiplicity of M.

Proposition 3.2.10. Let
0O—L—->M~-—N—0

be an exact sequence of finitely generated D,-modules.

(i) We have dp(M) = Max{dp(L),dp(N)}.
(i) We have

mp(L) +mp(N) (dp(L) = dp(N)),
mp(M) = {mp(L) (dp(L) > dp(N)),
mp(N) (dp(L) < dp(N)).

Proof. Take a good filtration F on M. With respect to the induced filtrations on L
and N we have an exact sequence

0— gL >gfM—gN—0
of graded gr? D,-modules. The desired result follows from this. O
Proposition 3.2.11. For a non-zero finitely generated D, -module M we have

dim Ch(M) = dg(M).
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Proof. Set j(M) := Min{i | ExtiDn (M, Dy) # 0}. By applying Theorem D.4.3 to
the two filtrations F and B of D,, we have

—~

dim Ch(M) = 2n — j(M) = dim supp(gr? M),

where F is a good filtration on M with respect to the Bernstein filtration and grf” M
denotes the corresponding coherent O¢2,-module. It is well known in algebraic

geometry that we have dim supp(gr”” M) = dg(M) [Ha2, Chapter 1]. O

By Proposition 3.2.10 a coherent Dc»-module M associated to M is holonomic
if and only if dp (M) = n. We can use the following estimate as a useful criterion for
the holonomicity of M.

Proposition 3.2.12. Let M be a (not necessarily finitely generated) non-zero D, -
module. We assume that M has a filtration F bounded from below (with respect to
the Bernstein filtration B of D) such that there exist constants ¢, ¢ satisfying the
condition

dimg FM < i 4 ¢'i!
n!
for anyi. Then M is holonomic and mg(M) < c.

Proof. We first show that any finitely generated non-zero D,-submodule N of M is
holonomic and satisfies mp(N) < c. Take a good filtration G on N. By Proposi-
tion D.1.3 we have

GiN C NNFj,M C FijyM (Vi)

for some i(, and hence
s c . N /s . \n—1
X(N,G;i) < ;(l+lo) + @ +ig) .

It follows that dp (N) < n. By N # 0and dp(N) = dim Ch(N) we obtain dg(N) =
nand mp(N) < c.
It remains to show that M is finitely generated. It is sufficient to show that any
increasing sequence
O£AN CNyC---CM

of finitely generated submodules of M is stationary. We have shown that N; is
holonomic and satisfies m g (N;) < ¢. Moreover, we have

mp(N1) <mpg(N2) <mp(N3) <---<c

by Proposition 3.2.10, and hence the sequence {m p(N;)} is stationary. This implies
the desired result by Proposition 3.2.10. O

Now we are ready to give proofs of Proposition 3.2.7 and Proposition 3.2.8.
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Proof of Proposition 3.2.7. Set N = I'(C", M). By the definition of B and the
Fourier transform we haAve dp(N) = dp(N). Hence by Proposition 3.2.11 we have
dim Ch(M) = dim Ch(M). This implies the desired result. O

Proof of Proposition 3.2.8. Set N = I'(C", M). Note that I'(C", Ho(fj M) is

isomorphic to the localization N, = Clx, x| 1] ®cix] N. Hence it is sufficient to
show that N, is holonomic. Take a good filtration F of N and define F; N,, to be the

image of Fo;N 3 s — x| is e Ny, . Itis easily checked that this defines a filtration
of Ny, with respect to the Bernstein filtration. Moreover, we have

dimc F; Ny, < dim¢ F2; N

M
- ’"Bn(' L @iy + 0
M 2}'[
_ M) ‘ 2 i 4o,
n!
and hence Ny, is holonomic by Proposition 3.2.12. O

3.2.3 Adjunction formulas
Let f : X — Y be a morphism of smooth algebraic varieties.

Definition 3.2.13. We define new functors by
/ = Dy/ DX : DZ(D)() —> DZ(Dy),
! f
X :=Dxf Dy : DX(Dy) — D}(Dx).

Theorem 3.2.14. For M € Dﬁ (Dx) and N € Dz(Dy) we have natural isomor-
phisms

RHomp, (/ M, N'>L>Rf*RH0mDX(M', fiNY,
£
Rf.RHomp, (f*N°, M) =>RHomp, <N/M)
f

Proof. We have
RfsRHomp,(M", f'N")
~ Rf. ((2x @b, DxM') &5, fTN') [~dx]
~ Rf. ((@x ®b, DxM) &b, Dx .y @k, f7'N') [~dy]

~ Rf, ((@x ®b, DxM') &5, Dx_v) @5, N'1-dy]
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~ L . L .
-~ <Qy Rp, /fDxM> ®p, N'l—dy]
~ (szy ®0, Dy /f ' M') ®p, N'[=dy]

>~ RHomp, (/ M, N').
f!

The first isomorphism is established. The second isomorphism follows from the first
by duality. O

By applying H*(RT (Y, e)) to the isomorphisms in Theorem 3.2.14, we obtain
the following.

Corollary 3.2.15. For M € DZ(DX) and N* € DZ(Dy) we have natural isomor-
phisms

HomDZ(Dy)( r M, N‘)%Hosz(DX)(M', fTN'),
HOmD;,,(DX)(f*N', M')L)HomDZ(Dy) (N', LM)

Namely, ff! (resp. f*) is the left adjoint of 7 (resp. ff).

Theorem 3.2.16. There exists a morphism of functors

f —>/ : DX(Dx) — D2(Dy).
! !

Moreover, if f is proper, then this morphism is an isomorphism.

Proof. By Hironaka’s desingularization theorem [Hi], there exists a smooth comple-
tion X of X. Since X is quasi-projective, a desingularization X of the Zariski closure
X of X in the projective space is such a completion (even if X is not quasi-projective,
there exists a smooth completion by a theorem due to Nagata). Therefore, the map
f X — Y factorizes as

X< xxy< s Xxy Ly,

where g is the graph embedding associated to f and p = pry is a projection. In this
situation, g and p are proper and j is an open embedding. This implies that we can
reduce our problem to the cases of proper morphisms and open embeddings. If f is
proper, we have an isomorphism

f-5e e
! f f
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by Theorem 2.7.2. So let us consider the case when f = j : X < Y is an open
embedding. Let M" € D} (D). By Corollary 3.2.15 we have

HomDZ(Dy) (/'M', /M) ZHomDZ(DX)(MF jT/M)
J! J J

~ HomDZ(DX)(M', M),

and hence we obtain the desired morphism

[ — [w
J! J

as the image of id € HomDZ(DX)(M', M). m|

3.3 Finiteness property

The aim of this section is to show the following.

Theorem 3.3.1. The following conditions on M' € D2(Dx) are equivalent:

(i) M € Db(Dy).
(1) There exists a decreasing sequence

X=X0D2X1D- DXy 2D Xnmt1=9

of closed subsets of X such that X, \ Xy41 is smooth and all of the cohomology
sheaves Hk(iIM') are integrable connections, where i, : X, \ X;41 — X
denotes the embedding.

(iii) For any x € X all of the cohomology groups H* (i;M') are finite dimensional
over C, where iy : {x} < X denotes the inclusion.

For the proof we need the following.

Lemma 3.3.2. Let M be a coherent (but not necessarily holonomic) Dyx-module.
Then there exists an open dense subset U C X such that M|y is projective over Oy .

Proof. Take a good filtration F of M. Then grf” M is coherent over m,Ors«x. It
follows from a well-known fact on coherent sheaves that there exists an open dense
subset U C X such that (ng M)|y is free over m,Or+y. By shrinking U if nec-
essary we may assume that (ng M)|y is free over Oy. This implies that each
(F;M/F;_1M)|y (and hence each F;M|y) is projective over Oy . Consequently
M|y is projective over Oy . O

Proof of Theorem3.3.1. (ii) = (i). SetU, = X\ X,. We will show M|y, € DZ(DU,_)
by induction on r. Assume M|y, € DZ(DUr)- Letj:U — Ury1,i: X0\ Xpq1
(= Uy41 \ Ur) — U,41 be embeddings. Then we have a distinguished triangle
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o+ . . .+ . +1
‘l (M |U,-+]) — M |Ur+1 — J (M |U,-+1) —_— .
i J

By i'(M|y,,,) = iy M € D}(Dx,\x,,,) we have [,i"(M'|y,,,) € D}(Dy,.,).
On the other hand by jT(M'|y,,,) = M'|U, € D}(Dy,) we have fj ity e
DZ (Dy,,,). Hence the above distinguished triangle implies M|y, , € DZ (Du,.,)-

(1) = (iii). By Theorem 3.2.3 we have i;M' € DZ(D{X}). Note that Dyy) >~ C.
Hence the desired result follows from the fact that objects of Dﬁ (Dyiyy) = Df (Dyiyy) =
Df (Mod(C)) are just complexes of vector spaces whose cohomology groups are finite
dimensional.

(iii) = (ii). It is sufficient to show that for any closed subset ¥ of X satisfying
Y D supp(M’) := |J, supp(H k(M) there exists a decreasing sequence

Y=Y2oYV1D DYy DYpur1 =9

of closed subsets of Y such that Y, \ Y41 is smooth and all of the cohomology
sheaves H¥( er M) are integrable connections, where j, : Y\ Y11 < X denotes the
embedding. We will prove this statement by induction on dim Y. Take an open dense
smooth subset V of Y, and leti : V — X denote the embedding. By Kashiwara’s
equivalence we have iTM" € Df (Dy). Hence by Lemma 3.3.2 there exists an open
dense subset V’ of V such that each cohomology sheaf H*(i"M")|y is projective
over Oy-. Therefore, by shrinking V if necessary we may assume from the beginning
that each cohomology sheaf H*(i T M") is coherent over Dy and projective over Oy .
We first show that H*(i" M) is an integrable connection. Take x € V and denote by
Jx : {x} = V the embedding. Then we have

C®o,, H* (™M), =~ H (litmy ~ B iy,

where the first isomorphism follows from the fact that H*(i" M), is projective over

Oy . Hence the finite-dimensionality of H ketdy ;M ") implies that the rank of the
projective Oy ,-module H k@TM), is finite. It follows that H*(i"M") is coherent
over Oy, hence an integrable connection. Now take an open subset U of X such that
V=YNU,andlet j : U — X be the embedding. Define N' by the distinguished
triangle

N'—)M‘—>/jTM'L1>.
i

We easily see that fj jtmM ~ fl i"M e Dﬁ(Dx), and hence the above distinguished
triangle implies N € Df (Dx). We also easily see that supp(N') C Y\ V. Moreover,
for any locally closed smooth subset Z of Y \ V we have i;M i iTZN ", where iz :
Z — X denotes the embedding. Indeed, we have i; / ;= 0 by Proposition 1.7.1 (ii).
In particular, forany x € Y\ V we have H* (i;M') ~ H*(i;N‘). Hence by applying
the hypothesis of induction to N there exists a decreasing sequence

Y\V=Y D DYy DYy =9
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of closed subsets of Y \ V such that ;. \ Y, is smooth and all of the cohomology

sheaves H k( Jr M) are integrable connections, where j, : Y, \ Y41 < X denotes
the embedding. Then the decreasing sequence

Y=YD2Y1 D DYy DV =9

satisfies the desired property. O

3.4 Minimal extensions

A non-zero coherent D-module M is called simple if it contains no coherent D-
submodules other than M or 0. Proposition 3.1.2 implies that for any holonomic
D-module M there exists a finite sequence

M=MyDM;D---DM, DM 41 =0

of holonomic D-submodules such that M; /M; is simple for each i (Jordan—-Hdolder
series of M). In this section we will give a classification of simple holonomic D-
modules. More precisely, we will construct simple holonomic D-modules from inte-
grable connections on locally closed smooth subvarieties using functors introduced
in earlier sections, and show that any simple holonomic D-module is of this type.
This construction corresponds via the Riemann—Hilbert correspondence to the mini-
mal extension (Deligne—Goresky—MacPherson extension) in the category of perverse
sheaves.

Let Y be a (locally closed) smooth subvariety of a smooth algebraic variety X.
Assume that the inclusion map i : ¥ < X is affine. Then Dy y is locally free
over Dy and Riy = i, (higher cohomology groups vanish). Therefore for a holo-
nomic Dy-module M we have H/ [, M = H/ [, M = 0 for ¥ j # 0. Namely, we
may regard f M and f M as Dx-modules. These Dyx-modules are holonomic by
Theorem 3.2.3. By Theorem 3.2.16 we have a morphism

/M—)/M
il i

Definition 3.4.1. We call the image L(Y, M) of the canonical morphism fi! M —>
J; M the minimal extension of M.

in Mody (Dy).

By Proposition 3.1.2 the minimal extension L(Y, M) is aholonomic Dx-module.

Theorem 3.4.2.

(1) Let Y be alocally closed smooth connected subvariety of X suchthati : Y — X is
affine, and let M be a simple holonomic Dy-module. Then the minimal extension
L(Y, M) is also simple, and it is characterized as the unique simple submodule
(resp. unique simple quotient module) offi M (resp. offi! M).
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(1) Any simple holonomic Dyx-module is isomorphic to the minimal extension
LY, M) for some pair (Y, M), where Y is as in () and M is a simple inte-
grable connection on Y.

(iii) Let (Y, M) be as in (ii), and let (Y', M') be another such pair. Then we have
LY, M) =~ L(Y', M') if and only if Y = Y’ and M|y ~ M'|y for an open
dense subset U of Y N Y'.

Proof. (i) We choose an open subset U C X containing Y such thatk : Y<>U is a
closed embedding. Let j : U < X be the embedding, and let Modgc Dy denote the

category of Ox-quasi-coherent Dx-modules whose support is contained in ¥. We
first show the following four results:

(a) For any E € ModZC(DX) we have H'i'E = 0 (I # 0). Hence HiT = i% :
Modgc(DX) — Mod,(Dy) is an exact functor.

(b) For any non-zero holonomic submodule N of fl M, wehave i'N ~ M.

(© fl M (resp. fl.! M) has a unique simple holonomic submodule (resp. simple holo-

nomic quotient module).
(d) For a sequence 0 # Ni C Na C [; M of holonomic submodules of [; M, we

have i T (N2/Ny) = 0.

For E € ModZC(DX) we have i'"E = k' jTE = kTj~'E and supp j~'E C Y.
Hence (a) is a consequence of Kashiwara’s equivalence.
Let N be as in (b). By Corollary 3.2.15 we have

HomDX<N, fM) = Homp, (N, //kM>
i j
:HomDU(j*N, /M)
k

Since j is an open embedding, we have j* = jT = j=L. Therefore, the inclusion
N < [; M induces a non-zero morphism ¢ : j'N — [, M. Since [, M is a simple
holonomic Dy -module by Kashiwara’s equivalence, ¢ is surjective. Applying k' to
it, we obtain a surjective morphism i'N — k' [, M ~ M. On the other hand, we
have an injective morphism i'N — i [ M = M because i is exact by (a). Hence
we must have i TN ~ M, and (b) is proved.

Suppose there exist two simple holonomic submodules L # L’ of fl M. Set
N=L+ L =L® L’ Then by (b) we have

M~i'N=i"Lei'L' =Moo M,

which is a contradiction. The assertion (c) for fl M is proved. Another assertion for
fi! M is easily proved using the duality functor.
By (a) we have

i"™NycitNy i /M =M, i"™Ny/iTNy =~ iT(N2/NY).
i
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Hence (b) implies i (N, /N1) = 0, and (d) is proved.
Now let us finish the proof of (i). By (c) there exists a unique simple holonomic
submodule L of fl M. By Corollary 3.2.15 there exist two isomorphisms

. (b)
HomDX</ M, L) ~ Homp, (M, i'L) ~ Homp, (M, M),
i!

HomDX(f M, /M) ~ HomDY(M, iT/M) ~ Homp, (M, M),
i! i i

from which we see that the canonical morphism fi! M — fl M is non-zero and
factorizes as fl.! M — L — /; M. Since L is a simple module, the image of this
morphism should be L. This completes the proof of (i).

(i) Assume that L is a simple holonomic Dx-module. We take an affine open
dense subset ¥ (i : ¥ < X) of an irreducible component of supp L so that i " L is an
integrable connection on Y (this is possible by Proposition 3.1.6). Set M = i L. We
easily see by Proposition 3.1.7 that M is simple. Moreover, by Corollary 3.2.15 we
get an isomorphism

Homp, ([ M, L) ~ Homp, (M, i'L) ~ Homp, (M, M) # 0,
i!

from which we see that there exists a non-zero surjective morphism f” M — L.
Namely, L is a simple holonomic quotient module of fi! M. Hence we obtain L =
L(Y, M) by (i). The assertion (ii) is proved.

The proof for the last part (iii) is easy and left to the readers. O

Proposition 3.4.3. Let Y be a locally closed smooth subvariety of X such that i :
Y — X is affine, and let M be an integrable connection on Y. Then we have

DxL(Y, M)~ L(Y, DyM).
Proof. By the exactness of the duality functor we obtain
DxL(Y, M) ZIm(Dfo — Dxf M) ZIm(/ DyM — [DyM)
i il il i
=LY, DyM).

The proof is complete. O



4

Analytic D-Modules and the de Rham Functor

Although our objectives in this book are algebraic D-modules (D-modules on smooth
algebraic varieties), we have to consider the corresponding analytic D-modules (D-
modules on the underlying complex manifolds with classical topology) in defining
their solution (and de Rham) complexes. In this chapter after giving a brief survey
of the general theory of analytic D-modules which are partially parallel to the theory
of algebraic D-modules given in earlier chapters we present fundamental proper-
ties on the solution and the de Rham complexes. In particular, we give a proof of
Kashiwara’s constructibility theorem for analytic holonomic D-modules. We note
that we also include another shorter proof of this important result in the special case of
algebraic holonomic D-modules due to Beilinson—Bernstein. Therefore, readers who
are interested only in the theory of algebraic D-modules can skip reading Sections 4.4
and 4.6 of this chapter.

4.1 Analytic D-modules

The aim of this section is to give a brief account of the theory of D-modules on
complex manifolds. The proofs are occasionally similar to the algebraic cases and
are omitted. Readers can refer to the standard textbooks such as Bjork [Bj2] and
Kashiwara [Kas18] for details.

Let X be a complex manifold. It is regarded as a topological space via the clas-
sical topology, and its dimension is denoted by dx. We denote by Oy the sheaf of
holomorphic functions on X, and by Oy, Qg the sheaves of Ox-modules consist-
ing of holomorphic vector fields and holomorphic differential forms of degree p,
respectively (0 < p < dx). We also set Qx = Q‘;(X . The sheaf Dy of holomorphic
differential operators on X is defined as the subring of Endc(Oyx) generated by Oy
and Oy. In terms of a local coordinate {x;};<;<, on a open subset U of X we have

Dxly = @ Oyd”,

aeN"

where
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)
31'25 (1 <i<n), =03 (o= (at,..., o).
1

We have the order filtration F' = {F;Dx };>0 of Dy given by

FiDx|y = Z Oy oy (Ja| = Zai),

| =l i

where U and {x;} are as above. It satisfies properties parallel to those in Proposi-
tion 1.1.3, and Dy turns out to be a filtered ring. The associated graded ring gr Dy
is a sheaf of commutative algebras over Oy, which is canonically regarded as a
subalgebra of ,Orxx, where 7 : T*X — X denotes the cotangent bundle of X.

Note that we have obvious analogies of the contents of Section 1.2, 1.3. In
particular, we have an equivalence

Qx ®0y (8) : Mod(Dx) —> Mod (DY)

between the categories Mod(Dy), Mod(D;p) of left and right Dyx-modules, respec-
tively. Moreover, for a morphism f : X — Y of complex manifolds we have
a (Dx, f~'Dy)-bimodule Dx_.y = Ox ® y-1, f~'Dy and an (f~' Dy, Dx)-
bimodule Dy. x = Qx ®o, Dx_y ® r-10y f_lﬂg_l. We say that a Dy-module
is an integrable connection on X if it is locally free over Oy of finite rank.

Notation 4.1.1. We denote by Conn(X) the category of integrable connections on the
complex manifold X.

We have an analogy of Theorem 1.4.10. In particular, Conn(X) is an abelian
category.
The following result is fundamental in the theory of analytic D-modules.

Theorem 4.1.2.
(i) Dy is a coherent sheaf of rings.
(ii) For any x € X the stalk Dx . is a noetherian ring with left and right global
dimensions dim X.

The statement (i) follows from the corresponding fact for Oy due to Oka, and (ii)
is proved similarly to the algebraic case.

We can define the notion of a good filtration on a coherent Dx-module as in
Section 2.1. We remark that in our analytic situation a good filtration on a coherent
Dyx-module exists only locally. In fact, there is an example of a coherent D x-module
which does not admit a global good filtration. Nevertheless, this local existence of
a good filtration is sufficient for many purposes. For example, we can define the
characteristic variety Ch(M) of a coherent Dx-module M as follows. For an open
subset U of X such that M|y admits a good filtration F we have a coherent Oy -

module grf (M|y) = Or+y ®n5|gIDU
denotes the projection. Then the characteristic variety Ch(M) is defined to be the
closed subvariety of 7*X such that Ch(M) N T*U = supp(grf (M|y)) for any U
and F as above. It is shown to be well defined by Proposition D.1.3.

As in the algebraic case we have the following.

n&lngMly, where my : T*U — U
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Theorem 4.1.3. For any coherent Dx-module M its characteristic variety Ch(M) is
involutive with respect to the canonical symplectic structure of the cotangent bun-
dle T*X. In particular, for any irreducible component A of Ch(M), we have that
dim A > dim X.

We say that a coherent Dx-module M is holonomic if it satisfies
dim Ch(M) < dim X.

Notation 4.1.4.
(i) We denote by Mod.(Dy) (resp. Mod;,(Dyx)) the category of coherent (resp.
holonomic) Dx-modules.
(i) We denote by Df (Dx) (resp. Dz’(Dx)) the subcategory of Db(DX) consisting
of M" € D?(Dy) satisfying H (M") € Mod,(Dyx) (resp. Mod,,(Dy)) for any i.

As in Section 2.6 we can define the duality functor Dy : Dé’(DX) — Dé’(DX)Op
satisfying D3, ~ Id by

DxM = RHomp,(M', Dx ®0, Q% '[dx]).

All of the arguments in Section 2.6 are also valid for analytic D-modules. In particular,
Dy induces Dy : Mody, (Dx) — Mody, (Dx)°P.
Let f : X — Y be a morphism of complex manifolds. The functors

Lf*:D"(Dy) » D"(Dx) (M > Dx_y @, f7'M),
T D?(Dy) — D*(Dx) (M Lf*M'[dx —dy])

are called the inverse image functors. Note that the boundedness of Lf*M" follows
from Theorem 4.1.2 (ii). The notion that f : X — Y is non-characteristic with
respect to a coherent Dy-module M is defined similarly to the algebraic case, and we
have the following analogy of Theorems 2.4.6 and 2.7.1.

Theorem 4.1.5. Let f : X — Y be a morphism of complex manifolds and let M be
a coherent Dy-module. Assume that f is non-characteristic with respect to M.

G) HI(Lf*M) =0for¥j #0.

(i) HO(Lf*M) is a coherent Dy-module.
(iii) Ch(HO(Lf*M)) C pfw;I(Ch(M)).
(iv) Dy (Lf*M) >~ Lf*(Dy M).

Here, py : X xy T*Y — T*X and wy : X xy T*Y — T*Y are the canonical
morphisms.

The proof is more or less the same as that for Theorem 2.4.6, 2.7.1.
For a morphism f : X — Y of complex manifolds we can also define the direct
image functor

/ . DP(Dy) — DY(Dy)  (M' > Rfu(Dyox ®5, M),
f
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The fact that [ f preserves the boundedness can be proved as follows. By decomposing
f into a composite of a closed embedding and a projection we may assume that f
is either a closed embedding or a projection. The case of a closed embedding is
easy. Assume that f : X = Y x Z — Y is a projection. We may assume that
M = M € Mod(Dy). As in the algebraic case we have ff M = Rf,(DRx,yM),
where DR,y M is the relative de Rham complex defined similarly to the algebraic
case. Then the assertion follows from the well-known fact that R’ f«(K) = 0 unless
0 <i <2dim Z for any sheaf K on X (see, e.g., [KS2, Proposition 3.2.2]).
We have the following analogy of Theorem 2.5.1, Theorem 2.7.2.

Theorem 4.1.6. Let f : X — Y be aproper morphism of complex manifolds. Assume
that a coherent Dx-module M admits a good filtration locally on Y.

() [; M € DZ(Dy).
(ll)ffDxM’:]D)yffM

The proof of this result is rather involved and omitted (see Kashiwara [Kas18]).
In the situation where f : X — Y comes from a proper morphism of smooth
algebraic varieties and M is associated to an algebraic coherent D-module (in the
sense of Section 4.7 below) the statements (i) and (ii) in Theorem 4.1.6 follow from
Theorem 2.5.1, Theorem 2.7.2, respectively, in view of Proposition 4.7.2 (ii) below.
We also point out that if f is a projective morphism of complex manifolds, the proof
of Theorem 4.1.6 is more or less the same as that of Theorem 2.5.1, 2.7.2.

In the algebraic case holonomicity is preserved under the inverse and direct im-
ages; however, in our analytic situation this is true for inverse images but not for
general direct images.

Theorem 4.1.7. Let f : X — Y be a morphism of complex manifolds, and let M be
a holonomic Dy-module. Then we have Lf*M € DZ(DX).

Theorem 4.1.8. Let f : X — Y be aproper morphism of complex manifolds. Assume
that a holonomic Dx-module M admits a good filtration locally on Y. Then we have
[+ M € Dp(Dy).

Theorem 4.1.7 is proved using the theory of b-functions (see Kashiwara [Kas7]),
and Theorem 4.1.8 can be proved using Ch(ff M) C zzrf,o;l (Ch(M)) and some
results from symplectic geometry. The proofs are omitted. We note that in both
theorems if we only consider the situation where f comes from a morphism of smooth
algebraic varieties and M is associated to an algebraic holonomic D-module, then
they are consequences of the corresponding facts on algebraic D-modules in view of
Proposition 4.7.2 below.

Example 4.1.9. Let us give an example so that the holonomicity is not preserved
by the direct image with respect to a non-proper morphism of complex manifolds
even if it comes from a morphism of smooth algebraic varieties. Set X = C \ {0},
Y = C and let x be the canonical coordinate of ¥ = C. Let j : X — Y be the
embedding. We regard it as a morphism of algebraic varieties. If we regard it as a
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morphism of complex manifolds, we denote it by j*" : X*" — Y. Then we have
HY([; Ox) = jOx and HO([ ;s Oxmn) = j2"Oxan. Note that j,Ox = Oy[x~']is
holonomic, while j2"Oyan contains non-meromorphic functions like exp(x_l) and is
much larger than Oyan [x~1]. The Dya-module Oyan[x~!] is holonomic; however,
J2 Oxan is not even a coherent Dyan-module.

For a closed submanifold X of a complex manifold ¥ we denote by Modf (Dy)
(resp. Modff (Dy)) the category of coherent (resp. holonomic) Dy-modules whose
supportis contained in X. Kashiwara’s equivalence also holds in the analytic situation.

Theorem 4.1.10. Leti : X < Y be a closed embedding of complex manifolds. Then
the functor fl induces equivalences

Mod,(Dx) — ModX (Dy),

Modj, (Dx) — Mod (Dy)
of categories.

The proof is more or less the same as that of the corresponding result on algebraic
D-modules.

4.2 Solution complexes and de Rham functors
Let X be a complex manifold. For M" € DP(Dy) we set

DRx M’ := Qx ®p M
Soly M" := RH()mDX(M', Oyx).

We call DRx M" € D?(Cyx) (resp. Solx M" € D?(Cy)) the de Rham complex (resp.
the solution complex) of M" € D?(Dy). Then DRy (e) and Soly (e) define functors

DRy : D*(Dy) — D?(Cy),
Soly : D?(Dyx) —> DP(Cyx)°P.

As we have explained in the introduction, a motivation for introducing the solution
complexes Solx M = RHomp, (M, Ox) came from the theory of linear partial dif-
ferential equations. In fact, for a coherent Dx-module M the sheaf Homp, (M, Ox)
(on X) is the sheaf of holomorphic solutions to the system of linear PDEs correspond-
ing to M.

By (an analogue in the analytic situation of) Proposition 2.6.14 we have the
following.

Proposition 4.2.1. For M" € Df (Dx) we have

DRx(M') >~ R’HomDX((’)X, M)[dx] ~ Sle(DxM')[dx].
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Hence properties of Soly can be deduced from those of DRy. The functor DRy
has the advantage that it can be computed using a resolution of the right Dx-module
Qx. In fact, similar to Lemma 1.5.27 we have a locally free resolution

0— Q())( ®oy Dx— - -~—>Q‘;(X ®oy, Dx—Qx — 0

of the right Dx-module Qx. It follows that for M € Mod(Dy) the object
DRy (M)[—dx] of the derived category is represented by the complex

Qy B0, M = |2 ®o, M~ —>Q 8o, M),
where 1
dP: Qf @0y M — Q5 ®0, M
is given by
dp(w®s):dw®s+2dx,~/\w®8is (we Q. seM)
i

({x;, 9;} is a local coordinate system of X).

Let us consider the case where M is an integrable connection of rank m (a coherent
Dyx-module which is locally free of rank m over Oy ). In this case the Oth cohomology
sheaf L := HO(Q'X ®oy M) =~ Homp, (Ox, M) of Qy ®», M coincides with the
kernel of the sheaf homomorphism

d=v: M~ 00, M — Q% @0, M,
which is the sheaf
MY ={(seM|Vs=0}={seM|Oxs =0}

of horizontal sections of the integrable connection M. It is a locally free Cx-module
of rank m by the classical Frobenius theorem.

Definition 4.2.2. We call a locally free Cx-module of finite rank a local system on X.
Notation 4.2.3. We denote by Loc(X) the category of local systems on X.

Using the local system L = MY we have a Dy-linear isomorphism Ox ®c¢ v L=
M. Conversely, for a local system L we can define an integrable connection M by
M=0x®cy, LandV =d ®id : Ox ®cy L ~ Q% ®0, M - Q ®c, L =~
Q}( ®oy, M such that M V ~ L. As a result, the category of integrable connections
on X is equivalent to that of local systems on X.

integrable connections on X ‘ <~ ’ local systems on X

Under the identification Ox ®c, L ~ M, the differentials in the complex Q' ® 0, M
are written explicitly by
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. 1
d®idr, : Q% ®c, L — Q8 ®c, L.

Therefore, the higher cohomology groups H' (Qy ®oy M) (i = 1) of the complex
Qy ®@y M vanish by the holomorphic Poincaré lemma, and we get finally a quasi-
isomorphism Qy ®o, M ~ L = M V for an integrable connection M. We have
obtained the following.

Theorem 4.2.4. Let M be an integrable connection of rank m on a complex manifold

X. Then H'(DRx(M)) = O fori # —dx, and H=% (DRx(M)) is a local system on
X. Moreover, we have an equivalence

H™ % (DRx (e)) : Conn(X) ==Loc(X)
of categories.

Theorem 4.2.5. Let f : X — Y be a morphism of complex manifolds. For M" €
Db (Dx) we have an isomorphism

Rf«DRx M >~ DRy / M
f

in D?(Cy)
Proof. By
DRy /f M = @y ®h, RE(Dy—x &, M)
~ Rf*(fflﬂy ®.Lf.,1Dy Dy x ®1L)X M'),
Rf. DRx M = Rf.(Qx ®p, M).
It is sufficient to show Qx ~ f~!Qy ®§“1Dy Dy _x. This follows easily from
Lemma 1.3.4. |

4.3 Cauchy-Kowalevski-Kashiwara theorem

The following classical theorem due to Cauchy—Kowalevski is one of the most fun-
damental results in the theory of PDEs.

Theorem 4.3.1 (Cauchy-Kowalevski). Let X be an open subset of C" with a local
coordinate {z;, 0; }1<i<n, and let Y be the hypersurface of X definedby Y = {z; = 0}.
Let P € Dy be a differential operator of order m > 0 on X such that Y is non-
characteristic with respect to P (this notion is defined similarly to the algebraic
case, see Example 2.4.4). Then for any holomorphic function v € Oy defined on an
open neighborhood of Y and any m-tuple (ug, ..., Up—1) € (’)?m of holomorphic
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Sfunctions on Y, there exists a unique holomorphic solution u € Oy defined on an
open neighborhood of Y to the Cauchy problem

Pu=wv,
a{u|y=u,- (G=0,1,...,m—1).

For X, Y, P as in Theorem 4.3.1 let f : Y - X be the inclusion and set
M = Dx/DxP. By Theorem 4.1.5 we have H'(Lf*M) = 0 for i # 0. Set
My = HO%(Lf*M). Then Theorem 4.3.1 implies in particular that the natural mor-
phism

f~ " Homp, (M, Ox)
~ {u (S Ox|y | Pu =0} —> O?m ZHomDY(My,Oy).
W W
u —> (uly, duly, ..., 97" uly)

obtained by taking the first m-traces of u € Ox|y is an isomorphism (see Exam-
ple 2.4.4).

In this section we will give a generalization of this result due to Kashiwara. We
first note that results in Section 2.4 for algebraic D-modules can be formulated in the
framework of analytic D-modules and proved similarly to the algebraic case. Let
f Y — X be a morphism of complex manifolds. For any coherent Dx-module M
we can construct a canonical morphism

f_lHomDX(M, Ox) — HOmf—IDX(f_lMﬂ f_IOX)
—> Homp, (Oy ® p-10y f_lM, Oy ® r-104 f_lOX)
~ HomDY (Oy ®f—1ox f_lM, Oy),

which extends the above trace map in the classical case. The corresponding morphism

£ Soly (M) (: R Homp, (M, OX))
—> Soly (Lf*M) (= RHomp, (Lf*M, Oy))

in the derived category D”(Cy) can be also constructed similarly. The following
theorem is a vast generalization of the Cauchy—Kowalevski theorem.

Theorem 4.3.2 (Kashiwara [Kasl]). Let f : Y — X be a morphism of complex
manifolds. Assume that f is non-characteristic for a coherent Dx-module M. Then
we have

£ Soly (M) == Soly (Lf*M). 3.1

Proof. As in the proof of Theorem 2.4.6 we can reduce the problem to the case when
Y is a hypersurface in X. Since the problem is local, we may assume that X and Y
are as in Theorem 4.3.1. By an analogue (in the analytic situation) of Lemma 2.4.7
we have an exact sequence of coherent Dyx-modules
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0—K-—>L—>M—0

where L = @;_, Dx/Dx P; and Y is non-characteristic with respect to each P;. By
the classical Cauchy—Kowalevski theorem (Theorem 4.3.1) we have an isomorphism

F'RHomp, (L, Ox) = RHomp,(Ly, Oy).
for L. Now consider the commutative diagram
0 —>f_1H0mDX M,Ox) —— f_lHomDX (L, Ox)—>

! l

0 — Homp,(My,Oy) —— Homp,(Ly,Oy) —>

f"Hompy (K, Ox) —— f~'€xt}, (M, 0x) —— f~'€xtp (L, Ox)
al | !
Homp, (Ky,Oy) —— Extp (My,Oy) —— &xtp, (Ly, Oy)

with exact rows. We see from this that the morphism A is injective. It implies that
the canonical morphism

fﬁlHomDX (N, Ox) = Homp, (Ny, Oy)

is injective for any coherent Dy-module N with respect to which Y is non-
characteristic. In particular, the morphism B is injective because Y is non-character-
istic with respect to K. Hence by the five lemma, the morphism A is an isomorphism.
Consequently B is also an isomorphism by applying the same argument to K instead
of M. Repeating this argument we finally obtain the quasi-isomorphism

F'RHomp, (M, Ox) <> RHomp, (My, Oy).
This completes the proof. O

By Theorem 4.1.5 (iv), Proposition 4.2.1, and Theorem 4.3.2 we have the follow-
ing.

Corollary 4.3.3. Let f : Y — X be a morphism of complex manifolds. Assume that
f is non-characteristic for a coherent Dx-module M. Then we have

DRy (Lf*M) ~ f~' DRx(M)[dy — dx].

4.4 Cauchy problems and micro-supports

Theorem 4.3.2 has been extended into several directions. For example, we refer
to [DS1], [Is]. Indeed, the methods used in the proof of Theorem 2.4.6 (see also
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Theorem 4.1.5) and Theorem 4.3.2 have many interesting applications. We can prove
various results for general systems of linear PDEs by reducing the problems to those
for single equations. Let us give an example. Denote by Xp the underlying real
manifold of X. Then we have a natural isomorphism 7*Xp =~ (T*X)g. For a point
p € T} X take areal-valued C I_function ¢ : Xg —> R such that d¢ (x) = p (here
d¢ is the real differential of ¢) and denote by d¢(x) € T, X its holomorphic part.
Then by this identification T*Xpr >~ (T*X)r. The point p € T X corresponds to
d¢(x) € TFX. As for a more intrinsic construction of the isomorphism 7*Xp =~
(T*X)R, see Kashiwara—Schapira [KS2, Section 11.1].

Theorem 4.4.1. Let ¢ : X —> R be a real-valued C*°-function on X such that
S =f{z € X | ¢(z) = 0} C X is a real smooth hypersurface and Q2 =
{z € X |¢(z) <0} C X isStein. Identifying T*X with T* Xy as above, assume that
a coherent Dx-module M satisfies the condition Ch(M) N Tg(XRr) C TxX. Then
for S. ={z € X | ¢(z) > 0} we have

[RTs, RHompy (M, Ox)] =~ 0.
Proof. Since we have
[RTs, RHompy (M, Ox)]g ~ RHomp, (M, H'[RT's, (Ox)][—1])

and H'[RTs, (Ox)]g = [Fa(Ox)/Ox];. the assertion for single equations M =
Dy /Dx P is just an interpretation of the classical result in Theorem 4.4.2 below. The
general case can be proved by reducing the problem to the case of single equations
in the same way as in the proof of Theorem 4.3.2. O

Theorem 4.4.2. Let ¢ : X —> R be a real-valued C*°-function on X such that
S = {z € X | ¢(r9 = 0} C X is a real smooth hypersurface and set
Q={z€ X | ¢(z) <0}. Foradifferential operator P € Dx assume the condition:
o(P)(z; 0¢(2)) # O for any z € S. Then we have the following:

(1) (Zerner[Z)]) Let f be a holomorphic function on Q such that P f extends holomor-
phically across S = 92 in a neighborhood of z € S. Then f is also holomorphic
in a neighborhood of z.

(ii) (Bony-Schapira [BS)]) For any z € S = 02 the morphism P : I'q(Ox), —
I'q(Ox), is surjective.

Corollary 4.4.3. Let M, ¢, S as in Theorem 4.4.1. Then we have an isomorphism

Hompy (M, Ox)g —~>ToHomp, (M, Ox).

That is, any holomorphic solution to M on 2 extends across S as a holomorphic
solution to M.

Proof. Consider the cohomology long exact sequence associated to the distinguished
triangle
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RIs, (RHompy (M, Ox)) — RHomp, (M, Ox)
— RTo(RHompy (M, Ox)) —>
and apply Theorem 4.4.1. O

It is well known that Theorem 4.4.1 is true for arbitrary real-valued C*°-function
¢ : X — Rsuchthat S = {z € X | ¢(z) = 0} is smooth. Namely, we do
not have to assume that 2 = {z € X | ¢(z) < 0} is Stein. For the proof of this
generalization of Theorem 4.4.1, see Kashiwara—Schapira [KS2, Theorem 11.3.3].
This remarkable result was a motivation for introducing the notion of micro-supports
in Kashiwara—Schapira [KS1], [KS2].

Definition 4.4.4. Let X be areal C*°-manifoldand F* € D?(Cy). We define a closed
R- o-invariant subset SS(F") of T*X as follows:

po = (x0,80) ¢ T*X

<= There exists an open neighborhood U of po in T*X such that for any
x € X and any C*-function ¢ : X —> R satisfying ¢(x) = 0 and
(x, grad ¢ (x)) € U we have RI'(g>0y (F)x = 0.

We call SS(F") the micro-support of F".

Note that the notion of micro-supports was recently generalized to that of truncated
micro-supports in [KFS]. As we see in the next theorem, using micro-supports we can
reconstruct the characteristic variety of a coherent Dy-module M from its solution
complex RHomp, (M, Ox).

Theorem 4.4.5 (Kashiwara—Schapira [KS1]). Let X be a complex manifold and M
a coherent Dx-module. Then under the natural identification (T*X)gr ~ T*Xp,
we have

Ch(M) = SS(RHomp, (M, Ox)).

The inclusion Ch(M) D SS(RHom p, (M, Ox)) is just an interpretation of The-
orem 4.4.1 and its generalization in Kashiwara—Schapira [KS2, Theorem 11.3.3].
The proof of the inverse inclusion is much more difficult and requires the theory of
microdifferential operators. See [KS1, Theorem 10.1.1]. Combining Theorem 4.4.1
(or its generalization in [KS2, Theorem 11.3.3]) with Kashiwara’s non-characteristic
deformation lemma (Theorem C.3.6 in Appendix C), we obtain various global ex-
tension theorems for holomorphic solution complexes RHom p, (M, Ox) as in the
following theorem.

Theorem 4.4.6. Let X be a complex manifold, {2;},cr afamily of relatively compact
Stein open subsets of X such that 02, is a C*°-hypersurface in X for any t € R,
and M a coherent Dx-module. Identifying (T™*X)r with T* Xy assume the following
conditions:

(1) For any pair s < t of real numbers, 25 C ;.
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(ii) Foranyt € R, @; = (U, _, Q.
(iil) Foranyt € R, (,-,(Qs \ €;) = 982, and Ch(M) N Ta*sz, (XR) C T¢X.
Then we have an isomorphism
RF(U Q. RHomp, (M, (')X)) ~>RI(, RHomp, (M, Ox))
seR
foranyt e R.

This result will be effectively used in the proof of Kashiwara’s constructibility
theorem later.

4.5 Constructible sheaves

In this section we recall basic facts concerning constructible sheaves on analytic
spaces and algebraic varieties. For the details of this subject we refer to Dimca [Di],
Goresky—MacPherson [GM2], Kashiwara—Schapira [KS2], Schiirmann [Schu], and
Verdier [V1].

For a morphism f : X — Y of analytic spaces we have functors

£~ Mod(Cy) — Mod(Cyx),
f+« : Mod(Cx) — Mod(Cy),
fi: Mod(Cyx) — Mod(Cy).

The functor f ~1isexact, and the functors f«, fiareleftexact. By taking their derived
functors we obtain functors

f71: D(Cy) » DP(Cy),
Rf, : D"(Cx) - D"(Cy),
Rfi: D’(Cx) — DP(Cy)
for derived categories, where D?(Cy) = D?(Mod(Cy)). We also have a functor
f':D"(Cy) - D" (Cx)

which is right adjoint to Rf).
Let X be an analytic space. The tensor product gives a functor

() ®c (o) : D’(Cy) x D’(Cx) — D"(Cx)
sending (K", L") to K" Q¢ L.

Definition 4.5.1. Let X and Y be analytic spaces. For K° € D’(Cy) and L' €
DP(Cy) we define K' ¢ L' € D?(Cxxy) by

K NclL = pl_lK. RCyxy pZ_IL.’

where p; : X x Y — X and p : X x Y — Y are projections.
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Definition 4.5.2. For an analytic space X we set
wy = axC € DP(Cy),

where ay : X — pt is the unique morphism from X to the one-point space pt. We
call it the dualizing complex of X.

When X is a complex manifold, wy is isomorphic to Cx[2 dim X]. The Verdier
dual Dy (F’) of F* € D?(Cy) is defined by

Dx(F’) := RHomc, (F', wx’) € D’(Cx).

It defines a functor
Dy : D*(Cx) — D"(Cx)*.

Recall that a locally finite partition X = | |,.4 X of an analytic space X by
locally closed analytic subsets X, (@ € A) is called a stratification of X if, for any
o € A, X, is smooth (hence a complex manifold) and X, = LI pep X g for a subset B
of A. Each complex manifold X, for o € A is called a stratum of the stratification

X = I_loteA Xa.

Definition 4.5.3. Let X be an analytic space. A Cx-module F is called a constructible
sheaf on X if there exists a stratification X = |_],. 4 X« 0f X such that the restriction

acA
F|x, is alocal system on X, for "o € A.

Notation 4.5.4. For an analytic space X we denote by Df (X) the full subcategory
of D?(Cx) consisting of bounded complexes of Cx-modules whose cohomology
groups are constructible.

Example 4.5.5. On the complex plane X = C let us consider the ordinary differential
equation (x j—x —A)u = 0 (1 € C). Denote by Oy the sheaf of holomorphic functions
on X and define a subsheaf F C Oy of holomorphic solutions to this ordinary
equation by
F = {u € Oy ‘ (xi—k)uzO}.
dx

Then the sheaf F is constructible with respect to the stratification X = (C — {0}) U {0}
of X. Indeed, the restriction F|c_jpy = Cx* of F to C — {0} is a locally free sheaf
of rank one over Cc_g) and the stalk at 0 € X = C is calculated as follows:

C A=0,1,2,...
Fo >~ .
0 otherwise.

For an algebraic variety X we denote the underlying analytic space by X*". For a
morphism f : X — Y of algebraic varieties we denote the corresponding morphism
for analytic spaces by f® : X* — Y. Alocally finite partition X = | |,.4 X«
of an algebraic variety X by locally closed subvarieties X, (¢ € A) is called a
stratification of X if for any « € A X, is smooth and Xy = Lgep X g for a subset B
of A. Astratification X = | |, .4 X, of an algebraic variety X induces a stratification
X* = | |yea X3 of the corresponding analytic space X"



112 4 Analytic D-Modules and the de Rham Functor

Definition 4.5.6. Let X be an algebraic variety. A Cxan-module F is called an alge-
braically constructible sheaf if there exists a stratification X = | |,.4 X« of X such
that F|xa is a locally constant sheaf on X2 for Yo € A.

Notation 4.5.7.

(i) For an algebraic variety X, we denote by Df (X) the full subcategory of DP(Cxan)
consisting of bounded complexes of Cyan-modules whose cohomology groups
are algebraically constructible (note that Df (X) is not a subcategory of D?(Cy)
but of D? (Cxan)).

(ii) For an algebraic variety X we write @y, and D yan : DP(Cyan) — DP(Cxan)°P
simply as wy and Dy, respectively, by abuse of notation.

(iii) For a morphism f : X — Y of algebraic varieties we write (f*")~!, (f2)',
RfX, Rf™ as f~L f', Rfs, Rfi, respectively.

Theorem 4.5.8.
(i) Let X be an algebraic variety or an analytic space. Then we have @y € Df (X).
Moreover, the functor Dy preserves the category Df (X)andDyx oDy ~1d on
DL (X).
(i) Let f : X — Y be a morphism of algebraic varieties or analytic spaces. Then
the functors =1, and f' induce

-1 . nb b
f=, f:D(Y)— D) (X),
and we have
f'=Dyxo f oDy

on Df (Y).

(iii) Let f : X — Y be a morphism of algebraic varieties or analytic spaces. We
assume that f is proper in the case where f is a morphism of analytic spaces.
Then the functors Rf ,, Rf, induce

Rf,, Rf,: D’(X) — DX(V),

and we have
Rfi=DyoRf, oDy

on Df (X).
(iv) Let X be an algebraic variety or an analytic space. Then the functor () Q¢ (e)
induces
(o) ®c (o) : DX(X) x D2(X) — D’ (X).
Proposition 4.5.9.

(i) Let f; : Xi — Y; (i = 1,2) be a morphism of algebraic varieties or analytic
spaces. Then we have

(fix AT L Re Ly = f7'LiRe f; 'Ly (L € D(Y),  (45.1)
(fi x f2)' (L Be Ly) = fiL Re f;L) (L € DX(Y)).  (452)
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(i) Let f; : X;i — Y; (i = 1,2) be a morphism of algebraic varieties or analytic
spaces. We assume that f is proper in the case where f is a morphism of analytic
spaces. Then we have

R(f1 x f(K} Kc Kp) ~ RfK| Mc RfaK; (K; € D"(X1)), (4.5.3)
R(f1 x f2)«(K{ B¢ K3) > Rfi.K; Rc Rf2.K;  (K; € DX(X;)). (45.4)

(iii) Let X1, X2 be analytic spaces. Then we have
Dy, .x, (K| K¢ K3) >~ Dy, (K}) Be Dy, (K3)  (K; € D2(X))).

Proof. Note that (4.5.1) follows easily from the definition, and (4.5.3) is a conse-
quence of the projection formula (see Proposition C.2.6). Hence in view of Theo-
rem 4.5.8 we have only to show (iii). Let p; : X1 x X — X; (i = 1, 2) be the
projections. Then we have
Dy, x,(Ki B¢ K3) ~ RHom(py 'K ®c py' K3, Y, «x,)

~ RHom(pl_lKi, RHom(pz_lKé, Ox, % x,))

=~ RHom(p; 'K, Dx,xx,p; ' K3)

~ RHom(py 'K, psDx, K3)

~ Dy, K, () Dy, K5,

where the last isomorphism is a consequence of [KS1, Proposition 3.4.4]. O

Definition 4.5.10. Let X be an algebraic variety or an analytic space. An object
F e Df (X) is called a perverse sheaf if we have

dimsupp(H/(F")) < —j,  dimsupp(H/(DxF")) < —j

for any j € Z. We denote by Perv(Cyx) the full subcategory of fo(X ) consisting of
perverse sheaves.

We will present a detailed account of the theory of perverse sheaves in Chapter 8.

4.6 Kashiwara’s constructibility theorem

In this section we prove some basic properties of holomorphic solutions to holo-
nomic D-modules. If M is a holonomic Dyx-module on a complex manifold X, its
holomorphic solution complex Soly (M) = RHom p, (M, Ox) possesses very rigid
structures. Namely, all the cohomology groups of Solx (M) are constructible sheaves
on X. In other words, we have Solx (M) € Df((Cx) = Df(X). This is the famous
constructibility theorem, due to Kashiwara [Kas3]. In particular, we obtain

dim H’ Solx (M), < 400
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for ¥ j € Z and Yz € X. Moreover, in his Ph.D. thesis [Kas3], Kashiwara essentially
proved that Soly (M)[dx] satisfies the conditions of perverse sheaves, although the
theory of perverse sheaves did not exist at that time. Let us give a typical example.
Let Y be a complex submanifold of X with codimension d = dx — dy. Then for the
holonomic Dy-module M = By|x (see Example 1.6.4), the complex

Solx (M)[dx] ~ (Cy[—d])ldx] = Cyldy]

is a perverse sheaf on X. Before giving the proof of Kashiwara’s results, let us
recall the following fact. It was shown by Kashiwara that for any holonomic Dy-
module there exists a Whitney stratification X =| |, 4 X« of X such that Ch(M) C
Llgea Tx, X. This follows from the geometric fact that Ch(M) is a C*-invariant
Lagrangian analytic subset of 7* X (see Theorem E.3.9). Let us fix such a stratification
X = ||, e X« for a holonomic system M.

Proposition 4.6.1. Set F* = RHompy(M,Ox) € D*(Cx) = D(X). Then for
VieZand o € A, HI (F)|x, is a locally constant sheaf on Xg.
Proof. Let us fix a stratum X,. The problem being local, we may assume

XaO:(Cn—dz{Zl=...:Zd=0}CX:(CZ.

It is enough to show that for Yj € Z and zo € X, there exists a small open ball
B(zo; €) in X, centered at zo such that the restriction map

T (B(zo; &), H/ (F')) — H!(F),

is an isomorphism for Yz € B(zo: €). First, let us treat the case when j = 0. Since
the geometric normal structure of the Whitney stratification X = | |, X is locally
constant along the stratum X, (the Whitney condition (b)), by Theorem 4.4.6 for each
z € B(zp; €) we can choose a sufficiently small open neighborhood U of B(zp; €) in
X so that we have a quasi-isomorphism

RI(U, F) — F.". 4.6.1)

Indeed, by SS(F') = Ch(M) C ||, eca T;(‘QX and the Whitney condition (b) (see
Definition E.3.7) we can find a family of increasing open subsets {Q2; C X},¢(0,1] of
X such that

()L =U, mtg((),l] Q= {z}
(i1) 92, is a real C*°-hypersurface in X and TB*Q, (X)NCh(M) C TgX

(see the figure below).

X B(zo; €)

o—{N o N
BN .

U=Q Qs 0<skl)
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Since H/(F") = 0 for Jj < 0, it follows from the quasi-isomorphism (4.6.1) that

LU, HO(F)) =>H"(F)..
If we take an inductive limit of the left-hand side by shrinking U, we get the desired
isomorphism
T(B(zo; ), HO(F")) =>H"(F)..
This shows that HO(F Bl Xap is a locally constant sheaf on X, in a neighborhood of

Z0 € Xq,. To prove the corresponding assertion for H L)) Xqp At the given point
20 € Xg, first choose a sufficiently small open ball B(zg; €) in X, centered at zp so
that we have a quasi-isomorphism

RI'(B(zo; €), F') = F;’

for Yz € B(zp; €). Next setting K = B(zo; €) and fixing z € B(zp; ¢) consider the
morphism of distinguished triangles

RT(K, HY(F)) —> RI(K, F') — RI(K,t>'F) —1

| 3| |
HOF), —— E —— >R *

Then the leftmost vertical arrow is a quasi-isomorphism, because H OF bl Xap is a
locally constant sheaf on X, and K is contractible. Therefore, the rightmost vertical
arrow is also a quasi-isomorphism:

RU(B(zp; 6), 12 F) =521 F,
Taking H'(e) of both sides, we finally get

F(B(zo; €), H'(F)) =>H'(F")..
By repeating this argument, we can finally show that for all j € Z, H/(F")| Xap isa
locally constant sheaf on X, for Yo € A. This completes the proof. O

Proposition 4.6.2. Let M be a holonomic Dx-module. Then for VieZand"z € X
the stalk H'[RHomp, (M, Ox)]; at z is a finite-dimensional vector space over C.

Proof. Let X = | ],c4 Xo be a Whitney stratification of X such that Ch(M) C
|_|0le A TX*aX . Let us prove our assertion for z € X,. By the Whitney condition (b)
of the stratification | |,.4 X« we can take a small positive number § > 0 such that

Ta*(B(z;e))X NCh(M) C TxX

for 0 < Ye < §. Here B(z; €) is an open ball in X centered at z with radius ¢.
Therefore, by the non-characteristic deformation lemma (see Theorem 4.4.6) we have
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RI'(B(z; €1), RHompy (M, Ox)) =>RT'(B(z; £2), RHompy (M, Ox))

for 0 < Y&y < Ye; < 8. Since the open balls B(z; &;) (i = 1,2) are Stein, this
quasi-isomorphism can be represented by the morphism

0 —— Ox(Bz eV —2% Ox(Bz et —25 ...

| l

P P
0 —— Ox(B(z; ) —— Ox(B(z; )" —— -
between complexes, where P; is an N; x N;_1 matrix of differential operators. Since
the vertical arrows are compact maps of Fréchet spaces, the resulting cohomology

groups

H'(B(z: e1), RHomp, (M, Ox)) = H' (B(z; £2), RHomp, (M, Ox))
are finite dimensional by a standard result in functional analysis. O

By Proposition 4.2.1, 4.6.1 and 4.6.2 we obtain Kashiwara’s constructibility the-
orem:

Theorem 4.6.3. Let M be a holonomic D-module on a complex manifold X. Then
Solx (M) = RHomp, (M, Ox) and DRx (M) = Qx ®IL) M are objects in the
X

category Df (X).

For a holonomic Dx-module M we saw that Solx (M)[dx] and DRx (M) were
constructible sheaves on X. Next we will prove moreover that they are dual to each
other:

DRy (M) =Dy (Solx (M)[dx]),

where Dy : Df X)) = Df (X) is the Verdier duality functor. For this purpose, recall
that for a point z € X the complex RI';j(Ox)|; satisfies

H/(RI(;)(Ox)|;) ~ 0 for"j # dx

and that BE’;}I y=H dx (RT'(z}(Ox)|;) is an (FS) type (Fréchet-Schwartz type) topo-
logical vector space. Regarding B?SI x as the space of Sato’s hyperfunctions supported
by the point z € X, we see that the (DFS) type (dual F-S type) topological vector
space (Ox); is a topological dual of B?zo}l x- The following results were also obtained
in Kashiwara [Kas3].

Proposition 4.6.4. Let M be a holonomic Dx-module. Then

(i) For¥z € X and"i € Z, Extli (M, B?ZOHX) is a finite-dimensional vector space
over C.

(ii) For¥z € X and"i € Z, thevector spaces H™'(DRx (M).) andetiDX (M, B?;|X)
are dual to each other.
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(ii1) DRy (M) =Dy (Solx (M)[dx]).

Proof. (i) Since RHomp, (M, B?ZOHX) = RI'jyRHomp, (M, Ox)[dx]and the func-
tor RT"(;) (e) preserves the constructibility, the result follows.
(i1) Let us take a locally free resolution

X Py Ny XPi

O—>D — .- —> Dy DN°—>M—>O

of M on an open neighborhood of z € X, where P; isa N; x N;_1 matrix of differential
operators acting on the right of Dg‘] Then we get

DRx (M) = [0 — (Qx)Nk —_ .. X_P2> (Qx )Nl x Py (Qx )N() — 0]’
RHomp, (M, B?;IX)

P2X

No Pix N N,
0 Boo [N —>B{z}|X "—)O].

= [0 — B x B

Taking a local coordinate and identifying Q2x with Oy, we also have

Pi¥x P¥x
DRx(M); =[ - =5 (0N == (0x)M — 0],

where P is a formal adjoint of P;. Because (Ox), and B°° ) x are topological dual
to each other and both DRx (M), and RHom p, (M, B75 it X) ‘have finite-dimensional
cohomology groups, we obtain the duality isomorphism

[H™'(DRx (M).)]" ~ Ext’, (M, B x).
(iii) Since Cx >~ RHomp, (Ox, Ox), we have a natural morphism
DRx (M) = RHomp, (Ox, M)[dx]
N RHomc, (RHompy (M, Ox), RHomp, (Ox, Ox))ldx]
~ RHomc, (Solx (M)[dx], Cx)[2dx]
~ Dy (Solx (M)[dx]).
Our task is to prove DRy (M), >~ Dx (Solx(M)[dx]), for Yz € X. Indeed, by (ii),
we get the following chain of isomorphisms for i) : {z} < X:
Dy (Solx (M)ldx]). = i} Dx(Solx (M)[dx])
=~ Dipyi, (Solx (M)[dx])
~ [RHomp, (M, RT(;j(Ox)[dxD]"
~ [RHomp, (M, B3 )"
~ DRx(M),.

This completes the proof. O
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Corollary 4.6.5. Let M be a holonomic Dx-module and Dx M its dual. Then we
have isomorphisms

Dx (DRx(M)) >~ DRx(Dx M)
Dy (Solx (M)[dx]) ~ Solx (Dx M)[dx].

Proof. The results follow immediately from Proposition 4.6.4 and the formula
DRx(DxM) =~ Solx (M)[dx]. O

Theorem 4.6.6. Let X be a complex manifold and M a holonomic D-module on it.
Then Solx(M)ldx] = RHomp, (M, Ox)ldx] and DRx (M) = Qx ®lL) M are
X

perverse sheaves on X.

Proof. By DRx(M) =~ Solx(DxM)[dx], it is sufficient to prove that F' =
Solx (M)[dx]is a perverse sheaf for any holonomic Dy-module M. Moreover, since
we have Dx (Solx (M)[dx]) >~ Solx (Dx M)[dx] by Corollary 4.6.5, we have only to
prove that dim supp(H/ (F")) < —j for ¥j € Z. Let us take a Whitney stratification
X = |lyes X« of X such that Ch(M) C | | T;aX and setix, : Xo —> X for

a € A. Then by Proposition 4.6.1 the complex i JF " of sheaves on X, has locally

A

constant cohomology groups for Yo € A. For j € Zset Z = supp H/ (F"). Then Z is
aunion of connected components of strata X,’s. Weneedtoprovedim Z = dz < —j.
Choose a smooth point z of Z contained in a stratum X, such that dim X, = dim Z
and take a germ of complex submanifold Y of X at z which intersects with Z transver-
sallyatz € Z (dimY = dy = dx — dz). We can choose the pair (z, Y) so that Y is
non-characteristic for M, because for the Whitney stratification X = | |, 4 Xo we
have the estimate Ch(M) C |_|a cA T;aX . Therefore, by the Cauchy—Kowalevski—
Kashiwara theorem (Theorem 4.3.2), we obtain

F'ly = RHomp, (M, Ox)lyldx]
~ RHomDY(My,Oy)[dx].

Our assumption H/ (F"), # 0 implies Sxt‘l’;;dx (My, Oy); # 0. On the other hand,
by Theorem 4.1.2 and

RHomp, (My, Oy) =~ RHomp, (My, Dy) ®1L)Y Oy,
we have SxtiDy (My, Oy) = 0for Vi > dy. Hence we must have j + dy < dy <=
dz = dyxy — dy < —j. This completes the proof. O

Let M be a holonomic Dy-module as before. Then Kashiwara’s constructibility
theorem implies that for any point x € X the local Euler—Poincaré index

Xx[Solx (M)] := ) " (= 1) dim Ext}, (M, Ox),
i€Z

of Solx (M) at x is a finite number (an integer). An important problem is to express
this local Euler—Poincaré index in terms of geometric invariants of M. This problem
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was solved by Kashiwara [Kas8] and its solution has many applications in various
fields of mathematics.

Let us briefly explain this result. First take a Whitney stratification X = | |, .4 X«
of X such that Ch(M) C | |,c4 T;‘a X. Next denote by m, € Z=( the multiplicity of

the coherent O7+x-module grf M = Orsx @1 o7 py 7~ (grf M) along Ty X,
where F is a good filtration of M and 7 : T*X — X is the projection. Then the
characteristic cycle CC(M) of the (analytic) holonomic Dy-module M is defined by

CC(M) = " mqa[T, X].

acA

This is a Lagrangian cycle in 7*X. Finally, for an analytic subset S C X denote
by Eug : S — Z the Euler obstruction of S, which is introduced by Kashiwara
[Kas2], [Kas8] and MacPherson [Mac] independently. Recall that for any Whitney
stratification of S the Euler obstruction Eug is a locally constant function on each
stratum (and on the regular part of S, the value of Eug is one). Then we have

Theorem 4.6.7 (Kashiwara [Kas2], [Kas8]). For any x € X the local Euler—
Poincaré index xy[Solx(M)] of the solution complex Soly (M) at x is given by

KelSolx (M) = Y~ (=D me - Eug(x),

xeXq
where cy is the codimension of the stratum X, in X.

Kashiwara’s local index theorem for holonomic D-modules was a starting point
of intensive activities in the last decades. The global index theorem was obtained
by Dubson [Du] and its generalization to real constructible sheaves was proved by
Kashiwara [Kasl1] (see also Kashiwara—Schapira [KS2] for the details). As for
further developments of the theory of index theorems, see, for example, [BMM],
[Gi], [Gui], [SS], [SV], [Tk1]. Note also that Euler obstructions play a central role in
the study of characteristic classes of singular varieties (see [Mac], [Sabl1]).

4.7 Analytic D-modules associated to algebraic D-modules

Recall that for an algebraic variety X we denote by X" the corresponding analytic
space. We have a morphism ¢ = tx : X* — X of topological spaces, and a
morphism :~!Ox — Oy of sheaves of rings. In other words we have a morphism
(X*, Oxa) — (X, Oyx) of ringed spaces.

Assume that X is a smooth algebraic variety. Then X" is a complex manifold,
and we have a canonical morphism

lilDX — DXan

of sheaves of rings satisfying
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Dxan ~ Oxan ®1710X L_IDX ~ l_lDX ®1710X Oxan,
Hence we obtain a functor
()™ : Mod(Dyx) — Mod(Dyan)

sending M € Mod(Dx) to M*™ := Dxm ®,-1p, 1"'M € Mod(Dyan). Since D xan
is faithfully flat over (! Dy, this functor is exact and extends to a functor

(&)™ : DP(Dx) — D’(Dxm)
between derived categories. Note that (e)" induces
()" : Mod(Dx) — Mod.(Dxa),  (8)*" : D’(Dx) — D"(Dyn).

We will sometimes write (M")* = Dxa ®p, M by abuse of notation.
The following is easily verified.

Proposition 4.7.1. For M' € D’ (Dyx) we have (Dx M")™ > Dxan (M")3".

Proposition 4.7.2. Let f : X — Y be a morphism of smooth algebraic varieties.

(i) For M" € D?(Dy) we have (fTM)*™ ~ (fa)T (M2,
(ii) For M € DP(Dy) we have a canonical morphism (ff MH*" — ffa" (MHa,
This morphism is an isomorphism if ' is proper and M" € Df (Dx).

Proof. The proof of (i) is easy and omitted.
Let us show (ii). First note that there exists a canonical morphism

(fan)_lDyan ®(fan)7ll;lDy l;lDYeX — Dyanexan,
Indeed, it is obtained by applying the side-changing operation to
—1 -
[X DX—)Y ®(fan)_ll;lDy (fan) lDyan
= t)—(lox ®(fa")_ll;1(9y (£~ Dyan
>~ (L}lOX ®(fan)’lt;l(9y (fan)iloyan> ®(f‘1“)_](9yan (fan)ilDyan
—> Oxan ®(fa“)_](’)yan (fan)_lDyan

= Dyan_ yan

(note ty o f2 = f oty). Next note that there exists a canonical morphism
' REK — RFMGK

for any K* € D?(f~!Dy). Indeed, it is obtained as the image of Id for

Homl;(lf_lDY (L}lK', L}IK') ~ HoquDY(K', RLX*L;IK')
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— Homp, (RfiK ", RfsRixsty ' K*)

~ Homp, (Rf:K', Riy«Rf™'K")
—1 . 14

o~ Homt;1Dy(ty RfiK, Rf™% K).

Then we obtain
\an _ L )
([ M) =Dyn @1y, 17 REDy x @, M)
f Y
— Dym ®t;lDy Rffntgl(DY(_X ®éx M)

— Rf™ <(fa“)lDyan ®F ty' Dy —x ®-, LXIM)
Y ty Dx

— Rf™ <Dyan(_xan ®ﬁlDX L}—(IM.)
X

L L 1Ay
— Rf:m <Dyan(_xan ®Dxan DX'“‘“ ®L_1DX LX M)
X

- /an (M.)an'

It remains to show that ( f / MH*" — f fan (M )™ is an isomorphism if f is proper. We
may assume that f is either a closed embedding or a projection f : X = ¥ xP" — Y.
The case of a closed embedding is easy and omitted. Assume that f is a projection
f:X =Y xP"— Y. We may also assume that M = M € Mod.(Dx). In this
case we have

( /f M)" = Oya ®1, REDRx y(M)),

o M™ = Rf™(DRxm /yan (M),

and hence it is sufficient to show that
Oyan ® 100, Rf(DRxy (M)") = REM (DRygan yan (M)
for each k. Since DRy, y (M )K is a quasi-coherent Ox-module satisfying
Oxm ® 10, DRy /y (M)* =~ DRyan ) yan (M*™)¥,
this follows from the GAGA-principle. O

For a smooth algebraic variety X we define functors

DRy : D*(Dx) —> D?(Cxmn),
Soly : D?(Dx) —> D”(Cxm)°P
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by

DRy (M) := DRy (M)™) = Qyun @b (M)™,

Solx (M) := Solxa ((M")™) = RHom p g (M)*, Oxan).
Remark 4.7.3. It is not a good idea to consider Qx ®f)x M and RHomp, (Ox, M")
for a smooth algebraic variety X as the following example suggests. Regard X = C
as an algebraic variety, and set M = DX/DX(% —A) for A € C\ Z. Then we

easily see that DRy (M) =~ Cxan[1] and Solx (M) =~ Cyxa, while Qx ®5X M =

RHomp, (Ox, M)[1] = 0. This comes from the fact that the differential equation

Z—)’j = Xu has a holomorphic solution exp(Ax) € Oxan which does not belong to Oy.

By Proposition 4.2.1 and Proposition 4.7.1 we have the following.
Proposition 4.7.4. Let X be a smooth algebraic variety. For M™ € Df (Dx) we have
DRx (M) = RHomp,um (Oxan, (M)*™)[dx] =~ Solx (DxM)[dx].
By Theorem 4.2.5 and Proposition 4.7.2 we have the following.
Proposition 4.7.5. Let f : X — Y be a morphism of smooth algebraic varieties.
For M € Df(Dx) there exists a canonical morphism

DRy ( ff M) — Rf.(DRx(M)).

This morphism is an isomorphism if f is proper.
By Corollary 4.3.3 and Proposition 4.7.2 we have the following.

Proposition 4.7.6. Let [ : X — Y be a morphism of smooth algebraic varieties.
Assume that f is non-characteristic for a coherent Dy-module M. Then we have

DRy (Lf*M) =~ f~" DRy (M)[dx — dy].

The following is a special case of Kashiwara’s constructibility theorem for analytic
holonomic D-modules. Here we present another proof following Bernstein [Ber3]
for the convenience of readers who wants a shortcut for algebraic D-modules.

Theorem 4.7.7. For M* € D?(Dx) we have DRx(M"), Solx (M) € D2(X).

Proof. By Proposition 4.7.4 we have only to show the assertion on DRy (M ). More-
over, we may assume that M° = M € Mod,(Dyx). By Proposition 3.1.6 M is
generically an integrable connection, and hence DRy (M) is generically a local sys-
tem up to a shift of degrees. Hence there exists an open dense subset U of X such
that DRy (M|y) € Df(U ). Therefore, it is sufficient to show the following.

Claim. Let M € Mod;,(Dy), and assume that DRy (M|y) € Df(U) for an open
dense subset U of X. Then there exists an open dense subset Y of X \ U such that
DRyuy (M|yuy) € D2(U UY).
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For each irreducible component Z of X \ U there exists an étale morphism f from
an open subset V of X onto an open subset V' of A" such that V N (X \ U) (resp.
V'NA" k) is an open dense subset of Z (resp. A” K)yand =1 (V' NA" %) = vN(X\
U), where 0 < k < n and A" is identified with the subset {0} x A" % of A" (see
Theorem A.5.3). Since f is an étale morphism, DRy (M|y) € Df(V) if and only if
f«(DRy (M|y)) € Df(V’). Moreover, we have f.(DRy(M|y)) = DRV/(f})(Mh/))
by Proposition 4.7.5. Hence we may assume from the beginning that X is an open
subset of A", X\ U = XNA"* and XNA"¥isdensein A" %, Set T = X NA"*,
By shrinking X if necessary we may assume that X is an open subset of AK x T'.

Now we regard A as an open subset of PX. Set § = (PX x T') \ X. Then we have
PCx T =SuUUT,X=UUuUT,and S and T are closed subsets of P x T. Let
p : P x T — T be the projection and let jx : X — PK x T, jy : U — Pk x T,
Jjs S — Pk x T, jr T — Pk x T be the embeddings. Set N° = fjx M,
K™ = DRpi, 1 (N"). By applying Rp,(= Rp) to the distinguished triangle

R . . . . - .+l
juiy ' K — K —> jsijs 'K @ jrj; 'K
we obtain a distinguished triangle

. L . . . L . . L .+l
R(pojujy 'K — RpsK —> R(po js)js K ® R(po jr)j; K — .

By j;'K' =~ DRy(M|y) € D2(U) we have R(p o ju)j;'K' € DX(T). By
Proposition 4.7.5 we have

Rp+K = RpyDRpi . (N') ~ DRT(/ N.
14

By fp N € DIIZ(DT) there exists an open dense subset Y of 7 such that Rp, K |ya €

Df (Y). It follows from the above distinguished triangle that R(p o j7)1j; 'k [yan €
D(Y). By po jr = id we have R(p o jr)ij; 'K =~ i~' DRx(M), where
i : T — X is the embedding. Thus i_lDRx(M)|yan € Df(Y). Hence we have
DRyuy(M|yuy) € Df(U U Y). The proof is complete. m|

The technique used in the proof of Theorem 4.7.7 also allows us to prove the
following results.

Proposition 4.7.8. Let X and Y be smooth algebraic varieties. For M™ € Df(DX)
and N € Df(Dy) we have a canonical morphism

DRx (M) Xc DRy(N') = DRx«xy(M XK N°).
This morphism is an isomorphism if M € Df(DX) or N € Dﬁ(Dy).

Proposition 4.7.9. Let X be a smooth algebraic variety. For M™ € Df (Dx) we have
canonical morphisms
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DRx(DxM') — Dx(DRx(M")),
Soly(Mx M )[dx] — Dx(Solx(M")[dx]).

These morphisms are isomorphisms if M' € Dﬁ (Dx).
Proof of Proposition 4.7.8. Let M" € D?(Dx) and N € D?(Dyx). By
(M RN)™ = Dyanxym @ o 51.p, . (M) He (N)™)
we have
DRxxy(M B N') = Qyunyym ®F @ p . (M) R (N)™).
On the other hand we have

DRy (M) K¢ DRy (N') =~ (Qxu ®F ,, (M)™) Kg (Qya ®F ,, (N)™)
=~ (Qxun M Qyan) ®F L 51.pye (MM B (N)™).

Hence the canonical morphism Qyan K¢ Qyan — Qxan,yan induces a canonical
morphism
DRx(M.) &C DRy(N') — DRny(M' X N)
Let us show that this morphism is an isomorphism if either M~ € D,’Z(D x) or
N € Dz(Dy). By symmetry we can only deal with the case M~ € DZ(DX).
We first show it when M is an integrable connection. In this case we have

(M)* =~ Oxan @, K for alocal system K on X" and we have DRx(M") =~
K[dx]. Then we have

(M RN = p 'K O,y (Ox BN = p 'K @ an,yn (P3N
where p; : X x Y — X and pr : X x Y — Y are projections. Hence we have

DRxxy(M B N') 2 p; ' K ®Cyan .y DRxxy (P3N

~ pr 'K ®Cyun, yn Py DRy (N')dx]
>~ DRx (M) Xc DRy (N")

by Proposition 4.7.6.

Finally, we consider the general case. We may assume that M° = M €
Mod;, (Dyx). Since M is generically an integrable connection, there exists an open
subset U of X such that the canonical morphism

DRy (M|y) B DRy (N') — DRyxy((M|y) K N)

is an isomorphism. Therefore, it is sufficient to show the following.
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Claim. Assume that the canonical morphism
DRy (M|y) ®c DRy (N') — DRy xy ((M|y) X N')

is an isomorphism for an open dense subset U of X. Then there exists an open dense
subset Z of X \ U such that

DRyuz(Mlyuz) ¥e DRy (N') — DRwuz)yxy (Mlyuz) X N')
is an isomorphism.

This can be proved similarly to the claim in Theorem 4.7.7. The details are
omitted. O

Proof of Proposition 4.7.9. By Proposition 4.7.4 it is sufficient to show that there
exists a canonical morphism

Solx (M) — Dx(DRx(M"))[—dx] (M€ D(Dx)),

which turns out to be an isomorphism for M € Dﬁ (Dx).
Let M € Df (Dx). Then we have a canonical morphism
RHomDXan (OXa" > (M.)an) ®(Cxan RHomDXan ((M.)anv OXa")
— R?‘(OWZDXZm (Oxan S Oxan ).

By
RHomp . (Oxan, (M)™) ~ DRx (M)[—dx],
RHomDXau ((M.)ana OXa“) =~ Solx (M),
]e?’[OWZDX;m (Oxan, Oxan) >~ Cxan’
we obtain

DRx (M) ®Cyan Solx (M) — Cxan[dx].

Hence there exists a canonical morphism
Solx (M) — RHomc yum (DRx (M), Cxan[dx]) (= Dx (DRx (M"))[—dx]).

Let us show that this morphism is an isomorphism for M* € Dz(DX). We
may assume that M° = M € Mod,(Dyx). If M is an integrable connection, then
we have M*" =~ Oxmn ®c,., K for a local system K on X*', and Solx (M) =~
Hom(cxan (K,Cxan), DRx(M) ~ KJ[dx]. Hence the assertion is obvious in this
case. Let us consider the general case M € Mod,(Dx). Since M is generically an
integrable connection, there exists an open subset U of X such that the canonical
morphism

Soly (M'|y) — Dy (DRy (M'|y))[—dx]

is an isomorphism. Therefore, it is sufficient to show the following.
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Claim. Assume that the canonical morphism
Soly (M'|y) — Dy (DRy(M'|y))[—dx]

is an isomorphism for an open dense subset U of X. Then there exists an open dense
subset Y of X \ U such that

Solyuy (M |yuy) — Dyuy (DRyuy (M |yuy))[—dx]

is an isomorphism.

This can be proved similarly to the claim in Theorem 4.7.7. Details are omitted.
O



5

Theory of Meromorphic Connections

In this chapter we present several important results on meromorphic connections such
as the Riemann-Hilbert correspondence for regular meromorphic connections due to
Deligne. In subsequent chapters these results will be effectively used to establish
various properties of regular holonomic systems.

5.1 Meromorphic connections in the one-dimensional case

5.1.1 Systems of ODEs and meromorphic connections

We start from the classical theory of ordinary differential equations (we call them
ODE;s for short). We always consider the problem in an open neighborhood of
x = 0 € C. Here the complex plane C is considered as a complex manifold and we
use only the classical topology in this subsection and the next. Set O = (O¢)o and
denote by K its quotient field. Then K is the field of meromorphic functions with
possible poles at x = 0. Note that O and K are identified with the ring of convergent
power series C{{x}} at x = 0 and its quotient field C{{x}}[x '], respectively.
For a matrix A(x) = (a;;(x)) € M, (K) let us consider the system of ODEs

22 = A7 (o), (5.1.1)
dx

where ;t)(x) ="(u1(x), u2(x), ..., u,(x)) is a column vector of unknown functions.
Setting 7(x) = T_I;(x) for an invertible matrix T = T (x) € GL,(K) (5.1.1) is
rewritten as

4T = (T—IAT — T—liT)U(x)
dx dx ’

Therefore, we say that two systems

d — —
o (x) = Ax)u(x) (A(x) € M, (K))
X
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and 4
Eﬁm =Bx)v(x)  (B(x) € M,(K))

are equivalent if there exists T € GL,(K) such that B = T—'AT — 17! %T.

As solutions to (5.1.1) we consider holomorphic (but possibly multivalued) solu-
tions on a punctured disk B} = {x € C | 0 < |x| < &}, where ¢ is a sufficiently small
positive number. Namely, let K denote the ring consisting of possibly multivalued
holomorphic functions defined on a punctured disk B} for a sufficiently small ¢ > 0.
Then we say that Zt)(x) = "u1(x), uz(x), ..., u,(x)) is a solution to (5.1.1) if it
belongs to K™ and satisfies (5.1.1).

Let us now reformulate these classical notions by the modern language of mero-
morphic connections.

Definition 5.1.1.
(i) Let M be a finite-dimensional vector space M over K endowed with a C-linear
map V : M — M. Then M (or more precisely the pair (M, V)) is called a
meromorphic connection (at x = 0) if it satisfies the condition

V(fu) = ﬁu +fVu (feK, ueM). (5.1.2)

(i1) Let (M, V) and (N, V) be meromorphic connections. A K-linear map ¢ : M —
N is called a morphism of meromorphic connections if it satisfies p o V = Vo ¢.
In this case we write ¢ : (M, V) — (N, V).

Remark 5.1.2. The condition (5.1.2) can be replaced with the weaker one

V(fu) = ﬁu +fVu (feO, ueM). (5.1.3)

Indeed, if the condition (5.1.3) holds, then for f € O\ {0}, g € O, u € M, we have

Vigu) = V(ff'gu) = f f gu+ V(£ qu)

and hence

V(f ey =—fflgu+ f'Vgw) = (—fflg+ T ghu+ fgVu
= u+ fgvu

Meromorphic connections naturally form an abelian category. Note that for a
meromorphic connection (M, V) the vector space M is a left (D¢)o-module by the

action %u = Vu (u € M). Note also that V is uniquely extended to an element of

Endc(K ® M) satisfying

V(fu) = ﬁwrfw (feK,ueM),

and K ®x M is also a left (D¢)o-module. We say that u € K ®x M is a horizontal
section of (M, V) if it satisfies Vu = 0.



5.1 Meromorphic connections in the one-dimensional case 129

Let (M, V) be a meromorphic connection and choose a K -basis {¢;}1<;j<, of M.
Then the matrix A(x) = (a;;(x)) € M, (K) defined by

Ve = —Zaij(x)e,- (5.1.4)

is called the connection matrix of (M, V) with respect to the basis {e¢; }1<i<,. In terms
of this basis the action of V is described by

v (Z) _ ;(‘”" Zauu/)

Hence the condition Vu = 0 foru = Y|, uje; € K @k M is equivalent to the
equation

ifi(x) = A(x) 4 (x) (5.1.5)
dx

for ;(x) = T(u(x), ..., up(x)) € K". We have seen that to each meromorphic
connection (M, V) endowed with a K -basis {e; }1<;<, of M we can associate a system
(5.1.5) of ODE:s and that the horizontal sections of (M, V) correspond to solutions of
(5.1.5). Conversely, to any A = (a;;(x)) € M, (K) we can associate a meromorphic
connection (M4, V4) given by

n n
MA:@Kei, Vej:—Zaij(x)ei.
i=1 i=1

Under this correspondence we easily see the following.

Lemma 5.1.3. Two systems of ODEs
d — -
o ) =A1x)ux)  (Ai1(x) € My(K))

and i
me) =A@VE)  (Ayx) € My(K))

are equivalent if and only if the associated meromorphic connections (M, Va,)
and (M a,, V a,) are isomorphic.

Let (M1, V1), (M3, V,) be meromorphic connections. Then M| ®x M> and
Homg (M1, M3) are endowed with structures of meromorphic connections by

V(g @ uz) = Viuy Qup +uy @ Voup
(Vo) (u1) = Va(p(ur)) — ¢ (Viuy)

(¢ € Homg (M1, M3), u; € M;).
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Note that the one-dimensional K-module K is naturally endowed with a struc-
ture of a meromorphic connection by V f = %. In particular, for a meromorphic
connection (M, V), the dual space M* = Homg (M, K) is endowed with a structure
of meromorphic connection by

d
(Vo,u) = E(fﬁ,u) — (., Vu) (peM* ueM).

If A = (a;j(x)) € M,(K) is the connection matrix of M with respect to a K -basis
{e1, ez, ..., ey} of M, then the connection matrix A* of M* with respect to the dual
basis {ef, €5, ..., e;} is givenby A* = " A.

5.1.2 Meromorphic connections with regular singularities
For an open interval (a, b) C R and € > 0 we set
S(ga,b) ={x]0 < |x| <e¢, arg(x) € (a, b)}.

It is a subset of (the universal covering of) C \ {0} called an open angular sector. We
say that a function f € K is said to have moderate growth (or to be in the Nilsson
class) at x = 0 if it satisfies the following condition:

For any open interval (a, b) C R and € > 0 such that f is defined on S¢,
there exist C > 0 and N > O such that | f(x)| < C IxI_N for¥x € S(ga,h).
We denote K™ the set of f € K which have moderate growth at x = 0. Note
that in the case where f is single-valued f has moderate growth if and only if it is
meromorphic.

Let us consider a system of ODEs:

L3 = AT @) (5.1.6)
dx

for A(x) = (a;j(x)) € M, (K). Itis well known in the theory of linear ODEs that the
set of solutions u e K" to (5.1.6) forms a vector space of dimension n over C. Let
us take n linearly independent solutions u 1(x), ;z(x), R 7,, (x) to this equation.

Then the matrix S(x) = (1_4)1 (x), Zz(x), e, 7,, (x)) is called a fundamental solution
matrix of (5.1.6). Since the analytic continuation of S(x) along a circle around
x = 0 € C is again a solution matrix of (5.1.6), there exists an invertible matrix
G € GL,(C) such that

lim SeV~"x) = S(x)G.

t—2m

The matrix G is called the monodromy matrix of the equation (5.1.6). Let us
take a matrix I' € M,(C) such that exp(Zn\/—_IF) = G and set T(x) =
S(x)exp(—I"log(x)). Then we can easily check that the entries of 7 (x) are single-
valued functions. Thus we obtained a decomposition S(x) = T (x) exp(I" log(x)) of
S(x), in which the last part exp(I" log(x)) has the same monodromy as that of S(x).

The following well-known fact is fundamental. We present its proof for the sake
of the reader’s convenience.
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Theorem 5.1.4. The following three conditions on the system (5.1.6) are equivalent:

(1) The system (5.1.6) is equivalent to the system

4T = F(x)?(x)
dx

Sfor some ' (x) € M,,(O).
(1) The system (5.1.6) is equivalent to the system

for some T € M,,(C). 5 5
(iii) All solutions to (5.1.6) in K" belong to (K™°9)".

Proof. First, let us prove the part (iii) = (ii). Since the entries of a fundamental solu-
tion matrix S(x) = T (x) exp(I' log(x)) and exp(—1I"log(x)) have moderate growth
at x = 0, the product matrix S(x)exp(—I"log(x)) = T (x) has the same property.
Therefore, the entries of 7' (x) must be meromorphic functions, i.e., 7 (x) € GL,(K).
If we set v(x) = 7! (x)u(x), then we can easily verify that the system (5.1.6) is
equivalent to

=T
—v(x)=—v ).
dx X
The part (ii) = (i) is trivial. Finally, let us prove (i) = (iii). We prove that a
holomorphic solution ;)(X) ="(v1(x), v2(x), ..., v,(x)) to the system
d - F( ) —
i (x) = v(x) (T'(x) e M,(0))

has moderate growth at x = 0. Setx = ret? e Cx (r = 0,60 € R). Then there exists
C > 0 such that we have

C, -
)| =~lvl]
p

' ‘dv,'
—; (re —

— —
foreach i = 1,2,...,n. Here for a = "(ay,as,...,a,) € C we set ||a| =

Z;’:I |a,~|2. Let ro > 0 be a fixed positive real number. For 0 <Y r < rypand
Y9 € R we have

=8y T, i 09 gy
v (rge'”) — v(re'”) = a—v(se )ds,
s

r

and hence

"
||7(re"9)|| < H?(roeie)” + H/ ' i7(sei6)ds
, 0S
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n

N . ro
< [Fmen ]+ | 3( [

i=1

iv~(se"9)
ds

2
ds)

— : nC - :
= [V troe™) | + v/ f <o e ds.
r
Therefore, by Gronwall’s inequality there exists C1, C» > 0 and N >> 0 such that
. JnC
[Tee™) <ci(2) <ol
r

which implies that v; (x) (i = 1,2, ..., n) have moderate growth at x = 0. O

On a neighborhood of x = 0 in C consider an ordinary differential equation

P(x, )u=0 (P(x, =Y ax), o= di) :
X
i=0

where a; (x) is holomorphic on a neighborhood of x = 0 (& a; € O) and a, (x) is
not identically zero (i.e., the order of P(x, d) is n). We can rewrite P in the form

P(x,d) =) bi(x)0", bi(x) € K
i=0

with b, (x) # 0, where 8 = xd. Recall the following classical result.

Theorem 5.1.5 (Fuchs, 1866). For P as above the following conditions are equiv-
alent:

(1) All solutions to the ODE
P(x,)u=20 (5.1.7)
belong to K™°9,
(i1) We have ordy—o(a;/a,) = —(n — i) for 0 < Vi < n, where ord,—q denotes the
order of zeros at x = Q.
(iii) b; /by, are holomorphic for 0 < Vi < n.

This fact will not be used in the rest of this book. Here we only show (iii) = (i)
by using Theorem 5.1.4 (The equivalence of (ii) and (iii) is easy. For the proof of
(i) = (iii), see, e.g., [Bor3, Chapter III]). We associate to (5.1.7) a system of ODEs

d - 1 N
—u(x)=-T'kx)u(x), (5.1.8)
dx X
for
0 1 0
0 O 1 0
rey=| ... ... ... .| eMuK).

o 0 0 - 1

_bo _bi by _bua

by by by bn
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Then u is a solution to (5.1.7) if and only if u = ", Ou,0%u,...,0" 'u) is a
solution to (5.1.8). Since b; /b, are holomorphic, we see by Theorem 5.1.4 that any
solution u to (5.1.7) belongs to K mod The proof of (iii) = (i) is complete.

Definition 5.1.6. We say that a meromorphic connection (M, V) at x = 0 is regular
if there exists a finitely generated O-submodule L C M which is stable by the action
of & = xV (i.e.,, 0L C L) and generates M over K. We call such an O-submodule L
an O-lattice of (M, V).

Lemma 5.1.7. Let (M, V) be a regular meromorphic connection. Then any O-lattice
L of (M, V) is a free O-module of rank dimg M.

Proof. Since L is a torsion free finitely generated module over the principal ideal
domain O, it is free of finite-rank. Hence it is sufficient to show that the canonical
homomorphism K ® o L — M is an isomorphism. The surjectivity is clear. To show
the injectivity take a free basis {e¢;}1<;j<, of L. It is sufficient to show that {e;}1<;<x
is linearly independent over K. Assume ) ;_, fie; = 0 for f; € K. For N > 0 we
have a; := xNﬁ € Oforanyi = 1,...,n. Then from Z;’:l a;e; = 0 we obtain
a; = 0, and hence f; = 0. O

By this lemma we easily see that a meromorphic connection (M, V) is regular if
and only if there exists a K-basis {€;}1<;<, of M such that the associated system of
ODE:s is of the form

r N
W =% 0 ) e MaO)).

In particular, we have the following by Theorem 5.1.4.

Proposition 5.1.8. A meromorphic connection (M, V) is regular if and only if all of
its horizontal sections belong to K™ @x M.

Proposition 5.1.9. For a meromorphic connection (M, V) at x = 0, the following
three conditions are equivalent:

(i) (M, V) is regular.

(ii) For any u € M there exists a finitely generated O-submodule L of M such
thatu € L and OL C L, i.e., M is a union of 0-stable finitely generated O-
submodules.

(iii) For any u € M there exists a polynomial

F()y=t"+at" "+ +a, € O]
such that F(0)u = 0.

Proof. (i) = (ii): Let L C M be an O-lattice of (M, V). Then M = |Jy-ox VL
and each x "V L is a #-stable finitely generated O-submodule of M.

(i) = (i): Take a K-basis ey, e2, ..., e, of M and choose a family of 9-stable
finitely generated O-submodules L; of M such that ¢; € L;. Then the sum L =
Yo'y Li C M isan O-lattice of (M, V).
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(ii) = (iii): Take a @-stable finitely generated O-submodule L C M such that
u € L, and set .
Li=0u+00u+--+00 'y

Then Ly C Ly C --- is an increasing sequence of O-submodules of L. Since L
is noetherian over O, there exists m >> 0 such that ( J;-; L; = Ly. The condition
Ly,+1 = Ly, implies that

m—1
0"y = — Z am—i0'u
i=0

for some a; € O.
(iii) = (ii): It is easily seen that

L=0u+00u+---+00"'ucM
satisfies the desired property. O
Proposition 5.1.10. Let
0— (M1, Vi) — (M2, V2) — (M3, V3) — 0

be an exact sequence of meromorphic connections. Then (M»>, V) is regular if and
only if (M1, V1) and (M3, V3) are regular.

Proof. By the condition (iii) of Proposition 5.1.9 (M1, V) and (M3, V3) are regular
if (M3, V3) is regular. Let us prove the converse. For u € M there exist m > 0 and
a; € O (1 <i <m) such that

O™ +a10™ -+ ay)u € M

by the regularity of (M3, V3). Also by the regularity of (M1, V1) there exist m’ > 0
andb; € O (1 < j <m') such that

@™ + 510" 4 b + a0+ ay)u = 0.
We can rewrite
(01’)1’ +b19m/_l + . +bm/)(0m +a]6m_1 + L. +am)

in the form
! !
9m+m +Cl€m+m —1 +"'+Cm+m’

where ¢; € O. Hence (M3, V,) is regular. O

The following result can be easily checked by examining the connection matrices.

Proposition 5.1.11. Assume that M and N are regular meromorphic connections.
Then Homg (M, N) and M Q@ N are also regular meromorphic connections.
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5.1.3 Regularity of D-modules on algebraic curves

We also have the notion of meromorphic connections in the algebraic category. In
the algebraic situation the ring O = C{{x}} is replaced by the stalk Oc,, where C
is a smooth algebraic curve and p is a point of C. We denote by K¢, the quotient
field of Oc . Note that Oc,, is a discrete valuation ring and hence a principal ideal
domain.

Definition 5.1.12. Let C, p be as above.

(i) Let M be a finite-dimensional K¢ ,-module andletV : M — Q}:’p ®0,, M(=

(Kc,p ®oc,, Qlc’[,) ®kc,, M) be a C-linear map. The pair (M, V) is called an
algebraic meromorphic connection at p € C if

V(fu)=df Qu+ fVu (f € Kc.p, u € M).

(i) By a morphism ¢ : (M, V) — (N, V) of algebraic meromorphic connections at
p € C wemean a K¢ p-linear map ¢ : M — N satisfying Vog = (id®@¢)o V.

Algebraic meromorphic connections at p € C naturally form an abelian category.
Choose a local parameter x € Oc p, at p and set 9 = %. Then we have K¢, =
Oc,plx™"1. Identifying ¢, , with Oc,, by Oc p 3 f <> fdx € Q¢ , an algebraic
meromorphic connection at p € C is a finite-dimensional K¢ ,-module endowed
with a C-linear map V : M — M satisfying

df
V(fu)=—ut [Vu (f €Kcp. ueM)

Definition 5.1.13. An algebraic meromorphic connection (M, V) at p € C is called
regular if there exists a finitely generated Oc_,-submodule L of M such that M =
Kc,pL and xV(L) C Ql c.p ®0oc, L for some (and hence any) local parameter x at
p. We call such an O, p-submodule L an Oc p-lattice of (M, V).

Algebraic meromorphic connections share some basic properties with analytic
ones discussed in Section 5.1.1. For example, Proposition 5.1.7, 5.1.9 and 5.1.10
remain valid also in the algebraic category.

Lemma 5.1.14. Let (M, V) be an algebraic meromorphic connection at p € C.
Choose alocal parameter x at p, and denote by (M™, V) the corresponding (analytic)
meromorphic connection at x = 0, i.e., M™ = C{{x}}[x~"] Q®kc, M. Then (M, V)
is regular if and only if (M, V) is as well.

Proof. We identify SZ C.p with Oc,, via the local parameter x.
Assume that (M, V) isregular. Take an O¢ p-lattice L of (M, V). Then we easily
see that Cf{x} ® ., L is an C{x }}-lattice of (M*, V). Hence (M®", V) is regular.
Assume that (M, V) is regular. Let us take a finitely generated Oc_ ,-submodule
Lo of M which generates M over K¢ ,. By Proposition 5.1.9 any finitely generated
C{x}}-submodule of M?" is contained in a 6-stable finitely generated C{{x }}-module.
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Therefore, Lo and hence L = Oc, ,[0]Lo must be contained in a 6-stable finitely
generated C{{x}}-module. Then L* = C{{x}} ® L is also finitely generated over
C{{x}}. Since C{{x}} is faithfully flat over Oc, this implies the finiteness of L over
Oc,p. Hence (M, V) is regular. O

Let us globalize the above definition of regularity. Let M be an integrable con-
nection on an algebraic curve C. Take a smooth completion C of C and denote by
j : C = C the open embedding. Note that C is unique up to isomorphisms because
C is a curve. Let us consider the Ds-module j, M = fj M (note that H' (fj M)=0
for i # 0 since j is affine open embedding). Since M is locally free over O¢, it
is free on a non-trivial (Zariski) open subset U = C \ V of C, where V consists of
finitely many points. Hence j,. M levw is also free over j,.Oc¢ leyy- In particular j, M
is locally free over j,Oc¢ (of finite rank). Let p € C \ C. Then the stalk (j, M) »
is a free module over Kf,p = (jxOc)p. Since (j.M), isa l%cyp-module, it is nat-
urally endowed with a structure of an algebraic meromorphic connection at p € C
by V(m) = dx ® dm, where x is a local parameter at p and 9 = %. We call this
Dg-module jx M the algebraic meromorphic extension of M.

Definition 5.1.15. Let M be an integrable connection on a smooth algebraic curve C.
For a boundary point p € C \ C we say that M has regular singularity at p (or p is a
regular singular point of M) if the algebraic meromorphic connection ((jsM) p, V) is
regular. Moreover, an integrable connection M on C is called regular if it has regular
singularity at any boundary point p € C \ C.

The following is easily checked.

Lemma 5.1.16. Let M be an integrable connection on C. Then for any open subset
U of C the restriction M|y has regular singularity at any point of C \ U.

By Proposition 5.1.10 and Lemma 5.1.14 we easily see the following.

Lemma 5.1.17. Let
0—>M1—>M2—>M3—>0

be an exact sequence of integrable connections on C. Then M3 is regular if and only
if My and M3 are regular.

Lemma 5.1.18. Let M and N be regular integrable connections on C. Then the
integrable connections M @ . N and Homo. (M, N) are also regular.

Proof. For p € C\ C we have (ju«(M @0, N))p =~ (jxM), ®kc, (jxN), and
(jxHomo.(M, N)), =~ Homg, ,((j«M)p, (j«N)p). Hence the assertion follows
from Proposition 5.1.11 and Lemma 5.1.14. O

Lemma 5.1.19. Let V be a subset of C \ C and set C' = C U V. We denote by
J 1 C — C' the embedding. For each point p € V we fix a local parameter x,, and
setf, = x p%. Then the following three conditions on an integrable connection M
on C are equivalent:
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(i) M has regular singularity at any p € V.
(i) j«M is a union of coherent O¢r-submodules which are stable under the action
of 0y forany p € V.
(iii) There exists a coherent D¢r-module M’ such that M’ |c>~ M and M’ is a union of
coherent O¢r-submodules which are stable under the action of 0, forany p € V.

Proof. (i) = (ii): For p € V take an O¢ ,-lattice L, of ((jxM),, V). Then x;in
isalsoan O¢ ,-lattice of ((jxM)p, V), and we have (jx M), = |, x;’ L ,. Note that
there exists an open subset U, of C U {p} containing p such that x;l L, is extended
to a coherent Oy, -submodule Li,, of jxM|y, satisfying L’p|Ume = M|y,nc- L’p for
p € V are patched together and we obtain a coherent O¢/-submodule L' of j, M.
Then L' is stable under the action of 6, for any p € V, and we have j,M = |J; L'.

(i1) = (iii): This is obvious.

(iii) = (i): For M’ as in (iii) we have (jxsM), = K¢’ ®0, M;, forp e V.
Therefore, Proposition 5.1.9 implies that M has regular singularity at p. O

Lemma 5.1.20. A coherent Dc-module M is holonomic if and only if it is generically
an integrable connection.

Proof. The “only if” part follows from Proposition 3.1.6. Assume that M is gener-
ically an integrable connection, i.e., there exists an open dense subset U of C such
that M|y is an integrable connection. Note that V := C \ U consists of finitely many
points. We see from our assumption that the characteristic variety Ch(M) of M in
contained in 73C U (UpEV(T*C)P)' By dim 73C = dim(T*C), = 1 we have
dim Ch(M) < 1, and hence M is holonomic. O

Definition 5.1.21. A holonomic D-module M on an algebraic curve C is said to be
regular if there exists an open dense subset Cop of C such that M|c, is a regular
integrable connection on Cy. An object M" of DZ(DC) is said to be regular if all of
the cohomology sheaves H*(M") are regular.

By definition a holonomic D¢-module supported on a finite set is regular.

Example 5.1.22. Consider an algebraic ODE P(x, d)u = 0 on A' = C. Then the
holonomic D¢-module M := Dcu = D¢ /D¢ P(x, d) is regular if and only if the
ODE P (x, d) u = 0 has a regular singular point (in the classical sense) at any point
in P! = C U {00} (i.e., P(x, d) u = 0 is a Fuchsian ODE).

The following lemma plays a crucial role in defining the regularity of holonomic
D-modules on higher-dimensional varieties.

Lemma 5.1.23. Let f : C — C’ be a dominant morphism (i.e., Im f is dense in
C’) between algebraic curves.

(i) M € Mody,(D¢) is regular <= f™M is regular.
(i) N € Mody(Dc) is regular <— ff N is regular.
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Proof. We may assume that C = C and C’ = C’. We can take an open subset C)
of C' such that fy : Cp := f _IC(/) — C|, is étale and M |C6 and N|c, are integrable
connections. For p € C\ Cy (resp. p’ € C"\ C) we take a local parameter x, (resp.
yp) at p (resp. p’) and set 6, = xp% (resp. 0, = yp/(%p/). If p) = f(p) for
p € C\ Co, we may assume 6, = m 0, for a positive integer m . Indeed, we can
take local parameters x, and y, so that y,» = x,rf” . We denote by j : Co — C and
j': €, = C’ the embeddings.

(i) We may assume that M = j;(M|C6). Note that Lf*M|c, = f; (M|C()) and
fo M |C6) is an integrable connection. Hence M (resp. f M) is regular if and only if
(M, V) (resp. ((js fo' (M |Cé)) p» V)) is aregular algebraic meromorphic connection
forany p’ € C"\ C{, (resp. p € C \ Co). Suppose p € C\ Co, p' = f(p). Then we
have O¢’ ,y C Oc, . Note

Usfo M) p = Kep ®0c, (f*M)p = Ke.p ®0., ,, My
= (KC,p ®Ocr’pr KC’,p/) ®KC’,[7’ Mp’ = KC,p ®KC/1P/ Mp"

Therefore, if M, has a 0,/-stable O¢ ,r-lattice L, then Oc ) ®(9c,’p, Lisa0,-
stable Oc_ ,-lattice of K¢ , ® Ker M . This shows (=). Conversely, suppose
Kcp ® Ker M, is a regular algebraic meromorphic connection at p. Then by
Proposition 5.1.9, we have K¢ p ®KC,_1), M, = Ui L;, where L; is a 6)-stable
finitely generated O, ,-module. Since O, is finitely generated over O¢ v, L} :=
LiN(1®@M ) isfinitely generated over O¢-, ,r. Moreover, by the relation 6, = m ,0,/,
we see L;. is 0,y-stable. Hence it follows from Lemma 5.1.9 that My = 1 ® My is
also regular. The proof of (<) is also complete.

(i1)) We have ff N|C(r) >~ fox(Nlc,) and fo«(N|c,) is an integrable connection.
Moreover, N (resp. f - N) is regular if and only if j.(N|c,) (resp. j. fox(Nlc,)) is
a union of coherent (’)fc (resp. O¢r)-modules which are stable under the action of 6,
(resp. 6,) for any p € C \ Co (resp. p’ € C"\ C()). Note that j; fo.(N|c,) =~
SeJx(Nlcy). If jo(N|c,) is a union of coherent Oc-modules L; which are stable
under the action of ), for any p € C \ Cy, then f; j.(N|c,) is a union of coherent
O¢r-modules f,L; which are stable under the action of 6,/ for any p’ € C’\ C.
This shows (=). Assume that [ ¢ N is regular. Then Lf* s ¢ N is also regular by

(i). The restriction of the canonical morphism N — Lf* [ 7 N to Cy is given by

Nlc, = f* f«(Nlc,) and hence a monomorphism. This implies the regularity of N.
The proof of (<) is also complete. O

Let us give comments on the difference of the notion of regularity in algebraic
and analytic situations. Let C be a one-dimensional complex manifold and let V be a
finite subset of C. We denote by j : U := C \ V — C the embedding. Let M be an
integrable connection on U. We say that a coherent Dc-module Misa meromorphic
extension of M if M|y ~ M and M is isomorphic as an O¢-module to a locally
free O¢c[V]-module, where O¢[V] denotes the sheaf of meromorphic functions on C
with possible poles on V. The following example shows that in the analytic situation
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a meromorphic extension of an integrable connection is not uniquely determined and
one cannot define the notion of the regularity of an integrable connection at a boundary
point unless its meromorphic extension is specified. Nevertheless, as we see later the
uniqueness of a regular meromorphic extension in the analytic situation holds true as
a part of the Riemann—Hilbert correspondence.

Example 5.1.24. We regard C = C as an algebraic curve, and let j : U =
C\ {0} — C be the embedding. Let us consider two (algebraic) integrable connec-
tions M = Dy /Dyd and N = DU/DU(x28 — 1) on U. We have an isomorphism
M*™ ~ N given by

M™ 5 [P mod Dymd] <—> [Pexp(l/x) mod Dyan (x%9 — 1)] € N™.

We consider meromorphic extensions (j,.M)*" and (j,N)*" of M*" and N", respec-
tively. Let us show that they are not isomorphic. Note that M is regular since it
is isomorphic to Oy as a Dy-module. Hence (j.M)y" is a regular meromorphic
connection. Therefore, it is sufficient to show that (j.N )8“ is not regular as a mero-
morphic connection. This can be easily shown by checking that its horizontal sections
do not have moderate growth. We have verified (j, M) 2 (j.N)*". We have also
shown that M is regular, while N is not regular.

5.2 Regular meromorphic connections on complex manifolds

The aim of this section is to give a proof of the Riemann—Hilbert correspondence for
regular meromorphic connections on complex manifolds due to Deligne [Del]. We
basically follow Malgrange’s lecture in [Bor3].

5.2.1 Meromorphic connections in higher dimensions

Let X be a complex manifold and D C X a divisor (complex hypersurface). We
denote by Ox[D] the sheaf of meromorphic functions on X that are holomorphic on
Y := X \ D and have poles along D. For a local defining equation 4 € Oy of D we
have Ox[D] = Ox[h~ '] ~ Ox[t]/Ox[t1(th — 1) locally, and hence it is a coherent
sheaf of rings.

Definition 5.2.1.
(i) Assume that a coherent Ox [ D]-module M is endowed with a C-linear morphism

ViM— Qy®0, M
satisfying the conditions

V(fs)=df ® s+ fVs  (f € Ox[D], s € M), (5.2.1)
[Vg, Vg/] = V[(.),g/] (9, 9/ S ®X) (522)

Then we call M (or more precisely the pair (M, V)) a meromorphic connection
along the divisor D.
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(i) By a morphism ¢ : (M, V) — (N, V) of meromorphic connections along D we
mean an Ox|[D]-linear morphism ¢ : M — N satisfying Vog = (id ® ¢) o V.
(iii) For a meromorphic connection (M, V) along D, we set

MY ={seM|Vs=0)}.
Sections of MY are called horizontal sections of (M, V).

Notation 5.2.2. We denote by Conn(X; D) the category of meromorphic connections
along D.

Note that Conn(X; D) is an abelian category. Note also that an object of
Conn(X; D) is a Dx-module which is isomorphic as an Ox-module to a coherent
Ox[D]-module, and a morphism (M, V) — (N, V) is just a morphism of the cor-
responding Dx-modules. Hence Conn(X; D) is naturally regarded as a subcategory
of Mod(Dy). For (M, V) € Conn(X; D) the restriction M|y of MtoY = X \ D
belongs to Conn(X); i.e., M|y is locally free over Oy.

Remark 5.2.3. One can show that Conn(X; D) is a subcategory of Modj, (Dy) (it is
not even obvious that an object of Conn(X; D) is a coherent Dy-module). We do
not use this fact in this book.

Remark 5.2.4. Assume that dim X = 1. Let a € D, and take a local coordinate
x such that x(a) = 0. Then the stalk Ox[D], at a € D is identified with the
quotient field C{x}}[x~'] of Ox .4 ~ C{{x}}. Since Ox[D], is a field, any coherent
Ox[D]-module is free on a open neighborhood of a. Hence the stalk (M,, V,)
of (M, V) € Conn(X, D) at a € D turns out to be a meromorphic connection in
the sense of Section 5.1.1 by identifying 2 ; with Oy viadx € Q ; (note that the
condition (5.2.2) is automatically satisfied in the one-dimensional situation).

For (M, V), (N,V) € Conn(X, D) the Ox[D]-modules M ®o,[p; N and
Homo,p1(M, N) are endowed with structures of meromorphic connections along
D by

Ve@N=) i@ ®N+) ;@ a1,
i j
(Vo) (s) = (id ® 9)(V(s)) — V(p(s)),

respectively, where V(s) = ), w; ® s; and V(1) = ) i w;. ® tj. In particular, for
(M, V) € Conn(X, D) its dual M* := Homo,p)(M, Ox[D]) of M is naturally
endowed with a structure of a meromorphic connection along D.

The following simple observation will be effectively used in proving the classical
Riemann—Hilbert correspondence.

Lemma 5.2.5. For (M, V), (N, V) € Conn(X; D) we have

F(X7 HomOX[D](Mv N)v) = HomCOI’m(X;D)((Ms V)a (Nv V))
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Proposition 5.2.6. Let ¢ : My — M> be a morphism of meromorphic connections
along D. If ¢|x\p is an isomorphism, then ¢ is an isomorphism.

This follows from the following lemma since the kernel and the cokernel of ¢ are
coherent Ox[D]-modules supported by D.

Lemma 5.2.7. A coherent Ox[D]-module M whose support is contained in D is
trivial; M = 0.

Proof. Take a local defining equation 2 of D. For a section s € M whose support is
contained in D consider the Ox-coherent submodule Oxs C M. Since the support
of Oys is contained in D, we have hVs = 0 (N > 0) by Hilbert’s Nullstellensatz.
Therefore, we obtain s = h~VNhVs = 0. |

Corollary 5.2.8. Any meromorphic connection M along D is reflexive in the sense
that the canonical morphism M — M** is an isomorphism.

Let f : Z — X be amorphism of complex manifolds such that £ ~! D is a divisor
on Z. Then we have

Oz 7' D1 = 0z @10, f~'Ox[D] = Oz &% 1, f~'Ox[DI.

Indeed, since Ox[D] is flat over Oy, we have H' (O ®§;,IOX f~lox[D) =0
for i # 0. Moreover, for a local defining equation 7 = 0 of D we have
Ox[D] = Ox[h~"1, Oz[ f~'D] = Oz[ho fland hence Oz[ f ' D] ~ Oz @ ;-10,
f_lOX[D]. Hence for M € Conn(X; D) we have

Lf*M >0z @10, f7'M = Oz[f ' DI&F 1, ) fT'M
~ Oz[f'DI®104py [~ M.

From this we easily see the following.

Lemma 5.2.9. Let f be as above. Forany M € Conn(X; D) we have H/ (Lf*M) =
0for j # 0and HY(Lf*M) € Conn(Z; f~'D). In particular, the inverse image
functor for the category of D-modules induces an exact functor

f*: Conn(X; D) — Conn(Z; f~'D).

Set
B={xeC||x| <1} (the unit disk).

For a morphism i : B — X such that i ' D = {0} the stalk (i*M)o at0 € Bis a
meromorphic connection of one-variable studied in Section 5.1.1.

Definition 5.2.10. A meromorphic connection M on X along D is called regular if
(i*M)y is regular in the sense of Section 5.1.2 for any morphism i : B — X such
that i~'D = {0} C B.
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Notation 5.2.11. We denote by Conn™#(X; D) the category of regular meromorphic
connections along D.

Proposition 5.2.12.
(i) Let
00— M - M, - M3 — 0
be a short exact sequence of meromorphic connections along D. Then M, is
regular if and only if M| and M3 are regular.

(ii) Assume that M and N are regular meromorphic connections along D. Then
M R0y p) N and Homo,p1(M, N) are also regular.

Proof. By definition we can reduce the problem to the case when X is the unit disk
B C C. Then (i) follows from Proposition 5.1.10. We can prove (ii) by using
Lemma 5.1.11. This completes the proof. O

Definition 5.2.13. A meromorphic connection on X along D is called effective if it is
generated as an Oy [D]-module by a coherent Ox-submodule.

We will see later that any regular meromorphic connection is effective (see Corol-
lary 5.2.22 (ii) below).

Lemma 5.2.14. Let f : X' — X be a proper surjective morphism of complex man-
ifolds such that D' := f~'D is a divisor on X' and f~"(X'\ D') — X \ D is an
isomorphism. Assume that N is an effective meromorphic connection on X' along D’.

(i) We have H* (ff N) = 0 for k # 0 and Ho(ff N) is an effective meromorphic
connection on X along D.
(i1) If N is regular, then so is Ho(ff N).

Proof. We denote by Dx/[D'] the subalgebra of Endc(Oyx/[D']) generated by Dy
and Ox/[D’]. Then we have Dx/[D’] >~ Dy R0, Ox/[D'] = Ox/[D'] ®o,, Dx'.
We first show that

Dx_y ®§)X, Dx/[D'] ~ Dy/[D']. (5.2.3)

Note that the canonical morphism f~'Qx — Qy induces an isomorphism
Ox/[D'1® j-10, f1Qx - Ox[D'] ®0,, 2x’ by Lemma 5.2.7. Hence we have

Dyx ®p , Dx[D'| = Dxx ®p , Ox'[D']
~ Dx. x' ®0,, Ox/[D']
~ f~'Dx ® 10, Ox'[D']
by Lemma 1.3.4. Let us show that the canonical morphism Dy/[D'] —

Dy ® 104 Ox [D'] induced by the canonical section 1® 1 of the right Dx/[D’]-
module f’1 Dx ® r-10y Ox/[D'] is an isomorphism. For this it is sufficient to show
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that F,Dx/[D'] — f_leDX ® r-10y Ox/[D'] is an isomorphism for any p € Z.
This follows from Lemma 5.2.7. The assertion (5.2.3) is verified.

Since N is effective, there exists a coherent Ox/-submodule L of N such that
N >~ Ox/[D'] ®0,, L. Then by (5.2.3) and f~1Ox[D] ® f-10y Oy >~ Ox/[D],
we have

/ N = Rf«(Dxx' ®%)X, N) =~ Rf«(Dxx ®f)x, Dx/[D"] ®éx’[D/] N)
f

~ Rf(N) ~ Rf,(Ox[D'1®0,, L) ~ Rf(f ' Ox[D]® 10, L)
~ Ox[D]1 ®p, Rf«(L),

and hence H*(f; N) =~ Ox[D] ®0, H*(Rf«(L)). Since H*(Rf.(L)) is coherent
over Oy for any k by the Grauert direct image theorem, H*( / ¥ N) is coherent over
Ox[D]. Moreover, we have Hk(ff N) = 0for k # 0 by Hk(Rf*(L))|X\D = 0 and
Lemma 5.2.7. The statement (i) is proved.

Assume that N is regular. Leti : B — X be a morphism from the unit disk B
satisfying i ~! (D) = {0}. Since f is proper, there exists a lift j : B — X’ satisfying
f o j=1i. Then we have

i*HO(/fN):i*/fN:j*f*/fN.

Since the canonical morphism N — f* [ ¥ N is an isomorphism on X’ \ D/, it is
an isomorphism on X’ by Proposition 5.2.6. Hence we obtain i*HO(ff N) >~ j*N.
Therefore, HO( f ¥ N) is regular. The statement (ii) is proved. m]

5.2.2 Meromorphic connections with logarithmic poles

In this subsection we will consider the case where D is a normal crossing divisor on
a complex manifold X; i.e., we assume that D is locally defined by a function of the
form xp - - - x,, where (x1, ..., x,) is a local coordinate. Let p € D and fix such a
coordinate (xi,...,x,) around p € D. For | <k < r we denote by Dy the (local)
irreducible component of D defined by xy.

The meromorphic connections M on X along D which we will consider in this
subsection are also of very special type. First, we assume that there exists a holo-
morphic vector bundle (locally free Ox-module of finite rank) L on X such that
M = Ox[D] ®p, L as an Ox[D]-module. Hence taking a local defining equation
x1x2 - - - x, = 0 of D and choosing a basis ey, e, ..., e, of L around a point p € D,
the associated C-linear morphism V : M — Qi( ®@y M can be expressed as

Vei= Y  adu®e, (5.2.4)

I1<k=<n,1<j<m

where afj e Ox[D] = Ox[xflxgl . ~xr’1]. Then we further assume that the

functions xkafj (1 <k<vr), a{‘j (r < k < n) are holomorphic. In this case, we say
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the meromorphic connection M along the normal crossing divisor D has a logarithmic
pole with respect to the lattice L at p. If this is the case at any p € D, we say that M
has a logarithmic pole along D with respect to L. Note that this definition does not
depend on the choice of the coordinates {xx} and the basis {e;} of L.

Let M be a meromorphic connection along D which has a logarithmic pole with
respect to the lattice L. Take abasis {eq, ..., e, } of L andset Ay = (af‘/) forl <k <
n, where af" isasin (5.2.4). For1 <k <r wealsoset By = x;A;. Let1 <k <r.
Since By belongs to M;,,(Ox), we can consider its restriction Bi|p, € M,,(Op,).
Then By|p, defines a canonical section Resf)k V of the vector bundle Endp D (Llpy)
on Dy. Indeed, we can check easily that Bx|p, € M;,(Op,) =~ Snd@Dk (L|p,) does

not depend on the choice of a local coordinate and a basis of L. We call Resﬁk V the
residue of (M, V) along Dy.

Proposition 5.2.15. Let M be a meromorphic connection along D which has a log-
arithmic pole with respect to the lattice L. We keep the notation as above.

(1) On Dy N D; we have
[Res{‘)k Vv, Resél V]=0.

(i) The eigenvalues of (Resﬁk V)(a) € Endc(L(a)) do not depend on the choice of
a € Dy. Here L(a) denotes the fiber C ®0, , Lq of L at a.

Proof. (i) By (5.2.2) we have

dAk Al P
— — — =[A%, A].
0x; Xy
We obtain the desired result from this by developing both sides into the Laurent series
with respect to xx, x; and comparing the coefficients of (epx) L
(i1) Let ar , Ek be the restrictions of the matrices A”, B to Dy, respectively.
Then we have

8Zi 3Zj —i —j L
——-——=[A,A] (, j#k),
axj' 8x,~

—k

0B —k —i .

— =I[B,A] (#k.

axi

The first formula implies that

—_— — _l !
Ve, =Y ady®e; (A = @)
Ik

. N . . —k
defines an integrable connection V on L|p,. The second one implies that B® =
Resék V € Endp,, L|p, isahorizontal section withrespect to the connection induced

by V on Endp D L|p,. From this we can easily check that the values of the matrix

—k . . .
B at two different points of Dy are conjugate to each other. O
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Proposition 5.2.16. Let M be a meromorphic connection which has a logarithmic
pole along D with respect to a lattice L. Then M is regular.

Proof. For any morphism i : B — X from the unit disk B such that i ~' D = {0} we
easily see that the meromorphic connection i*M on B has a logarithmic pole along
{0} with respect to the lattice i * L. Then the stalk (i* M) is regular by Theorem 5.1.4.

O

The following construction enables us to extend analytic integrable connections
on Y = X \ D to regular meromorphic connections along the divisor D C X.

Theorem 5.2.17. Let D be a normal crossing divisor on X and set Y := X \ D. We
fix a section t : C/Z — C of the projection C — C/7Z. Then for an integrable
connection M on Y there exists an extension L, of M as a vector bundle on X
satisfying the following two conditions:

(i) The C-linear morphism Vy : M — Q%, ®oy, M can be uniquely extended to a
C-linear morphism V : Ox[D] ®oy L; — 52;( ®oy (Ox[D]®oy L) so that
(Ox[D]1®oy L1, V) is a meromorphic connection which has a logarithmic pole
along D with respect to L.

(ii) For any irreducible component D’ of D the eigenvalues of the residue Reslb’, \%
of (Ox[D1®o, L, V) along D" are contained in t(C/Z) C C.

Moreover, such an extension is unique up to isomorphisms.

Proof. First we prove the uniqueness of the extension. The problem being local, we
may assume X = B" (Bisaunitdiskin C)and Y = (B*)" x B"~" (B* := B\ {0}).
We denote by {x;}1<;<n the standard coordinate of X = B" Let L, L'be locally free
Ox-modules of rank m satisfying the conditions (i), (ii) for Ly = L and L, = L/,
andlet V: Ox[D]®0, L — Q% ®0, Ox[D1®0, Land V' : Ox[D]1®p, L' —
Q}( ®oy Ox[D]®oy L' be the C-linear morphisms satisfying the condition (i). Take
a basis {€;}1<j<m of L. Then V can be expressed as

Ve; = Zafjdxk Qej.
k.j

Setw = Y 1<p Akdx, (AF = (af‘j)). We also fix a basis {e/} of L" and define
o = D l<k<n A’*dx; similar to w. Since L|y and L’|y are isomorphic, there exists
S € GL,,(Oy) such that

dS = Sw—o'S. (5.2.5)

It is sufficient to verify that S and § —1 can be extended to an element of M,,(Ox)
(an m x m matrix on X whose entries are holomorphic on X). By symmetry we have
only to show the assertion for S. Moreover, by Hartogs’ theorem it is sufficient to
show that S extends holomorphically across Dy \ | 1 D1 for each k. For simplicity
of notation we only consider the case k = 1. Write
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d)C1 :
=B'— +) Aldx,
w o X

i>1
dxl :
o =B/ + ZA”dx,'.
X1 ;
i>1

By our assumption B!, B’! and A/, A" are holomorphic on x>x3---x, # 0. By
(5.2.5) we have

9
xl—S = SB!' — B'lS. (5.2.6)
dx1

Taking the matrix norm ||e|| of both sides we obtain an inequality
as
dx1

(C > 01is a constant) on a neighborhood of x; = 0 (x2x3 - -- x; # 0), from which

we see that S is meromorphic along D; \ |, #1 Di by Gronwall’s inequality: if
f(t) =0, g(t) > 0 are non-negative functions on 0 < ¢ < 7y such that

= ISl (5.2.7)

x|

1
f(t)SaJrC/Og(S)f(S)dS (a=0, c=0),
t

then we have )
0
f@) < aexp(c/ g(s)ds) (0 <t <t).
13

To show that S is actually holomorphic on Dy \ Ui7+_ 1 D; we consider the Laurent
expansion

oo
S=Y"Six{ (S, #0)
j=p

of § with respect to the variable x;. By (5.2.6) we have
(Resp, V' + pI)S, = Sp(Resp, V),

where [ is the unit matrix. By elementary linear algebra, it follows from S, # O that
the matrices Resp, V' + pI and Resp, V must have at least one common eigenvalue.
If p # 0, then this last result contradicts our assumption that the eigenvalues of
Resp, V and Resp, V' are contained in 7(C/Z). Hence we must have p = 0, and S
is holomorphic on Dy \ Ui;ﬁl D;. The proof of the uniqueness is complete.

Next we prove the existence of the extension (as a vector bundle) L, of M.
If there exists locally such an extension L., we can glue these local extensions to
get the global one by the uniqueness of L; proved above. Hence we may assume
Y = (B*)" x B"" C X = B". By Theorem 4.2.4 the integrable connection M on
Y is uniquely determined by the monodromy representation

p:m(Y) — GLyu(C)
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defined by the local system corresponding to M. Note that for Y = (B*)" x B"™"

we have m1(Y) >~ Z", where the element y; = (0,0, ..., T L) emY) 27"
corresponds to a closed loop turning around the divisor D; = {x; = 0}. Therefore,
the monodromy representation p is determined by the mutually commuting matrices

Ci=p(y) eGLy(C) (1<i=<r).
Note also that we can take matrices I'! € M,,(C) (1 <i < r) such that

(@) expr/—1T%) = C;,
(b) All the eigenvalues of I'' belong to the set (C/Z),

() TP (1 < i < r) are mutually commuting matrices.

The proof of the existence of such _matriqas is left to the reader (in fact, Il are
uniquely determined). Using these ['" = (F;, q) € M (C), we define a meromorphic
connection on Ox[D]" = Ox[D] ®oy L. (L = O%) by

l"i
Veg=— Y %dx,-@eq,
]

I<i<n,1=<g<m

where {eq, ..., ey} is the standard basis of L; = O%. Then the restriction of this
meromorphic connection to Y is isomorphic to M. Moreover, this meromorphic
connection satisfies all of the required conditions. O

5.2.3 Deligne’s Riemann-Hilbert correspondence

In Theorem 5.2.17 we proved that an integrable connection M defined on the com-
plementary set Y = X \ D of a normal crossing divisor D on X can be extended to
a meromorphic connection M (= Ox[D] ®», L) on X, regular along D. In this
subsection we generalize this result to arbitrary divisors D on X.

Let D be a (not necessarily normal crossing) divisor on X and (N, V) a mero-
morphic connection on X which is meromorphic along D. We consider the following
condition (R) on (N, V), which is a priori weaker than the regularity along D (in fact,
we will prove in Corollary 5.2.22 below that these two conditions are equivalent).

Condition (R). There exists an open subset U of the regular part Dy, of D which
intersects with each connected component of Dy and satisfies the condition:

There exist an open neighborhood U of U in X and an isomorphism

¢ BxU = U such that ¢lioyxy = Idy and for each x € U the
pull-back (¢} N, ¢}V) with respcet to ¢ = ¢|px(x} : B x {x} — X is
regular along {0} x {x}.

Here B is the unit disk centered at 0 in C.
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It is clear that if (N, V) is regular along D, then it satisfies the condition (R).

Lemma 5.2.18. Assume that a meromorphic connection (N, V) satisfies the condi-
tion (R). Then the restriction map

I'(X,NY) — I'(Y,NY)
is an isomorphism.

Proof. The injectivity follows from Lemma 5.2.7. Let us show surjectivity. We
need to show that any s € I'(Y, N V) can be extended to a section of NV on X.
By Corollary 5.2.8 it is sufficient to show that for any p € D and any u € N; =
Homoyp1(N, Ox[D]), the function g = (u, s) is meromorphic at p. By Hartogs’
theorem it is sufficient to show it in the case p € Dreg.

We first deal with the case when p € U C Dyeg. Here U is as in Condition (R).
We take a local coordinate (x1, ..., x,) around p such that D is defined by x; = 0
and p corresponds to 0. We may assume that U = {0} x B"~!. Let

g(x) = grlxa, x3, ..., x) xf

keZ
be the Laurent expansion of g with respect to x;. The condition (R) implies that for
each x’ = (x2,x3,...,x,) € B""! the restriction gl B*x{x/y is meromorphic at the
point {0} x {x’}. This means that for each x’ = (x3,x3,...,x,) € B! we have

gc(x") =0 (k < 0). Fork € Z set
Uei={x' = (2, %3,..., %) € B" 1 | gi(x) =0 (G < k) }.

Then we have B~ = Ukez Ur and each Uy is a closed analytic subset of Bl 1t
follows that we have Uy = B"~! for some k and hence g is meromorphic at p.

Let us consider the general case p € Dreg. We denote by K the subset of Dyeg
consisting of p € Dreg such that g = (u, s) is meromorphic at p for any u € N.
We need to show K = Dye,. Note that K is an open subset of Dye, containing U. In
particular, it intersects with any connected component of Dyeo. Hence it is sufficient
to show that K is a closed subset of Dyeg. Let g € K. We take a local coordinate
(x1, ..., x,) around a such that D is defined by x; = 0 and g corresponds to 0. For
u € Ny we consider the expansion

g(x) = gr(x2, x3, ..., X)X}
keZ

of ¢ = (u, s). Since g is meromorphic on K, there exists some r such that gy = 0
on K for any k < r. It follows that gy = 0 for any £k < r on an open neighborhood
of g. Hence g € K. O

Lemma 5.2.19. Let (N;, Vi) (i = 1, 2) be two meromorphic connections along D
satisfying the condition (R). Then the restrictiontoY = X\ D induces an isomorphism

r - Homconn(x:p) (N1, V1), (N2, V2)) = Homcom)((N1ly, V1), (Naly, V2)).
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Proof. By Lemma 5.2.5 we have
(X, Homoyp)(N1, N2)¥) = Homconn(x: 0y (N1 V1), (N2, V2)).

Therefore, it suffices to apply Lemma 5.2.18 to the meromorphic connection N =
Homo,p1(N1, N2), which satisfies the condition (R) by Proposition 5.2.12 (ii). O

The main result of this section is the following.

Theorem 5.2.20 (Deligne [Del]). Let X be a complex manifold and let D be a (not
necessarily normal crossing) divisor on X. Set Y = X \ D. Then the restriction
functor N — Ny induces an equivalence

Conn™8(X; D) = Conn(Y)
of categories.

Proof. Since a regular meromorphic connection along D satisfies the condition (R),
the restriction functor is fully faithful by Lemma 5.2.19. Let us prove the essential
surjectivity. We take an integrable connection M on Y and consider the problem of
extending M to a regular meromorphic connection on the whole X. By Hironaka’s
theorem there exists a proper surjective morphism f : X’ — X of complex manifolds
such that D’ := f~!D is a normal crossing divisor on X’ and the restriction g :
X'\ D' — X\ D =Y of fisanisomorphism. By Theorem 5.2.17 we can extend
the integrable connection g*M on X'\ D’ to a meromorphic connection N on X’
along D’ which has a logarithmic pole with respect to a lattice L. Then H( s ¥ N)
satisfies the desired property by Lemma 5.2.14. O

When D is normal crossing, we proved in Theorem 5.2.17 the uniqueness of the
regular meromorphic extension of an integrable connection on Y under an additional
condition about the lattice L,. Theorem 5.2.20 above asserts that this condition was
not really necessary.

By Theorem 4.2.4 this theorem has the following topological interpretation.

Corollary 5.2.21. Let X be a complex manifold and let D be a divisor on X. Set
Y = X\ D. Then we have an equivalence

Conn"™8(X; D) =>Loc(X \ D)
of categories.

We call this result Deligne’s Riemann—Hilbert correspondence. This classical
Riemann—Hilbert correspondence became the prototype of the Riemann—Hilbert cor-
respondence for analytic regular holonomic D-modules (Theorem 7.2.1 below).

Corollary 5.2.22. Let D be a (not necessarily normal crossing) divisor on a complex
manifold X and let N be a meromorphic connection along D.
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(1) If N satisfies the condition (R), then N is regular along D.
(i1) If N is regular along D, then N is an effective meromorphic connection along D.

Proof. (i) By Theorem 5.2.20 there exists a regular meromorphic connection Nj
along D such that Ni|y = Nly. Since both N and N; satisfy the condition (R),
this isomorphism N |y SN |y can be extended to a morphism Ny — N of mero-
morphic connections on X by Lemma 5.2.19 . This is in fact an isomorphism by
Proposition 5.2.6, and hence N is regular along D.

(i1) In the proof of Theorem 5.2.20 we explicitly constructed a regular meromor-
phic extension of N|y, which is isomorphic to N and has the required property. 0O

Assume that D is a normal crossing divisor on X. We define a subsheaf of the
sheaf ®y of holomorphic vector fields on X by

Ox(D):={0eOx |0 CT},

where 7 is the defining ideal of D. If {x;, 9;} is a local coordinate system of X in
which D is defined by x1x2 - - - x, = 0, then ®x (D) is generated by x;0; (1 <i <r)
and 9; (j > r) over Ox.

Corollary 5.2.23. Assume that D is a normal crossing divisor on a complex manifold
X. Under the above notation the following conditions on a meromorphic connection
N along D are equivalent:

(i) N is regular along D.
(ii) N is a union of ®x (D)-stable coherent Ox-submodules.

Proof. (i) = (ii): We use Theorem 5.2.17. Namely, for a section t : C/Z — C
of C — C/Z, we take a locally free Oy-module L, such that N|y =~ L;|y
and Ox[D] ®p, L. is a regular meromorphic connection along D. Then by
Theorem 5.2.20 we have N ~ Ox|[D] ®©, L.. Taking a local coordinate sys-
tem {x;} of X such that D is defined by g(x) = xix2---x, = 0, we have
Ox[D] ®oy L = Up=0 Oxg™* ®oy Lz. Since for each k > 0 the definition
of the O x-coherent subsheaf Oy g ¥ ®0oy L of Ox[D]®@, L. does not depend on
the local coordinates {x;} or on the defining equation g of D, it is globally defined on
the whole X. Clearly each Ox g~ ®oy Lt is ©x(D)-stable (L. is @ x (D)-stable).

(il)) = (1): By Theorem 5.2.22 (i) it suffices to check that N satisfies the con-
dition (R). If we restrict NV to a unit disk B in the condition (R), then the restricted
meromorphic connection satisfies the condition (ii) on the unit disk B. By Propo-
sition 5.1.9 this means that the restriction is a regular meromorphic connection at
0 € B. So N satisfies the condition (R). Now the proof is complete. O

Theorem 5.2.24 (Deligne [Del]). Let D be a divisor on a complex manifold X and
let j : Y = X\ D < X be the embedding. Let N be a regular meromorphic
connection along D. Then the natural morphisms

DRx(N) —> Rj.j~' DRx(N),
RT'(X,DRx(N)) —> RT(Y,DRy(N|y))
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are isomorphisms.

Proof. Tt is enough to prove that DRx(N) — Rj*j*1 DRy (N) is an isomorphism.

We first show it in the case where D is normal crossing. The problem being
local on X, we may assume X = B" and Y = (B*)" x B"™", where B is the unit
disk in C and B* = B \ {0}. Recall that the category of meromorphic connections
that are regular along D is equivalent to that of local systems on Y. Hence by
1 ((B*)" x B"") >~ w(((C*)" x C"7)3) we can assume that X = (C")?" and
Y = ((C*)" x C"7")*. Here, C*, C*, C"" are regarded as algebraic varieties.
We can assume also that N is a simple object in the abelian category of regular
meromorphic connections (along D). Indeed, let

00— Ny — Ny — N3 — 0

be an exact sequence in this category, and denote by ®; : DRyx(N;) —>
Rj*j_l DRx (N;) (i = 1,2, 3) the natural morphisms. Then @, is an isomorphism
if @ and 3 are as well. By

i (Y) = m ((C)™M) x 7 ((C")™),
T (CH™) ~ Z, m((C"7)™) = {1},

we see that there exist Ay, ..., A, € C such that
N >~ (N)tl & e IE N)»r IE O(Cnfr)an. (528)

Here, for A € C we denote by N, the (algebraic) Dc-module given by N, =
D¢ /Dc(xd — A). Hence by Proposition 4.7.8 we obtain

DRx (N) >~ DRc(N,,) K¢ - - - B¢ DRe(N;,) Be Cen-ryan.

Therefore, it is sufficient to show DRc(Ny) ~ Rkyk~' DRc(Ny), where k : C* —
C denotes the embedding (see Proposition 4.5.9). Since the canonical morphism
DRc(N;) — Rk, k! DR (N,) is an isomorphism outside of the origin, we have
only to show the isomorphism DR¢ (N;,)o = (Rk k=1 DRc (N,))o for the stalks. Set
V =0+ f—; Then (DRc(N,))o (resp. (Rkyk~! DRc(N,))o) is represented by the
complex

[KLK], (resp.[[%l)I%]),

where K = Ocan[x~!] (resp. K = k4O (cxyn). From this we easily see by consid-
ering the Laurent series expansions of functions in K and K that (DRc(N))o —
(Rky k™! DRc(N;.))o is an isomorphism.

Now we consider the general case where D is an arbitrary divisor on X. By
Hironaka’s theorem there exists a proper surjective morphism f : X’ — X of
complex manifolds such that D’ := f~!'D is a normal crossing divisor on X’ and
the restriction X’ \ D’ — X \ D = Y of f is an isomorphism. We denote by
J X'\ D' — X’ the embedding. By Theorem 5.2.20 and Lemma 5.2.14 there
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exists a regular meromorphic connection N on X’ along D’ such that N ~ [ N ‘.
Then we have

DRx(N) ~ DRy (/ N’) ~ Rf.DRx'(N") ~ Rf.Rj. /"' DRy/(N')
;
~ Rj.j ' DRx(N)
by Theorem 4.2.5. The proof is complete. O

Remark 5.2.25. In the course of the proof of Theorem 5.2.24 we have used Propo-
sition 4.7.8 and Proposition 4.5.9 in order to reduce the proof of the case of normal
crossing divisors to the one-dimensional situation. We can avoid this argument by
directly considering DRy (N) as follows.

Let D be the normal crossing divisor on the complex manifold X = C" defined by
x1-++x, = 0, where (xq, ..., x,) is the coordinate of C". Let N be the simple regular

. . . . Ao A

meromorphic connection corresponding to the simple local system Cx|'x5? - - x;
(0 <ReA; < l)onY = X\ D. Then N is identified with Ox[D] as an Ox[D]-
module, and the action of 8ix, (1 <i <n)isgiven by

ou Ai
Vou=——"u, i=1,2, T
ox; Xi Xi
ou .
Vou=—, i=r+1,r+2,...,n
0x; 8xi

foru € Ox[D] (0 < Re}; < 1). In this situation DRx(N) is represented by
the Koszul complex K (V1, Va, ..., Vy; Ox[D]) (up to some degree shift) defined
by the mutually commuting differentials V;, = V va : Ox[D] — Ox[D] (i =

1,2,...,n). On the other hands, Rj*j’1 DRy (N) is represented by the Koszul
complex K (Vy, Va, ..., Vu; jxOx\p) because the hypersurface complement ¥ =
X \ D is locally a Stein open subset of X = C”". Hence it suffices to show that the
natural morphism

K(V1,Va, ..., V,;; Ox[D]) — K(V, Va,..., V4 j:Ox\p)

induced by Ox[D] — j+Ox\p is a quasi-isomorphism. The sections of Ox[D]
have poles along D, while those of j.Ox\ p may have essential singularities along D.
We have to compare the cohomology groups of the de Rham complexes in these two
different sheaves. First, note that the Koszul complex K (Vy, Va, ..., V,; Ox[D])
(resp. K(V1, Va, ..., V,; j«Ox\p)) is the simplified complex of the double complex
K(Va..... V1 Ox[D] ~5 Ox[D)) (resp. K (Va. ... Vi jxOx\p ~> jOx\p)
). Let us consider the morphism of complexes

[Ox[D] A, Ox[D1] — [j«Ox\p RN J«Ox\p]

induced by Ox[D] —> jxOx\p. Weset X' = {x; =0} C Xand D' = {x2---x, =
0} C X’. Then we can easily see that the cohomology groups of the left complex
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(resp. right complex) are Ox/[D'] (resp. j'Oxnpr, j' : X'\ D' < X') or zero
(it depends on the condition A; = 0 or not) by expanding the functions in Ox[D]
(resp. in j,Ox\p) into the Laurent series in x;. So repeating this argument also for
X2, X3, ..., X, we can finally obtain the quasi-isomorphism

K(Vl’ V27 AR v}‘l; OX[D]) L)K(Vla V27 AR ] V}’l; J*OX\D)'

5.3 Regular integrable connections on algebraic varieties

In this subsection X denotes a smooth algebraic variety. The corresponding complex
manifold is denoted by X".

Assume that we are given an open embedding j : X < V of X into a smooth
variety V such that D := V \ X isadivisoron V. We set Oy[D] := j,Ox. Asinthe
analytic situation Oy [D] is a coherent sheaf of rings. We say that a Dy-module is
an algebraic meromorphic connection along D if it is isomorphic as an Oy -module
to a coherent Oy [D]-module. We denote by Conn(V'; D) the category of algebraic
meromorphic connections along D. It is an abelian category. Unlike the analytic
situation an extension of an integrable connection on X to an algebraic meromorphic
connection on V is unique as follows.

Lemma 5.3.1. The functor j —1. Conn(V; D) — Conn(X) induces an equivalence

Conn(V; D) =>Conn(X)
of categories. Its quasi-inverse is given by j.

Proof. This follows easily from the fact that the category of coherent Oy [ D]-modules
is naturally equivalent to that of coherent Ox-modules. O

It follows that Conn(V'; D) is a subcategory of Mody, (Dy) by Theorem 3.2.3 (i).

Definition 5.3.2. An integrable connection M on X is called regular if for any mor-
phismic : C — X from a smooth algebraic curve C the induced integrable connec-
tion iz M on C is regular in the sense of Section 5.1.3.

Notation 5.3.3. We denote by Conn"#(X) the full subcategory Conn(X) consisting
of regular integrable connections.

By Lemma 5.1.17 we have the following.
Proposition 5.3.4. Let
00— M| — My — M3 — 0

be an exact sequence of integrable connections on X. Then M, is regular if and only
if My and M3 are regular.
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By Lemma 5.1.18 we easily see the following.

Proposition 5.3.5. Let M and N be regular integrable connections on X. Then the
integrable connections M ® o, N and Homo, (M, N) are also regular.

We give below some criteria for the regularity of integrable connections. Let us
take a smooth completion j : X < X of X such that D = X \ X is a divisor on
X. Such a completion always exists thanks to Hironaka’s theorem (in fact, we can
take a completion X so that D = X \ X is a normal crossing divisor). We call such
a completion X of X a divisor completion. For a divisor completion j : X < X of
X we can consider the analytic meromorphic connection

(uM)™ = Oz ®0. jxM € Conn(X™"; D™)

on X" along D",

Proposition 5.3.6. The following three conditions on an integrable connection M on
X are equivalent:

(i) M is a regular integrable connection.
(ii) For some divisor completion j : X — X of X the analytic meromorphic con-
nection (j, M) is regular.
(iii) For any divisor completion j : X — X of X the analytic meromorphic connec-
tion (joM)™ is regular.

Proof. We first prove the part (ii)) = (i). Assume that for a divisor completion
j : X = X the meromorphic connection (j,M)®" is regular. We need to show that
for any morphism i¢c : C — X from an algebraic curve C the induced integrable
connection i M is regular. We may assume that the image of C is not a single point.
We take a smooth completion jc : C < C of C and a morphism ic: C - X so
that the following diagram:

Jjc
C ——

icl l’fl
x 1. %X

al

is commutative. We may also assume that this diagram is cartesian by replacing C
with (iF) ~1(X) (see Lemma 5.1.16). In this situation we have a natural isomorphism

[(JC)*ch] [CJ*M] = (l ) (e MM,

Since (j,M)™" is regular, (l M)*(j«M)* (and hence [(jc)*lc ]an) is regular by the
definition of (analytic) regular meromorphic connections. It follows that i’ M is
regular by Lemma 5.1.14. It remains to show (i) = (iii). By Corollary 5.2.22 (i) it
is sufficient to verify the condition (R) for (j.M)*. We can take ¢ in the condition
(R) so that ¢, = ¢|gx{x} comes from an algebraic morphism, for which the condition
(R) can be easily checked by the argument used in the proof of (ii) = (i). O
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Let j : X — X be a divisor completion of X such that D = X \ X is normal
crossing. In this situation we give another criterion of the regularity of an integrable
connection M on X. Let Z be the defining ideal of D (Z := {¢ € O | ¢|p = 0})
and consider the sheaf

Ox(D) :={6 € Ox | 6T C T}

as in the analytic case. We denote by D+ (D) the subalgebra of D+ generated by
O (D) and O. In terms of a local coordinate {x;, 9;} of X for which D is defined
by x1x2 - - - x, = 0, @x(D) is generated by x;9; (1 <i <r)andd; (j > r) over Ox.

Theorem 5.3.7 (Deligne [Del]). Under the above notation the following three con-
ditions on an integrable connection M on X are equivalent to each other:

(i) M is regular.
(i) The Dy-module jM is a union of Ox-coherent D (D)-submodules.
(iii) For any irreducible component Dy of D there exists an open dense subset D} C
D satisfying the condition:

For each point p € D\, there exists an algebraic curve C < X which
intersects with D) transversally at p such that the integrable connection
itMonC =_€\ {p} (ic : C = C\ {p} = X) has a regular singular
pointat p € C.

Proof. (i) = (ii): Assume that M is regular. Then N = (j,.M)*" is an analytic
regular meromorphic connection along D*". By Corollary 5.2.23 N is a union of
O (D*")-stable coherent OYan-submodules Zi (i € I). Since X is projective, there
exists a coherent Ox-submodule L; of j,M such that L¥" = Zi by GAGA [Serl].
Denote by N; the image of @¢(D) ®c L; — jxM. Then by N C L" we obtain
N; C L; by GAGA. Namely, each L; is Ox(D)-stable. We also have Ui Li = j«M,
and hence (ii) holds.

(i) == (i): If (i) holds, then the Dan-module (j,M)™" is a union of O (D")-
stable coherent Oy -submodules. Hence it is a regular meromorphic connection
along D" by Corollary 5.2.23. Therefore, M is regular by Proposition 5.3.6.

(1) = (iii): this is trivial.

(iii)) = (i). Under the condition (iii), the corresponding analytic meromorphic
connection N = (j,M)*" satisfies the condition (R). Hence (j,M)*" is regular by
Corollary 5.2.22 (i). O

The following version of the Riemann—Hilbert correspondence in the algebraic
situation will play fundamental roles in establishing more general correspondence for
algebraic regular holonomic Dy-modules (Theorem 7.2.2 below).

Theorem 5.3.8 (Deligne [Del]). Let X be a smooth algebraic variety. Then the
functor M +— M® induces an equivalence

Conn"™8(X) = Conn(X™")

of categories.
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Since any integrable connection on a smooth projective algebraic variety is regular
by Proposition 5.3.6, we have the following.

Corollary 5.3.9. For a smooth projective variety X we have an equivalence

Conn(X) == Conn(X")
of categories.
By Theorem 5.3.8 and Theorem 4.2.4 we also have the following.
Corollary 5.3.10. For a smooth algebraic variety X we have an equivalence
Conn™&(X) ~ Loc(X*™)
of categories.

This gives a totally algebraic description of the category of local systems on X".

The rest of this section is devoted to the proof of Theorem 5.3.8. We fix a divisor
completion j : X < X of X and set D = X \ X. We denote by Conn™2(X; D) the
full subcategory of Conn(X; D) consisting of M € Conn(X; D) such that M|y is
regular. Then we have the following commutative diagram:

Conn™¢(X; D) —— Connreg(yan; D)

! l

Conn™¢(X) —— Conn(X?"),

where vertical arrows are given by restrictions and horizontal arrows are given by
M — M?™. Since the vertical arrows are equivalences by Lemma 5.3.1 and Theo-
rem 5.2.20, our assertion is equivalent to the equivalence of

Conn™¢(X; D) —> Conn™¢(X""; D*"). (5.3.1)

We denote by Mod (O D]) (resp. Modi((’)yzm [D?])) the category of coherent
Ox[D]-modules (resp. the category of coherent Oan [ D*"]-modules generated by a
coherent O -submodule). Note that any coherent Ox[D]-module is generated by
its coherent Oy -submodule by Proposition 1.4.16.

By Corollary 5.2.23 any regular meromorphic connection on x" along
D™ is effective. Namely, the underlying O [D*"]-module of an object of
Conn™g(X""; pan) belongs to Modg (O [ D*']). We denote by Conn®(X™"; D™)
the full subcategory of effective meromorphic connections on x" along D*". By
Proposition 5.3.6 the equivalence of (5.3.1) follows from the equivalence of

Conn(X; D) —> Conn®(X""; D™). (5.3.2)

Let us show the equivalence of (5.3.2). We first show the following.
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Lemma 5.3.11. The functor
Mod (Ox[D]) — Modg(O5n [ D*"])
given by M — M™ gives an equivalence of categories.

Proof. We first show that the functor M — M™" is essentially surjective. Let M e
Mode(O an[ D*]). Take a coherent (9 an-submodule L of M generating M. Then

we have M ~ O [ D] ROz L. By the GAGA principle [Serl] there exists a

coherent Ox-module L such that Oxan Qoy L ~ L. Set M := O%lD] oy L €
Mod.(Ox[D]). Then we have

M = Oz ®0, Ox[D1 0, L ~ Ogu[ D™ Q0 L~ M.

Let us show that the functor M +— M?" is fully faithful. Namely, we prove that
the canonical morphism

Homo(p|(M, N) — Hom@YaH[Dan](Ma“, N,

is an isomorphism for any M, N € Mod.(Ox[D]). Let us take a coherent Ox-
submodule My C M such that Ox[D] R0y My >~ M. Then we obtain

Hom(gY[D] (M,N) ~ HomoY(Mo, N)
HomoYan[Dan] (Man, Nan) ~ Hom@Yan (Man, Nan).

Furthermore, N being a union | J;_; N; of coherent Oy-submodules N; C N, we

iel
have
Homo_(Mo, N) =~ |_JHomo_ (Mo, N;)
iel
~ U Homo_,, (M§", Ni")  (by GAGA)
iel
~ Homo_,, (ME™, N*™).
This completes the proof O

Note that Conn(X; D) consists of pairs (M, V) of M € Mod.(Ox[D]) and
V € Hom¢ (M, QlY Q05 M) satisfying

Vips) =do s + ¢Vs (p e Ox, s e M), (5.3.3)
[Vg, Vg/] = V[g’g/] (0, 9/ (S ®Y) (534)

In view of Lemma 5.3.11 Conn® X™: D™ is equivalent to the category consisting
of pairs (M, V) of M € Mod.(Ox[D]) and V € Hom¢(M?*", Q%m ®Ogan M)
satisfying
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%(gps) =dp®s+ go%s (p € Ozan, s € M), (5.3.5)
Vo, Vol = Vig.or 0, 0" € Oxm). (5.3.6)

Hence it is sufficient to show that for M € Mod(Ox[D]) the two sets

A = {V € Hom¢ (M, QlY Jo M) | V satisfies (5.3.3) and (5.3.4)},
A = {V € Hom¢ (M™, QIY ®0_ MM | V satisfies (5.3.5) and (5.3.6)}

are in bijective correspondence. Since these two sets are defined by C-linear mor-
phisms (not by O-linear morphisms), we cannot directly use GAGA. We will show
the correspondence by rewriting the conditions in terms of O-linear morphisms.

We first show that the two sets

Ay ={V € Hom¢(M, Q3 ®0, M) | V satisfies (5.3.3)},
A1 = {V € Homg(M™, Qb ®0_w M™) | V satisfies (5.3.5)}

are in bijective correspondence. We need some preliminaries on differential operators.

Let Y be a complex manifold or a smooth algebraic variety. For Oy-modules K
and L we define the subsheaves F,D(K, L) (p € Z) of Hom¢ (M, N) recursively
on p by F,D(K, L) =0 for p < 0and

F,D(K, L) ={P € Homc(M,N) | Pf — fP € F,_1D(K, L) (Vf € Oy)}

for p > 0. Sections of F, D(K, L) are called differential operators of order p. Let
us give a different description of F},D(K, L). Letd : Y — Y x Y be the diagonal
embedding, and let p; : ¥ x ¥ — Y (j = 1, 2) be the projections. We denote by
J C Oyxy the defining ideal of §(Y). By taking §~! of the canonical morphism
pj_lOY — Oy xy we obtain two ring homomorphisms

aj Oy = 8_1[7;10)/ — 8_10y><y

for j = 1, 2. In particular, we have two Oy-module structures on § —10y . y. Since
J is an ideal of Oyyy, we also have two Oy-module structures on 8~ !J¥ and
s YJk/Jh (k < I).  We note that the two Oy-module structures on
§~1(J¥/J*¥+1) coincide and that §~1(J/J?) is identified with Q;, We consider
Homoy(S’IOyXy ®o, K, L), where the tensor product §1O0yyy ®o, K is
taken with respect to the Oy-module structure on 8710y .y induced by a3, and
8 1Oyyy ®oy K is regarded as an Oy-module via the Oy-module structure on
8§10y «y induced by «. Define

B : Homo, (8~ Oyxy ®0, K., L) - Homg(K, L)
by (B(¥))(s) = ¥ (1 ® s). Then we have the following.
Lemma 5.3.12. The morphism 8 induces an isomorphism

Homo, 6~ (Oyxy /I’ ®p, K, L) ~ F,D(K, L).
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The proof is left to the readers.
Now we return to the original situation. Note that we have

A C FiD(M, szlY ®0, M), A1 C FiD(M™, QlY ®0w M™).

By examining the condition (5.3.3) we see by Lemma 5.3.12 that A is in bijective
correspondence with the set

(¢ € Home (3™ (Ox,x/9%) @0 M, Qg @0y M) | Plgi g,y =id),

where 8! J/J 2) is identified with QL. We have obtained a description of A in
terms of O-modules. The same argument holds true in the analytic category and we
have a similar description of Aj. Now we can apply GAGA to conclude that Aj is
in bijective correspondence with Aj.

Let us finally give a reformulation of the conditions (5.3.4), (5.3.6). For
V € Hom¢ (M, SZlY Q0 M) satisfying (5.3.3) we define vl e Hom(c(QlY R0y
M,Q%@@YM) by V(o ® ) = do ® s — @ A Vs. Then we have V! o V €
HomoY(M , QZY R0y M), and V satisfies the condition (5.3.4) if and only if

VoV = 0. This gives a reformulation of the condition (5.3.4) in terms of an
Ox-linear morphism. In the analytic category we also have a similar reformulation
of the condition (5.3.6). Now we can apply GAGA to obtain the desired bijection
A ~ A. The proof of Theorem 5.3.8 is now complete.
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Regular Holonomic D-Modules

In this chapter we give the definition of regular holonomic D-modules, and prove that
the regular holonomicity is preserved by various functorial operations of D-modules
that we introduced in earlier chapters.

6.1 Definition and main theorems

There are several mutually equivalent ways to define the regularity of holonomic D-
modules. Here, following the notes of Bernstein [Ber3] we adopt a definition based
on the classification theorem of simple holonomic D-modules (Theorem 3.4.2) and
the regularity of integrable connections. One of the advantages of this definition is
that it gives a concrete description of regular holonomic D-modules.

Definition 6.1.1. Let X be a smooth algebraic variety. We say that a holonomic Dx-
module M is regular if any composition factor of M is isomorphic to the minimal
extension L(Y, N) of some regular integrable connection N on a locally closed
smooth subvariety Y of X such thatthe inclusion Y — X is affine (see Theorem 3.4.2).

Notation 6.1.2.
(i) We denote by Mod,, (Dy) the full subcategory of Mody (Dy) consisting of reg-
ular holonomic D x-modules.
(i) We denote by th (Dy) the full subcategory of DZ(D x) consisting of objects
M € Db(Dy) such that H'(M") € Mod,;(Dx) for any i € Z.

It follows immediately from the above definition that the category Mod,; (Dy) of
regular holonomic Dy-modules is closed under the operations of taking submodules,
quotient modules, and extensions inside Mod,:(Dx). Consequently Mod,, (Dx) is
an abelian subcategory of Mody (Dyx), and th(Dx) is a triangulated subcategory
of DY (Dx).

Remark 6.1.3. By Proposition 5.3.4 an integrable connection is regular in the sense
of Section 5.3 if and only if all of its composition factors are as well. Therefore, we
have Conn™&(X) = Conn(X) N Mod,,(Dx).
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Remark 6.1.4. Let C be a smooth curve. Then any simple holonomic D¢-module
is of the form L(Y, N) where Y consists of a single point or is a (connected) non-
empty open subset of C, and N is an integrable connection on Y. If Y consists of a
single point, L(Y, N) is always a regular integrable connection. Hence a holonomic
Dc-module is regular in the sense of Definition 6.1.1 if and only if it is regular in the
sense of Definition 5.1.21.

The main results in this chapter are the following two theorems.

Theorem 6.1.5. Let X be a smooth algebraic variety.

(1) The duality functor Dy preserves Df’h(D X).
(ii) Let f : X — Y be a morphism of smooth algebraic varieties. Then the functors
ff’ ff! sends D%, (Dx) to th(Dy), and the functors f¥, f* sends D% (Dy)

to DY, (Dx).

Theorem 6.1.6 (Curve testing criterion). Ler X be a smooth algebraic variety. The
Jfollowing conditions on M" € DZ (Dx) are equivalent:

(i) M € D}, (Dx).
(i1) iTCM' € th(Dc)for any locally closed embedding ic : C — X of a smooth
algebraic curve C.

(i) kTM e th (Dc) for any morphism k : C — X from a smooth algebraic curve
C.

The proof of Theorem 6.1.5 and Theorem 6.1.6 will be given in the next section.

Remark 6.1.7. It is known that a holonomic Dx-module M is regular if and only if
it M(= HImX=1G1 M) € Mod,;,(D¢) foranyic : C < X asinTheorem 6.1.6 (i)
(see Mebkhout [Me5, p. 163, Prop. 5.4.2]). Namely, we do not have to consider all
cohomology sheaves of i ZM .

In this book we do not go into detail about the theory of regular holonomic D-
modules on complex manifolds. Here, we only give its definition and state some
known facts without proofs.

Definition 6.1.8. Let X be a complex manifold. We say that a holonomic Dx-module
M is regular if there locally exists a goof filtration F of M such that for any P €
F™ Dy satisfying o, (P)|cn) = 0 we have PFXM C F¥™=1M for any k.

For a complex manifold X we denote by Mod,,(Dyx) the full subcategory of
Mody, (Dyx) consisting of regular holonomic Dx-modules. It is known that the cat-
egory Mod,,(Dy) is closed under the operations of taking submodules, quotient
modules, and extensions inside the category Mod.(Dyx) of coherent Dy-modules. In
particular, it is an abelian category. We denote by th(D x) the full subcategory of
DZ(DX) consisting of objects M~ € DZ(DX) such that H (M) € Mod,,(Dx) for
any i € Z. This is a triangulated subcategory of Dﬁ(DX). The following results are
proved by Kashiwara—Kawai [KK3].
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Theorem 6.1.9. Let X be a complex manifold. Then any regular holonomic Dy-
module admits a global good filtration.

Theorem 6.1.10. Let X be a complex manifold. Then the duality functor Dy sends
D, (Dx) to D%, (Dx)°P.

Theorem 6.1.11. Let f : X — Y be a morphism of complex manifolds.

(i) The inverse image functor f' sends Drbh (Dy) to Drbh (Dy).
(1) If f is proper, the direct image functor ff sends th (Dyx) to Drbh (Dy).

One can show the following using a result in Kashiwara—Kawai [KK3].

Theorem 6.1.12. Let X be a smooth algebraic variety, and let M be a holonomic
Dx-module. Take a divisor completion j : X — X of X. Then M is regular if and
only if (juM)™ is regular.

6.2 Proof of main theorems

In this section we give a proof of Theorem 6.1.5 and Theorem 6.1.6. It is divided into
several steps.

(Step 1) We show that the conditions (ii) and (iii) in Theorem 6.1.6 are equivalent.

We only need to show that (ii) implies (iii). Assume (ii)). Letk : C — X
be a morphism from a smooth algebraic curve C. We may assume that C is con-
nected. If Im(k) consists of a single point p, then we have KM~ Oc®criMl],
where r : {p} — X is the inclusion. Hence the assertion is obvious. Assume
that dimIm(k) = 1. Take a non-empty smooth open subset C’ of Im(k) and
denote by kg : Cop := k~'C’ — C’ the canonical morphism. Then we have
K'M'|ey = kjil M € Db, (Dc,) by (i) and Lemma 5.1.23. Hence we obtain
k"M € Db (Dc) by Remark 6.1.4.

(Step 2) Let us show Theorem 6.1.5 ().

We need to show Dy M € th (Dyx) for M" € th(DX). By induction on the
cohomological length of M~ we may assume that M = M € Mod,,(Dx). We can
also reduce the problem to the case when M is simple by induction on the length of
the composition series of M. In this case M is the minimal extension L(Y, N) of a
regular integrable connection N on a locally closed smooth subvariety Y of X such
that the inclusion i : ¥ — X is affine. By Proposition 3.4.3 and Example 2.6.10
we have

DxL(Y, N) >~ L(Y, DyN), DyN ~ Homp, (N, Oy).
Hence the assertion is a consequence of Proposition 5.3.5. The proof of Theo-
rem 6.1.5 (i) is complete.

It follows from Step 2 that the proof of Theorem 6.1.5 (ii) is reduced to the
following two statements for a morphism f : X — Y of smooth algebraic varieties:



164 6 Regular Holonomic D-Modules

(a) Forany M" € D, (Dx) we have [, M" € D), (Dy).
(b) Forany M" € th(Dy) we have fTM' € th(DX).

We first verify (a) in some special cases in Step 3 and Step 4.

(Step 3) Let X be a smooth algebraic variety and let X be a smooth completion of X
such that the complementary set D = X \ X is a normal crossing divisor on X. We
show that (a) holds when f is theembedding j : X < Xand M" = M € Conn™2(X).

The functor j, being exact, we may assume that M is simple by induction on the
length of M. By Theorem 3.4.2 (ii), each composition factor L of j, M is of the form
L = L(Y, N) (Y C X isaffine and N is an integrable connection on Y), and we need
to show that N is a regular integrable connection. If jTL # 0, then we have N ~ M
by Theorem 3.4.2, and hence N is regular in this case. Therefore, we assume that
jTL = 01in the following.

Claim. LetD = X\ X = (Ji_, Di be the irreducible decomposition of D. For each

subset I C {1,2,...,r}set D; := () D; and consider its irreducible decomposition
iel
D; = U, D1« Also set D}, := Dy, \ |J D; (an open subset of D; ). Then
’ il

for the above composition factor L satisfying j "L = 0, there exist a pair (I, «) with
I # ¢ and an integrable connection N over D}’ o Such that L >~ L(D}’ o V).

Proof of claim. Theorem 5.3.7 implies that j,.M is generated by a ®(D)-stable
coherent Oy-submodule K. Define a good filtration F' of j.M by F,(j:M) =
(FpDy)K for p > 0. Then ©x(D)(C Of = grf Dy) acts trivially on gr’” M.
From this we easily see that

Ch(j.M) c |75, X

I,

In otlEr words, the characteristic variety Ch(j,M) is a union of conormal bundles
TZ‘-‘)I , X. Since Ch(L) C Ch(j,M), L must satisfy the same condition. Therefore, the
support of L is a union of Dy ,’s. Let us take an irreducible component Dy o of the

supportof L. Leti D, " D}’ o« X be the inclusion. By Kashiwara’s equivalence and
Lemma 2.3.5 we see that the characteristic variety of the pull-back N := (i D, )L to

D), , coincides with the zero-section TI’;/ D’ ,and hence N is a non-zero integrable
’ o

1’
connection by Proposition 2.2.5. By (thé proof of) Theorem 3.4.2 (ii) we easily see
from the simplicity of L that L coincides with the minimal extension L(D) ,, N)

of N. O

Now our task is to prove that the integrable connection N in the claim above is
regular. By Theorem 5.3.7 we have j.M = [_J; W; for coherent O-submodules W;
of j,M stable under the action of D+[D]. Hence the composition factor L of j,.M

also satisfies the same condition L = _J; W/. Note that the pair (D’,’ o+ Di.a) s geo-

metrically very similar to (X, X), and that Aja ' =Djg\ D} o 18 a normal crossing
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divisor on Dy . Now recall that supp L = Dy . Therefore, by Kashiwara’s equiv-
alence for the inclusion ip, , : Dy o X, the complex (ip ,a)TL is concentrated in
degree 0. '

Let us show that (i D,_Q)TL also satisfies the same property as L itself, that
is, (ip,,)L is a union of coherent Op, ,-submodules stable under the action of
Dp, (A5 el First consider the case where X D D = {x;-+x, =0} D D; =
{xi = 0}. Then we have H(ip,)'L = Ker(x; : L — L) and the coherent O-
submodule Wl.’ stable under the actions of 6; = x;9; (1 < i < r) induces a coherent
Op,-coherent submodule V; = W/ NKer(x; : L — L) of (i D,)TL stable under the
actions of 6; (2 < i < r). We also have (i D,)*L = Ul- V. In the general case where
the codimension of Dy, is greater than one we can repeat this procedure.

Now let 1 = 0 be the defining equation of the divisor A; 4 on D;j . Then we
see that

(ip; sy )+N = Op, [A1al ®0p, , (in,,) L

also has the same property | J [OD,.ahfk ® Vil =0p, [Al«] ®0p, (ip, a)%L.
k>0, i “ ’

Therefore, Theorem 5.3.7 implies that N is a regular connection on D}’a

(Step 4) For an algebraic variety Y we denote the singular locus of Y by Sing Y. We

show the following.

Claim. Let S (resp. C) be a smooth projective algebraic variety of dimension 2 (resp.
1), and let Sy C S (resp. Co C C) be a non-empty open subset. Set Ag := S\ Sp and
Ac = C\ Cp. We assume that Ag is a normal crossing divisoron S. Let f : § — C
be a morphism satisfying the following conditions:

(1) f(So) C Cpand f|s, : So — Co is smooth.

(i) f(Sing Ag) C Ac.
We denote by i : Sp < S the embedding. Then for any regular integrable connection
M on Sy we have [, i.M € D}, (Dc).

Thisresultis due to Griffiths [Gri] and it was later generalized to higher dimensions
by Deligne. We call this fact the regularity of Gauss—Manin connections.

Proof of claim. Recall the notation DS(AS) Dc(Ac),etc.,in Section 5.3. Similarly
to Dg_, ¢, we define a (Ds(Ag), f~ Dc (Ac))-bimodule Dg_, ¢ (A) by

Ds_.c{A) =05 ® 10, [~ ' De{Ac).

For the sake of simplicity we consider the corresponding equivalent problem in the
category of “right” D-modules. Recall that the direct image under f of a complex
M € Db(Dgp) of right Dg-modules is given by

/f M’ := Rf.(M" ®p Ds_.c).

We define a functor
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& b b
/ : D”(Mod(Dg(Ag)*?)) —> D”(Mod(Dc(Ac)™))
f

by
(a) .
/f M = Rfe(M ®p (g Ds—c(A)).

Then we have

(1) For M € Mod(Dgg) we have an isomorphism

(A)
/ M ~ / ixM
f f

in D?(Mod(Dc(Ac)°P)).

(2) Let L be a right Dg(Ag)-module which is coherent over Og. Then all the co-
homology sheaves of f;M L are right Dc(Ac)-modules which are coherent
over O¢.

The assertion (1) follows immediately from Dg{(Ag)|s, = Ds, and Dg_,c(A)]|s,
= Dg,—c,- Letus prove (2). By our conditions (i), (ii) on f we see that the canonical
morphism

Os(As) — f*Oc(Ac) =05 @10, [~ Oc(Ac)
is an epimorphism. Denote by ®g,c (A) its kernel. Then we have an exact sequence
0 — Ds(As) ®0y Os/c(A) —> Ds(As) —> Dg_,c[A] — 0

of Dg{Ag)-modules. We can regard this as a locally free resolution of Dg_, ~(A),
and hence for a right Dg(Ag)-module L we have

(A)
ff L = Rfi[L ®04 Os/c(A) —> LI.

Since f is proper, the cohomology sheaves H*( [ ]SA) L) are coherent over Oc¢ if L is
coherent over Og. This completes the proof of (2).

Now we can finish the proof of our claim. Since M is a regular integrable connec-
tion on Sp, we see by Theorem 5.3.7 that there exist Og-coherent Dg (A g)-submodules
Ly CiyM suchthati,M = h_n)l Ly. By (1) there exist isomorphisms

o

(A) (A) (A)
H*/i*MzH*f i*M:H*/ h_r)nLazlimH*/ Ly
f f /T o f

of D¢ (Ac)-modules. By (2) H*( ffm) L) is coherent over O¢, and hence we have
f ¥ ixM e th (Dc¢) by Theorem 5.3.7. The proof of our claim is complete. O
In Step 5-Step 8 we will show the statement (a) and the equivalence of (i) and (ii)

in Theorem 6.1.6 simultaneously by induction on dim supp(M"), where supp(M") :=
U, supp(H/ (M")).
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(Step 5) We show that the statement (a) holds when f is an affine embedding i :
X< Yand M = M € Conn™8(X).
Let us consider the distinguished triangle

/M—>/M—>c,-(M)i>
i! i

in DZ(Dy) associated to the morphism f“ — fl (see Section 3.4). Since i is an
affine embedding, we have H” [[M = 0(p # 0) and H? [, M = 0(p # 0).
Therefore, by considering the cohomology long exact sequence associated to the
above distinguished triangle we see that any composition factor of HO( f“ M) or
HO( fl M) is isomorphic to that of H*C;(M) or to that of the minimal extension
L(X, M) =Im(H (f;,, M) — H(J; M)). Since L(X, M) is regular by definition,
we have only to show that C; (M) € th(Dy).

By a theorem of Hironaka we can decompose the morphism i into the composite
of an open immersion j : X — X and a proper morphism f : X — Y, where
X \ X is a normal crossing divisor on X. By applying the functor / = i nto the
distinguished triangle

/M—>/M—>cj(M)i1>
Jt j

associated to the open embedding j we obtain a distinguished triangle

/M—)fM—)/Cj(M)ik.
il i f

Hence we have f f C;j(M) >~ C;(M). On the other hand we know already that
M, [\M e D?, (D) by Step 2 and Step 3. Hence it follows from the above

distinguished triangle that C;(M) € Df’h(Dy). Moreover, by the construction in
Theorem 3.4.2 we have

dim supp C;(M) < dim supp M.
Therefore, we obtain C; (M) =~ f ¥ Ci(M) € Df ', (Dy) by our hypothesis of induction.

(Step 6) We give a proof of (i)==(ii) in Theorem 6.1.6, i.e., we show iZM' €
th (Dc) forany M € th(DX) and any embedding ic : C < X of an algebraic
curve.

By induction on the cohomological length of M~ we may assume M" = M €
Mod,,(Dx). We may also assume that M is a simple object of Mod,,(Dyx) by
induction on the length of M. In this case M is a minimal extension M = L(Y, N)
(j 1 Y — X: affine) of a simple regular integrable connection N on Y. Set Q =
(fj N)/M. By Theorem 3.4.2 we have dim supp O < dim supp M. Moreover, we

have Q € th(DX) by Step 5. Therefore, the hypothesis of induction implies that
we have i TC Qe Dﬁ’h(Dc). Hence by the distinguished triangle
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. .t . 1
léM—)lC/N—>lZ~QL>

J

we have only to show i 2 f j N € th(Dc). By applying the base change theorem
(Theorem 1.7.3) to the cartesian square

ync — vy
o) il

ic
C —— X,

we get i é fj N ~ fjo i(; N (note that ¥ N C is smooth since C is one-dimensional).
Hence it is sufficient to show that fjo igN € th(Dc). Inthe case dimY NC =0
this is obvious. If dimY N C = 1, then ¥ N C is an open subset of C. In this case
igN is a regular integrable connection on Y N C up to a shift of degrees by definition.
Hence by the definition of regular holonomic D-modules on algebraic curves, we
have [, iiN € DY, (Dc).

(Step 7) We give a proof of (ii))==(i) in Theorem 6.1.6.

Let M" € Dz(DX). We assume that iéM‘ € th(DC) for any embedding
ic : C — X of an algebraic curve, and will show that M~ € th(DX). Set
S = supp M". By Proposition 3.1.6 there exists an open dense subset ¥ of S such
that H*(i" M) are integrable connections on Y (i : ¥ < X). We may assume that
i : Y= X is an affine embedding. Take an open dense subset U of X such that
SNU =Y andset Z =X \U. Wedenotebyk :Y — U and j : U — X the
embeddings. Note that i = j o k and that j (resp. k) is an open (resp. a closed)
embedding. By the distinguished triangle

RT, (M) — M’ —>/jTM' L
j

in Df(Dx) associated to the triplet U — X <« Z it is sufficient to show that
RTz(M), [, j*M" € D}, (Dx).

We first show RI'z(M") € th(Dx). By supp RI'z(M") C S N Z we have
dim supp RI'z(M") < dim supp M. Hence we have only to show to igRFZ(M') €

Df » (Dc) for any curve C by the hypothesis of induction. Applying the functor i 2 to
the above distinguished triangle we obtain a distinguished triangle

iLRD, (M) — ilM —> ié/ﬁM' B2
j

Hence it is sufficient to show ig fj itM e th(DX). By applying the base change
theorem to the cartesian square
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v —

I o]
unc —2-> ¢

we obtain i(T': fj iMoo~ [ aTigM', and hence we have only to show that
[,atizM € DP (Dc). This is obvious if dimU N C = 0. Assume that
dimU N C = 1. By our assumption we have iéM' € th(Dc), and hence we
obtain | o aTiZM T € th (Dc) by the definition of the regularity for holonomic
D-modules on algebraic curves.

Next let us show f j itM e th(DX). By applying Kashiwara’s equivalence
(Theorem 1.6.2) to the closed embedding k : ¥ < U we easily see that fj jtM ~
fi i"M'. Recall that H*(iTM") are integrable connections on Y. Since i is affine, it
is sufficient to show H*(i"M") € Conn™2(Y) by Step 5. For this it is sufficient to
show ng *GTM) € th(Dc) for any locally closed embedding jo : C — Y of a
curve C into Y. Since H*(i" M") are integrable connections, we have ng GQTM) ~
H*~1+dy (jéﬁM')[l —dy]l ~ H* " (( o jo)"M")[1 — dy]. Hence it belongs to
th (Dc) by our assumption on M.

(Step 8) We give a proof of (a) for general f.

It is enough to prove the assertion separately for the case of closed embeddings,
and for the case of projections.

We first treat the case when f : X — Y is a closed embedding. As before we
may assume that M = M = L(X1, N) for some locally closed smooth subvariety
X of X such that the embedding i : X| — X is affine and N € Conn™#(X). Since
the dimension of the support of the cokernel of the morphism L(X{, N) — fl N is
less than that of M" = L(X, N), it is enough to prove ffoi N € th (Dy) by our
hypothesis of induction. This assertion has already been proved in Step 5 (f o is an
affine embedding).

Next we deal with the case of a projection f : X = Z xY — Y and M €
th(D x). By the argument in the proof of Lemma 3.2.5 we may assume that Z is
affine from the beginning. Let us choose a closed embedding j : Z — A" and
factorize f as the composite of j x Idy : X = Z x ¥ — AY x Y and a projection
AN x Y — Y. Since the morphism j x Idy is a closed embedding, it is enough to
prove our assertion for p : AV x ¥ — Y. Moreover, decomposing AN x ¥ — Y
into AN xY - ANl xy — ... - Al x Y — Y, we can further reduce the
problem to the case of projections A! x ¥ — Y (with fiber A!). By Step 6, Step 7,
and Theorem 1.7.3 we may also assume that Y is an algebraic curve C. Namely, for
p:Al'xC— Cand M ¢ th(DAIXc), we have only to prove fp M e th(Dc).
As before, we may assume that M" = M = L(X, N) for some locally closed smooth
subvariety X| of Al x C suchthati : X; — A! x Cisaffineand N € Conn™8(X).
By dim supp Coker(L(X1, N) — j; N) < dimsupp(L (X, N) and the hypothesis

of induction it is sufficient to show fpoi N € th(Dc). The case dimX| < 1is
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already known (see Lemma 5.1.23) and hence we may assume that X is an open
subset of A! x C. N amely, it is sufficient to show following statement.

Claim. Let U be a non-empty open subset of A' x C. Wedenotebyi : U — Al x C
and p : A x C — C the embedding and the projection, respectively. Then for any
regular integrable connection N on U we have f N e D (D).

Proof of claim. We first note that we can always replace C and U with a non-empty
open dense subset C’ of C and U’ = p~!'C’ N U, respectively, by the definition of
regularity for holonomic D-modules on algebraic curves. Take a smooth completion
j:C — Cof C,and regard A! x C as an open subset of P! x C. We denote by
P : P! x C — C the projection. Note that (P! x C) \ U is a union of a divisor
and finitely many points. Hence by replacing C with its non-empty open subset
we may assume from the beginning that ﬁ(Sing((IP>l x C) \U)) C el \ C. Then
by Hironaka’s desingularization theorem we can take a proper surjective morphism
7 : S — P! x C such that the morphism 7y : 77! (U) — U induced by 7 is an
isomorphism, Ag = nfl((IP’] x C) \ U) is a normal crossing divisor on S, and
n(SmgAS) C Sing((P' x C)\U). Set o =n~'U, f =pom : § — C, and let
: So — S be the embedding. Then we have f(Sing A = §) ¢ C \ C, and

j*/ szf*ngN
poi f

Hence our claim follows from Step 4. O

(Step 9) The statement (b) follows easily from Theorem 6.1.6.

The proof of Theorem 6.1.5 and Theorem 6.1.6 is now complete.
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Riemann-Hilbert Correspondence

This chapter is concerned with one of the most important theorems in D-module
theory. This fundamental theorem, which is now called the Riemann—Hilbert cor-
respondence, establishes an equivalence between the category of regular holonomic
D-modules and that of perverse sheaves. It builds a bridge from analysis to topology
leading us to a number of applications in various fields in mathematics.

7.1 Commutativity with de Rham functors

Recall that for a smooth algebraic variety X we have the duality functors
Dy : DY (Dx) — DY (Dx)*, Dy : DX(X) — DY (X).

Recall also that for a morphism f : X — Y of smooth algebraic varieties we have
the functors

/ : D}(Dx) —> D}(Dy). Rfs: DX(X) —> DL(Y),
f

f' : DY(Dx) —> Dj(Dy). Rfi: DL(X) — DE(Y),

)” : D} (Dy) — DY(Dx),  f':Db(Y) — DL(X),
f*:D)(Dy) — Di(Dy), f':D2(Y) — DE(X).

By Theorem 6.1.5 all of the functors Dy, ff, ff!, T, £* preserve Drbh. We know
already that

Dx DRx(M') ~ DRx(DxM’)  (M' e Db(Dx)) (7.1.1)

(see Corollary 4.6.5 and Proposition 4.7.9), i.e., the de Rham functor on Dz commutes
with the duality functors. In this section we will also prove the commutativity of the
de Rham functor on th with the inverse and direct image functors.
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We first note that there exists a canonical morphism
DRY(/ M') — Rf,DRx(M') (M e D(Dy)) (7.1.2)
!
by Proposition 4.7.5. Hence by (7.1.1) we also have a canonical morphism

RﬁDRX(M‘)—>DRy</ M‘) (M e Db (Dy)). (7.1.3)

f!
On the other hand we have a canonical morphism
DRx(f'N') — f'DRy(N’) (N" € DY(Dy)) (7.1.4)

as the image of Id ;. under the composite of the morphisms

Hom ) (1N, V) :HomD;h,(Dy)( f*N',N')

f!
1

— Hom .y (Rfi DRx (f'N'), DRy (N"))

~ HomD?(X)(DRX(f*N'), f'DRy(N")).

Here we have used the fact that f7 is right adjoint to s 1 (Corollary 3.2.15) and f'is
right adjoint to Rf;. Hence by (7.1.1) we also have a canonical morphism

f~'DRy(N') — DRx(f*N') (N € D!(Dy)). (7.1.5)

Theorem 7.1.1. Let f : X — Y be a morphism of smooth algebraic varieties.
Then the canonical morphisms (7.1.2), (7.1.3), (7.1.4), (7.1.5) are isomorphisms if
M e th (Dx) and N° € th (Dy). Namely, we have the following isomorphisms
of functors:

DRyo[ ~ Rf. o DRx : Db, (Dx) — D%(Y),
f

DRyo/ ~ Rfj o DRy : D% (Dx) —> DE(Y),
1

DRy of"~ f'o DRy : D’ (Dy) — D’(X).
DRy of* ~ f~' o DRy : D!, (Dy) —> DE(X).

Proof. Letus show that (7.1.2) is an isomorphism for M" € th (Dy). Note that this
is already verified if f is projective (Proposition 4.7.5). We first deal with the case
M = M € Conn™¢(X). By atheorem of Hironaka f can be factorized as f = po j,
where j : X < X is an open embedding such that X \ X is a normal crossing divisor
on X and p : X — Y is projective. Hence we may assume that f = j. In this case
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the assertion follows from Theorem 5.2.24 and Proposition 5.3.6. Now we treat the
general case. We may assume M = M € Mod,;,(Dy). By induction on dim supp M
we may also assume that M = fl L, where i : Z — X is an affine embedding of a
smooth locally closed subvariety Z of X and L is a regular integrable connection on
Z. Then we have

DRy/M:DRyf/LZDRy/ L>~R(foi)xDRz L
f fJi foi

~ Rf«Ri. DRz L >~ Rf. DRy /L =RfyDRx M.
1
We have proved that (7.1.2) is an isomorphism for M" € Df’h (Dx).

Next we show that (7.1.4) is an isomorphism for N* € Df’h (Dy). Note that this is
already verified if f is smooth (Corollary 4.3.3). By factorizing f into a composite of
the graph embedding X < X x Y and the projection p : X x Y — Y we have only to
deal with the case where f is a closed embeddingi : X < Y. Letj : Y\ X < Y be
the corresponding open embedding. Then for N € Df » (Dy) we have the following
morphism of distinguished triangles:

DRy [,iiN" ——> DRyN' —— DRy [, j’N" —

I/fl Idl wl
Riyi'DRyN' —— DRyN' — Rj,j'DRyN" LN
Since j is smooth, we have DRy\ x jTN‘ ~ j!DRy N-. HencebijN‘ € th(Dy\X)
we have
DRijTN' ~ Rj.DRy\x j'N' =~ Rj,j'DRyN",
i

i.e., the morphism ¢ is an isomorphism. Therefore, 1 is also an isomorphism. By
DRy /iTN' =5 Ri,DRxi'N',
i
we obtain an isomorphism
Ri.DRxi'N =~ Ri,i'DRy N'.

Note that i ~! Ri,, = Id since i is a closed embedding. Hence we obtain the desired
result by applying i ~! to the above isomorphism. We have shown that (7.1.4) is an
isomorphism for N' € th(Dy).

The remaining assertions follow from the ones proved thus far in view of
(7.1.1). O

Remark 7.1.2. As we saw above, the assumption of the regularity of D-modules is
essential for the proof of the commutativity DRy fj ~ Rj. DRy (resp. DRy i" ~

i' DRy) of DR with the direct image (resp. the inverse image) for an open embed-
ding j (resp. for a closed embedding /). Using this property of regular holonomic
D-modules, Mebkhout [Me6] defined certain objects in Df (Cx) to measure the “ir-
regularity” of holonomic D-modules (perverse sheaves called irregularity sheaves).
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7.2 Riemann-Hilbert correspondence

Now we can state one of the most important results in the theory of D-modules,
which is now called the Riemann—Hilbert correspondence. The following original
version of this theorem for regular holonomic D-modules on complex manifolds was
established by Kashiwara in [Kas6], [Kas10] (a different proof was also given later
by Mebkhout [Me4]).

Theorem 7.2.1. For a complex manifold X the de Rham functor
DRy : Db, (Dx) — D’(X)
gives an equivalence of categories.

We do not give a proof of this result in this book.

After the appearance of the above original analytic version Beilinson—-Bernstein
developed systematically a theory of regular holonomic D-modules on smooth alge-
braic varieties and obtained an algebraic version of the Riemann—Hilbert correspon-
dence stated below (see also Brylinski [Br], where the algebraic version is deduced
from the analytic one).

Theorem 7.2.2. For a smooth algebraic variety X the de Rham functor
DRy : Db, (Dx) — D’(X)
gives an equivalence of categories.

Sketch of proof. We first prove that the functor DRy is fully faithful, i.e., there exists
an isomorphism

Hom (1) (M, N') > Hom py ) (DRx M', DRx N') (7.2.1)

for M, N € Df’h(D x). In fact, we will prove a more general result:
RHomp,(M', N') ~ RHomc,,,(DRx M", DRx N°). (7.2.2)

Let A : X — X x X be the diagonal embedding and let p : X — pt be the unique
morphism from X to the variety pt consisting of a single point. By Corollary 2.6.15
we have

RHomp, (M, N'):/M(DXMMN'). (7.2.3)
P

To calculate the right-hand side of (7.2.2) we need
RHomg,,, (F', G) ~ Rp, A'DxF RG)  (F,G € DY(X)). (124
This follows by applying Rp.(e) = RI'(X, e) to

A'DxF RG) >~ A'Dyxx(F XDxG)
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~DxAN(F ®DxG)
~Dyx(F ®cDxG’)
~ RHomc(F ®c DxG', wx)
>~ RHomc(F', RHomc(DxG', wyx))
~ RHomc(F", D%G)
~ RHomc(F', G).

Therefore, we obtain the desired result by

R Homg,,, (DRx M', DRx N°)
~ Rp.A'(DxDRx MYX DRy N)  (7.2.4)
~ Rp*A!(DRX (DxM)XDRx N°) (Proposition 4.7.9)
~ Rp*A!(DRxXX((ID)XM') XINY)) (Proposition 4.7.8)

~ Rp. DRx(AT(DxM K N)) (Theorem 7.1.1)
~ DRy / ATDxM XN (Theorem 7.1.1)
14
~ / ATDxM KN (DR = 1d)
p
~ RHomp, (M', N°) (7.2.3)

(note that the regular holonomicity is necessary whenever we used Theorem 7.1.1).

It remains to prove that the functor DRy is essentially surjective, i.e., for any
F e Df(X) there exists an object M~ € th(DX) satisfying DRy (M) >~ F". Itis
enough to check it for generators of the triangulated category ch (X). Hence we may
assume that F* = Ri,L € Df,’((CX) for an affine embedding i : Z — X of a locally
closed smooth subvariety Z of X and alocal system L on Z?". By Theorem 5.3.8 there
exists a (unique) regular integrable connection N on Z such that DRz N ~ L[dim Z].
Set M" = [, N[—dim Z] € D%, (D). Then we have

DRx(M") = DRy /N[— dim Z] >~ Ri. DRz N[—-dim Z] ~ Ri,L = F".
i

The proof is complete. O

Remark 7.2.3. It is not totally trivial whether the isomorphism (7.2.1) constructed in
the sketch of proof coincides with the one induced by DRy . To make it more precise,
we need to check many relations among various functors (we refer to Morihiko
Saito [Sa2, §4] for details about this problem). That is why we add the terminology
“Sketch of.”

By Proposition 4.2.1 we obtain the following.

Corollary 7.2.4. The solution functor
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Soly : D%, (Dx) == D2(X)°P
gives an equivalence of categories.

The image of the full subcategory Mod,,(Dy) of th (Dx) under the de Rham
functor DRy : D%, (D) = DP(X) is described by the following.

Theorem 7.2.5. The de Rham functor induces an equivalence

DRy : Mod,;,(Dx) = Perv(Cy)
of categories. In particular, Perv(Cy) is an abelian category.

The rest of this section is devoted to the proof of Theorem 7.2.5.

For n € Z we denote by D" (Dx) (resp. D;:"(Dx)) the full subcategory of
DZ(DX) consisting of M satisfying H/ (M") = 0 for j < n (resp. j > n). We also
define full subcategories D="(X) and D="(X) of D(X) similarly.

Lemma 7.2.6. For M € Dz(DX) we have
M € Di*(Dx) <= DxM’ € D;’(Dy).

Proof. Let us show (=). We may assume that M" 7 0. Let j be the smallest
(non-negative) integer such that H/ (M) # 0. Then we have a distinguished triangle

HI (M) [—j] — M — =i+ T

Hence by induction on the cohomological length of M" it is sufficient to show
Dx(N[—Jj]) € DZ(DX) for any N € Mod;,(Dyx) and any non-negative integer
Jj. This follows from Dx (N[—j]) = Dx(N)[j] and Corollary 2.6.8 (iii). The proof
of (<) is similar. O

Corollary 7.2.7. An object M~ of Dz(DX) belongs to Modj, (Dy) if and only if both
M and Dx M" belong to thO(DX).

Lemma 7.2.8. The following conditions on M" € Dﬁ (Dx) are equivalent:

() M € D°(Dy).

(1) For any locally closed subvariety Y of X there exists a smooth open dense subset
Yo of Y such that i;OM' € DhZO(DyO) and H' (i;OM') is coherent over Oy, for
any j, where iy, : Yo — X denotes the embedding.

Proof. (1) = (ii): In view of Proposition 3.1.6 it is sufficient to show that for any
smooth open dense subset Yy of Y we have i;OM S DfO(DYO). This follows from

the fact that the right Iy, ! Dx-module D Yo— x locally admits a free resolution of length
dx — dy, (see Section 1.5).
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(i) = (i): Suppose that we have H/ (M) # 0 for a negative integer j < 0. Let
Jo be the smallest integer satisfying this property, and set Y = supp H/0(M"). Itis
sufficient to show H/0(i ;,OM ) # 0 for any smooth open dense subset Yy of Y. By

applying i ;0 to the distinguished triangle

HOM)[—jo] — M~ — t>iopr FL

we obtain a distinguished triangle
A o AgNT o R R
lYOH (M)H[—jol — zYOM —> iy T M — .

By H/(i;or>/0M') = 0for j > jo wehave H/'O(ii,OM') ~ Ho(ié,OH/U(M')). Hence
the assertion follows from Kashiwara’s equivalence. O

By Lemma 7.2.6 we obtain the following.
Lemma 7.2.9. The following conditions on M" € Dﬁ (Dx) are equivalent:

() M € D°(Dy).

(1) For any locally closed subvariety Y of X there exists a smooth open dense subset
Yo of Y such that igM' € DhSO(DyO) and H/ (i%M') is coherent over Oy, for
any j, where iy, : Yo — X denotes the embedding.

Proof of Theorem 7.2.5. By Lemma 7.2.6 and the commutativity of the de Rham
functor with the duality functors it is sufficient to show that the following conditions
on M € th (Dx) are equivalent:

(@) M € D5 (Dy),
(b) dimsupp H/ (DRx M') < —j forany j € Z.

Set F* = DRy M'. By Lemma 7.2.9 and the commutativity of the de Rham functor
with the inverse image (on th) the condition (a) is equivalent to the following;

(c) for any locally closed subvariety Y of X there exists a smooth open dense subset
~d .

Yo of Y such that i;OlF‘ € DCS Yo (Yo) and H’/ (i;olF‘) is a local system for any
J» where iy, : Yo — X denotes the embedding.

(c) = (b): Set Y = supp(H’(F")), and take a smooth open dense subset Y of
Y asin (c). Then by H/(iy'F) = iy H/(F") # 0 we have j < —dy,. Hence
dimY < —j.

(b) = (c): We may assume that Y is connected. Take a stratification X = Ly X
of X such that H’ (F")| x,, 18 a local system for any « and j. Then there exists some
a such that Y N X, is open dense in Y. Let Y be a smooth open dense subset of Y
containedin Y N X,. Since H/ (i;o1 F)(x~ i;ol HJ(F"))isalocal system, it is non-zero

—d
only if dy, < —j by the assumption (b). Hence we have i;o 'F e DCS fo Yo). O
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Remark 7.2.10. Let Y be an algebraic subvariety of X and consider a local system
L on U for an open dense subset U of the regular part of Y. Then we can as-
sociate to it an intersection cohomology complex ICyx (L) € Perv(Cy) on X (see
Section 8.2). This is an irreducible object in the abelian category Perv(Cy) whose
support is contained in Y. Let us consider also the regular integrable connection
M on U which corresponds to L by the equivalence of categories in Theorem 5.3.8
(DRy M = L[dim U]). Then it follows easily from the construction of ICx (L)  that
the minimal extension L(U, M) € Mod,;(Dx) of M (see Theorem 3.4.2) corre-
sponds to ICx (L) through the Riemann—Hilbert correspondence in Theorem 7.2.5:

DRy L(U, M) ~IC(L).

Remark 7.2.11. In [Kas10] Kashiwara constructed also an explicit inverse of the
solution functor Soly : th(DX) — Df (Cx)°P for a complex manifold X in order
to establish the Riemann—Hilbert correspondence. He used Schwartz distributions to
construct this inverse functor, which is denoted by R Hy (e) in [Kas10]. Motivated by
this construction, Andronikof [An2] and Kashiwara—Schapira [KS3] (see also Colin
[Co]) developed new theories which enable us to study Schwartz distributions and
C°°-functions by purely algebraic methods. In particular, microlocalizations of those
important function spaces are constructed. We also mention here recent results on the
microlocal Riemann—Hilbert correspondence due to Andronikof [An1] and Waschkies
[Was] (see also Gelfand—MacPherson—Vilonen [GMV2]).

7.3 Comparison theorem

As an application of the Riemann—Hilbert correspondence we give a proof of the
comparison theorem. This theorem is concerned with historical motivation of the
theory of regular holonomic D-modules. It is also important from the viewpoint of
applications.

Let @X, x be the formal completion of the local ring Ox , atx € X, i.e.,

ST I
Ox x = Lllglox,x/mx,

where m, denotes the maximal ideal of Ox , at x. It is identified with the formal
power series ring C[[x1, x2, ..., x,]] in the local coordinate {x; } of X, and the analytic
local ring Oxan  (the ring of convergent power series at x) is naturally a subring of
(’)X x. For each point x € X and M" € DP(Dy), the inclusion Oxan y — OXX
induces a morphism

+ : RHomp, (M}, Oxm y) —> RHomp, (M;, Ox )

of complexes, where M, is the stalk of M" at x. Note that the left-hand side of v,
is isomorphic to the stalk (Soly M), of Soly M~ € Db((Cxan) at x. On the other
hand the right-hand side R Homp, (M|, O x,x) can be considered as a higher-degree
generalization of the formal solutions Homp, (M, @\X,x) of M at x.
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Proposition 7.3.1. [f M" € th(DX), then vy is an isomorphism for each x € X.
Proof. By Proposition 4.2.1
(Solx M)y >~ (DRx Dx M '[—n])y (n = dim X)

~ i ' DRy Dx M [—n] (iy : {x} > X)

~ DRy Dy)itM[-n]  (Theorem 7.1.1)

~ Dyyyis M [—n].
For a Dy -free resolution P M . of M, we have by definition

iiM ~ilP =C®o,, Pl-nl

and hence
(Soly M), = (C®oy, P)*.

On the other hand, since we have
C ROy Dx y = Dx x/myDx x
~ C[0y, 02, ..., Oyl

({xi, 0;}1s alocal coordinate system at x), there exists a natural isomorphism

Ox.x = Homg (Dx,x/me Dy x, C) = (C®0,, Dx.0)*
f = [p@) — (p(d) /H(x)].
Therefore, we get
Homp, , (Dx x, 5X,x) ~ 5X,x ~ (C®oy, Dx.x)"

from which we obtain

Homp, (P, Ox ) ~ (C®p,, P)*.
Since P’ is a free resolution of M, the left-hand side is isomorphic to

RHomp, (M;, Ox.).

Therefore, we obtain the desired isomorphism

RHomp,  (M;, Ox ) = (Solx M"),.
The proof is complete. O

Remark 7.3.2. Let X be a complex manifold. It is known that a holonomic Dy-
module is regular if and only if the canonical morphism

vy : RHomp, (M, Ox ) - RHomp, (M, 6X,x)

is an isomorphism at each x € X. This fact was proved by Malgrange [Ma3] for
ordinary differential equations (the one-dimensional case), and by Kashiwara—Kawai
[KK3] in the general case.
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Perverse Sheaves

In this chapter we will give a self-contained account of the theory of perverse sheaves
and intersection cohomology groups assuming the basic notions concerning con-
structible sheaves presented in Section 4.5. We also include a survey on the theory
of Hodge modules.

8.1 Theory of perverse sheaves

An obvious origin of the theory of perverse sheaves is the Riemann—Hilbert correspon-
dence. Indeed, as we have seen in Section 7.2 one naturally encounters the category
of perverse sheaves as the image under the de Rham functor of the category of reg-
ular holonomic D-modules. Another origin is the intersection cohomology groups
due to Goresky—MacPherson. Perverse sheaves provide the theory of intersection
cohomology groups with a sheaf-theoretical foundation.

In this section we present a systematic treatment of the theory of perverse sheaves
on analytic spaces or (not necessarily smooth) algebraic varieties based on the lan-
guage of 7-structures.

8.1.1 ¢-structures

The derived category of an abelian category C contains C as a full abelian subcate-
gory; however, it sometimes happens that it also contains another natural full abelian
subcategory besides the standard one C. For example, for a smooth algebraic variety
(or a complex manifold) X the derived category Df (X) contains the subcategory
Perv(Cy) of perverse sheaves as a non-standard full abelian subcategory. It is the
image of the standard one Mod,,(Dy) of th (Dx) by the de Rham functor

DRy : DY, (Dx) == Db (X).

More generally one can consider the following problem: in what situation does a
triangulated category contain a natural abelian subcategory? An answer is given by
the theory of 7-structures due to Beilinson—Bernstein—Deligne [BBD].



182 8 Perverse Sheaves

In this subsection we give an account of the theory of z-structures. Besides the
basic reference [BBD] we are also indebted to Kashiwara—Schapira [KS2, Chapter X].

Definition 8.1.1. Let D be a triangulated category, and let DS?, D=9 be its full sub-
categories. Set DS" = DS[—p] and D" = DZ[—n] forn € Z. We say that
the pair (DS?, D>0) defines a ¢-structure on D if the following three conditions are
satisfied:

(T1) DS~ ¢ DSO, D21 c D=0,
(T2) For any X € DS and any ¥ € DZ! we have Homp(X, ¥) = 0.
(T3) For any X € D there exists a distinguished triangle

Xo — X —> X; -5

such that Xo € DSV and X, € D=1,

Example 8.1.2. LetC be an abelian category and C’ a thick abelian subcategory of C in
the sense of Definition B.4.6. Then by Proposition B.4.7 the full subcategory Dg, ©)
of D¥(C) (8 = @, +, —, b) consisting of objects F* € D¥(C) satisfying H/ (F") € C’
for any j is a triangulated category. We show that D = Dﬁ,(C) admits a standard
t-structure (D0, D>9) given by

D0 = (F e D (C) | H/(F) = 0for¥j > 0},
D> = {F e D% (C) | H/(F) = 0for"j < 0}.

Since the condition (T1) is trivially satisfied, we will check (T2) and (T3). For
F' € DS°, G" € D! and f € Homp(F', G') we have a natural commutative
diagram

f

FF— G

[ [

) .
r<0pr T <0
where S0 : D — DS denotes the usual truncation functor. By G* € DZ! we

easily see that TSUG” is isomorphic in D to the zero object 0, and hence f is zero.
The condition (T2) is thus verified. The remaining condition (T3) follows from the
distinguished triangle

. . .+l
T L G 2 Y

for F* e D.
Now let (DSY, D>0) be a r-structure of a triangulated category D.

Definition 8.1.3. We call the full subcategory C = DS N D=0 of D the heart (or
core) of the r-structure (Dgo, D>0).
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We will see later that hearts of #-structures are abelian categories (Theorem 8.1.9).

Proposition 8.1.4. Denote by 1 : DS" — D (resp. /' : D" —> D) the inclusion.
Then there exists a functor t" : D —> DS (resp. 12" : D —> D>") such that
forany Y € DS" and any X € D (resp. for any X € D and any Y € D>") we have
an isomorphism

Homp<, (Y, S"X) = Homp ((Y), X)
(resp. Homp>x (r>"X, Y) = Homp (X, (' (Y))),

<n >n

i.e., TN" is right adjoint to 1, and T" is left adjoint to U'.

Proof. tis sufficient to show that for any X € D there exist Z € DS and Z' € D>
such that

Homp (Y, Z) ~ Homp(Y, X) (Y € D),
Homp(Z',Y) ~Homp(X,Y) (Y € DZ™).

We may assume that » = 0 and m = 1. Let X and X be as in (T3). We will
show that Z = X and Z’' = X satisfy the desired property. We will only show the
statement for X (the one for X is proved similarly). Let ¥ € DSY. Applying the
cohomological functor Homp (Y, e) to the distinguished triangle

Xo— X —> X; =5

we obtain an exact sequence
Homp (Y, X{[—1]) — Homp(Y, Xg) — Homp(Y, X) — Homp(Y, X1).

By (T2) we have Homp (Y, X1[—1]) = Homp (Y, X1) = 0, and hence we obtain

Homp (Y, Xy) = Homp (Y, X).
The proof is complete. O

Note that if a right (resp. left) adjoint functor exists, then it is unique up to
isomorphisms. We call the functors

. D —s DS 2" . D —s D"

<0

the truncation functors associated to the #-structure (DS?, D=9). We use the conven-

tion 77" = 72" and T = <1

By definition we have canonical morphisms
X — X, X —12"X (X eD). (8.1.1)

By the proof of Proposition 8.1.4 we easily see the following.
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Proposition 8.1.5.
(i) The canonical morphisms (8.1.1) is embedded into a distinguished triangle
(X)) — X — 2 x) A (8.1.2)
in D.
(i1) For X € D let
+1

Xo— X — X| —

be as in (T3). Then there exist identifications Xy ~ 10X and X; ~ 121X by
which the morphisms Xo — X and X — X are identified with the canonical
ones (8.1.1). In particular, Xo and X1 are uniquely determined from X € D.

Proposition 8.1.6. The following conditions on X € D are equivalent:

(i) We have X € DS" (resp. X € D=").
(i1) The canonical morphism TSX > X (resp. X — 2" X) is an isomorphism.
(iii) We have t="X = 0 (resp. T="X = 0).

Proof. The equivalence of (ii) and (iii) is obvious in view of (8.1.2). The implication
(il)==(i) is obvious by TS'X € DS and t2"X € DZ". It remains to show
(1)==(ii). Let us show that the canonical morphism TSMX — X isan isomorphism
for X € DS". We may assume that n = 0. By applying Proposition 8.1.5 (ii) to the
obvious distinguished triangle

x4 x_ oL

we see that the canonical morphism tS°X — X is an isomorphism. The remaining
assertion is proved similarly. O

Lemma 8.1.7. Let
X — X — X" 14

be a distinguished triangle in D. If X', X" € DS (resp. DZ0), then X € DO (resp.
D>%). In particular, if X', X" € C, then X € C.

Proof. We only prove the assertion for DS Assume that X/, X” € DS0. By
Proposition 8.1.6 it is enough to show 7>%(X) = 0. In the exact sequence

Homp (X", 77°%(X)) — Homp (X, t7°(X)) — Homp (X', 77°(X))

we have Homp(X”, 7>%(X)) = Homp(X’,77%(X)) = 0 by (T2), and hence
Homp (t~%(X), t>%(X)) = Homp(X, t>%(X)) = 0 by Proposition 8.1.4. This
implies 7>%(X) = 0. m]

Proposition 8.1.8. Let a, b be two integers.

(1) If b > a, then we have TSh o ¢S4~ K@ o <D~ 1Sa gpd 120 6 120 ~
124 o 720 ~ ¢ 2b
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(ii) If a > b, then TSb o p2a ~ 20 6 Sb ~ ),

(iii) T2 0 TSP ~ ¢SSP o 24,

Proof. (i) By Proposition 8.1.6 we obtain TSP o 7S¢ ~ 1%, We see from Proposi-

tion 8.1.4 that for any X € D and ¥ € DS we have

Homp<. (Y, 1S4 Sbx) ~ Homp(Y, tSPX) ~ Hompy< (Y, Py

~ Homp(Y, X) ~ Homp<. (Y, tS¢X),

<a <b

and hence 7S¢ o <P ~ ©S¢, The remaining assertion can be proved similarly.

(i1) This is an immediate consequence of Proposition 8.1.6.
(iii) By (i) we may assume b > a. Let X € D. We first construct a morphism
¢ 129 ShX — ¢SPr2aX By (i) there exists a distinguished triangle

+1
Sbpzay o opzaxy by T

from which we conclude 1SPt2¢X € D24 by Lemma 8.1.7. Hence we obtain a
chain of isomorphisms
Homp(tSPX, 129X) ~ Homp(tSP X, tSP12%X)
~ Homp>. (t2erShx, o She2ay),
Then ¢ € Homp(t2%cSPX, 1SP729X) is obtained as the image of the composite

of natural morphisms tS?X — X — 72%X through these isomorphisms. Let us
show that ¢ is an isomorphism. By (i) there exists a distinguished triangle

+1
19X — ¢ShY  p2arshy T

from which we obtain T297<0X € Db by Lemma 8.1.7. On the other hand,
applying the octahedral axiom to the three distinguished triangles

+1
r<ax Py <byx _, pZar<by T

o +1
r<ax I°8 x __, pzax T

q +1
tSPX S X — ohX T
we get a new one

+1
PeShy _ p2ax by T

Then it follows from t>*t <X € D<S? and Proposition 8.1.5 (ii) that =97 SPX ~
TSb(r2ay). O

Theorem 8.1.9.
(i) The heart C = DSO N D2V is an abelian category.
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(i1) An exact sequence

0—x-Ly=2 730

in C gives rise to a distinguished triangle

in D.
Proof. (i) Let X,Y € C. By applying Lemma 8.1.7 to the distinguished triangle

X—>XpY — v 5

inDweseethat X ® Y € C.

It remains to show that any morphism f : X — Y in C admits a kernel and
a cokernel and that the canonical morphism Coim f — Im f is an isomorphism.
Embed f into a distinguished triangle

x Ly 7z

Then we have Z € DS N D>~! by Lemma 8.1.7. We will show that the kernel and
the cokernel of f are given by

Coker f ~ H(Z) = 1t2°Z,
Ker f ~ H ' (Z) = tS0(Z[-1)).

Consider the exact sequences

Homp(X[1], W) - Homp(Z, W) — Homp (Y, W) — Homp(X, W),
Homp (W, Y[—1]) - Homp(W, Z[—1]) - Homp(W, X) — Homp(W, Y)

for W € C. By (T2) and Proposition 8.1.4 they are rewritten as

0 — Homp(t=°Z, W) — Homp(Y, W) — Homp (X, W),
0 —> Homp(W, tS%(Z[—1])) — Homp (W, X) —> Homp(W, Y).
This implies that Coker f ~ t=°Z and Ker f ~ tS9(Z[—1]). Let us show that the

canonical morphism Coim f — Im f is an isomorphism. Let us embed ¥ —
Coker f into a distinguished triangle

I—>Y—>C0kerfi>.

Then I € D>° by Lemma 8.1.7. Applying the octahedral axiom to the three distin-
guished triangles
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y 2 7z — x(1] =

Y L8 Coker f —> I11] -5

z -4 Coker f —> Ker f[2] Ll),
we get new distinguished triangles

X[1] —> I[1] —> Ker f[2] -5,

Kerf—>X—>Ii>.

This implies / € DS? by Lemma 8.1.7 and hence we have I € C. Then by the
argument used in the proof of the existence of a kernel and a cokernel we conclude that

Im f = Ker(Y — Coker f) >~ I >~ Coker(Ker f — X) = Coim f.

(i) Embed X —f> Y into a distinguished triangle

x Ly wih.

Then by Ker f = 0 and Coker f >~ Z we obtain W >~ Z by the proof of (i). O
Definition 8.1.10. We define a functor
H°:D — ¢ =DS"ND>*

by HO(X) = t20¢S0X = ¢S0¢20X ¢ C. Forn € Z we set H*(X) = H*(X[n]) =
(rZ"tS"X)[n] € C.

Proposition 8.1.11. The functor H? : D — C = DS N D=0 s a cohomological
functor in the sense of Definition B.3.8.

Proof. We need to show for a distinguished triangle

X—>Y—>Zi>

in D that
H(X) — H(Y) — H°(2)

is an exact sequence in C. The proof is divided into several steps.
(a) We prove that

0— H'X) — H(Y) — H°2Z) (8.1.3)
is exact under the condition X, Y, Z € D=0, For W € C consider the exact sequence

Homp (W, Z[—1]) - Homp(W, X) — Homp(W, Y) — Homp(W, Z).
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By (T2) we have Homp(W, Z[—1]) = 0. Moreover, for V € D=0 we have
S0y ~ ¢S0:20y — HO(V), and hence Homp(W, V) ~ Homp(W, tS0V) ~
Hom¢g (W, H 0(V)) by Proposition 8.1.4. Hence the above exact sequence is rewrit-
ten as

0 — Hom¢(W, H°(X)) — Home (W, H*(Y)) — Home (W, H%(2)),

from which we obtain our assertion.

(b) We prove that (8.1.3) is exact assuming only Z € DZ°. Let W € D<C.
Then we have Homp (W, Z) = Homp(W, Z[—1]) = 0 and hence Homp (W, X) ~
Homp (W, Y). By Proposition 8.1.4 this implies that the canonical morphism
19X — <07 is an isomorphism. Therefore, applying the octahedral axiom
to the distinguished triangles

<O0x P x 5 20x FL

o +1
r<0x L8y, 20y T

x-Ly_—zXL

we get a new one

+1
2% — 2y — 7z

Hence our assertion is a consequence of (a).
(c) Similarly to (b) we can prove that

HX) — H(Y) — H°Z) — 0

is exact under the condition X € DO,
(d) Finally, let us consider the general case. Embed the composite of the mor-
phisms S0X — X — Y into a distinguished triangle

Sy vy w2
By applying (c) we have an exact sequence
H'(X) — H°(Y) — H°(W).
Now applying the octahedral axiom to the distinguished triangles
+1

<S0x T, x 20 T

. +1
0y 2y w5

Xy zh

we get a distinguished triangle

W— Z — o70x1] 5
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Hence by (b) we have an exact sequence
0 — H'W) — H°2).
This completes the proof. O

For a distinguished triangle

X—7Y—z

in D we thus obtain a long exact sequence
o — HY2) — H°X) — H°(Y) — H°(Z) — H'(X) — -
inC.

Now let D; be triangulated categories endowed with f-structures (Dfo, D? O)

(i =1,2),and let F : D| —> D be a functor of triangulated categories. We denote

by C; the heart of (D", DZ7).

Definition 8.1.12. We define an additive functor
PF:C — G
by PF = HO o F o g1, where ¢ : C; — D denotes the inclusion functor.

Definition 8.1.13. We say that F is left t-exact (resp. right t-exact) if F(D7%) ¢ D3°
(resp. F (Dlgo) C Dz@). We also say that F is t-exact if it is both left and right 7-exact.

Example 8.1.14. Let C;, C> be abelian categories and let G : C; — C; be a left
exact functor. Assume that C; has enough injectives. Then the right derived functor
RG : DT (C1) — D™ ((Cy) is left t-exact with respect to the standard z-structures of
D™ (C;) (see Example 8.1.2).

Proposition 8.1.15. Let D;, (D=°, D7), (i = 1,2) and F : Dy —> Dy be as above.
Assume that F is left t-exact.

(i) For any X € Dp we have IgO(F(rgoX)) ~ thF(X). In particular, for
X e D%O there exists an isomorphism PE(HY(X)) ~ HY(F (X)) in Cy.
(i) PF : C; —> C is a left exact functor between abelian categories.

Proof. (i) It is sufficient to show that the canonical morphism

HomD§° (W, ng(F(Tgo(X)))) — HomD§° (W, ng(F(X)))

is an isomorphism for any W € ngo. By Proposition 8.1.4 we have

Homy<o (W. tS0F(2<°(X)))) =~ Homp, (W, F(z<°(X))),
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<0 ~
Homnzgo(W, tSY(F(X))) ~ Homp, (W, F(X)),

and hence we have only to show that the canonical morphism

Homp, (W, F(r<°(X))) — Homp, (W, F(X))
is an isomorphism for any W € ngo' By the distinguished triangle

F(rS0(X)) — F(X) — F(Z'(x) >
we obtain an exact sequence

Homp, (W, F(t=!(X))[—1]) — Homp, (W, F(zS°(X)))
—> Homp, (W, F(X))
— Homp, (W, F(zZ!(X))).

Since F is left 7-exact, we have F (121 (X)) € D?l, and hence

Homp, (W, F@Z'(X)[n) =0  (n <0)

by (T2). Therefore, the assertion follows from the above exact sequence.
(ii) For an exact sequence

00— X—>Y—>Z7Z—0

in C; we have a distinguished triangle

X—>Y—>Zi1>

in D by Theorem 8.1.9 (ii). Hence we obtain a distinguished triangle

F(X) —> F(Y) — F(Z) =5

inD,. By considering the cohomology long exact sequence associated to it we obtain

an exact sequence

H Y (F(2)) — HY(F(X)) — HY(F(Y)) — H%F(2)).

It remains to show H '(F(Z)) = 0. Since F is left t-exact, we have F(Z) €
D?O. Hence we have tS7!F(Z) = 0 by Proposition 8.1.6. It follows that we have

H YW F(2) =t>"1+STF@2)[-11=0.

Lemma 8.1.16. Let D) be a triangulated category and D; C D, its full triangulated
subcategory with a t-structure (Dfo, D?O) (i =1,2). Assume that F : D/1 — D/2
and G : D), — D are functors of triangulated categories and F is the left adjoint

functor of G.
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() If F(Dy) C Dy and F(Dlgo) C ngdford € Z, then for any Y € D?O satisfying
G(Y) e Dy wehave G(Y) € D%fd.

(1) IfG(D,) C Dy and G(D?O) C D]}_dford € Z, thenforany X € Dl<0 satisfying
F(X) € Dy we have F(X) € D;d.

Proof. We prove only the assertion (i). By Proposition 8.1.6 it is enough to show
1<74G(Y) = 0. According to Proposition 8.1.4, for any X € fod we have an
isomorphism

Homy,——s (X, =7G(¥)) =~ Homp, (X, G(Y))
>~ Homp, (F(X), Y) =0

(note F(X) € D2<O and Y € D?O). Therefore, we have t<"4G(Y) = 0. O

Corollary 8.1.17. Let D; be a triangulated category with a t-structure (i = 1, 2).
Assume that F : D1 —> Dy and G : Dy — Dq are functors of triangulated
categories and F is the left adjoint functor of G. Then F is right t-exact if and only
if G is left t-exact.

8.1.2 Perverse sheaves

Fromnow on, let X be a (not necessarily smooth) algebraic variety or an analytic space
and denote by Df (X) the full subcategory of D? (X) = Db (Mod(Cy)) consisting of
objects F~ € DP(X) such that H/ (F") is a constructible sheaf on X for any j. For the
definition of constructible sheaves and basic properties of Df (X) see Section4.5. The
aim of this subsection is to introduce the perverse t-structure ("’DC@ (X), ”D? O(X )
on D = Df (X) and define the category of perverse sheaves on X to be its heart
PDC@(X )N PD? 0(X ). We follow the basic reference [BBD]. We are also indebted
to [GM1], [G1], and [KS2, Chapter X].

Remark 8.1.18.

(i) Although we restrict ourselves to the case of complex coefficients, all of the
results that we present in Sections 8.1.2 and 8.2 remain valid even after replacing
Mod(Cyx) with Mod(Qyx). In particular, we have the notion perverse sheaves
and intersection cohomology groups with coefficients in Q. They are essential
for the theory of Hodge modules to be explained in Section 8.3.

(i1) The z-structure that we treat here is the one with respect to the “middle perversity”
in the terminology of [GM1].

(iii) There exists a more general theory of perverse sheaves on subanalytic spaces as
explained in [KS2, Chapter X].

Notation 8.1.19. For a locally closed analytic subspace S of X we denote its dimen-
sion by dg. The inclusion map S < X is usually denoted by i5.

Recall that we denote by Dy : D?(X)°P = D’ (X) the Verdier duality functor.
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Definition 8.1.20. We define full subcategories pro(X ) and pD? 0(X ) of Df.’ (X) as
follows. For F* € Df(X) we have F’ € ”DfO(X) if and only if

(i) dim{supp H/(F")} < —j forany j € Z,
and F* € PDZ°(X) if and only if

(ii) dim{supp H/ (Dx F")} < —j forany j € 7Z,
We define a full subcategory Perv(Cy) of Dé’ (X) by

Perv(Cx) = PDSO(X) N PDZ0(X).

We will show later that the pair (PDfo(X ), PD? 0(X )) defines a ¢-structure on
Df (X), and hence Perv(Cy) will turn out to be an abelian category. Since we have
DxDxF =~ F' forany F' € Df(X), the Verdier duality functor Dy (e) exchanges

PDS0(x) with D20 (X).
Lemma 8.1.21. Let F' € Df (X). Then we have
supp H/(Dx F') = {x € X| H /(i F") # 0}
forany j € Z, where iy : {x} < X are inclusion maps.
Proof. Since for each x € X we have
iy F =~ iy DxDxF =Dy (Dx F),
we obtain an isomorphism H’j(i{!x}F') ~ [H/(DxF’),]* forany j € Z. i

Proposition 8.1.22. Let F* € Df (X) and X = | |,c4 X« be a complex stratification

of X consisting of connected strata such that i ;; Fandi ;(a F" have locally constant
cohomology sheaves for any o € A. Then

(i) F e PDfo(X) if and only iij(i;‘jF') = 0forany a and j > —dx,.
(i) F' e ”D?O(X) if and only ifH-/(i!XuF') = 0forany a and j < —dx,.
Proof. (i) Trivial.
(ii) By Lemma 8.1.21, F' € I’D?O(X) if and only if
dim{x € X| H7/(i[ F) #0} < —j
for any j € Z. For x € X, decompose the morphism ify; : {x} < X into

Jix o . .
{x} S Xo <™, X. Then we have an isomorphism
i F =~ jigix, F = j{;}li!XaF'[—dea], (8.1.4)
where we used our assumption on i !)((1 F" in the last isomorphism. Hence for any
J € Z by the connectedness of X,, Xo N {x € X| H_j(i{!x}F') #0} = Xo N
supp H/(Dx F") is X, or ). Moreover, from (8.1.4) we easily see that the following
conditions are equivalent for any o € A:
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(a) HI(iy F')=0forany j < —dx,.
(b) H*f(igx}F') = 0 for any x € X, and j > —dyx,.
(¢) Xg Nsupp H/ (Dx F") =Y forany j > —dx,.

The last condition (c) implies that for any stratum X, such that X, C supp H/ (Dx F")
we must have dx, < —j. This completes the proof. O

Corollary 8.1.23. Assume that X is a connected complex manifold and all the coho-
mology sheaves of F" € Df (X) are locally constant on X. Then

(i) F" € PDSO(X) if and only if HI (F) = 0 for any j > —dy.
(i) F' e PDEO(X) ifand only if H/ (F") = 0 for any j < —dx.

Proposition 8.1.24. Let F' € Df (X). Then the following four conditions are equiv-
alent:

() F" e PDZ°(X).
(1) For any locally closed analytic subset S of X we have

HIG5(F) =0 forany j < —ds.
(iit) For any locally closed analytic subset S of X we have
HI(F) = H'RTs(F)=0 forany j < —ds.
(iv) For any locally closed “smooth” analytic subset S of X we have
HIG5(F) =0 forany j < —ds.
Proof. First, since we have Hi(e) = H'Rig,ij(e), the conditions (ii) and (iii) are
equivalent. Let us prove the equivalence of (ii) and (iv). Assume that the condition
(iv) is satisfied for F* € D?(X). We will show that
HIG,(F) =0 forany j < —dz. (8.1.5)
for any locally closed (possibly singular) analytic subset Z of X by induction on
dim Z. Denote by Zee the smooth part of Z and set Z' = Z \ Zg. Then dim Z’ <
dim Z and our hypothesis of induction implies that
Hé,(F') =0 forany j < —dy.
In particular, we have
HJ(F)=0 forany j <—dz.

So the assertion (8.1.5) follows from (iv) and the distinguished triangle

RTz/(F) —> RIZ(F) —> Rz, (F) -5 .



194 8 Perverse Sheaves

Now let us take a complex stratification X = Llyeq X, of X consisting of con-
nected strata such that i ;: F’ and i;(a F" have locally constant cohomology sheaves
for any o € A. Then by Proposition 8.1.22 the condition (i) is equivalent to the one
H/ (i!XaF') = O for any @ and j < —dyx,. Therefore, if we take S = X, in (iv)
we see that (iv) implies (i). It remains to prove that (i) implies (iv). Assume that
H/ (i é(u F’) = 0forany « and j < —dx,. For any locally closed (smooth) analytic
subset S in X, we need to show that

HI(5(F)) =0 forany j < —ds.
Set X = I_ldimXafk Xoin X (k=-1,0,1,...,dx). Since

X1=0CXoC- CXay =X,

it is enough to prove the following assertions (P); by induction on k:

P : Smx (F)=0 forany j < —ds. (8.1.6)

Moreover, by the distinguished triangles

. . o+l
RIsnx;_ (F) — RIsnx, (F) — RIsnxp\x ) (F) —

fork =0, 1, ..., dx, we can reduce the problem to the proof of the assertions

Qk:  Hgnyox, ) (F)=0 forany j <—ds. (8.1.7)

Note that X \ X,—1 is the union of k-dimensional strata. Hence we obtain a direct
sum decomposition

J N o~ j .
Hinoxe nF) = @ Hiny, (F)
dim X, =k

and it remains to show H/ (i snx, F) = Ofor anya € Aand j < —dg. Decomposing

isnx, : SN X —— X into S N X, f—> Xo f—> X we obtain an isomorphism
iémXaF o~ ]Xa (zxa(F )). Therefore, by applying Lemma 8.1.25 below to ¥ = X,

and G' = i!Xa(F') € Df(Y) we obtain
HYjy (G~ Hligny (F)~0 forany j < —dsnx,-
This completes the proof. O

Lemma 8.1.25. Let Y be a complex manifold and G € Df (Y). Assume that all the
cohomology sheaves of G’ are locally constant on Y and for an integer d € 7 we have
H/'G = 0for j < d. Then for any locally closed analytic subset Z of Y we have

HL(G)=0 forany j<d+2codimy Z.
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Proof. By induction on the cohomological length of G* we may assume that G is a
local system L on Y. Since the question is local on Y, we may further assume that L
is the constant sheaf Cy. Hence it is sufficient to show

Hé(Cy) =0 forany j < 2codimy Z.

This well-known result can be proved by induction on the dimension of Z with the
help of the distinguished triangle

1
RT 77, (Cy) —> RT'2(Cy) —> RT'z, (Cy) —> . O

Itis easily seen that " € Df (X) belongs to pD§0(X ) if and only if the condition

(i)* for any Zariski locally closed irreducible subvariety S of X there exists a Zariski
open dense smooth subset Sp of S such that H/ (i S_ol F’) is alocal system for any

jand Hi(ig' F) = 0forany j > —ds

is satisfied (see the proof of Lemma 7.2.9). Also by the proof of Proposition 8.1.24,
we casily see that F* € D?(X) belongs to ?DZ°(X) if and only if the condition

(ii)* for any Zariski locally closed irreducible subvariety S of X there exists a Zariski
open dense smooth subset Sy of S such that H/ (i !So F") is alocal system for any

jand Hi(ig F') = 0 forany j < —ds
is satisfied.
Proposition 8.1.26. Let F* € PDS°(X) and G € PDZ0(X).

(i) We have _
H’'(RHomc,(F',G)) =0

forany j < Q.
(1) The correspondence

{open subsets of X} 5 U —— Hom py 1y (F'lu, G'ly)
defines a sheaf on X.

Proof. (1) Set S = Uj<0 supp(Hj(RHom(cX(F', G’))) C X. Assume that S # 0.
Letis : S — X be the embedding. For j < 0 we have

supp(H’ RHomc, (F', G))) C S,
and hence
H/RHomc, (F',G') = H/ (R['sRHomc, (F', G))
~ H'(is,iyRHomc, (F', G"))
~is,H/(RHomc,(is ' F',i5G).
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Our assumption F" € PDC@(X ) implies that

dim supp{Hk(iS_IF')} < —k
for any k € Z, and the dimension of

Z = U supp{Hk(iglF')} cS
k>—dg

is less than dg. Therefore, we obtain So = S\ Z # ¢ and HjiEOIF' = 0 for any
Jj > —ds. On the other hand, we have H/i!SG' = 0 for any j < —dg. Hence we
obtain H/ RHom@S(iglF', i!SG')|S0 = 0 for any j < 0. But this contradicts our
definition § = J; _o supp{ H/ RHomc, (F’, G")}.
(ii) By (i) we have
Hom o) (F'lu, G'lu) = H°(U, RHome, (F', G"))
=T(U, H(RHomc, (F', GY)).

Hence the correspondence U —— Hom pp ) (F'ly, G'|y) gives a sheaf isomorphic
to H*(RHomc, (F', G")). o

Now we are ready to prove the following.
Theorem 8.1.27. The pair (pD§O(X), ”D?O(X)) defines a t-structure on Df(X).

Proof. Among the conditions of 7-structures in Definition 8.1.1, (T1) is trivially sat-
isfied and (T2) follows from Proposition 8.1.26 above. Let us show (T3). For
F e Df(X), take a stratification X = | |, X of X such that l;al F’and i;(a F’ have
locally constant cohomology sheaves for any o € A. Set Xy = | g, x, <¢ Xe € X
(k=-—1,0,1,2,...) and consider the following assertions: -

There exists Fy' € DS (X \ Xp), Fi” € PDZ' (X \ Xy), and a distin-
guished triangle

(S)k FO' —> F'|X\Xk —> Fl' i)

in Df (X \ Xy) such that Fy'|x, and F7’|x, have locally constant coho-
mology sheaves for any o € A satisfying X, C X \ Xx.

Note that what we want to prove is (S)_;. We will show (S);’s by descending
induction on k € Z. It is trivial for £ > 0. Assume that (S); holds. Let us prove
(S)x—1. Take a distinguished triangle
. . .+l
Fy — Flxx, — 1" — (8.1.8)
in D?(X \ Xx) asin (S)x. Let j : X \ Xx —> X \ Xx—1 be the open embedding
and i : Xi \ Xp—1 = X \ Xk—1 be the closed embedding. Since j is left adjoint
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to j', the morphism Fy' —> j'(F'lx\x,_,) = F’lx\x, gives rise to a morphism
JFo" — F’|x\x,_,. Let us embed this morphism into a distinguished triangle

JiF — Flyx,, — G 5. (8.1.9)

We also embed the composite of the morphisms t<%i)i'G" — i1i'G" —> G into

a distinguished triangle

<ii'et — 6 — B A (8.1.10)

We finally embed the composite of F'[x\x, , — G —> I:“l' into a distinguished
triangle

Fy — F'lxwx,, — F’ L (8.1.11)

By our construction Fo'l x, and Fr| x,, have locally constant cohomology sheaves for
anyoa € A satisfying Xo C X \ Xg—1. It remains to show Fy € I’Dgo(X \ Xk—1)
and F1 € ”D/ (X\ Xk 1) Applylng the functor ]_l(o) to (8.1.10) and (8.1.9), we
get an isomorphism j~ 'Fi"~ j~1G" and a distinguished triangle

. . 1. t+l
F() —>F|X\Xk—>] lFl —>

Hence we have j~'F;" ~ F;",and j~'Fy" ~ Fy by (8.1.8) and (8.1.11). Therefore,
we have only to show that

() H/(i7'Fy) =0for¥j > —k

(i) H/ (i'Fy)=0for¥j < —k+1

in view of Proposition 8.1.22 (note that X \ X,—1 is a union of k-dimensional strata).
By applying the octahedral axiom to the three distinguished triangles

+1
J1Fo —>F|X\xk . —>G —
gof ~ +1
F() _>F|X\Xk | F'—
~ 1
STk hi G — G LN Fim— +
we obtain a distinguished triangle
. ~ . ke e F
jiFy — Fy — tS7%0i'G L

Hence we have i ' Fy’ ~ i_lrg_ki!i!G' ~ i_liyt< i'G" ~ tS7K'G’. The asser-

tion (i) is proved. By applying the functor i' to (8.1.10) we obtain a distinguished

triangle
NI SR e g
i'tS kz!z'G —i'G —>1'F1 — .

<~k <—k

We have i't 0i'G ~ i'iit i'G ~ t<7%i'G, and hence we obtain i’ F1
2K+ (i'G") by this distinguished triangle. The assertion (ii) is also proved. O
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Definition 8.1.28. The z-structure (PDC@(X ), pD? O(X )) of the triangulated cate-
gory Df (X) is called the perverse ¢-structure. An object of its heart Perv(Cyx) =

pro(X )N pr O(X ) is called a perverse sheaf on X. We denote by
r<U pbxy — PDSO(X), Pe20 . pb(x) — PDZ0(X)

the truncation functors with respect to the perverse ¢-structure. For n € Z we define
a functor
. nb
PH" : D2(X) —> Perv(Cy)

by PH" (F') = Pr<0Pt20(F'[n]). For F' € D?(X) its image PH" (F") in Perv(Cx)
is called the nth perverse cohomology (or the nth perverse part) of F".

Note that for any perverse sheaf F* € Perv(Cy) on X we have H'(F") = 0 for
i ¢ [—dx,0]. By Proposition 8.1.11 a distinguished triangle

F'—>G'—>H'i]>

in Df (X) gives rise to a long exact sequence
o> PH"Y(H) > PH"(F') - PH"(G") - PH"(H') — PH"t'(F") — -+

in the abelian category Perv(Cy).

By definition, being a perverse sheaf is a local property in the following sense.
Let X = |J;c; Ui be an open covering of X. Then F* € D!(X) is a perverse sheaf
if and only if F’|y, isso forany i € [.

Remark 8.1.29. It can be shown that the correspondence
{open subsets of X} 3 U +—— Perv(Cy)

defines a stack, i.e., a kind of sheaf with values in categories. More precisely, let X =
(Ui Ui be an open covering and assume that we are given a family F; € Perv(Cy,)
equipped with isomorphism F;|y,nu; =~ Fjlu,nu; satisfying obvious compatibility
conditions. Then we can glue it uniquely to get F* € Perv(Cyx). This is the reason
why we call a complex of sheaves F" € Perv(Cy) a perverse “sheaf.”

Definition 8.1.30. Foraperverse sheaf F* € Perv(Cy), we define the support supp F*
of F to be the complement of the largest open subset U —— X such that F'|yy = 0.

Proposition 8.1.31. Assume that X is a smooth algebraic variety or a complex man-
ifold. Then for any local system L on X" we have L[dx] € Perv(Cy).

Proof. Assume that X is a complex manifold. By wy >~ Cx[2dx] we have
Dy (L[dx]) = RHomc, (L[dx], Cx[2dx]) ~ L*[dx],

where L* denotes the dual local system Homc, (L, Cx). Hence the assertion is clear.
The proof for the case where X is a smooth algebraic variety is the same. O
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Remark 8.1.32. More generally, it is known that if X is a pure-dimensional alge-
braic variety (resp. analytic space) which is locally a complete intersection, then
we have L[dx] € Perv(Cy) for any local system L on X" (see for instance [Di,
Theorem 5.1.20]).

The following proposition is obvious in view of the definition of pDCgO(X ) and
rpZ0(x).

Proposition 8.1.33. The Verdier duality functor Dy : Df (X)) — Dé’ (X)°P js t-exact
and induces an exact functor

Dy : Perv(Cy) —> Perv(Cy)®P.

Proposition 8.1.34. Let i : Z — X be an embedding of a closed subvariety Z of
X. Then the functor i, sends Perv(Cy) to Perv(Cy).

Proof. 1t is easily seen that i, sends ”DfO(Z) to pro(X). Since Z is closed, we
have i, = iy = Dy oi, o Dz. Hence i, sends pD?O(Z) to prO(X). O

By Propositions 8.1.31 and 8.1.34 we obtain the following.

Example 8.1.35.

(i) Let X be a (possibly singular) analytic space and ¥ C X a smooth complex
manifold contained in X as a closed subset. Then for any local system L on Y,
the complex iy, (L[dy]) € Df(X) is a perverse sheaf on X.

(ii)Let X = Cand U = C\ {0} <’ X. Then for any local system L on U,
Rj. (LI1]), Rj (L[1]D) = ji(L[1]) € Df(X) (j1 is an exact functor) are perverse
sheaves on X = C.

Definition 8.1.36. Let X, Y be algebraic varieties (or analytic spaces). For a func-
tor F : Df (X)) — D’CJ (Y) of triangulated categories we define a functor PF :
Perv(Cy) —> Perv(Cy) to be the composite of the functors

0
Perv(Cx) —> D(X) - Db(¥) 2L Perv(Cy).

Let f : X — Y be a morphism of algebraic varieties or analytic spaces. Then
we have functors

Pr=t Pgt: Perv(Cy) —> Perv(Cy).
Assume that f : X — Y is a proper morphism. Then we also have functors
PRf¢, PRfy : Perv(Cx) —> Perv(Cy).

Notation 8.1.37. We sometimes denote the functors PRf ., PRf, by Pf,, P fi, respec-
tively, to simplify our notation.
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Lemma 8.1.38.
(i) For an object F* ofo(X) we have F* = 0 if and only if PH/ (F) = 0 for any
j €.
(i) A morphism f : F' — G in Df (X) is an isomorphism if and only if the
morphism PH’ (f) : PH/ (F") — PH/(G") is an isomorphism for any j € Z.

Proof. (i) Assume that PH/(F") = 0 for any j € Z. Since F’ is represented by a
bounded complex of sheaves, there exist integers a < b such that F~ € ”D§b(X )N
pDc? ?(X). In the distinguished triangle

PNy — F—s () £

we have Pr=b(F") ~ Pr2br<b(pry ~ PHP(F')[—b] = 0, and hence we have
F o~ PrSh=l(pry ¢ prb_l X)n pD?a (X). By repeating this procedure we finally
obtain F* € PDS"1(X) N PDZ%(X), and hence F* = 0.

(ii) Assume that the morphism PH/ (f) : PH/(F") — PH/(G") is an isomorphism
for any j € Z. Embed the morphism f : F* — G’ into a distinguished triangle

F'LG'—>H'L1>.

By considering the long exact sequence of perverse cohomologies associated to it we
obtain PH/(H") ~ 0 for Vj € Z. Hence we have H* = 0 by (i). It follows that
F° — G’ is an isomorphism. O

The following result is an obvious consequence of Proposition 8.1.5 (ii).

Lemma 8.1.39. Let
oo 5 g 2

be a distinguished triangle in Df (X) and assume F" € 1’D§0(X) and H' € pD?I (X).
Then we have F* ~ Pt<%(G") and H' ~ PtZ1(G").
Proposition 8.1.40. Let f : Y —> X be a morphism of algebraic varieties or ana-
Iytic spaces such that dim f~'(x) < d for any x € X.

(i) For any F* € PDSO(X) we have f~V(F") € PDS4(Y).

(i) For any F* € PDZ°(X) we have f'(F) € PDZ~4(1).

Proof. (i) For F' € pro(X) we have
dim(supp H' (f ' F'[d])) = dim(f " (supp H/ T4 (F")))
< dim(supijer(F')) +d<—-j—d+d=—}],
1 <0 1 - <d
and hence f~' F'[d] € PD>"(Y), Therefore, we have f~'F" € PD>" (Y).

(i) This follows from (i) in view of f' = Dy o f~! o Dx and Proposition
8.1.33. O
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Corollary 8.1.41. Let Z be a locally closed subvariety of X and leti : Z — X be
the embedding.

. _] . h h . . .
(1) The functori™" : D2(X) — D_(Z) is right t-exact with respect to the perverse
t-structures.
(ii) The functor i’ : D2(X) — D] (Z) is left t-exact with respect to the perverse
t-structures.

The following propositions are immediate consequences of Proposition 8.1.40
and Corollary 8.1.41 in view of Lemma 8.1.16.

Proposition 8.1.42. Let f : X — Y be as in Proposition 8.1.40.

(i) For any G* € pDCZO(Y) such that Rf . (G") € Df(X) we have Rf . (G") €
rDZ 74 (X).
(i) For any G* € PDfo(Y) such that Rf\(G") € Df(X) we have Rf\(G") €

DS (X).
Proposition 8.1.43. Leti : Z — X be as in Corollary 8.1.41.

(i) For any G € ”DCZO(Z) such that Ri.(G") € Dé’(X) we have Ri (G") €
D0 (X).
(i) For any G* € PDE%(Z) such that i\(G") € D?(X) we have iy(G") € PDE(X).

Corollary 8.1.44.

() Let j : U —> X be an inclusion of an open subset U of X. Then j~' = j'is
t-exact with respect to the perverse t-structures and induces an exact functor

1

Pj=1 = Pj': Perv(Cx) —> Perv(Cy).

(ii) Leti : Z —> X be aninclusion of a closed subvariety Z. Then i, = i\ is t-exact
with respect to the perverse t-structures and induces an exact functor

Pi, = Pj) : Perv(Cz) — Perv(Cy).

Moreover, if we denote by Pervz(Cyx) the category of perverse sheaves on X
whose supports are contained in Z, then the functor i~' = Pi' : Perv7(Cyx) —
Perv(Cy) is well defined and induces an equivalence

pl-flzpi!

Pervz(Cx) ——— Perv(Cy)

1="Pi)

of categories. The functor Pi~" is the quasi-inverse of Pi.

Lemma 8.1.45. For an exact sequence ) — F° —> G —> H" — 0 of perverse
sheaves on X, we have supp G = supp F" U supp H".
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Proof. We first show supp F* C supp G'. Set U = X \ supp G'. Itis enough to show
F'|y = 0. By Corollary 8.1.44 (i) we have an exact sequence

0— Fily -5 Gy

in the abelian category Perv(Cy). Hence we obtain F'|y = 0 from G'|y = O.
The inclusion supp H™ C supp G can be proved similarly. Let us show supp G™ C
supp F" U supp H'. It is sufficient to show that if we have F'|y = H'|y = O for an
open subset U of X, then G'|yy = 0. This follows easily from Theorem 8.1.9 (ii). O

Remark 8.1.46. The formal properties of perverse sheaves on X that we listed above
carry rich information on the singularities of the base space X. Indeed, using perverse
sheaves, we can easily recover and even extend various classical results in singularity
theory. For example, see [Di], [Masl], [Mas2], [NT], [Schu], [Tk2]. Note also
that Kashiwara [Kas19] recently introduced an interesting #-structure on the category
Df ,(Dx) whose heart corresponds to the category of constructible sheaves on X
(here X is a smooth algebraic variety) through the Riemann—Hilbert correspondence.

8.2 Intersection cohomology theory

8.2.1 Introduction

Let X be anirreducible projective algebraic variety (or an irreducible compact analytic
space) of dimension dy. If X is non-singular, then we have the Poincaré duality
H(X,Cx) ~ [H*x7(X, (CX)]* for any 0 < i < 2dx. However, for a general
(singular) variety X, we cannot expect such a nice symmetry in its usual cohomology
groups. The intersection cohomology theory of Goresky—MacPherson [GM1] is a
new theory which enables us to overcome this problem. The basic idea in their
theory is to replace the constant sheaf Cx with a new complex ICx [—dx] € Df(X)
of sheaves on X and introduce the intersection cohomology groups

IH'(X) = H'(X,ICx'[-dx]) (0 <i <2dx)

by taking the hypercohomology groups of ICx". Then we obtain a generalized
Poincaré duality

TH (X) = [IH**7(X)]" (0<i<2dy)

for any projective variety X. Moreover, it turns out that intersection cohomology
groups admit the Hodge decomposition. Indeed, Morihiko Saito constructed his
theory of Hodge modules to obtain this remarkable generalization of the Hodge—
Kodaira theory to singular varieties (see Section 8.3). To define the intersection
cohomology complex ICx" € ij (X) of X, first we take a constant perverse sheaf
Cyldx] onaZariski open dense subset U of the smooth part Xeg of X. ThenICx isa
“minimal” extension of Cy [dx] € Perv(Cy) to a perverse sheaf on the whole X. Let
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us briefly explain the construction of ICx . To begin with, take a Whitney stratification
X = | |yen Xo of X and set X = I_]dimXagan CcXk=-1,0,1,2,...). Then
we get a filtration

X=X4y DXygy-1D---DXoDX1=0

of X by closed analytic subsets X of X such that X \ Xy_1 is a smooth k-dimensional
complex manifold for any k € Z. Set Uy = X \ Xy—1 and ji : Uy —> Ui_1. Then
we have

Jdx+1 Jdy J2 Ji
B=Usy+1 ——> Uy =— Ugy—1 — ---—=> U1 — Up=X

and the perverse sheaf ICx " is, in this case, isomorphic to the complex
(‘L’g_lel*) o (‘L’g_szz*) 0-+-0 (‘L’g_dx RjdX*)((CU[dx])

for U = Ugy C X. We can prove that the Verdier dual of ICx" is isomorphic to
ICy " itself. Namely, we have Dx(ICx") ~ ICx". This self-duality of ICx" is the
main reason why the intersection cohomology groups of X satisfy the generalized
Poincaré duality. In order to see that this construction of ICx " is canonical, it is, in fact,
necessary to check that it does not depend on the choice of a Whitney stratification
X = | |yes Xo. For this purpose, in [GM1] Goresky and MacPherson introduced a
“maximal” filtration

XDXdXDXdelD"‘DX()D}_(71=@

of X (that is, any Whitney stratification X = | |,.4 Xo of X is finer than the strati-
fication X = | | keZ(}_( © \ Xt_1)). But here, we define the intersection cohomology
complex ICx " by using the perverse z-structures and prove that it is isomorphic to the
complex

(tS7'Rj1,) 0+ 0 (57 Rjay,) (Culdx])

whenever we fix a Whitney stratification X = | |,.4 Xo of X. More generally, for
any pair (X, U) of an irreducible complex analytic space X and its Zariski open dense
subset U (j : U — X), we can introduce a functor

Pj, : Perv(Cy) —> Perv(Cy)

such that 7}, (Cyldx]) >~ ICx" in the above case. Such an extension of a perverse
sheaf on U to the one on X will be called a minimal extension or a Deligne—Goresky—
MacPherson extension (D-G-M extension for short). In addition to the two funda-
mental papers [BBD] and [GM1] on this subject, we are also indebted to [Bor2],
[CG], [Di], [G1], [Ki], [Na2], [Schu].

8.2.2 Minimal extensions of perverse sheaves

Let X be an irreducible algebraic variety or an irreducible analytic space and U a
Zariski open dense subset of X. In what follows, we set Z = X \ U and denote by
i:Z<— Xandj:U <~ X the embeddings.
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We say that a stratification X = |_|a ca Xo of X is compatible with F’ € Df(U )
ifU = UaeB Xy for some B C A, and both F'|x,, Dy F'|x, have locally constant
cohomology sheaves for any @ € B. Such a stratification always exists if X is an
algebraic variety; however, it does not always exist in the case where X is an analytic
space.

Example 8.2.1. Regard X = C and U = C\ {0} as an analytic space and its Zariski
open subset, respectively. Set Y,, = {1/n} for each positive integer n. We further set
V =U\ (U, Yn). Then the stratification U = V U (||, ¥») of U (and any of
its refinement) cannot be extended to that of X. In particular, if F is a constructible
sheaf on U whose support is exactly U \ V, then there exists no stratification of X
compatible with F.

Assume that a stratification X = | |,.4 Xo of X is compatible with F* €
ch (U). By replacing it with its refinement we may assume that the stratification
X = || e X« satisfies the Whitney condition (see Definition E.3.7). In this situa-
tion the cohomology sheaves of Rj,F’|x, and jiF'|x, are locally constant for any
a € A. In particular, we have Rj, F", jiF* € D2(X).

Now let F~ be a perverse sheaf on U and assume that there exists a Whitney
stratification of X compatible with F°. We shall consider the problem of extending
F" to a perverse sheaf on X.

By taking the Oth perverse cohomology PH° of the canonical morphism ji F* —
Rj,.F" we get a morphism 7jj F" — Pj, F" (see Notation 8.1.37) in Perv(Cy).

Definition 8.2.2. We denote by 7, F" the image of the canonical morphism
PjF —> Pj F’
in Perv(Cy), and call it the minimal extension of F* € Perv(Cy).
In other words, the morphism 7, F* — Pj, F " factorizesas Pj) F*—>Pj F" —
Pj.F" (—> is anepimorphism and =< is amonomorphism) in Perv(Cy). Moreover,

by definition, in the algebraic case for any morphism F* — G' in Perv(Cy ) we obtain
a canonical morphism ?ji, F* — 7, G" in Perv(Cy).

Proposition 8.2.3. For F' € Perv(Cy), we have Dx (P F') >~ Pj,(Dy F").
Proof. By applying Dy to the sequence
PjF —PjiF > Pj F
of morphisms in Perv(Cy) we obtain a sequence
Dx(PjuF)—>Dx(PjuF) —> Dx(PjiF")

of morphisms in Perv(Cy) by Proposition 8.1.33. Furthermore, it follows also from
Proposition 8.1.33 that
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Dy (PjuF") ~ PHODX (Rj. F") ~ Pji(Dy F’)
Dx (PjiF") = PHODx (RjiF") = Pju(Dy F).

Therefore, we obtain a sequence

Pi\Dy F)—>>Dx (Pji F) = Pj(Dy F")
of morphisms in Perv(Cy), which shows that we should have Dy (?ji F’) =~
P Dy F). O

Lemma 8.2.4. Let U’ be a Zariski open subset of X containing U such that we have
U' = Uyep Xy for some B' C A. We denote by j1 : U — U’ and jo : U' — X the
embeddings.

(1) We have Pj F" >~ Pj Pj1 F and PjiF" >~ Pjy Pj1, F".
(1) Py ™ > Pjay Pjng F
Proof. (i) Since the functors Rjj, and Rj», are left r-exact, we have
PjsF" = PHO(Rj2Rj1, F) 2 PHO(Rjp PHO (Rt F) = Vi j1 F

by Proposition 8.1.15 (i). The proof of the assertion PjiF" = Pj;Pj1, F" is similar.

(ii) Recall that 7j;,, F" is a subobject of 7j;, F" in Perv(Cyy) such that the mor-
phism ?j, F* — Pj; F" factorizes as

PinF —>Pj1 1 F" — Pji F".
By using the right -exactness of ”j, (Propositions 8.1.43 (ii) and 8.1.15 (ii)) and the
left r-exactness of 7j,, (Proposition 8.1.43 (i) and Proposition 8.1.15 (ii)) we obtain
PjF = "Pjay o Pji F'—>Pjr) 0 Pj1  F' =P, 0 Py, F
— pj2* © pjl!*F. — 17]'2* o pj]*F. = pJ*F
It follows that we have ?ja,, o Pj1 ) F" >~ Pji, F". O
Proposition 8.2.5. The minimal extension G* = P, F" of F* € Perv(Cy) is charac-
terized as the unique perverse sheaf on X satisfying the conditions
DGy >~ F,
()i~'G e PDS1(2),
(i) i'G" e "DZ' (2).
Proof. We first show that the minimal extension G* = 7}, F" satisfies the conditions
(i), (i), (iii). Since the functor j~! = j' is r-exact by Corollary 8.1.44 (i), we have
PjwFly = j~ ' Im[PjiF" —> Pj,F]
=Im[j"'PiF — TP F]
=Im[PH (7' Rj\F) — PHO(j ™' R}, F)]
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=Im[F" — F’]
=F"
Hence the condition (i) is satisfied. By the distinguished triangle

WG — 6 — iie S

in Df (X) we obtain an exact sequence
PH(jij~'G") — PHY(G") — PH(ixi”'G) — PH' (jij~'G").

By the definition of G* we have PH*(G") = ?ji.F'. By (i) we have j~!G" =
F*, and hence PH®(jij~'G") = PjiF'. Moreover, we have PH'(jij~'G") = 0 by
Proposition 8.1.43 (ii). Finally, the canonical morphism 7jiF* — ?j, F" is an
epimorphism by the definition of 7ji,.. Therefore, we obtain PH%(i,i ~'G") = 0 by
the above exact sequence. Since i, is r-exact, we have I’Ho(i’1 G") = 0. Since i~lis
right 7-exact, we have i 7' G I’DCSO(Z). It follows that i ~1G" € 1’D§7] (Z). Hence
the condition (ii) is satisfied. The condition (iii) can be checked similarly to (ii) by
using the distinguished triangle

1i'G — G —> Rj,j 'G5 .

Let us show that G* € Perv(Cy) satisfying the conditions (i), (ii), (iii) is canon-
ically isomorphic to 7ji, F'. Since j~!(= j') is left adjoint to Rj, and right adjoint
to ji, we obtain canonical morphisms j}FF — G° —> Rj,F in Df(X). Hence we
obtain canonical morphisms 7jiF* —> G —> Pj, F" in Perv(Cy). It is sufficient to
show that 7jiF© — G" is an epimorphism and G° — 7, F" is a monomorphism
in Perv(Cy). We only show that 7j} F* —> G’ is an epimorphism (the proof of the
remaining assertion is similar). Since the cokernel of 7ji F* — G~ is supported by
Z, there exists an exact sequence

PiFF — G — iyH — 0

for some H' € Perv(Cy) (Corollary 8.1.44 (ii)). Since i~lis right 7-exact, we have
an exact sequence /i ~'G" — Pi~li,H" —> 0. By Corollary 8.1.44 (ii) we have
pi—Yi.H =i"Yi,H = H'. Moreover, by our assumption (ii) we have -1G =o.
It follows that H* = 0, and hence 7j; F* — G’ is an epimorphism. O

Corollary 8.2.6. Assume that X is smooth. Then for any local system L € Loc(X)
on X we have Lldx] >~ Pji.(L|yldx]).

Proof. By Proposition 8.2.5 it is sufficient to show i ~'L[dx] € ”fol(Z) and
i'Lldx] € pD?l(Z). By d; < dx we easily see that i~'L[dx] € pDCg_l(Z).
Furthermore, we have

i'Lldx] ~ i'DxDx (L[dx])
~Dyi~ ' (L*[dx]) € PDZ" (X)),

where L* is the dual local system of L. O
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Proposition 8.2.7. Let F* € Perv(Cy) be as above. Then

(1) Pj« F" has no non-trivial subobject whose support is contained in Z.
(i) Pji F has no non-trivial quotient object whose support is contained in Z.

Proof. (i) Let G* C Pj,F" be a subobject of Pj, F" such that supp G* C Z. Then by
Corollary 8.1.41 i'G" ~ i~'G" is a perverse sheaf on Z and we obtain %'G" ~ i'G".
Since we have G™ ~ i,i'G", it suffices to show that #i'G" ~ 0. Now let us apply the
left 7-exact functor 7' to the exact sequence 0 — G — Pj, F". Then we obtain an
exact sequence 0 — 7i'G" — Pi'Pj, F". By Proposition 8.1.15 (i) and i'Rj F" ~ 0
we obtain 7%i'Pj, F* ~ pHO(i!Rj*F') ~ 0. Hence we get ”i'G" ~ 0. The proof of (ii)
is similar. O

Corollary 8.2.8. The minimal extension P ji, F" has neither non-trivial subobject nor
non-trivial quotient object whose support is contained in Z.

Proof. By the definition of the minimal extension 7jy, F" the result follows immedi-
ately from Proposition 8.2.7. O

In the algebraic case we also have the following.

Corollary 8.2.9.
(i) Let 0 — F° — G’ be an exact sequence in Perv(Cy). Then the associated
sequence 0 — Pji, F" — Pj.G" in Perv(Cy) is also exact.
(ii) Let F* — G' — 0 be an exact sequence in Perv(Cy). Then the associated
sequence Pji F" — Pji,G" — 0 in Perv(Cy) is also exact.

Proof. (i) Since the kernel K~ of the morphism ”j, F* — 7, G is a subobject of
Pj F" whose support is contained in Z, we obtain K 2~ 0 by Corollary 8.2.8. The
proof of (ii) is similar. O

Corollary 8.2.10. Assume that F" is a simple object in Perv(Cy ). Then the minimal
extension P, F" is also a simple object in Perv(Cy).

Proof. Let G* C Pj,. F" be a subobject of jy, F" in Perv(Cy) and consider the exact
sequence 0 - G° — Pj,F" — H' — 0 associated to it. If we apply the ¢-exact

functor j' = j~! to it, then we obtain an exact sequence 0 — ;=!G — F' —
j~VH — 0. Since Fis simple, j~'G" or j~'H is zero. In other words, G" or H’
is supported by Z. It follows from Corollary 8.2.8 that G* or H' is zero. O

Now we focus our attention on the case where U is smooth and F* = L[dx] for a
local system L € Loc(U) on U. Note that we assume that X is irreducible as before.
We can take a Whitney stratification X = | |,.4 X« of X such that U is a union
of strata in it. In view of Lemma 8.2.4 and Corollary 8.2.6 we may assume that U
is the unique open stratum in considering the minimal extension of L[dx]. In other
words we fix a Whitney stratification X = | |,.4 X« of X and consider the minimal
extension ”ji, (L[dx]) of L € Loc(U), where U is the open stratum and j : U — X
is the embedding.
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Set Xi = | |gim x, <x Xo for each k € Z. Then we get a filtration
X=X4y DXgy-1D--DXoDX_1=0

of X by (closed) analytic subsets. Set Uy = X \ Xix—1 = | lgim Xo>k X and consider
the sequence

Jdx Jdy—1 J2 J1
U:de;)de—l;)"';)Ul%U():X

of inclusions of open subsets in X.

Proposition 8.2.11. In the situation as above, we have an isomorphism
PjulLldx]) = (tS7'Rj1,) 0o (vST¥ Rjay ) (LLdxD).

Proof. In view of Lemma 8.2.4 it is sufficient to show that for any perverse sheaf F"
on Uy whose restriction to each stratum X, C Uy has locally constant cohomology
sheaves we have

Pjry F* = v Rji (F).
We will show that the conditions (i), (ii), (iii) of Proposition 8.2.5 is satisfied for G =
Sk Rjk, (F') € Df,’ (Uk—1). Since Uy consists of strata with dimension > k, we have
H"(F') = 0forr > —k by Proposition 8.1.22. It follows that [t S~ R ji . (F")]| =
F’, and hence the condition (i) is satisfied. Set Z = Uy_1 \ Uy = Udim Xy—k—1 Xo
andleti : Z — Uy be the embedding. Theni~! G has locally constant cohomology
sheaves on each (k — 1)-dimensional stratum X, C Z and we have H' (i —'G") =0

for r > —k. It follows thati ~'G" € PD§_1(Z) by Proposition 8.1.22 (i), and hence
the condition (ii) is satisfied. Consider the distinguished triangle

G =TS F R F —> Rjg, F — > I Rj 5

Applying the functor i' to it, we get i'G" =~ i'(zZ**1Rji, F’)[—1] because
i!Rjk*F' ~ 0. Hence we have H’(i!G') = 0 forr < —k + 1. Since i'G" has
locally constant cohomology sheaves on each (k — 1)-dimensional stratum X, C Z,

we have i'G" € I’D? ! (Z) by Proposition 8.1.22 (ii). The condition (iii) is also satis-
fied. |

Corollary 8.2.12. There exists a canonical morphism (j.L)[dx] — Pji(L[dx])
in D2(X).

Proof. The result follows from the isomorphism

TSTIXPG(LIdX]) = (g © Jos - © Jag ) (D)Idx] = (jxL)[dx]

obtained by Proposition 8.2.11. O
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Definition 8.2.13. For an irreducible algebraic variety (resp. an irreducible analytic
space) X we define its intersection cohomology complex ICx" € Perv(Cy) by

ICx" = 7ji(Cxa, ldx]) (resp. ICx" = 71, (Cyx,,[dx]),
where Xeo denotes the regular part of X and j : X =~ X is the embedding.
By Proposition 8.2.3 we have the following.
Theorem 8.2.14. We have Dx(ICx") = ICx".
Proposition 8.2.15. There exist canonical morphisms
Cx — ICx'[—dx] — wx'[—2dx]
in D2(X).

Proof. By Corollary 8.2.12 there exists a natural morphism Cy — ICx[—dx]. By
taking the Verdier dual we obtain a morphism ICx '[dx] — wx . m]

Definition 8.2.16. Let X be an irreducible analytic space. For i € Z we set

IH'(X) := H'(RT'(X, ICx [—dx])).
TH!(X) := H'(RT.(X,1Cx [—dx])).

We call I H' (X) (resp. I H (X)) the ith intersection cohomology group (resp. the ith
intersection cohomology group with compact supports) of X.

The following theorem is one of the most important results in intersection coho-
mology theory.

Theorem 8.2.17. Let X be an irreducible analytic space of dimension d. Then we
have the generalized Poincaré duality

TH (X) ~ [1HX7(X)]"
forany 0 <i < 2d.

Proof. Let ax : X—>{pt} be the unique morphism from X to the variety {pt}
consisting of a single point. Then we have an isomorphism

RHomc(RaxICx’, C) >~ Rax.RHomc,(ICx", wx’)

in D*({pt}) ~ D’(Mod(C)) by the Poincaré—Verdier duality theorem. Since
RHomc,(ICx’, wx) = Dx(ICx") ~ ICx" by Theorem 8.2.14, we get an isomor-
phism

[RT:(X,1Cx")]" ~ RI(X,ICx")

By taking the (i — d)th cohomology groups of both sides, we obtain the desired
isomorphism. O
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In what follows, let us set H'(X) = H'(X, Cx) and H (X) = H!(X, Cx). By
the Verdier duality theorem we have an 1som0rphlsm H™ ’(X wx’) >~ [H! L (X)]* for
any i € Z. This hypercohomology group H ™' (X, wx") is called the ith Borel-Moore
homology group of X and denoted by Hl.B M(X). If X is complete (or compact), then
HiBM(X) is isomorphic to the usual homology group H;(X) = H;(X, C) of X. By
Proposition 8.2.15 we obtain the following.

Proposition 8.2.18. There exist canonical morphisms
i ' BM
H'(X) — [H'(X) — HEM .(X).
foranyi € Z.

The morphism H!(X) —> Hy, BM _;(X) can be obtained more directly as fol-
lows. Recall that the top—dimens1onal Borel-Moore homology group H}M (X) =

[ch dx (X)]* >~ C of X contains a canonical generator [X] called the fundamental
class of X (see, for example, Fulton [F, Section 19.1]). Then by the cup product

H (X) x H**7H(X) — H*¥(X)

and the morphism ch dx (X) — C obtained by the fundamental class [X] €
[ch dx (X)]* we obtain a bilinear map

H (X) x H**7(X) — C.
This gives a morphism H'(X) —> HEM .(X) = [HZ™ ' (X)T*.

Proposition 8.2.19. Let X be a projective variety with isolated singular points. Then
we have

Hi(Xreg) 0<i<dyx
TH'(X) = { Im[H(X) — H (Xyep)] i =dy
Hi(X) dx <i <2dy.

In particular we have Hi(Xreg) ~ H2x=I(X) forany 0 < i < dy.

Proof. Let pi, p2,..., px be the singular points of X and j : Xy, — X the
embedding. Then X = Xeg U (I_ll 1{pi}) is a Whitney stratification of X and we
have ICx [—dx] ~ 759~ I(RJ*(CX,eg) Hence we obtain a distinguished triangle

ICx [—dx] —> Rj,Cx,, — T2 (Rj,Cx,y) —> .
Applying the functor RT"(X, e), we easily see that

TH (X) = H (X, ICx [~dx]) = H' (Xreg)
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for 0 <i < dy and the morphism
TH™ (X) = H¥ (X, 1Cx [—dx]) = H™ (Xrep)

is injective. Now let us embed the canonical morphism Cy — ICx ' [—dx] (Propo-
sition 8.2.15) into a distinguished triangle

Cx — ICx'[-dx] — F° i) .

Then F’ is supported by the zero-dimensional subset I_If?:1 {pi}of Xand H'(F) =0
for any i > dyx. Therefore, applying RI'(X, e) to this distinguished triangle, we
obtain

H (X)~ITH (X) = H (X,1ICx [—dx])

for dxy < i < 2dy and the morphism
H™(X)—>TH™(X) = H™ (X, 1Cx [~dx])
is surjective. This completes the proof. O

For some classes of varieties with mild singularities, intersection cohomology
groups are isomorphic to the usual cohomology groups. For example, let us recall
the following classical notion.

Definition 8.2.20. Let X be an algebraic variety or an analytic space. We say that X
is rationally smooth (or a rational homology “manifold”) if for any point x € X we
have
‘ C i =2dx
H {lx}(X ,Cx) =
0  otherwise.

By definition, rationally smooth varieties are pure-dimensional. Smooth varieties
are obviously rationally smooth. Typical examples of rationally smooth varieties with
singularities are complex surfaces with Kleinian singularities and moduli spaces of
algebraic curves. More generally V-manifolds are rationally smooth. It is known that
the usual cohomology groups of a rationally smooth variety satisfy Poincaré duality
(see Corollary 8.2.22 below) and the hard Lefschetz theorem.

Proposition 8.2.21. Let X be a rationally smooth irreducible analytic space. Then the
canonical morphisms Cx — wx’'[—2dx] and Cx — ICx’'[—dx] are isomorphisms.

Proof. Letiy) : {x} =< X be the embedding. Then we have
i{;;wx' = i{;}DX(CX) ~ Dyyij(Cx) ~ RHomg (RT((X, Cx), C)
and hence an isomorphism

i— - . 2dx—j
HI72X i S ox '] ~ [H (X, Cx)T*
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for any j € Z. Then the isomorphism Cy =~ wx'[—2dx] follows from these iso-
morphisms and the rationally smoothness of X. Now let us set F* := Cx[dx] =~
wx'[—dx] € Dé’(X). Then the complex F~ satisfies the condition Dx (F") ~ F".
Therefore, by Proposition 8.2.5 we can easily show that F" is isomorphic to the in-
tersection cohomology complex ICx . O

Corollary 8.2.22. Let X be a rationally smooth irreducible analytic space. Then we
have an isomorphism H' (X) >~ I H' (X) forany i € Z.

Definition 8.2.23. Let X be an irreducible algebraic variety or an irreducible analytic
space. Let U be a Zariski open dense subset of Xyeg and j : U — X the embedding.
For a local system L € Loc(U) on U we set

ICx(L)" = Pji(Lldx]) € Perv(Cx)

and call it a twisted intersection cohomology complex of X. We sometimes denote
ICx (L) [—dx]by "L".

Let X be an algebraic variety or an analytic space. Consider an irreducible closed
subvariety Y of X and a simple object L of Loc(Y) (i.e., an irreducible local system
on Yy), where Yy is a smooth Zariski open dense subset of Y. Then the minimal
extension ICy (L)’ of the locally constant perverse sheaf L[dy] to Y can be naturally
considered as a perverse sheaf on X by Corollary 8.1.44 (ii). By Corollary 8.2.10
and Lemma 8.2.24 below this perverse sheaf on X is a simple object in Perv(Cy).
Moreover, it is well known that any simple object in Perv(Cy) can be obtained in
this way (see [BBD]).

Lemma 8.2.24. Let L be an irreducible local system on a smooth irreducible vari-
ety X. Then the locally constant perverse sheaf L|dx] on X is a simple object in
Perv(Cy).

Proof. Let 0 — F;" — L[dx] — F>" — 0 be an exact sequence in Perv(Cy).
Choose a Zariski open dense subset U of X on which F;" and F," have locally
constant cohomology sheaves and set j : U — X. Then by Lemma 8.1.23 there
exist local systems M1, M on U suchthat F|'|y >~ M1[dx], F>'|y >~ M>[dx]. Hence
we obtain an exact sequence 0 - M| — L|y — M, — 0 of local systems on U.
Since M can be extended to the local system j, M| C j.(L|y) =~ L of the same rank
on X, it follows from the irreducibility of L that M| or M, is zero. Namely, F; or
F>" is supported by Z = X \ U. Since L[dx] =~ ?ji.(L|y[dx]) by Corollary 8.2.6,
F1 or F," should be zero by Corollary 8.2.8. O

Remark 8.2.25. Assume that X is a complex manifold. For a C*-invariant
Lagrangian analytic subset A of the cotangent bundle 7*X denote by Perv, (Cy)
the subcategory of Perv(Cy) consisting of objects whose micro-supports are con-
tained in A. From the results in some simple cases it is generally expected that
for any A C T*X as above there exists a finitely presented algebra R such that
the category Perva (Cy) is equivalent to that of finite-dimensional representations
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of R. In some special (but important) cases this algebraic (or quiver) description
of the category Perv (Cy) was established by [GGM]. Recently this problem has
been completely solved for any smooth projective variety X and any A C T*X by
S. Gelfand—MacPherson—Vilonen [GMV].

Now we state the decomposition theorem due to Beilinson—Bernstein—Deligne—
Gabber (see [BBD]) without proofs.

Theorem 8.2.26 (Decomposition theorem). For a proper morphism f : X — Y
of algebraic varieties, we have

finite

Rf[ICx"] = @D iksICy, (L) Thk)- 8.2.1)
k

Here for each k, Yy is an irreducible closed subvariety of Y, iy : Yy —> Y is the
embedding, Ly € Loc(Y,é) for some smooth Zariski open subset Y,é of Yk, and Iy is an
integer.

The proof relies on a deep theory of weights for étale perverse sheaves in positive
characteristics. This result can be extended to analytic situation via the theory of
Hodge modules (see Section 8.3 below).

Corollary 8.2.27. Let X be a projective variety and 7 : )N( — X a resolution of
singularities of X. Then I H'(X) is a direct summand of H' (X) for any i € Z.

Proof. By the decomposition theorem we have
R, (Cgldx]) ~ ICx & F°
for some F' € Df (X), from which the result follows. O

Remark 8.2.28. The decomposition theorem has various important applications in
geometric representation theory of reductive algebraic groups. For details we refer
the reader to Lusztig [L2] and Chriss—Ginzburg [CG].

In general the direct image of a perverse sheaf is not necessarily a perverse sheaf.
We will give a sufficient condition on a morphism f : X — Y so that Rf,(ICx") is
perverse.

Definition 8.2.29. Let f : X — Y be a dominant morphism of irreducible algebraic
varieties. We say that f is small (resp. semismall) if the condition codimy{y € Y |
dim f~1(y) = k} > 2k (resp. codimy{y € Y | dim f~'(y) > k} > 2k) is satisfied
for any k > 1.

Note thatif f : X — Y is semismall then there exists a smooth open dense subset
U C Y such that f | p-1(yy: f~Y(U) — U is a finite morphism. In particular we
have dX = dy.
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Proposition 8.2.30. Let f : X — Y be a dominant proper morphism of irreducible
algebraic varieties. Assume that X is rationally smooth.

(i) Assume that f is semismall. Then the directimage Rf,(Cxan[dx]) of the constant
perverse sheaf Cxan[dx] >~ ICx" is a perverse sheaf on Y .

(ii) Assume that f is small. Then we have an isomorphism Rf,(Cxam[dx]) =~
ICy (L) for some L € Loc(U), where U is a smooth open subset of Y.

Proof. (i) By DyRf., =~ Rf.Dx (f is proper) it suffices to check the condi-
tion Rfy(Cxa[dx]) € PDfo(X). This follows easily from R/ f,(Cxa), =
HJ(f~!(y), C) and the fact that H/ (f~!(y), C) = 0 for j > 2dim f~'(y).

(i) By our assumption there exists an open subset U C Y such that f | ;—1(yy:

f~Y(U) — U is a finite morphism. If necessary, we can shrink U so that U is
smooth and f,Cxa|ya € Loc(U). We denote this local systemby L. Set Z = Y\ U
and leti : Z — Y be the embedding. By Proposition 8.2.5 we have only to show
that i ' Rf,(Cxa[dx]) € PDS™'(Z) and i'Rf.(Cxm[dx]) € PDZ'(Z). Again by
DyRf. =~ Rf.Dy it is enough to check only the condition i_lRf* (Cxan[dx]) €
”D§71 (Z). This can be shown by the argument used in the proof of (i). |

Recall that the normalization 7 : X — X of a projective variety X is a finite map

which induces an isomorphism 7|, -1 Xreg © n_ereg = Xreg-

Corollary 8.2.31. Let X be a projective variety and 7 : X — X its normalization.
Then we have an isomorphism

Rm,[IC3 | ~ICx".
In particular, there exists an isomorphism I H' ()N() ~ IH (X) foranyi € Z.
Since the normalization T :_E~—> C of an algebraic curve C is smooth, we obtain
an isomorphism / H'(C) >~ H'(C) for any i € Z. However, this is not always true

in higher-dimensional cases.

Example 8.2.32. Let C be an irreducible plane curve defined by C = {(xg : x1 : x2)
€ ]P’z((C) |x8 + x13 = xox1x2}. Since C has an isolated singular point, we obtain

C i=0
IHC)=10 i=1
C i=2

by Proposition 8.2.19. In this case the normalization C of Cis isomorphic to P! (C)
and hence we observe that I H' (C) >~ H'(C) forany i € Z.
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Remark 8.2.33. Proposition 8.2.30 has important consequences in representation
theory. For example, let G be a semisimple algebraic group over C and B C G
a Borel subgroup (see Chapter 9 for the definitions). For the flag variety X = G/B of
Gletusset G = {(g,x) eGxX | gx=x}C GxX.Then G is a smooth complex
manifold because the second projection G — X is afiber bundle on X. Furthermore,
it turns out that the first projection f : G — G is small (see Lusztig [L.1]). Therefore,
via the Riemann—Hilbert correspondence, Proposition 8.2.30 implies that

Hf'/fogzo for j #0.

The remaining non-zero term H° f Og is a regular holonomic system on G and
coincides with the one satisfied by the characters of representations (invariant distri-
butions) of a real form of G (see [HK1]). Harish-Chandra obtained many important
results in representation theory through the detailed study of this system of equations.
We also note that Proposition 8.2.30 and Theorem 8.2.36 below play crucial roles in
the recent progress of the geometric Langlands program (see, for example, [MV]).

We end this section by presenting a beautiful application of the decomposition
theorem due to Borho—MacPherson [BM] on the explicit description of the direct
images of constant perverse sheaves. Let f : X — Y be a dominant projective
morphism of irreducible algebraic varieties. Then by a well-known result in analytic
geometry (see, for example, Thom [Th, p. 276]), there exists a complex stratification
Y = UgeaYy of ¥ by connected strata Y,’s such that f|,-1y 7y, = v,
is a topological fiber bundle with the fiber F, = f _l(ya) (yo € Yy). Let us
assume, moreover, that f is semismall. Then we have codimy Y, > 2dim F, for
any « € A. Note that for any i > 2dim F, we have H'(F,) = 0. In particular
[H"Rf*((CX)]|Ya = 0 for any i > codimy Y,. Set ¢, = codimy Y, and denote by
L the local system [H“ Rf ,(Cx)]|y, on Yy.

Definition 8.2.34. We say that a stratum Y, is relevant if the condition ¢, = 2 dim F,
holds.

We easily see that f is small if and only if the only relevant stratum is the open
dense one. Moreover, a stratum Y, is relevant if and only if L, # 0. For a relevant
stratum Y, the top-dimensional cohomology group H° (Fy) =~ (Lg)y, of the fiber
F has a basis corresponding to the df,-dimensional irreducible components of Fy,.
The fundamental group of Y, acts on the C-vector space H(Fy) =~ (Lg)y, by
permutations of these irreducible components. This action completely determines
the local system L. For each o € A let

Loy = @(Ly)®"
¢

be the irreducible decomposition of the local system L, where ¢ ranges through the
set of all irreducible representations of the fundamental group of Y, and mg > 0 is
the multiplicity of the irreducible local system L corresponding to ¢.
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Definition 8.2.35. We say that a pair (Y, ¢) of a stratum Y,, and an irreducible rep-
resentation of the fundamental group of Y,, is relevant if the stratum Y,, is relevant
and mgy # 0.

Theorem 8.2.36 (Borho-MacPherson [BM]). In the situation as above, assume,
moreover, that X is rationally smooth. Then the direct image Rf . (Cx|[dx]) of the
constant perverse sheaf Cx[dx] >~ ICx" is explicitly given by

Rf(Cxldx]) =~ €D liasICz, (Ly)1®™,
Yo.®)

where (Yy, @) ranges through the set of all relevant pairs, Z,, is the closure of Y, and
iy : Zog —> Y is the embedding.

Proof. By Proposition 8.2.30 the direct image Rf,(Cx[dx]) is a perverse sheaf on
Y. By the decomposition theorem we can prove recursively that on each strata Yp it
is written more explicitly as

Rf(Cxldx]) = €P liasICz, (Ls) 1",
Yo, ®)

where (Y, ¢) ranges through the set of all pairs of Y, and irreducible representations ¢
of the fundamental group of Y, and n4 are some non-negative integers. Indeed, let Yy,
be the unique open dense stratum in Y. Then on Yy, the direct image Rf,(Cx[dx])
is obviously written as

Rf(Cxldx]) =~ € (Lgldx)®",
(Yaq-®)

where (Y, ¢) ranges through the set of relevant pairs. Namely, for any pair (Y, ¢)
such that « = g we have ny = my. Let Y, be a stratum such that codimy Y, = 1.
Since H'Rf . (Cx[dx]) =0 on Yy, fori # —dyx by the semismallness of f, for any
pair (Yy, ¢) such that « = o; we must have ny = 0. Therefore, on Yy, L Yy, we
obtain an isomorphism

Rf(Cxldx]) =~ @D lig,ICz,, (Ls)1®™,
(Yay#)

where (Y, ¢) ranges through the set of relevant pairs. By repeating this argument,
we can finally prove the theorem. O

Remark 8.2.37. By Theorem 8.2.36 we can geometrically construct and study repre-
sentations of Weyl groups of semisimple algebraic groups. This is the so-called theory
of Springer representations. For this very important application of Theorem 8.2.36,
see Borho—MacPherson [BM]. As another subject where Theorem 8.2.36 is applied
effectively we also point out the work by Gottsche [Go] computing the Betti numbers
of Hilbert schemes of points of algebraic surfaces. Inspired by this result Nakajima
[Nal] and Grojnowski [Gr] found a beautiful symmetry in the cohomology groups
of these Hilbert schemes (see [Na2] for the details).
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8.3 Hodge modules

8.3.1 Motivation

Let k an the algebraic closure of the prime field IF), of characteristic p. Starting
from a given separated scheme X of finite type over Z, we can construct by base
changes, the schemes X¢ = X ®7 C over C and Xy = X ®z k over k. The
scheme X is regarded as the counterpart of X in positive characteristic. We have
cohomology groups H*(X¢', Q), H;(XE', Q) for the underlying analytic space X'
of X¢; the corresponding notions in positive characteristic are the so-called /-adic
étale cohomology groups H*(Xy, Q)), H} (Xk, Q) (I is a prime number different
from p). More precisely, under some suitable conditions on X over Z we have the
isomorphisms

H*(X®, Q) @0 Q ~ H*(Xk, Q).  HXXE, Q) ®9 Q ~ HY (Xx, Q),

which show that the étale topology for Xy corresponds to the classical topology for
X . This correspondence can be extended to the level of local systems and perverse
sheaves on X¢' and Xy.

For X we have the Frobenius morphism, which is an operation peculiar to the case
of positive characteristic. This allows us, compared with the case of X, to develop
a more detailed theory on X by considering étale local systems and étale perverse
sheaves endowed with the action of the Frobenius morphisms (Weil sheaves). That
is the theory of weights for étale sheaves, which played an important role in the proof
of the Weil conjecture [De3], [BBD].

However, Grothendieck’s philosophy predicted the existence of the theory of
weights for objects over C. In the case of local systems, the theory of the variation
of Hodge structures had been known as a realization of such a theory over C [De2].
In the case of general perverse sheaves, a theory of weight which is based on the
Riemann-Hilbert correspondence was constructed, and gave the final answer to this
problem. This is the theory of Hodge modules due to Morihiko Saito [Sal], [Sa3].

In this section, we present a brief survey on the theory of Hodge modules.

8.3.2 Hodge structures and their variations

In this subsection we discuss standard notions on Hodge structures. For more precise
explanations, refer to [De2], [GS].

Let X be a smooth projective algebraic variety. The complexifications Hg =
H"(X*, C) of its rational cohomology groups H = H"(X*, Q) (n € Z) can be
naturally identified with the de Rham cohomology groups. Moreover, in such cases,
a certain family { H”9 | p, g € N, p 4+ g = n} of subspaces of Hc is defined by
the theory of harmonic forms so that we have the Hodge decomposition

Hc = @ HP4,  HPO = 9P,
pFq=n
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Here we denote the complex conjugation map of H¢ with respect to H by h +—
h (h € Hc). Let us set FP(Hg) = @izp H'"=! Then F defines a decreasing
filtration of H and the equality Hc = FP @ F"~P*+! holds for every p. We call it
the Hodge filtration of Hc. Note that we can reconstruct the subspaces H” 9 from
the Hodge filtration by using H?9 = FP N F4.

Therefore, it would be natural to define the notion of Hodge structures in the
following way. Let H be a finite-dimensional vector space over Q and H its com-
plexification. Denote by & +— h (h € Hc) the complex conjugation map of Hc and
consider a finite decreasing filtration ' = { F/* (Hc) } ez by subspaces in Hc. That
is, we assume that F” (Hg)’s are subspaces of Hg satisfying F?(Hg) D FPH (Hp)
(Vp) and FP(Hc) = {0}, F~P(Hc) = Hc (p > 0). For an integer n, we say that
the pair (H, F) is a Hodge structure of weight n if the condition

He = FP @ F"—p-i—l

holds for any p. The filtration F is called the Hodge filtration. In this case, if we set
HP9 = FP N F1, then we obtain the Hodge decomposition

Hc = @ HP4, PO = 9P,
pFq=n

We can naturally define the morphisms between Hodge structures as follows. Given
two Hodge structures (H, F), (H', F) of the same weight n, a linear map f : H —
H' is called a morphism of Hodge structures if it satisfies the condition

f(FP(Hg)) C FP(Hg)

for any p. Here we used the same symbol f for the complexified map H¢c — H(/C of
f. Thus we have defined the category SH (n) of the Hodge structures of weight n.
The morphisms in S H (n) are strict with respect to the Hodge filtration . Namely,
for f € Homgpu ((H, F), (H', F)) we always have

f(FP(Hg)) = f(He) N FP(He)

for any p € Z, from which we see that SH (n) is an abelian category.

Next let us explain the polarizations of Hodge structures. We say a Hodge struc-
ture (H, F) € SH(n) is polarizable if there exists a bilinear form S on H satisfying
the following properties:

(1) If niseven, S is symmetric. If n is odd, S is anti-symmetric.
(ii) If p + p’ # n, we have S(HP-"~P, HP-"~P) = (.
(iii) For any v € HP"~P such that v # 0 we have (+v/—1)""27S(v, ©) > 0.

Denote by S H (n)? the full subcategory of S H (n) consisting of polarizable Hodge
structures of weight n. Then it turns out that SH (n)? is an abelian category, and any
object from it can be expressed as a direct sum of irreducible objects.

As we have explained above, for a smooth projective algebraic variety X, a natural
Hodge structure of weight n can be defined on H" (X", QQ); however, the situation is
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much more complicated for non-projective varieties with singularities. In such cases,
the cohomology group H" (X", Q) is a sort of mixture of the Hodge structures of
various weights. This is the theory of mixed Hodge structures due to Deligne.

Letus give the definition of mixed Hodge structures. Let H be a finite-dimensional
vector space over Q, F a finite decreasing filtration of Hc and W = {W,,(H)},cz
a finite increasing filtration of H. By complexifying W, we get an increas-
ing filtration of Hc, which we also denote by W. Then the complexification of
gr,‘;V(H) = W,(H)/W,_1(H) is identified with W, (Hc)/W,—1(Hc) and its de-
creasing filtration is defined by

FP (W, (Hc)/Wa-1(Hg)) = (Wy(He) N FP (He) + Wy—1 (He))/ W1 (He).

We say that a triplet (H, F, W) is a mixed Hodge structure if for any n the filtered
vector space gr,‘iv (H, F) .= (gr,‘:V (H), F ) is a Hodge structure of weight n. We can
naturally define the morphisms between mixed Hodge structures, and hence the cate-
gory SH M of mixed Hodge structures is defined. Let SH M? be the full subcategory
of SH M consisting of objects (H, F, W) € SHM such that gr,‘f/ (H, F) e SH(n)?
for any n. They are abelian categories.

Next we explain the notion of the variations of Hodge structures, which naturally
appears in the study of deformation (moduli) theory of algebraic varieties.

Let f : Y — X be a smooth projective morphism between two smooth algebraic
varieties. Then the nth higher direct image sheaf R” f2"(Qya) is a local system
on X whose stalk at x € X is isomorphic to H"(f~!(x)®, Q). Since the fiber
£~ 1(x) is a smooth projective variety, there exists a Hodge structure of weight n on
H"(f~'(x)™, Q). Namely, the sheaf R" S (Qyan) is a local system whose stalks
are Hodge structures of weight n. Extracting properties of this local system, we come
to the definition of the variations of Hodge structures as follows.

Let X be a smooth algebraic variety and H a Q-local system on X", Then by a
theorem of Deligne (Theorem 5.3.8), there is a unique (up to isomorphisms) regular
integrable connection M on X such that DR(M) = C ®q H [dim X]. Let us denote
this regular integrable connection M by M (H). Assume that F' = {F? (M(H))} pez,
is a finite decreasing filtration of M (H) by Ox-submodules such that F?/FP*! is
a locally free Ox-module for any p. Namely, F corresponds to a filtration of the
associated complex vector bundle by its subbundles. Since the complexification
(H,)c of the stalk H, of H at x € X coincides with C ®», . M(H),, a decreasing
filtration F (x) of (H,)c is naturally defined by F. Now we say that the pair (H, F)
is a variation of Hodge structures of weight n if it satisfies the conditions

(i) Forany x € X, (Hy, F(x)) € SH(n).
(ii) For any p € Z, we have @y - FP(M(H)) C FP~Y(M(H)), where Oy stands
for the sheaf of holomorphic vector fields on X.

The last condition is called Griffiths transversality. Also, we say that the variation of
Hodge structures (H, F) is polarizable if there exists a morphism

S H ®Qxaﬂ H — Qxan
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of local systems which defines a polarization of (Hy, F(x)) at each point x € X.
We denote by VSH (X, n) the category of the variations of Hodge structures on
X of weight n. Its full subcategory consisting of polarizable objects is denoted by
VSH (X, n)?. The categories VSHM (X), VSHM (X)? of the variations of mixed
Hodge structures on X can be defined in the same way as SHM, SHMP. All these
categories VSH (X, n), VSH(X, n)?, VSHM(X) and VSHM (X)? are abelian
categories.

8.3.3 Hodge modules

The theory of variations of Hodge structures in the previous subsection may be re-
garded as the theory of weights for local systems. Our problem here is to extend it to
the theory of weights for general perverse sheaves. The Q-local systems H appear-
ing in the variations of Hodge structures should be replaced with perverse sheaves K
(over Q). In this situation, a substitute for the regular integrable connection M (H)
is a regular holonomic system M such that

DR(M) =C®q K.

Now, what is the Hodge filtration in this generalized setting? Instead of the decreasing
Hodge filtration F' = {F?} of M, set F, = F~” and let us now consider the
increasing filtration { F,}. Then Griffiths transversality can be rephrased as ® x - F, C
Fpy1. Therefore, for a general regular holonomic system M, we can consider good
filtrations in the sense of Section 2.1 as a substitute of Hodge filtrations.

Now, for a smooth algebraic variety X denote by M F,,(Dyx) the category of the
pairs (M, F) of M € Mod,,(Dy) and a good filtration F' of M. We also denote
by M F,,(Dyx, Q) the category of the triplets (M, F, K) consisting of (M, F) €
M Fy;(Dx) and a perverse sheaf K € Perv(Qx) over Q such that DR(M) = C ®q
K. Also MF,,W(Dyx, Q) stands for the category of quadruplets (M, F, K, W)
consisting of (M, F, K) € MF,;,(Dyx, Q) and its finite increasing filtration W =
{W,} in the category M F,,(Dx, Q). Although these categories are not abelian,
they are additive categories. Under these definitions, we can show that VSH (X, n)
(resp. VSH M (X)) is a full subcategory of M F,;,(Dx, Q) (resp. M F,,W(Dyx, Q)).
Indeed, by sending (H, F) € VSH(X, n) (resp. (H, F, W) € VSHM (X)) to
(M(H), F, H[dim X]) € MF,;,(Dx, Q) (resp. (M(H), F, H[dim X], W) €
MF,,W(Dyx, Q)) we get the inclusions

¢ : VSH(X, n) — MF,,(Dx, Q),
bx : VSHM(X) — MF,,W(Dy, Q)

of categories. So our problem is now summarized in the following three parts:

(1) Define a full abelian subcategory of M F,;(Dx, Q) (resp. M F.,W(Dx, Q))
consisting of objects of weight n (resp. objects of mixed weights).

(2) Define the various operations, such as direct image, inverse image, duality functor
for (the derived categories of) the abelian categories defined in (1).
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(3) Show that the notions defined in (1), (2) satisfy the properties that deserves the
name of the theory of weights. That is, prove basic theorems similar to those in
the theory of weights in positive characteristic.

Morihiko Saito tackled these problems for several years and gave a deci-
sive answer. In [Sal], Saito defined the full abelian subcategory M H (X, n) of
MF,;,(Dx, Q) consisting of the Hodge modules of weight n. He also gave the
definition of the full abelian subcategory M H (X, n)? of M H(X, n) consisting of
polarizable objects and proved its stability through the direct images associated to
projective morphisms. Next, in [Sa3], he defined the category M H M (X) of mixed
Hodge modules as a subcategory of M F,., W(Dy, Q) and settled the above problems
(2), (3). Since the definition of Hodge modules requires many steps, we do not give
their definition here and explain only their properties.

We first present some basic properties of the categories M H (X, n) and
MH (X, n)P following [Sal]:

(pl) MH(X, n), MH(X, n)? are full subcategories of M F,,(Dx, Q), and we
have MH (X, n)? C MH(X, n).

(p2) (locality) Consider an open covering X = [J,., Uy of X. For V €
MF.,(Dx, Q) we have V € MH(X, n) (resp. MH(X, n)?) if and only if
Vv, € MH(U,, n) (resp. V|y, € MH(U,, n)?).

(p3) All morphisms in M H (X, n) and M H (X, n)? are strict with respect to the
filtrations F.

We see from (p3) that M H(X, n) and M H(X, n)? are abelian categories. For
V=M, F, K) e MH(X, n) the support supp(M) of M is called the support of
V and we denote it by supp(V). This is a closed subvariety of X. Now let Z be an
irreducible closed subvariety of X. We say V = (M, F, K) € MH(X, n) has the
strict support Z if the support of V is Z and there is neither subobject nor quotient
object of ¥V whose support is a non-empty proper subvariety of Z. Let us denote
by M Hz (X, n) the full subcategory of M H (X, n) consisting of objects having the
strict support Z. We also set M Hz(X, n)? = MHz(X, n) N MH(X, n)”. Then
we have

(p4) MH(X,n) = @, MHz(X, n), MH(X, n)? = @, MHz(X, n)P, where
Z ranges over the family of irreducible closed subvarieties of X.

If one wants to find a category satisfying only the conditions (p1)—(p4) one can
set M H (X, n) = {0} for all X; however, the category M H (X, n) is really not trivial,
as we will explain below.

For V = (M, F, K) € MF,,(Dx, Q) and an integer m we define V(m) €
MF,y(Dx, Q) by

V(m) = (M ®q Q(m), Flm], K ®g Q(m))
(the Tate twist of V), where Q(m) = 27+/—1)"Q C C and Flml, = Fp—. The

readers might feel it strange to write ® pQ(m); however, this notation is natural from
the viewpoint of Hodge theory.
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(pS) ¢ (VSH(X, n)P) C MHx(X, n + dim X)”.
(p6) If V € MH(X, n) (resp. MH (X, n)?), then V(m) € MH (X, n — 2m) (resp.
MH (X, n—2m)P).

From (p5), (p6) and the stability through projective direct images to be stated below,
we see that M H (X, n) contains many non-trivial objects (see also (m13) below).
Let f : X — Y beaprojective morphism between two smooth algebraic varieties.
Then the derived direct image fa (M, F) of (M, F) € MF,;(Dx) is defined as
a complex of filtered modules (more precisely it is an object of a certain derived
category). As a complex of D-modules it is the ordinary direct image | 7 M.

(p7) It (M, F, K) € MH(X, n)”, then the complex fy (M, F) is strict with
respect to the filtrations and we have

(H' fg(M, F), PHY f(K)) € MH(Y, n+ j)".

forany j € Z (PH/ f,(K) is the jth perverse part of the direct image complex
f«(K), see Section 8.1).

Let us explain how the filtered complex fy (M, F) canbe defined. First consider
the case where f is aclosed embedding. In this case, for j # 0 wehave H/ s f M=0

and HO ff M = fi.(Dy—x ®p, M). Using the filtration on Dy y induced from
the one on Dy, let us define a filtration on f 7 M by

F, (/f M) = fa (; Fy(Dy«—x)® Fp—q+dimX—dimY(M))~

Then this is the filtered complex fy (M, F) of sheaves. Next consider the case where
fisaprojection X =Y x Z — Y (Z is a smooth projective variety of dimension
m). Now Dy x ®f)x M can be expressed as the relative de Rham complex

DRy (M) = [ng/y ®oy M — Q}(/Y ®oy M — -+ = Q% )y ®oy M]

(here Q’)? Y ®oy M is in degree 0). Hence a filtration of DR,y (M) as a complex
of f~!Dy-modules is defined by

Fp(DRxy (M) = [2%)y ®0y Fp(M) = Qx)y ®0y Fpi1(M)
- = Q" ®o, Fp+m(./\/l)],

and its sheaf-theoretical direct image is fy (M, F). Note that the complex
S (M, F) is strict if and only if the morphism

H (Rf.(Fy(DRxy (M) — HI (RE(DRx v (M) = HI [f M

is injective for any j and p. If this is the case, H/ s F M becomes a filtered module
by the filtration
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F,,(Hf'/f/\/t) = HI (Rf.(Fy(DRx,y(M)))).

We next present some basic properties of mixed Hodge modules following [Sa3]:

(ml) MHM(X) is a full subcategory of M F,;, W(Dx, Q), and subobjects and
quotient objects (in the category M F,, W(Dx, QQ)) of an object of M H M (X)
are again in M H M (X). That is, the category M H M (X) is stable under the
operation of taking subquotients in M F,., W(Dy, Q).

(m2) fV = (M, F, K, W) € MHM(X), then gr)/ V = erV(M, F, K) €
MH (X, n)P. Furthermore, if V € MF,,W(Dyx, Q) satisfies gr,‘f/ V=0
(k # n), gr,‘:v Ve MH(X, n)?, then we have YV € MHM (X).

(m3) (locality) Let X = |J, ., Ux be an open covering of X. Then for V €
MF.,W(Dx, Q) wehave V e MHM (X) if and only if V|y, € MHM(U,)
forany A € A.

(m4) All morphisms in M H M (X) are strict with respect to the filtrations F, W.

(m5) fY =M, F, K, W) e MHM(X), then V(m) = (M ®q Q(m), F[m],
K ®q Q(m), W[-2m]) e MHM (X).

It follows from (m4) that M H M (X) is an abelian category. Also by (m2) the
object

Q¥ [dim X1 := (Ox, F, Qx[dim X], W)
(grg =0(p #0), gr,‘;v =0 (n # dim X))
in MF,, W(Dx, Q) belongs to M HM (X). Let us define a functor
rat : MHM (X) —> Perv(Qy)

by assigning K € Perv(Qyx) to (M, F, K, W) € MHM (X). Then the functor rat
induces also a functor

rat : D’ MHM(X) —> D”(Perv(Qx)) ~ D2 (Qx)

of triangulated categories (i.e., it sends distinguished triangles in D? M HM (X) to
those in D?(Qx)), where we used the isomorphism D?(Perv(Qx)) =~ D?(Qx)
proved by [BBD] and [Bei]. In [Sa3] the functors
D:MHM(X) — MHM(X)®,
fx» fi: DPMHM(X) — D"MHM(Y),
FX, ' D"MHMY) — D"MHM(X)
were defined in the derived categories of mixed Hodge modules and he proved various

desired properties (f : X — Y is a morphism of algebraic varieties). Namely, we
have

(m6) DoD =1Id, Do fy = fioD, Do f* = floD.
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(m7) D orat = ratoD), f, orat = ratofy, fiorat = ratof;, f*orat =
rato f*, f'orat =ratof'.
(m8) If f is a projective morphism, then fy = fi.

Let V € D’MHM(X). We say that V has mixed weights < n (resp. > n) if
gr H'V =0( > j+n) (resp. gr) H/V =0 (i < j +n)). Also Vis said to have
a pure weight n if gr!¥ H'YV = 0 (i # j + n) holds. Now we have the following
results, which justify the name “theory of weights”:

(m9) If V has mixed weights < n (resp. > n), then DV has mixed weights > —n
(resp. < —n).
(m10) If V has mixed weights < n, then i), f*V have mixed weights < n.
(m11) If V has mixed weights > n, then fyV, f'V have mixed weights > n.

Next we will explain the relation with the variations of mixed Hodge structures.

(ml2) Let H € VSHM(X)?. Then ¢x(H) € MF,,;W(Dyx, Q) is an object of
M HM (X) if and only if H is admissible in the sense of Kashiwara [Kas13].

This implies in particular that M H M (pt) = SH M? (the case when X is a one-point
variety {pt}).

Finally, let us describe the objects in M Hz (X, n)? by using direct images (Z is
an irreducible subvariety of X). Let U be a smooth open subset of Z and assume
that the inclusion map j : U < X is an affine morphism. For H € VSH (U, n)?,
J197;, H and j. ¢y, 'H are objects in M H M (X) having weights < n, > n, respectively.
Therefore, if we set

J'*¢?]H = Im[]‘d’?]H - J*d’?}H],

then ji,¢7,H is an object in M H M (X) having the pure weight n + dim Z (this func-
tor ji, is a Hodge-theoretical version of the functor of minimal extensions defined in
Section 8.2). Hence grr‘i‘jrdimZ Jix@;H is an object in M H(X, n + dim Z)”. Fur-
thermore, it turns out that this object belongs to M Hz(X, n)”. Let us denote by
VSH(Z, n) gen the category of polarizable variations of Hodge structures of weight
n defined on some smooth Zariski open subsets of Z. Then by the above correspon-
dence, we obtain an equivalence

(m13) VSH(Z, n)ben =>MHz(X, n + dim Z)”.

of categories. Now consider the trivial variation of Hodge structures
(OZreg, F, Qzéieng) S VSH(Zreg, 0)17

defined over the regular part Ze; of Z (grlf = 0 (p # 0)). Let us denote by IC?
the corresponding object in M Hz (X, dim Z)? obtained by (m13). If we define the
filtration W on it by the condition gr’ = 0 (n # dim Z), then we see that ICQI €
M HM(X). The underlying D-module (resp. perverse sheaf) of IC? is the minimal
extension L(Zeg, Ozmg) (resp. the intersection cohomology complex IC((@Zggg)).
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Also in the case of Z = X, we have IC? = Qg [dim X]. Letay : X — pt be the
unique map and for V € M HM (X) set

HYX, V) = H((ax)+V), HY(X, V) = H*((ax)V).

Then these are objects in M HM (pt) = SHM?P. When X is a projective variety, by
(m10) and (m11) we get in particular

H* (X, 1ICH) = H*(X, 1ICY) € SH (k + dim Z)”.

This result shows that the global intersection cohomology groups of Z have Hodge
structures with pure weights.
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9

Algebraic Groups and Lie Algebras

In this chapter we summarize basic notions of algebraic groups and Lie algebras.
For details we refer to other textbooks such as Humphreys [Hul], Springer [Spl],
Humphreys [Hu2]. We do not give any proof here; however, various examples are
presented so that inexperienced readers can also follow the rest of this book.

9.1 Lie algebras and their enveloping algebras

Let k be a field. A Lie algebra g over k is a vector space over k endowed with a
bilinear operation (called a Lie bracket)

gxg—>g  ((x,y) = [x,y]) O.1.1)
satisfying the following axioms (9.1.2), (9.1.3):

[x,x]=0 (x€g), 9.1.2)
Lo, [y, zll + [y, [z, x]] + [z, [x, y]] =0 (x,y,z € g). (9.1.3)

We call [e, o] the bracket product of g.
For example, any vector space g with the bracket product

[x,y]=0 (x,ye€g

is a Lie algebra. We call such a Lie algebra commutative.
Any associative algebra A over k can be regarded as a Lie algebra by setting

[x,y]=xy —yx (x,y € A). 9.1.4)

In particular, the algebra End (V') consisting of linear transformations of a vector space
V is naturally a Lie algebra. We usually denote this Lie algebra by gl(V). When
V = k", it is identified with the set of n x n-matrices and we write it as g, (k).
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A vector subspace b of a Lie algebra g which is closed under the bracket product
of g is called a (Lie) subalgebra of g. A subalgebra of a Lie algebra is naturally a Lie
algebra. The following are all subalgebras of g, (k)):

s, (k) = {x € g, (k) | Tr(x) = 0}, 9.1.5)
s0,(k) = {x € gl, (k) | 'x +x = 0}, (9.1.6)
spy, (k) = {x € gly,, (k) | 'xJ + Jx =0} (n=2m), 9.1.7)

where we put

J = ( _OE g ) (E is the unit matrix of size m). (9.1.8)

Let g1 and g> be Lie algebras. A linear map f : g1 — g» preserving the bracket
products is called a homomorphism of Lie algebras.

Let g be a Lie algebra. Then there exists uniquely up to isomorphisms a pair
(A, i) of an associative algebra A and a homomorphism i : g — A of Lie algebras
satisfying the following universal property:

{ For any such pair (A’, i’) there exists a unique homomorphism 9.1.9)
[+ A — A’ of associative algebras such that f oi =i’ o

We denote this associative algebra by U (g) and call it the enveloping algebra of
g. It can be realized as the quotient of the tensor algebra T (g) of g by the two-sided
ideal generated by the elements xy — yx — [x, y] (x, ¥y € g). The following theorem
due to Poincaré—Birkhoff—-Witt (we call it PBW for short hereafter) is fundamental in
the theory of Lie algebras.

Theorem 9.1.1. If x1, . .., x;, is a basis of the k-vector space g, then the elements
i)™ i)™ (my, .. my € N=1{0,1,2,...})
in U (g) form a basis of U (g).

It follows from PBW thati : g — U(g) is injective. Hereafter, we consider g as
embedded into U (g) and omit the injection i.
Let g be a Lie algebra and let V be a vector space. We call a homomorphism

o:g— gl(V) (9.1.10)

of Lie algebras a representation of gon V. In this case we also say that V is a g-module.
By the universal property of U(g) giving a g-module structure on a vector space V
is equivalent to giving a homomorphism U(g) — End(V) of associative algebras.
Namely, a g-module is a (left) U (g)-module, and vice versa. Universal enveloping
algebras are indispensable tools in the representation theory of Lie algebras.
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9.2 Semisimple Lie algebras (1)

From now on we assume that Lie algebras are finite dimensional unless otherwise
stated. A subspace a of a Lie algebra g satisfying the condition [g, a] C a is called
an ideal of g. In this case a is clearly a Lie subalgebra of g. Moreover, the quotient
space g/a is naturally a Lie algebra.

If there exists a sequence of ideals of g:

g=0ap2a;Day D+ D a, = {0}

such that [a; /a; 11, a; /a;+1] = 0 (i.e., a; /a;41 is commutative), we call g a solvable
Lie algebra. For a Lie algebra g there always exists a unique maximal solvable ideal
t(g) of g, called the radical of g. A Lie algebra g is called semisimple if v(g) = 0.
For any Lie algebra g the quotient Lie algebra g/v(g) is semisimple. Moreover, it is
known that there exists a semisimple subalgebra s of g such that g = s @ v(g) (Levi’s
theorem).

ALie algebra g is called simple if it is non-commutative and contains no non-trivial
ideals (ideals other than {0} and g itself). Simple Lie algebras are semisimple. If the
characteristic of the ground field & is zero, any semisimple Lie algebra is isomorphic
to a direct sum of simple Lie algebras.

For x € g we define a linear map ad(x) : g — g by

(ad(x))(y) =[x, y] (y€g). 9.2.1)
Then
ad : g — gl(g) 9.2.2)

is a homomorphism of Lie algebras, and hence it gives a representation of g. We call
it the adjoint representation of g.
We define a symmetric bilinear form By : g x g — k on g by

Bg(x,y) = Tr(ad(x) ad(y)) (x, € g). (9.23)
This is called the Killing form of g.

Theorem 9.2.1 (Cartan’s criterion). We assume that the characteristic of k is 0.
Then a Lie algebra g is semisimple if and only if its Killing form By is non-degenerate.

By this theorem we can check the semisimplicity of the Lie algebras s, (k) (n =
2), 50, (k) (1 = 3), 5po, (k) (n = 2).

In the rest of this section we assume that k is an algebraically closed field of
characteristic zero and g is a semisimple Lie algebra over k.

Definition 9.2.2. We say that a subalgebra h of g is a Cartan subalgebra if it is
maximal among the subalgebras of g satisfying the following two conditions:

h is commutative. 9.24)
For any h € § the linear transformation ad (%) is semisimple. (9.2.5)
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Example 9.2.3. Let g = sl,,(k). Set

aj O

d(alv‘-'5an)= .'_ ’

0 .

h=1d(ai,...,ay)

n
ai,...,a, € C, Zai =0}.
i=1

Then h is a Cartan subalgebra of g. Indeed, it is easily seen that  satisfies (9.2.4),
(9.2.5). Moreover, the subalgebra

g ={xeg|[hx]={0})
coincides with , and hence h is a maximal commutative subalgebra.

We denote by Aut(g) the group of automorphisms of g:

Aut(g) ={g € GL(g) | [e(x), gWM] =g(x,yD &,y €@}

Theorem 9.2.4. If b1, by are Cartan subalgebras of g, then there exists some g €
Aut(g) such that g(h1) = hy.

In what follows we choose and fix a Cartan subalgebra b of g. For each A € h*
we set
g ={xeglad(h)x =x(h)x (hebh)}. (9.2.6)

The linear transformations ad(h) (h € b) are simultaneously diagonalizable, and
hence we have g = P, ¢+ 2. We set

A ={xeb*[gr#{0}\{0} 9:2.7)

Theorem 9.2.5.
B go=".
(i) For any a € A we have dim gy = 1.
(iii) The set A is a root system in b*. (The definition of a root systems will be given
in Section 9.3).

We call A the root system of g (with respect to b).

Example 9.2.6. Set g = sl,(k) and consider the Cartan subalgebra h in Exam-
ple 9.2.3. Fori = 1,...,n, we define A; € h* by

Arild(ay, ... an)) = a;.
Then we have
A={x—xjli#j},
Or—a; = keij (0 F# J),

where e;; is the matrix whose (k, [)th entry is §;10 ;.
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9.3 Root systems

Let k be a field of characteristic zero and V a vector space over k. For o € V and
a € V* such that (¢", &) = 2, we define a linear map sy ov : V. — V by

Seav(V) = v — (@, v)a. (9.3.1)
By setting H = Ker(a”) we have V = H @ ko, 54 4v(0) = —o and sy ov |z = id.
If A is a finite subset of V spanning V, then for « € A we have at mostonea” € V*
satisfying (", @) = 2 and 54 4v (A) = A.

Definition 9.3.1. A root system (in V) is a finite subset A of V which satisfies the
following conditions:

() A 0.
(i1) The set A spans V.
(iii) For any o € A, there exists a unique «¥ € V* such that («“,a) = 2 and
Saav(A) = A.
(iv) For a, B € A we have (a", B) € Z.
(V) If ca € A for some @ € A and ¢ € k, then ¢ = £1.

An element of A is called a root.

For root systems A and A; in Vj and V;, respectively, we have a root system
A1UA2in Vi@ V,. We call this root system the direct sum of Aj and A;. We say that
a root system is irreducible if there exists no non-trivial direct sum decomposition.

Assume that A is a root system in V. For a field extension kj of k, A is also a
root system in k; ® V. Furthermore, for a subfield k> of k, setting V' = Y koa,
we see k ® V/ = V and A is a root system of V’. This means that the classification
of root systems is independent of the choice of base fields.

Theorem 9.3.2. Assume that k is an algebraically closed field of characteristic 0. For
any root system A there exists uniquely up to isomorphisms a semisimple Lie algebra
g(A) over k whose root system is isomorphic to A. Moreover, the Lie algebra g(A)
is simple if and only if A is an irreducible root system.

Hence semisimple Lie algebras over an algebraically closed field of characteristic
zero are classified by their root systems. In particular, the classification does not
depend on the choice of the base field k.

Henceforth we assume that A is a root system in the vector space V over a field
k of characteristic 0.

It follows from the simple fact “sy v = s4v 4 that

AV ={aV |ae A} C V* (9.3.2)

is also a root system in V*. We call it the coroot system of A.
The subgroup W of GL(V) defined by

W = (sqgqv | @ € A) (9.3.3)
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is called the Weyl group of A. Itis a finite group since it is regarded as a subgroup of
the permutation group of the finite set A. The Weyl group of A and that of A are
naturally identified via w <> ‘w™!. Hence we may also regard W as a subgroup of
GL(V*). In what follows we write s, ov € W simply as sq.

We can always take a subset AT of A with the following properties:

A=ATU(=AT), ATN(=AN) =0. (9.3.4)
Ifa,fe AT, a+BeA, thena+pBecA™. (9.3.5)
We call such a subset A™ a positive root system in A.

Proposition 9.3.3. The Weyl group W acts simply transitively on the set of positive
root systems in A.

From now on we fix a positive root system AT. An element of AT is called a
positive root.

A positive root which cannot be expressed as a sum of two positive roots is called
a simple root. We denote the set of simple roots by

M= {ay,...,o}. (9.3.6)
Wealsosets; =sq, (1 =1,...,0).
Proposition 9.3.4.

(1) IT is a basis of the vector space V.
(ii) Any positive root a € AT can be uniquely written as o = Zézlniai (n; € N).
>iii) W(IT) = A.
WVW=(s|i=1,...,1).
We call the square matrix A = (a;;) of size [ defined by
ajj = (Oll-v, aj) (9.3.7)

the Cartan matrix of A. By virtue of Proposition 9.3.3 the Cartan matrix is uniquely
determined from the root system A up to permutations of the indices 1, ..., /. More-
over, one can reconstruct the root system A from its Cartan matrix using Proposi-
tion 9.3.4 (iii) and (iv), because s;(aj) = «aj — a;;a;. Therefore, in order to classify
all root systems, it suffices to classify all possible Cartan matrices associated to root
systems. It follows directly from the definition that such a Cartan matrix satisfy

ai; = 2. (9.3.8)
It can also be shown that
aij 20 (i #)), (9.3.9)
ajj =0 a;; =0. (9.3.10)

Moreover, we see from an observation in the case of / = 2 that
if i # j, then a;;aj; takes one of the values 0, 1, 2, 3. (9.3.11)

The diagram determined by the following is called the Dynkin diagram of the root
system A:



9.3 Root systems 235

. . . i
Vertices: Foreachi =1, ..., [ we write a vertex o.

Edges: Wheneveri # j, we draw a line (edge) between the vertices é and & by
the following rules:

(i) Ifaj=aji =0, 5 d
(i) Ifa;j =a; =—1, 5 3
(i) aj;=—1,aj =2, b===b
(v) Ifaj=—1,a; = -3, b===d

Theorem 9.3.5. The Dynkin diagram of any irreducible root system is one of the
diagrams (Aj), ..., (Gy) listed below. Furthermore, for each Dynkin diagram in the

list, there exists a unique (up to isomorphisms) irreducible root system corresponding
to it.

(A})) o o 0----0 o o (the number of vertices | = 1)
(B)) o o o----0 o==—o (the number of vertices | 2 2)
(Cy) o o----o0 o—=—o0  (the number of vertices | 2 3)
[e]
(D) o o----0 O< (the number of vertices | = 4)
[} o
(Eg) o o <‘> o
[e]
(Ep) oo o
[}
(Eg) o ° “3 °
(F4) o o—=—o0 o
(GZ) O=———===0
ExamNple 9.3.6. Let V be a vector space endowed with a basis ey, ..., e, and set
V=V/k(ei+---+e,). Wedenote by A; the image of ¢; in V. TherLA ={A—Ajl
i # j}isaroot systemin V. By using the dual basis e}, ..., e; € V*ofey, ..., e,

we identify V* with
n n
{Zaie?ev* Za,:o}.
i=1 i=1

Then we have (A; — 4;)Y = e — e}k.. The Weyl group W of this root system is
identified with the symmetric group S, by the action A; > As;) of 0 € S, on V.
We can take a positive root system

AT =1 — Al < j}
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A, for which the corresponding simple root system is given by
n={ay,...,a-1}, a=Xri—Xiy1 (=12,....,n—1).

Therefore, the Dynkin diagram of A is of type (A,—1).

Let us introduce several basic notation concerning root systems and Weyl groups.

Fori =1, ...,1, we define the fundamental weight 7r; € V by the equation
(oejy, i) = 8ij. (9.3.12)
We also set

l

0=> Za =% (9.3.13)

aeA i=1
1
0" =) Na=HNa, (9.3.14)
aeAt i=1
1
P={eV|@ . \eZ (xeA)=PZn. (9.3.15)
i=1
[
Pt={eV | })eN (@eah)=ENx. (9.3.16)

i=1

Then Q and P are lattices (Z-lattice) in V. We call Q (resp. P) the root lattice (resp.
weight lattice).
We define a partial ordering = on V by

AZpu<e=r—pneQt. (9.3.17)
By Proposition 9.3.4 (iv) any w € W can be written as
W=S8 S, (9.3.18)

We denote by /(w) the minimal number & required for such expressions and call it the
length of w. The expression (9.3.18) is called a reduced expression of w if k = [(w).
Letus consider two elements y, w € W. If we have reduced expressionsy = s; - - -5,
and w = s;, - --s;, such that (ji,..., j,) is a subsequence of (i1, ..., ix), we write
y < w. It defines a partial ordering on W called the Bruhat ordering of W. Tt is well
known that there exists a unique maximal element wq (longest element) with respect
to this Bruhat ordering. Itis characterized as the unique element of W with the largest
length.

9.4 Semisimple Lie algebras (2)

In this section k denotes an algebraically closed field of characteristic zero.
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According to Theorem 9.3.2 and Theorem 9.3.5 any simple Lie algebras over k
is either a member of the four infinite series A;, B;, C;, D; or of Eg, E7, Eg, Fy,
G,. The simple Lie algebras appearing in the four infinite series can be explicitly
described using matrices as follows:

Ap sl (b),
By : s02141(k),
Ci = spy (k),
Dy : s0p;(k)

are called simple Lie algebras of classical type. The remaining five simple Lie alge-
bras, called of exceptional type, can also be described by using Cayley algebras or
Jordan algebras. Here, we describe Serre’s construction of general semisimple Lie
algebras by means of generators and fundamental relations. Let g be a semisimple
Lie algebra over k, b its Cartan subalgebra, and A the root system of g with re-
spect to h. We use the notation in Section 9.3 concerning root systems such as A™,
IMT={«y,...,q}. Fora, B € A we have

Ga+p (@+pBeA)
(00, 9] = k¥ (@ + B =0)
0 (@+ B & AU{0).

Letusseth; = oziv € hfori =1,...,[. Then we cantake ¢; € gy, and f; € gy, SO
that [e;, f;] = h;. It follows from the commutativity of f that

[hi, hj]=0. 9.4.1)
Since e; € gy, and f; € g_q,, we also have
[hi,ejl =ajjej, [hi, fil=—aijfj. (9.4.2)
The fact that =(ot; — ;) ¢ A U {0} for i # j implies
lei, fi1=24ijhi. (9.4.3)

Finally, by the theory of root systems we have £(a; + (—a;; + Da;) ¢ A U {0} for
i # j, from which we obtain

(ad(e;)) T (e;) =0, (ad(f) T (fH=0 G #j). (9.4.4)

Theorem 9.4.1. The semisimple Lie algebra g is generated by hy, ..., h, e1, ..., €,
fis ..., f1, and it has (9.4.1),...,(9.4.4) as its fundamental relations.

Remark 9.4.2. Note that (9.4.1),...,(9.4.4) are written only in terms of the Cartan
matrix A = (a;;). More generally, a square matrix A = (a;;) with integer entries
satisfying the constraints (9.3.8), (9.3.9) and (9.3.10) is called a generalized Cartan
matrix. The Kac—-Moody Lie algebra associated to a generalized Cartan matrix A
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is the Lie algebra g defined by the generators hy, ..., h;, e1, ..., e, f1,..., fi and
the relations (9.4.1),...,(9.4.4), where q;; are the entries of A (more precisely, it is
in fact a quotient of g by a certain ideal v which is conjectured to be 0). The Kac—
Moody Lie algebras are natural generalization of semisimple Lie algebras although
they are infinite dimensional in general. They are important objects that appear in
many branches of contemporary mathematics.

Recall that a semisimple Lie algebra g has a direct sum decomposition (with
respect to the simultaneous eigenspaces of the action of its Cartan subalgebra h):

ng)@(@ga).

aEA

Under this decomposition the subspaces

n= @ gy, N = @ Ous (9.4.5)

aeAT aeAT

b=h@n, b-=hdn" (9.4.6)

turn out to be subalgebras of g. The Lie algebras b and b~ are maximal solvable
subalgebras of g. In general any maximal solvable Lie subalgebra of g is called a
Borel subalgebra. It is known that for two Borel subalgebras by, by of g there exists
an automorphism g € Aut(g) such that g(by) = b».

Let us give a description of the center 3 of the universal enveloping algebra U (g).
Since g =n~ @ b @ n, it follows from PBW (Theorem 9.1.1) that

U@ =U®) & n U@+ U@n. 9-4.7)

In this decomposition U (h) is naturally isomorphic to the symmetric algebra S(h)
because b is abelian. We define the Weyl vector p € h* by

1
p = 3 Z o (9.4.8)

aeAT

(itis known that p = Zﬁ:l 7;). Letus consider the first projection p : U(g) — U (h)
with respect to the direct sum decomposition (9.4.7) and the automorphism f of
U (h) = S(h) defined by

fh)y=h—pm] (h €h).
We denote by y : 3 — U (h) the restriction of f o p to 3.

Theorem 9.4.3.
(1) The map y is a homomorphism of associative algebras.
(ii) The homomorphism y is injective, and its image coincides with the set U (§)V of
W-invariant elements of U (h). (W actsonl. Henceitactsalsoon U (h) = S(h).)
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(iii) The homomorphism y does not depend on the choice of A™. In particular,
for the projection p’ : U(g) = U(h) & wU(g) + U(g)n~) — U(h) and the
automorphism ' of U(h) defined by f'(h) = h + p(h)1 (h € b) we have
y=1/fop

We call y the Harish-Chandra homomorphism.
We note the following fact, which is an easy consequence of the PBW theorem and

3C{ueU) | hu—uh=0 (Vh € b))

Lemma 9.4.4. Let us decompose z € 3as z = uy +uy byuy; € U(h) and up €
n~U(g) + U(g)n. Then we have uy € n~U(g) N U (g)n.

Algebra homomorphisms from 3 to k are called central characters. For each
A € b* we define a central character y; : 3 — k by

0.@) =R (e, 9.4.9)

where we identify U (h)(~ S(h)) with the algebra of polynomial functions on h*.
The next proposition is a consequence of Theorem 9.4.3.

Proposition 9.4.5.

(i) Any central character coincides with x; for some ) € bh*.
(ii) x = xp if and only if & and p are in the same W-orbit.

9.5 Finite-dimensional representations of semisimple Lie algebras

In this section k is an algebraically closed field of characteristic zero and g denotes a
semisimple Lie algebra over k.
The following theorem is fundamental.

Theorem 9.5.1. Any finite-dimensional representation of g is completely reducible
(i.e., is a direct sum of irreducible representations).

Therefore, main problems in the study of finite-dimensional representations of
semisimple Lie algebras are to classify all irreducible representations and to study
their properties.

For a finite-dimensional representation o : g — gl(V) of g set

Vi={veV]@h)w) =rxhw (hebh} *eh. (9.5.1)

Then it is known that we have V = @Aeh* V,.. When V), # {0}, we say that A is a
weight of the g-module V. The vector space V), is called the weight space of V with
weight A.
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Theorem 9.5.2.

(i) Let V be a finite-dimensional irreducible g-module. Then there exists a unique
weight ) (resp. () that is maximal (resp. minimal) with respect to the partial
ordering (9.3.17) of h*. We call 1 (resp. |v) the highest (resp. lowest) weight of
V. Then we have A € P+, u € —PY, and . = wo()), where wy is the element
of W with the largest length.

(ii) Assume that A € PT and jn € —P™. Then there exists an irreducible g-module
LT (X) (resp. L™(u)) with highest weight ) (resp. lowest weight 1). Such a
g-module is unique up to isomorphisms.

In particular, any weight of a finite-dimensional g-module belongs to the weight
lattice P.

Example 9.5.3. Let us consider the case of g = sl (k). Set

=(30) =) ()

Then we get a basis &, e, f of g. The one-dimensional subspace h = kh C gisa
Cartan subalgebra. Define o € h* by a(h) = 2. Then we have

A={ta), At=T={a), W=(1)

p=%, P=2Zp, P'=Np.

By the canonical injection g < gl,(k) we obtain a two-dimensional g-module V.
Using this g-module V we can uniquely define a g-module structure on the symmetric
algebra S(V) of V by

a-(fg)=(@-flg+fla-g (aecg f,geSV).

Then the set $” (V) of elements of degree n in S(V) turns out to be a g-submodule.
Moreover, as a g-module we have the following isomorphisms:

L*(np) = L™ (—np) = S"(V) (n € N).
For a finite-dimensional g-module V we define its character ch(V) by

ch(V) = Z(dim Vet (9.5.2)
reP

This is an element of the group algebra Z[P] = B, . PZe)‘ of P.

Theorem 9.5.4 (Weyl’s character formula). For A € P™ and 1 € —P™ we have
Zwew(_l)l(w)ew(wrp)fp
[Toea+ (I —e7)
Zwew(_l)l(w)ew(ufp)w

[loear (1 =€)

ch(LT(W) =

’

ch(L™(n) =
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Since L™ (0) is a one-dimensional (trivial) representation of g, we have ch(L™(0))
= ¢°. Hence we get

[[a-e=>) (n®ewrr (9.5.3)

aeAT wew

(Weyl’s denominator formula) by Theorem 9.5.4.

9.6 Algebraic groups and their Lie algebras

In this section k is an algebraically closed field. If an algebraic variety G over k is
endowed with a group structure and its group operations

GxG—G ((g1, &2) = g182).
G—-G (g—g )

are morphisms of algebraic varieties, then we call G an algebraic group over k.

For two algebraic groups G| and G, a morphism f : G; — G, of algebraic
varieties which is also a group homomorphism is called a homomorphism of algebraic
groups.

The additive group k and the multiplicative group k* of k are obviously algebraic
groups. They are denoted by G, and G, respectively, when they are regarded as
algebraic groups. Abelian varieties and the general linear group

GL, (k) = {g € M, (k) | det(g) € k™} 9.6.1)
= Spec k[x,-j, det(x,-j)fl]

are also basic examples of algebraic groups.

It is known that an algebraic group G is affine if and only if it is isomorphic to
a closed subgroup of G L, (k) for some n. In this case we call G a linear algebraic
group. Note that G, and Gy, are linear algebraic groups by

Gy <> GLa(k) (a > <(1) ‘11)) . Gmp~GL (k).

In this book we are only concerned with linear algebraic groups. It is known that
any algebraic group is an extension of an abelian variety by a linear algebraic group
(Chevalley—Rosenlicht’s theorem).

We can define the Lie algebra Lie(G) of an algebraic group G similarly to the
case of Lie groups as follows. For g € G we define the left translation l, : G — G
and the right translation r, : G — G by lo(x) = gx and r,(x) = xg, respectively.
We denote their derivations at x € G by

(dlg)y : TxG — Tlg(X)G, drg)y : TG — T,K(X)G,
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where T, G denotes the tangent space G at x. A vector field Z on G is said to be
left-invariant (resp. right-invariant) if for any g, x € G the condition

(dlg)x(Zx) = Ziy(v) (resp. (drg)x(Zy) = Zry(x)

is satisfied. We denote the vector space of left-invariant (resp. right-invariant) vector
fields on G by Lie(G); (resp. Lie(G),). These are Lie algebras by the Lie bracket
operation

[Z1, Z20(f) = Z1(Z2(f)) — Z2(Z:i()))
(Z1, Z, are vector fields and f € Og).

Define linear maps ¢; : Lie(G); — T,G and ¢, : Lie(G), — T,G by
0i(Z) =Z., ¢r(2) = Z,.

Then ¢; and ¢, are isomorphisms of vector spaces, and —¢,~ !0 ¢y is an isomorphism
of Lie algebras. The Lie algebra Lie(G); = Lie(G), defined in this way is called the
Lie algebra of G and denoted by Lie(G).

We will occasionally identify Lie(G) with Lie(G); or Lie(G),. Whenever we
use the identification of Lie(G) with invariant vector fields, we will always specify
whether the invariance is the left or right one. Identifying 7, (G L, (k)) with M,, (k) =
gl, (k) we see that ¢y : Lie(GL,(k)) = Lie(GL,(k)); — gl, (k) is an isomorphism of
Lie algebras. We will identify Lie(G L, (k)) with gl, (k) through ¢; in the following.
In general, the Lie algebra Lie(H); of a closed subgroup H of G is identified with
the subalgebra {Z € Lie(G); | Z, € T,H} of Lie(G);. In particular, an embedding
of G into GL, (k) gives an identification of Lie(G) as a subalgebra of gl, (k). For a
homomorphism f : G — G, of algebraic groups we obtain as the composite of

9 df)e IO )
Lie(G)) = Lie(G ) =>T,G, % 7,6, < Lie(G,); = Lie(Gy)

a homomorphism
df : Lie(G1) — Lie(G2) (9.6.2)

of Lie algebras. Hence the operation Lie(e) defines a functor from the category of
algebraic groups to that of Lie algebras. Let V be a finite-dimensional vector space
over k. A homomorphism of algebraic groups

o:G— GL(V) (9.6.3)

is called a representation of G. In this case we also say that V is a G-module. By
differentiating o we get a representation

do : Lie(G) — gl(V) (9.6.4)

of the Lie algebra Lie(G) This defines a functor from the category of G-modules to
that of Lie(G)-modules. More generally, assume that we are given a homomorphism
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(9.6.3) of abstract groups, where V is a (not necessarily finite-dimensional) vector
space. Then we say that V is a G-module if there exists a family V* (A € A) of
finite-dimensional G-invariant subspaces of V' satisfying the properties:

v=> V4 9.6.5)
rEA
G — GL(V*) is a homomorphism of algebraic groups. (9.6.6)

In this case we also have the associated Lie algebra homomorphism (9.6.4).

For g € G define an automorphism i, : G — G by iz(x) = gxg ! and set
Ad(g) =diy € GL(Lie(G)). (9.6.7)
Then
Ad : G — GL(Lie(G)) (9.6.8)

is a representation of G. We call it the adjoint representation of G. The associated
Lie algebra homomorphism

d(Ad) : Lie(G) — Lie(GL(Lie(G)))(= gl(Lie(G)))

coincides with the adjoint representation (9.2.2) of the Lie algebra Lie(G). When G
is a closed subgroup of G L, (k), the adjoint representation of G on Lie(G)(C gl, (k))
is described by matrices as follows:

Ad(g)x = gngl (g € G, x e Lie(G)). (9.6.9)

9.7 Semisimple algebraic groups

In this section k is an algebraically closed field.

A matrix g € GL, (k) is said to be semisimple if it is diagonalizable. We also
say that g € GL, (k) is unipotent if all of its eigenvalues are 1. According to the
theory of Jordan normal forms any matrix g € G L, (k) can be uniquely decomposed
as follows:

{g = su (S, u e GLn (k)) (971)

s: semisimple, u: unipotent and su = us.

This decomposition is called the Jordan decomposition.

Let G be a linear algebraic group over k and fix an embedding of G into GL, (k).
It is known that in the decomposition (9.7.1) of an element g € G inside the general
linear group G L, (k) we have s, u € G. Itis also known that the decomposition g =
su does not depend on the choice of an embedding of G into a general linear group.
Therefore, we can define the notions of semisimple elements, unipotent elements and
Jordan decompositions also for any linear algebraic group G. These notions are
preserved by homomorphisms of linear algebraic groups.



244 9 Algebraic Groups and Lie Algebras

For a linear algebraic group G there exists among all connected solvable normal
closed subgroups of G a unique maximal one R(G), called the radical of G. The
unipotent elements in R(G) form a connected normal closed subgroup R, (G) of G,
and is called the unipotent radical of G. We say that G is semisimple (resp. reductive)
if R(G) = {1} (resp. R, (G) = {1}).

Example 9.7.1. The general linear group GL,(k) is reductive and its radical
R(GL,(k)) is the subgroup consisting of scalar matrices. The following closed
subgroups of G L, (k) are semisimple (except the case of n = 2 in (9.7.3)):

SLy(k) = {g € GL, (k) | det(g) = 1}, 9.7.2)
SOy (k) = {g € SLy(k) | 'gg = 1}, 9.7.3)
Spom(k) = {8 € GLow(k) | 'gJg =J} (n =2m), 9.7.4)

where the matrix J was defined by (9.1.8). In these cases we have Lie(SL, (k)) =
sl (k), Lie(SO, (k)) = s0, (k) and Lie(Sp,,, (k) = 5py,, (k).

A direct product of finitely many copies of the multiplicative group Gy, is called
a torus. Any reductive algebraic group is “almost isomorphic to” a direct product
of a torus and a semisimple algebraic group. Hence the essential part of the theory
of reductive algebraic groups is played by semisimple ones. It is sometimes more
convenient to develop the theory in the framework of reductive algebraic groups
rather than just dealing with semisimple ones; however, we mainly restrict ourselves
to the case of semisimple algebraic groups in order to simplify notation.

From now on we denote by G a connected semisimple algebraic group over k£ and
set g = Lie(G).

Maximal elements among the closed subgroups of G, which is isomorphic to a
torus, is called a maximal torus of G.

Theorem 9.7.2. For two maximal tori Hy and Hy of G there exists some g € G such
that gH\g~' = H>.

In what follows we fix a maximal torus H of G and set h = Lie(H). Let
Ng(H) (resp. Zg (H)) be the normalizer (resp. centralizer) of H in G. Then we have
Zg(H) = H and

W = Ng(H)/H (9.7.5)

turns out to be a finite group. This group W naturally acts on H. Since H is isomorphic
to a direct sum of copies of Gp,, the character group

L =Hom(H, k™) (9.7.6)
is a free abelian group of rank dim H. Set
Lpg=Q®zL 9.7.7)

and regard L as an additive subgroup of the Q-vector space Lg. In order to avoid
confusion we denote by e* the character of H which corresponds to A € L C Lg.
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Since H 1is a torus, any representation of H is a direct sum of one-dimensional
representations. Equivalently, for an H-module V we have

V = @ Vi, (9.7.8)
A€EL
where
Vi={fveV|h-v= ek(h)v (h € H)} (A e l). 9.7.9)

By applying this to the restriction of the adjoint representation Ad : G — GL(g) to
H, we have

s=Pa. (9.7.10)
reL
where
wm={xeg|Adh)x = e (h)x (h € H)} (L el). (9.7.11)

We define a finite subset A of L by
A=faeL|a#0, gy #{0}}. (9.7.12)

Theorem 9.7.3.
) go=h.
(ii) For any a € A we have dim g, = 1.
(iii) The set A is a root system in the Q-vector space Lgy, and W is naturally identified
with the Weyl group of A (W acts on L, and hence on Lg).
@v) If P and Q are the weight lattice and the root lattice of A (see Section 9.3),
respectively, then we have Q C L C P.

We call A the root system (with respect to H) of G. The pair (A, L) is called the
root datum (with respect to H) of G. By Theorem 9.7.2 the pair (A, L) is uniquely
determined up to isomorphisms regardless of the choice of H.

Example 9.7.4. Let G = SL, (k). Set
ap 0
0 .

day,...,ay) =

Then the closed subgroup

n
H= {d(al,...,an) ‘ai ek, [Jai= 1} = ()1
i=1
of G is a maximal torus of G. In this case, the normalizer Ng(H) of H in G is the

subgroup consisting of matrices so that each column and each row contains exactly
one non-zero entry. Namely, we have
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n
Ng(H) = {(aiaia(j))i,j=1,...,n o €S, a €k”, (Hdi) sgn(o) = 1} .

i=1

Therefore, the Weyl group W = N (H)/H isisomorphic to S, by (a;8is(j))H <> 0.
Let us define, fori = 1, ..., n, a character A; of H by

i, ... ay) = a.

Then we have an isomorphism

n n n
(@ Ze,’) / 7 <Ze,~) <;> L = ZZXZ‘ (e,- <> )\.i).
i=1 i=1 i=1
We can also easily see that

A=l =i # ).

This is the root system of type (A, —1). Moreover, L = P holds.
The action of W = S, on H is given by

G(d(al, ey Cln)) = d(ag—l(l), ey ao,—l(n)),
and we have

o (Ai) = Ao (i)-

Example 9.7.5. In the following examples, white circles O (resp. black dots e) are
the points in the root lattice Q (resp. the weight lattice P).

) G = SL(C)

A — A %) 0 A Al — A2

A={A =22, A — A1} DAL ={ay := A1 — A2}

1 1
ﬁp:z Z(x:zalzﬂ’l_

(,YEA+
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(i) G = SL3(C)

A=A —Ajli#j}
DAL ={ay =1 — A2, ap =Xy — A3, o) + o2 = A — A3}

1
=>,0=§ Za=a1+a2=ﬂ1+ﬂ2-

acAy

Although Q C P, there is no inclusion relation between Q4 and Py in this case
as we see in the following figure:
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Theorem 9.7.6. Let A be a root system and P (resp. Q) the weight lattice (resp. root
lattice) of A. We take an arbitrary subgroup L of P which contains Q. Then there
exists uniquely up to isomorphism a connected semisimple algebraic group G(A, L)
over k whose root datum is isomorphic to (A, L). Moreover, G(A, L) contains no
non-trivial connected normal closed subgroup if and only if the root system A is
irreducible.

For example, if A is of type (A,—_1), then P/Q =~ Z/nZ and the number of
subgroups L in P containing Q coincides with that of divisors of n.

For G = G(A, L) the subgroup Ad(G) of Aut(g) is the identity component
subgroup of Aut(g) and is isomorphic to G(A, Q). Therefore, we call G(A, Q) the
adjoint group of the root system A. When k = C, the fundamental group of G(A, L)
with respect to the classical topology is isomorphic to P/L. In particular, G(A, P)
is simply connected if kK = C. For this reason we call G(A, P) the simply connected
(and connected) semisimple algebraic group associated to the root system A even
when k is a general algebraically closed field.

Finally, we explain the relation between semisimple algebraic groups and semisim-
ple Lie algebras. If k is a field of characteristic zero, then g = Lie(G) is a
semisimple Lie algebra, and ) = Lie(H) is its Cartan subalgebra. Hence Theo-
rems 9.7.2,9.7.3, 9.7.6 correspond to Theorem 9.2.4, 9.2.5, 9.3.2, respectively (The-
orem 9.2.4 holds even if we replace Aut(g) with Ad(G)). We assumed that the base
field k is of characteristic zero in the case of semisimple Lie algebras; however, in the
case of semisimple algebraic groups this assumption is not necessary. So we have a
larger class of objects of study in the theory of semisimple algebraic groups. We note
that the classification of semisimple Lie algebras over fields of positive characteristics
is different from the classification in the case of characteristic zero.

9.8 Representations of semisimple algebraic groups

Let G be a semisimple algebraic group over an algebraically closed field k and let H
be a maximal torus of G. Set g = Lie(G) and h = Lie(H). We denote by (A, L)
the root datum of G with respect to H. We fix a positive root system A1 in A and
use the notation in Section 9.3.

For a representation o : G — GL(V) of G we consider the direct sum decom-
position (9.7.8), (9.7.9) of V as an H-module. We say that A € L is a weight of the
G-module V if V # {0}.

Theorem 9.8.1.

(i) Let V be a finite-dimensional irreducible G-module. Then there exists a unique
weight ) (resp. ) of V which is maximal (resp. minimal) with respect to the
partial ordering (9.3.17) (A and p are called the highest weight and the lowest
weight of V, respectively). Moreover, we have . € L N P*, u € LN (—=PT)
and ;. = wo(X).
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(ii) Assume that . € L NPT and i € L N (—P™T). Then there exists uniquely up
to isomorphisms an irreducible G-module L™ ()\) (resp. L™ (1)) whose highest
(resp. lowest) weight is L (resp. [v).

This theorem corresponds to Theorem 9.5.2. However, an analogue of Theo-
rem 9.5.1 is true only for base fields of characteristic zero.

Theorem 9.8.2. Assume that the characteristic of k is zero. Then any G-module is
completely reducible.

The corresponding problem in positive characteristics is related to Mumford’s
conjecture (Haboush’s theorem).

Example 9.8.3. Let G = SL, (k). Then the subgroup

m=16.")

is a maximal torus of G. Define a character p € L by
a 0
“((54)) =

A={ta), At =I={a}, W=I{£1}

aekx}

and set « = 2p. Then we have

Let V be the two-dimensional G-module given by the natural embedding of G into
GL; (k). The action of G on V is extended to the action on the symmetric algebra
S(V) of V, and the set S (V) of elements of degree n turns out to be a G-module. If
k is a field of characteristic zero, we have the isomorphisms

LY(np) =L (—np)=S"(V)  (neN)

of G-modules. For a field k of positive characteristic, the G-module S (V) is not
always irreducible and L+ (np) = L™ (—np) is a G-submodule of §"(V).

For a finite-dimensional representation o : G — GL(V) of G we define its
character by
ch(V) =) (dim V;)e". 9.8.1)
rel
We can regard ch(V) as a function on H or as an element of the group algebra of
L. Indeed, the coordinate ring k[ H] of H is a vector space spanned by the elements
{e*}rer. If we regard the character ch(V) as a function on H, we have obviously

Tr(o(h)) = (ch(V))(h) (he H). (9.8.2)

Since the trace Tr(o (g)) is a class function on G and | J, . xHx~!is dense in G,
the character Tr(o (g)) (in the original sense) is completely determined by ch(V).
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Theorem 9.8.4. Assume that the characteristic of k is zero. For» € LN PV and i €
L N (—=P™") the g-modules associated to the G-modules L™ (1) and L™ (u) coincide
(see (9.6.4)) with LT (1) and L~ () in Section 9.5, respectively. Consequently we
obtain

ZweW (-1 )l(w)ew(Hp)fp
[loea+ (=€)
Zwew(_l)l(w)ew(ufp)w
[Toea+( =€)

As we see from Example 9.8.3, the character formula in the case of positive
characteristics cannot be expressed as in the theorem above. The character formula

for fields of positive characteristics was a long-standing problem, and there was a
significant progress on it in the 1990s (see the last part of the introduction).

ch(LT()) =

)

ch(L™(n) =

9.9 Flag manifolds

In this section we follow the notation in Section 9.8. It is known that there exist
closed connected subgroups B and B~ of G satisfying the conditions

LieB)=ha | P o |- 9.9.1)
aeAt

Lie(B7)=hH o EB g |- 9.9.2)
aeAt

Set N = R,(B) and N~ = R,(B™). Then we have

Lie(N) = € go- (9.9.3)
acAt

Lie(N ) = €P 9o (9.9.4)
aeAt

B=HN, HNON=/{l}, (9.9.5)

B"=HN~, HNN ={l}. (9.9.6)

We say that a subgroup of G is a Borel subgroup if it is maximal in the family of
connected solvable closed subgroups of G. The subgroups B and B~ of G are Borel
subgroups. If the characteristic of & is zero, then the Lie algebra of a Borel subgroup
is a Borel subalgebra of g.

Theorem 9.9.1.
(i) For any pair By and By of Borel subgroups of G, there exists an element g € G
such that gB1g~" = By.
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(i1) The normalizer of a Borel subgroup B of G is B itself.

Denote by X the set of all Borel subgroups of G (if k is a field of characteristic
zero, X can be identified with the set of Borel subalgebras of g). The group G acts
on X by conjugation. Then for a Borel subgroup B € X the stabilizer of B in G is B
itself by Theorem 9.9.1. Thus we obtain a bijection

X < G/B. 9.9.7)

In general, the homogeneous space K /K’ obtained from an algebraic group K and a
closed subgroup K’ of K is also an algebraic variety. So the above set X has a natural
structure of an algebraic variety. We call X the flag variety (or the flag manifold) of
G. For g € G the morphism N~ — G/B (n — gnB) is an open embedding, and the
flag variety X is covered by the open subsets gN~ B/B C X which are isomorphic
to N~ =~ klA7l:

X=|JsN"B/B. 9.9.8)

geG

Theorem 9.9.2. The flag variety X is a projective variety.

Example 9.9.3. Let G = SL,(k). If we choose the positive root system A1t =
{Ai —Aj | i < j}in Example 9.7.4, then we get

al *
0 i=1
an

ai
0} .

%k A i=1

an

In this case, N (resp. N7) is the subgroup of G consisting of upper (resp. lower)
triangular matrices whose diagonal entries are 1. Moreover, the flag manifold X =
G/ B can be identified with the set of flags in k"*:

{(V,-);’=0 | V; is an i-dimensional subspace of k", V; C V,-H} .

Indeed, consider the natural action of G on the set of flags in k". Then the stabilizer
of the reference flag (Vio);;o defined by

VZ-O =ke  ®---®ke; (eq,...,e, are the unit vectors of k")

coincides with B. If n = 2, then X = P! and the action of G = SLy(k) on the flag
manifold X = P! is given by the linear fractional (Mobius) transformation
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<ab>.()_(az+b)
cd 2= cz+d)’
((i 2) € SLy(k), (z) eP' =kU {oo}) .

The double coset decomposition of G by B is given by the following theorem
(the Bruhat decomposition).

Theorem 9.94. G = ]_[ BwB (more precisely, for eachw € W = Ng(H)/H we

weW
choose a representative w € Ng(H) of w and consider the double coset Bu B. Since

BwB is independent of the choice of a representative w of w, we simply denote it
by BwB).

Hence, if we set

Xw=BwB/B C X 9.9.9)
for w € W, then we have
X = L[ Xu (9.9.10)
weW

Theorem 9.9.5.

(i) For any w € W Xy, is a locally closed submanifold of X. Furthermore, Xy, is
isomorphic to k'™ (I(w) is the length of w defined in Section 9.3).

(i) The closure X , of X in X coincides with ]_[ X, (here < is the Bruhat ordering

ySw
defined in Section 9.3).

We call X, (resp. X ) a Schubert cell (resp. a Schubert variety).

Example 9.9.6. Let G = SL, (k) and let us follow the notation in Examples 9.7.4
and 9.9.3. Then foro € S, = W we have

Xo ={(V}) € X | dim(V; N V) = #(o[1, jIN[LiD G, j=1,....n)

= (Vi) € X | dimIm(V; — K"/ VO) = #([1, j1N[i + L, aD G, j=1,....n)}
Im(V; > k"/V?) - (1 i <o(j) = }
Im(V;_; — k7/v0 \0 iZ0()) G=1,....m¢,

:{(Vi)eX‘dim

where [1, j1={1,2,....j},[J+ L,nl={j+1,j+2,...,n}. Furthermore, for a
given g = (g;;) € G, we can determine the Schubert cell X, which contains the point
g B by the following procedure. Define a sequence (i1, ..., i,) of natural numbers
inductively by the following rules:
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(1) i1 is the largest number such that g; 1 # 0.
(ii) If the numbers iy, ..., i,—1 are given, then i, is the largest number such that

det(gipq)p,qzl ..... r ?é 0.

Then we get g € Bo B, where o € S, is given by o (r) = i,.

9.10 Equivariant vector bundles

In this section G denotes any linear algebraic group over an algebraically closed field
k. Assume that we are given an algebraic variety X over k endowed with an algebraic
G-action.

Definition 9.10.1. Let V — X be an algebraic vector bundle on X. We say that V is
a G-equivariant vector bundle if we are given an action of the algebraic group G on
the algebraic variety V satisfying the following condition:

For g € G, x € X, we have g(Vy) = Vg, (9.10.1)
and g : Vy — V,, is a linear isomorphism,

where V, denotes the fiber of V at x € X.

For a vector bundle V. — X (of finite rank) on X denote by Ox (V) the sheaf
of Ox-modules consisting of algebraic sections of V. Then the correspondence
V = Ox (V) gives an equivalence of categories:

~

vector bundles on X | = |locally free Ox-modules of finite rank |.

Let us interpret the notion of equivariant vector bundles in the language of Ox-
modules.

Notation 9.10.2.
m: G xG— G, m(g1, &2) = 8182, (9.10.2)
o GxX—> X, o(g,x)=gx, (9.10.3)
P2 GxX— X, pa(g, x) = x, (9.10.4)
P3:GxGxX—>GxX, P23(81, 82, x) = (82, x), (9.10.5)
f1:GxGxX— X, fi(g1, g2, x) = x, (9.10.6)
:GxGxX— X, (g1, &2, x) = gox, (9.10.7)
f3:GxGxX— X, f3(g1, 82, x) = g182x, (9.10.8)

Definition 9.10.3. Assume that V is a locally free Ox-module of finite rank. We say
that V is G-equivariant if we are given an isomorphism

@ PV — o'V (9.10.9)
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of O« x-modules for which the following diagram is commutative:

FV=phpy— 20 pretv = Y
I I
(m x 1x)*p3V (g x 0)*p3V
(mx1x)*p (9.10.10)

(m x 1x)o*V (laxo)"e

Il
LV =Ug x0)c*V

The commutativity of (9.10.10) is called the cocycle condition.

Note that giving a G-equivariant structure on V is equivalent to giving a G-
equivariant structure on the corresponding Ox-module V = Ox (V). Indeed, we

obtain an isomorphism V, = Vgx from (9.10.9) by taking the fibers at (g, x) €
G x X, ant it gives the actionof g € Gon V.

Hereafter V is a G-equivariant vector bundle on X and we set V = Ox (V). Then
we get a natural linear G-action on the vector space I'(X, V) by

(gs)(x) = g(s(gilx)) (geG,xeX, sel'(X, V). (9.10.11)

In terms of the G-equivariant structure on )/, it can be described as follows. By
(9.10.9) we obtain an isomorphism

T'(G x X, p{V) =>T(G x X, 0*V). (9.10.12)

If we denote the coordinate ring of G by k[G] (since G is a linear algebraic group, G
is affine), we have

['GxX,p3V)=T(GxX,06KV)=k[G]®T(X,V). (9.10.13)

Now consider the morphisms ¢; : G x X =G X X (i = 1,2)definedby ¢1(g, x) =
(g.8%), €2(g,x) = (g, 8 'x). Theng| = 82_1, p2oé&l =0 and

I'(G x X,0*V) =T(G x X, el piV) (9.10.14)
=T(G x X, &2, p5V)
=T(G x X, p3V)
=k[G]RT'(X, V).

Therefore, by combining this with (9.10.12) we get

k[G1®T (X, V) =k[G]®T (X, V). (9.10.15)
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If we restrict it to I'(X, V) = 1 ® I'(X, V), we finally obtain a linear map
¢:T(X,V) = k[G1®T(X, V). (9.10.16)

Assume that the image of s € '(X, V) by ¢ is given by

Fs)=)Y fi®s; (fi ek[Glands; € T(X,V)).

Then the G-action (9.10.11) on I' (X, V) is given by

gs=Y_ file)si (g€G).

In particular, this G-action is algebraic. . .
Replacing I'(G x X, o), I'(X, o) with H' (G x X, e), H'(X, e), respectively, in
the above arguments, we obtain a linear map

?:H (X,V) = kIGI® H (X, V) (9.10.17)

similarly (since G is affine, we have H (G, Og) = 0fori > 0). Thusthe cohomology
groups H'(X,V) are also endowed with structures of G-modules in the sense of
Section 9.6. Indeed, the cocycle condition (9.10.10) implies that it actually gives an
action of the group G, and the algebraicity of this action follows from (9.10.17).

The construction of representations via equivariant vector bundles explained
above is a fundamental technique in representation theory.

9.11 The Borel-Weil-Bott theorem

In this section G is a connected semisimple algebraic group over k and X denotes its
flag variety. We will follow the notation of Sections 9.8 and 9.9.

For a G-equivariant vector bundle V on X = G/B its fiber Vg of V at B € G/B
is a B-module. Conversely, for any finite-dimensional B-module U we can construct
a G-equivariant vector bundle V on X such that Vp = U as follows. Consider the
locally free B-action on the trivial vector bundle G x U on G given by

b-(g,u)=(gb ', bu) (beB, (g,u)eG xU). ©.11.1)

Then the quotient space V = B\(G x U) obtained by this action is an algebraic
vector bundle on X = G/B. Indeed, we can show that it is locally trivial by using
the affine covering of X in (9.9.8). Moreover, the action of G on G x U given by

g1: (g u)— (g1g,u) (g1€G, (g,u) e GxU)

induces an action of G on V for which V turns out to be a G-equivariant vector
bundle on X with Vp = U. This G-equivariant vector bundle V is denoted by
A(U). W have obtained a one-to-one correspondence between G-equivariant vector
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bundles on X and finite-dimensional B-modules. In particular, a G-equivariant line
bundle on X corresponds to a one-dimensional B-module. Since the actions of
the unipotent radical N = R, (B) of B on one-dimensional B-modules are trivial
(Jordan decompositions are preserved by homomorphisms of algebraic groups), G-
equivariant line bundles on X correspond to characters A € L of H = B/N. For
a character A € L we denote the corresponding G-equivariant line bundle on X by
A()) and set L(A) = Ox(A(L)).

Example 9.11.1. Let G = SLy(k). Then X = P! = kU {oo}and L = P = Zp as
we have already seen in Example 9.9.3. We can easily see that

L(np) = Opi (—n), 9.11.2)

where Op1 (—n) is Serre’s twisted sheaf. Let us consider the two open subsets U; = k,
U, = kX U {oo} = k of X and take a natural coordinate (z) (resp. x = 1/z) of U;
(resp. Uz). Then the line bundle A (np) can be obtained by gluing the two trivial line
bundles U; x k and U x k (on U and Uy, respectively) by the identification

1
(zyu)=(x,v) == x=-, v=x "u (9.11.3)
Z

The action of G on A (np) is given by

ab az+b .
(c d) (z,u) = (cz—i—d’ (cz+d) u) (9.11.4)

Note that each cohomology group H' (X, £(})) is finite dimensional because X
is a projective variety. In order to describe the G-module structure of H' (X, L(1))
let us introduce some notation. First set

Pyng = {1 € P | a € A such that (A — p, a") =0}, 9.11.5)
Preg =P \ Psing~

We define a shifted action of W on P by
wki=whr—p)+p (weW,reP). (9.11.6)

Then Wk (Psing) = Psing and we see that the anti-dominant part —Ptof Pisa
fundamental domain with respect to this shifted action (9.11.6) of W on Preg.

Theorem 9.11.2. Let A € L(C P). Then we have

O If (A, Yy 0 forany a € AT (i.e., A € —P7), then the line bundle L()) is
generated by global sections. Namely, the natural morphism

Ox @ I'(X, LAV) = L(X)

is surjective.
(ii) The line bundle L(\) is ample if and only of (., a") < 0 for any a € A™.
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(ii1) Assume that the charactgristic of k is zero.
(@) If A € Pging, then H'(X, L(X)) =0 (i 20).
(b) Let & € Preg and take w € W such that w¥k A € —P™T. Then we have

L™ (wkX) ( =I(w))

HAXL00) = {0 (i # 1(w)).

It is an open problem to determine the G-module structures of H i(X, L)) for
fields of positive characteristics.
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Conjugacy Classes of Semisimple Lie Algebras

In this chapter we discuss conjugacy classes in semisimple Lie algebras using the
theory of invariant polynomials for the adjoint representations. In particular, we will
give a parametrization of conjugacy classes and present certain geometric properties
of them. Those results will be used in the next chapter to establish the Beilinson—
Bernstein correspondence.

In the rest of this book we will always work over the complex number field C al-
though the arguments below work over any algebraically closed field of characteristic
zero except for certain points where the Riemann—Hilbert correspondence is used.

We denote by G a connected, simply connected, semisimple algebraic group over
C and fix a maximal torus H of G. We set g = Lie(G) and hh = Lie(H). We denote
by A the root system of G with respect to H and fix a positive root system A™. We
also use the notation in Chapter 9. For example, B stands for the Borel subgroup of
G such that Lie(B) = h @ (D, s+ 9o) and we denote the flag variety G/B by X.
This notation will be fixed until the end of this book.

10.1 The theory of invariant polynomials

Let K be a group acting linearly on a vector space V. Then K acts also on the space
C[V] of polynomial functions on V:

k-fHw)= f(k"v) (keK,feC[V],veV). (10.1.1)
The polynomials belonging to
CIVIK:={f eClV]|k-f=f (keK) (10.1.2)

are called invariant polynomials. The set C[V]X of all invariant polynomials is a
subring of C[V], and is called the invariant polynomial ring. The aim of the theory of
invariant polynomials is to study the structure of the invariant polynomial rings C[V ]¥
for various K ’s and V’s. Note that the ring C[V]X is not necessarily finitely generated
as a C-algebra (Nagata’s counterexample to Hilbert’s 14th problem). However, if the
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group K is reductive, the ring C[V]X is finitely generated and hence, the theory
of invariant polynomials is reduced to the geometric study of the quotient algebraic
variety

K\V := SpecC[V]X. (10.1.3)

If K is a finite group, then K\V coincides with the set-theoretical quotient of V;
however, for a general group K, distinct orbits may correspond to the same point in
K\V.

In what follows, we study the structure of the invariant polynomial ring C[g]
with respect to the adjoint representation Ad : G — GL(g) of G. The following
theorem is fundamental.

Theorem 10.1.1 (Chevalley’s restriction theorem). The restriction of the natural
map Clg] — C[b] to C[g]“ :

rest : C[g]® — C[h] (10.1.4)

is injective, and its image coincides with the invariant polynomial ring C[h]V with
respect to the action of the Weyl group W on .

Proof. First, let us prove the injectivity of the map rest. Let f € Ker(rest). Then
it follows from f|, = 0 that f|aqG)y = O by f € C[g]®. Hence it is sufficient
to show that Ad(G)b is dense in g. Note that Ad(G)b coincides with the image
of the morphism ¢ : G/H x h — g given by ¢(gH,h) = Ad(g)h. Hence by
dim(G/H x ) = dim g we have only to prove that the tangent map dg of ¢ at (e H, ho)
is an isomorphism for some ko € h. Under the identifications T,z (G/H) = g/h,

Thy(h) =0, Ty (g) = gthemap dy : g/h x h — gis given by
do(x, h) =[x, ho] + h. (xeg, heh).

Hence, if we take hg € b satisfying a(hg) # Oforanya € A, thendg : g/hxh — g
is an isomorphism. The proof of the injectivity of rest is complete.

Let us show Im(rest) C C[h]". Recall that W = Ng(H)/H. For f € C[g] and
a representative w of w € W in Ng(H) we have w - f|p = w - (fly), and hence
rest(f) € C[h]V forany f e C[g]°.

We finally prove the converse Im(rest) D C[h]". Recall that finite-dimensional
irreducible representations of g are parameterized by P (Section 9.5). Denote the
irreducible representation with highest weight A € P+ by o5 : g — gl(LT (X)),
and for each natural number m define a polynomial f3 , € Clg] by fim(x) =
Tr(o; (x)™). Then we have obviously f; ,, € Cl[g]®. Therefore, it suffices to show
that the set {rest(fi m) | A € PT, m € N} spans (C[f)]W. Note that rest( fj ) can be
obtained from the character ch(LT (1)) € Z[P]¥ < C[P]Y of L*()) by

ch(LY (W) =) aue = rest(frm) = Y aun”. (10.1.5)
M "

Denote the set of homogeneous polynomials of degree m on § by C[h],,. Then we
have C[h] = @;,_, C[h], and its completion (the ring of formal power series on b)
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is given by C[[h]] = [,,_o C[H]n. Weembed C[P]inC[[h]] by e” — > - %,um
and regard it as a subring of C[[h]]. Let p,, : C[[h]] — C[h],, be the projection. To
complete the proof it is enough to prove the following assertions:

{chL* (1) | » € P} is abasis of C[P]", (10.1.6)
pm(C[PTY) = C[h],) . (10.1.7)

Letus prove (10.1.6). Set Sy = 3_ ¢/ fora € P*. Forany u € P there exists
a unique A € P such that . € W(}A), and hence the set {S, | A € P} is a basis of
C[P]Y. On the other hand by the Weyl character formula we obtain

chLT(M) € S+ Y ZS,.

nept

w<i
from which (10.1.6) follows immediately. It remains to show (10.1.7). Since P is a
Z-lattice in b*, the set {u™ | n € P} spans (C[h]m and hence we get pm((C[P]) =
(C[b]m Let f € (C[f)]W We take f € C[P] satistying pm(f) = f and set f =
IW Zwew w - f. Then we have f € (C[P]W and pm(f) f. This completes the
proof of (10.1.7). O

Theorem 10.1.1 asserts that C[g]¢ is isomorphic to C[H]" . Therefore, our prob-
lem is to determine the structure of the invariant polynomial ring C[h]" with respect
to the W-action. The ring C[h]" has the following remarkable property, which fol-
lows from the fact that the Weyl group W is generated by reflections. For the proof,
see Bourbaki [Bou].

Theorem 10.1.2. The ring C[H]1V is generated by | (= dimb) algebraically inde-
pendent homogeneous polynomials over C. In particular, C[§]% is isomorphic to a
polynomial ring of | variables.

Combining this result with Theorem 10.1.1, we get
G\g = W\h = A (10.1.8)

Moreover, the degrees of the [ independent generators in Theorem 10.1.2 can be
explicitly described in terms of root systems as follows. Set

C=058q - 85q €W, (10.1.9)
where IT = {«1, ..., o} is the set of simple roots. It is called the Coxeter transfor-
mation. The conjugacy class of ¢ does not depend either on the choice of IT or on the
numbering of «q, ..., oy. First assume that the root system A is irreducible. Set

h = (the order of ¢) = (Coxeter number) (10.1.10)

and write the eigenvalues of the operator ¢ on ) by
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expr/—1m1/h), ..., expQRQu~/—1m;/ h),

O=my =Emy=---<m <h).

Then it is known that

0<m1=1<m2§---Sm1<h mi +mi_jiy1 =h (10.1.11)
Zm, |AT]. (10.1.12)
We call these numbers m1, . .., m; the exponents of the irreducible root system A. If

the root system A is not irreducible, the exponents of A are defined to be the union of
those in its irreducible components (this definition is different from Bourbaki’s). Note
that the multiset of exponents of a root system A consists of / natural numbers and
the sum of all exponents is equal to the cardinality | A™| of the set of positive roots.

Theorem 10.1.3. Denote the exponents of the root system A by my, ..., m;. Then
the degrees of the | algebraically independent homogeneous polynomials in Theo-
rem 10.1.2 are given bymy + 1, ..., m; + 1.

Example 10.1.4. Let G = SL,(C), g = sl,,(C) and choose a Cartan subalgebra b of

g as follows:
n
h = {d(al, ) ‘ > a = 0},
i=1

where

ap O

d(a13""an):

0 .
Fori = 1,...,n, define A; € h* by A;(d(ay,...,ay)) = a;. Then C[h] =
Clrt, ooy Anl/(Ap 4+ - -+ + Ay). Since the action of W = S, on § is given by
o (Ai) = Ao (i) (C[b]W is the ring of symmetric polynomials in Aq, A2, ..., A,. Letus
consider the following elementary symmetric polynomials of A1, ..., A;:

n
0’1—2)»,, UZ:Z)”')L-/’ ...... L0 = M An
i=1 i<j

Then the polynomial functions o7, . .., 0, on b are algebraically independent gener-

ators of C[h]" (o1 = 0 on h). Since the eigenvalues of the Coxeter transformation
(12)23)---(n = 1,n) = (123---n) € W = S, are {expn/—1k/n)}_| and
the Coxeter number is 4 = n, the exponents are 1, ,n — 1. This agrees Wlth
the fact that the degrees of 02, ..., 0, are 2, ..., n, respectively. Now let us define
polynomial functions oy € C[g] by det(t1 —x) =" + Y} _, 0« )"k (x € g).
Then we have o, € (C[g]G and o] = 0, rest(oy) = ox (k = 2, ..., n). This implies
that @, ..., @, are algebraically independent homogeneous generators of C[g]%.
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10.2 Classification of conjugacy classes

The G-orbit through x € g for the adjoint action of G on g is called the conjugacy
class of x. For the study of conjugacy classes, the notion of Jordan decompositions
is important. We say that x € g is semisimple (resp. nilpotent) if the linear operator
ad(x) € gl(g) is semisimple (resp. nilpotent).

Theorem 10.2.1.

(i) Forany x € g there exists a unique pair of elements (xg, x,,) where x; is semisim-
ple and x,, nilpotent, such that

X =Xxs+Xn, [x5,x,]=0 (10.2.1)

(We call the decomposition (10.2.1) the Jordan decomposition of x. The el-
ements xs and x, are called the semisimple part and the nilpotent part of x,
respectively).

(i) Let o : g — gl(V) be a finite-dimensional representation of g. If x € g is
semisimple (resp. nilpotent), then o (x) is semisimple (resp. nilpotent).

For the proof, see Humphreys [Hu2].

A conjugacy class consisting of semisimple elements (resp. nilpotent elements)
is called a semisimple conjugacy class (resp. nilpotent conjugacy class). The classi-
fication of semisimple conjugacy classes is given by the following.

Theorem 10.2.2. For any semisimple conjugacy class O the intersection O Nh with b
isa W-orbitinly. Hence the set of semisimple conjugacy classes in g is parameterized
by the set W\b of W-orbits in b.

Proof. Suppose that x € g is a semisimple element. Then it follows directly from the
definition of Cartan subalgebras that there exists a Cartan subalgebra b’ containing x.
By the remark at the end of Section 9.7 we can take g € G so that Ad(g)h’ = h. Thus
we have shown Og(x) N'h # #. Since the action of the Weyl group W on § is the
restriction of the adjoint action of Ng(H) = Ng(h) ={g € G | Ad(g)h =bh}ong,
O¢g(x) N b is aunion of W-orbits. It remains to prove that it is a single orbit. Assume
that two points i1, ho € b are conjugate in g. We will show that these two points lie
in the same W-orbit. By virtue of Theorem 10.1.1 /1 and A, are mapped to the same
point in W\bh = Spec(C[h]"). Note that W\h coincides with the set-theoretical
quotient since W is a finite group. This means that /1| and &, are conjugate under the
W-action. O

In order to classify general conjugacy classes (which are not necessarily semisim-
ple) we use Jordan decompositions. Assume that two elements x, y € g are conjugate.
Then their semisimple parts x;, ys are also conjugate (by the uniqueness of Jordan de-
compositions). Hence we may assume that x; = y, from the beginning. Furthermore,
thanks to Theorem 10.2.2, we can reduce the situation to the case of 7 = x; = y; € h.
Therefore, setting
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Nj = {z € g | z is a nilpotent element such that [/, z] = 0}

for h € b, it suffices to determine when two elements 4 + z and h + 2’ (z, 7/ € Nj)
are conjugate to each other. If Ad(g)(h +z) = h+ 7' for some g € G, then it follows
from the uniqueness of Jordan decompositions that Ad(g)h = h, i.e.,

g €Zg(h) :={g € G|Ad(g)h = h}.

Hence we reduced the problem to the classification of orbits for the adjoint Zg (h)-
action on \V},.

Theorem 10.2.3. For h € b, we denote by ¥, the derived Lie algebra [34(h), 34(h)]
of the centralizer 34(h) = {x € g | [x, h] = 0} of h. Then we have the following:

(i) The Lie algebra ¥y, is semisimple and N, coincides with the set of nilpotent
elements in ty,. In particular, we have Nj, C &,

(i1) The algebraic group Z g (h) is connected, and the orbits for the adjoint action of
Z(h) on Ny, are exactly the nilpotent conjugacy classes in the semisimple Lie
algebra ty,.

Proof. Among connected closed subgroups H' of H satisfying Lie(H’) > h there
exists the smallest one S (if we regard G as a complex Lie group, S is the closure of
the one-parameter subgroup generated by /). Then Zg(h) = Z5(S) holds. Since
S is a torus, Zg(S) is connected and reductive from a general fact on semisimple
algebraic groups. Hence if we denote the center of 345(h) = Lie(Z¢(h)) by ¢, we
have 34(h) = ¢ ® £, and £, is a semisimple ideal of 34(h). Let z; € ¢, z2 € ¥, and
set z = z1 + 22 € 34(h). We see from ¢ C § that z; is a semisimple element of g.
Suppose that the Jordan decomposition of z5 in € is given by z2 = (z2)s + (22)n-
Then by applying Theorem 10.2.1 (ii) to the representation ad : €, — gl(g) of &, we
see that the Jordan decomposition of z in g is given by zs = z1 + (22)s, 2n = (22)n-
It follows that \V}, coincides with the set of nilpotent elements in ;. Since Zg (h) is
connected, Ad(Zg (h)) | 6, coincides with the adjoint group of €;,. This completes the
proof. O

By Theorems 10.2.2 and 10.2.3, in order to classify conjugacy classes, it suffices
to classify nilpotent conjugacy classes. Namely, our problem is to classify G-orbits
in the nilpotent cone

N = {nilpotent elements in g} C g (10.2.2)

for an arbitrary simple Lie algebra g.

Let us show that AV is an irreducible closed algebraic subvariety of g. Define
fi € Clg] by det(r1 — ad(x)) = t" + Z,’-l;(} fi(x)t!. Then N is the common
zero set of f1,..., f,—1. In particular, it is a closed subvariety of g. Since any
point x € N is contained in a Borel subalgebra, it follows from Theorem 9.9.1 that
N = Ad(G)(b N N). Hence the irreducibility of N follows from b N N = n.

To classify nilpotent conjugacy classes we need case-by-case arguments for each
simple Lie algebra. For simple Lie algebras of classical type, we can perform the
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classification by using linear algebra (essentially by the theory of Jordan normal
forms). To treat exceptional types, some further preparation from general theories
(the Jacobson—Morozov theorem) is required. The result of the classification can be
found in Dynkin [Dy]. Here we only state the following general fact (It follows from
the Dynkin—Kostant theory. The proof below is due to R. Richardson [Ri]).

Theorem 10.2.4. The number of G-orbits in N is finite.

Proof. Set G = GL(g) and § = gl(g). We regard g as a subalgebra of g by the
embedding ad : g < §. Define an action of G on g by

T-Xx=2%7"" FeG.7e9. (10.2.3)
Then for g € G, we see that the adjomt action of g on g coincides with the restriction
of the action (10.2.3) of Ad(g) € G on d. Denote the set of nilpotent linear endomor-
phisms of § by A7. Then by the definition of A" we have N’ = A/ N g. On the other
hand, it follows from the theory of Jordan normal forms that the number of G-orbits
in AV is finite (see Example 10.2.6). Therefore, it suffices to show that for a G-orbit
O in d the intersection Z = on g with g consists of finitely many Ad(G)-orbits.

Let us consider a decreasing sequence of closed subvarieties of Z

Z=20D7Z1D>2yD - (10.2.4)

defined inductively by Z; = (Z;_1)sing = (the set of singular points in Z; 1). Then
every Z;\Z;+1 is a G-invariant set, and we have to show that Z;\Z; 11 is a union
of finitely many Ad(G)-orbits. For this, it suffices to prove that every Ad(G)-orbit
O = O¢g(x) (through x € Z;\Z;+1) in Z;\Z;41 is open. Since Z;\Z; is smooth,
it is enough to show the equality 7,0 = T\(Z;\Z;+1) of tangent spaces. Let us
concentrate on proving the inclusion 7, O D Ty\(Z;\Z;+1), because the converse
T.0 C T(Zi\Z;41) is trivial. Under the identification of 7, with g, we have
natural isomorphisms 7, O = [g, x] and T (Z;\Z;+1) C Tx(O) Ng = [g,x] N g.
Consequently it remains to show the following inclusion:

[g.x1Ng C [g.x]. (10.2.5)
Let us define a symmetric bilinear form on g by
(x1,x2) = Tr(x1x2) (x1,x2 €9). (10.2.6)

It is easily checked that this bilinear form is non-degenerate. Furthermore, its re-
striction to g is the Killing form, and hence it is also non-degenerate. Therefore, we
have the orthogonal decomposition § = g @ g+, where g- = {y € § | (y, g) = 0}.
Moreover, we have [g, g-] C g*. Indeed, for x1, x> € g, y € g we have

(x1, [x2, y]) = Tr(x1x2y) — Tr(x1yx2) = Tr(x1x2y) — Tr(x2x1y)
= ([x1,x2],y) =0.

Hence we get [§, x]1 Ng = ([g, x] + [g-. x]) Ng C [g, x] + ([g*. g] N g) = [g. x].
This completes the proof. O
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The irreducibility of the nilpotent cone A/ implies the following result.
Corollary 10.2.5. There exists an open dense orbit in N.

Example 10.2.6. Let us consider the case of g = sl,(C) and G = SL,(C). Since
the adjoint action of G on g is given by Ad(g)x = gxg~', there exists a bijection
between the set conjugacy classes of g and that of Jordan normal forms. Moreover,
the Jordan decomposition of a Jordan normal form is given by writing it into a sum of
a diagonal matrix and a strictly upper triangular matrix. As a representative of each
nilpotent conjugacy class, we can choose a Jordan normal form whose eigenvalues
are all zero. Consequently, the number of nilpotent conjugacy classes is equal to
the number of the ways of writing n as a sum of natural numbers (i.e., the partition
number P (n) of n).

10.3 Geometry of conjugacy classes

By Theorem 10.1.1 we have C[h]" =~ C[g]® c Cl[g]. On the other hand the
ring C[h]" is isomorphic to the polynomial ring of / (= dim h)-variables by Theo-
rem 10.1.2. Therefore, we get a natural morphism

x:1g—> W\h= A (10.3.1)
of algebraic varieties. Set-theoretically this morphism yx is described as follows.

Proposition 10.3.1. Let x € g. Then the image x(x) is the point of W\b which
corresponds to the W-orbit Og(xs) Nh (see Theorem 10.2.2).

Proof. Since any fiber of x is G-invariant, we may assume that x; = h € h. Under
the notation in Section 10.2, it is enough to show that the set x (h + N}) is just a
one-point set. By Theorem 10.2.3 and Corollary 10.2.5 there is a dense Zg (h)-orbit
in V},. Hence there is also a dense Zg (h)-orbit in & + Nj,. Since x is constant on
each G-orbit, our assertion is clear. O

The next corollary follows immediately from the proof of this proposition and
Corollary 10.2.5.

Corollary 10.3.2. Every fiber of x is irreducible and consists of finitely many con-
jugacy classes. In particular, there exists an open dense conjugacy class in each
fiber

In the rest of this section we study geometric properties of the morphism x and
its fibers. Since b is a B-module by the adjoint action, we can associate to it a vector
bundle g := A(b) — X on the flag variety X = G/B (see Section 9.11). This vector
bundle § is isomorphic to the quotient B\ (G x b) of the product bundle G x b by the
locally free B-action on G x b given by

b-(g.x)=(gh~ ', Ad(b)x) (b€ B,(g.x) € G x b). (10.3.2)
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We define morphisms p : § — gand 6 : g — b by
p((g, x)) = Ad(g)x, 0((g.x)) =px) (xe€b, gel), (10.3.3)

respectively, where p : b = b & n — 0 is the projection. Note that p is a composite
of the closed embedding § < g x X ((g, x) — (Ad(g)x, gB)) and the projection
g x X — g. Therefore, p is a proper morphism (note that X is a projective variety).
Setd = dim X = |AT].

Proposition 10.3.3. x is a flat morphism, and for any h € W\b the dimension of the
fiber x ~\(h) is equal to 2d.

Proof. Let us consider the fiber x ~!(h) for h € h. By Proposition 10.3.1 we have
x~Y(h) = Ad(G)(h +n) = p(B\(G x (h + n))). Hence by dim(B\(G x (h +
n))) = 2d we obtain dim x "'(h) < 2d. On the other hand, if we take a point
h € b such that «(h) # O for any a € A, we have 34(h) = b, Zg(h) = H,
N, = {0} and x~'(h) = Og(h) = G/H. This implies that the general fibers of
x are 2d (= dim G/H)-dimensional. Hence, by the upper semicontinuity of the
dimensions of fibers, the dimension of each fiber of x should be 2d. The flatness of
x follows from the fact that x is an affine morphism such that all fibers have the same
dimension. O

Corollary 10.3.4. The dimension of a conjugacy class is not greater than 2d.

We call a 2d-dimensional conjugacy class in g a regular conjugacy class, and
an element of a regular conjugacy class is called a regular element. Each fiber of x
contains a unique regular conjugacy class, and it is open dense in the fiber.

For each x € g we define an antisymmetric bilinear form g, on g by

Be(y,2) = (x,[y.zD) (y,z€9), (10.3.4)
where (e, o) is the Killing form of g:
(v,z) =Tr(ad(y)ad(z)) (y,z € g). (10.3.5)

By the relation (x, [y, z]) = ([x, y], z) and the non-degeneracy of the Killing form
we get
Bx(y,9) =0 <=y € 34(x). (10.3.6)

Hence B, induces a non-degenerate antisymmetric bilinear form on g/34(x). In
particular, dim g/34(x) is even. By g/34(x) = T (Og(x)) we obtain the following.

Proposition 10.3.5. Any conjugacy class is even-dimensional.

The bilinear forms S, (x € g) gives a global 2-form § on g. Define a 2d-form w
by w = 4. Then by (10.3.6) we see that

x is a regular element <= w, #= 0. (10.3.7)
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Now take a nowhere vanishing dim g-form vy on g and consider the Hodge star
operator

2d I
*:/\g*—)/\g*

defined by
2d 1
¥ Ap= (Y. @) (w e \o*. ¢e /\g*>.

Here (e, ) stands for the non-degenerate symmetric bilinear form on /\l g* induced
by the Killing form.

Lemma 10.3.6. Let x1, ..., x; be homogeneous algebraically independent genera-
tors of C[g]®. Then the I-form *w coincides with dxi A --- A dx; up to a non-zero
constant multiple.

Proof. Seth’ = {h € h | a(h) # 0 (@ € A)}. Since Ad(G)y = x~'(W\p) is
dense in g, so is Ad(G)bh. Note that *w and d x| A - - - A dx; are G-invariant [-forms
on g. Therefore, it suffices to show that they coincide on f. Take a nowhere vanishing
[-form vy on h. We define polynomials 71, 72 on b by

(o) =mi(hvy, dx1 A--- Adx)p =ma(h)vy (b €b). (10.3.8)
Then we have

both 7} and 7» are skew-invariants of W, (103.9)
namely, for any ¢ € A, we have sqm; = —m;. o

both 1 and 7> are homogeneous polynomials of degree d. (10.3.10)

The assertion (10.3.9) follows from the W-invariance of *w|y, (d x1 A- - - Ad x;)|p and
the W-skew-invariance of vy,. Since the coefficients of B are homogeneous of degree
1 on g, those of w, *w are homogeneous of degree d. Therefore, 77| is a homogeneous
polynomial of degree d. If the degree of x; is m; + 1, the degree of the coefficients
of dx; is m;. This means that the homogeneous degree of 5 is Zé:l m;, which is
equal to d by (10.1.12). Hence the assertion (10.3.10) is also proved.

On the other hand it is known that the space of W-skew-invariant polynomials on
h coincides with (C[h]W (]_[o[E A+ o) (Bourbaki [Bou]). Hence both 7y and 75 coincide
with [ ], A+ @ up to non-zero constant multiples. O

Theorem 10.3.7 (Kostant).

(1) x is smooth at x € g if and only if f x is a regular element of g.
(i) Every fiber of x is a reduced normal algebraic variety.

Proof. Note that x : g — W\h = Al is explicitly given by

xx) =0, ..., xx)).
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Therefore, the part (i) follows immediately from Lemma 10.3.6 and (10.3.7). By
Proposition 10.3.3 any fiber of x is complete intersection. Hence any fiber is reduced
since it contains a smooth point. Moreover, the codimension of the singular set of
each fiber is at least two by Proposition 10.3.5, from which the normality of fibers
follows. O

Theorem 10.3.7 is due to Kostant [Kos]. The proof presented here, which uses
Lemma 10.3.6, is due to W. Rossman.

Theorem 10.3.8. Let h € . Then the morphism
07 () — x ()

obtained by restricting p to 0~ (h) (the mor_phisms p and 6 were defined in (10.3.3))
gives a resolution of singularities of x ~! (7).

Proof. Since p is a proper morphism, its restriction pj, is also proper. Note that
6~ 1(h) is an affine bundle on X whose fibers are isomorphic to & + n. This in
particular implies that 6! (%) is a non-singular variety. Hence it is enough to prove
the following statement by Theorem 10.3.7 (i):

Ifx € X_l () is a regular element of g, then ph_l (x) is a single point.  (10.3.11)

We only prove it in the case where 4 = 0. The proof for the general case is reduced
to that of this special case by the technique reducing the study of conjugacy classes
to that of nilpotent conjugacy classes in smaller semisimple Lie algebras (see The-
orem 10.2.3); however, the details are omitted. By x~10) = N our problem is to
show that p, ! (x) is a single point for any regular nilpotent element x in g. Since pg
is G-equivariant, it suffices to show it for just some regular nilpotent element x. Let
o1, ..., a; be the set of simple roots and set

ny = {y € n| y is a regular nilpotent element},

ny = ZYa|)’a€9avYai5é0

aeAT

Then these are open subsets of n and hence we have ny Nny % @ (it is known that
n; = np, but we do not need it here). Hence we take x € ny N ny. Since ,00_1 x) =
(gB € X | Ad(g~YH)x € n}, it is enough to show that g € B whenever g € G
satisfies Ad(g)x € n. Using the Bruhat decomposition, let us rewrite this g € G by
g = bywby (b1,br € B, w € Ng(H) is arepresentative of w € W = Ng(H)/H).
Then it follows from Ad(g)x € n that Ad(w) Ad(by)x € n, and by the B-invariance
of ny we obtain

Ad() Ad(D2)X = Y Yu@) €N Yu) € Bu@:  Yu) 7 0-

aEAT

This implies w(a;) € AT =1,...,/)andwe getw = 1 and g € B. m]
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Since the subspace of g consisting of elements orthogonal to b (with respect to the
Killing form) coincides with n, we obtain an isomorphism n = (g/b)*, from which
we see that 6~1(0) = T*X. On the other hand we have x ~!(0) = N. Hence we
obtain a resolution of singularities pg : T*X — N of the nilpotent cone N. It is
called the Springer resolution of N'. Now identify g with g* by the Killing form of
g and consider the composite of the morphisms pg and N' < g = g*. Then the
morphism

y:T*X - g* (10.3.12)

coincides with the moment map obtained by the G-action on the symplectic vari-
ety T*X.
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Representations of Lie Algebras and D-Modules

In this chapter we give a proof of the Beilinson—Bernstein correspondence [BB]
between representations of semisimple Lie algebras and D-modules on flag varieties.

11.1 Universal enveloping algebras and differential operators

Let Y be a smooth algebraic variety. For a locally free Oy-module V of finite rank
we define a sheaf Dy C Endc, (V)of differential operators acting on ) by

Fp(DY)=1{0} (p <0), (11.1.1)
Fp(DY) = {P € Endc, (V) | Pf — fP € F,_1(DY) (f €Oy)} (p20),
(11.1.2)
DY = Fp(DY). (11.1.3)
p=0

The sheaf D}) thus obtained is a sheaf of rings, and it contains Oy as a subring. The

ordinary sheaf Dy of differential operators on Y is D}(,DY . In general we have an
isomorphism
V®o, Dy ®o, V* ~ DY (11.1.4)

of sheaves of rings given by
(s®@ P®s™)(1)=P((s*,t))s (s,t €V, s* €V*, P e Dy). (11.1.5)

Now assume that a linear algebraic group K acts on Y and that }Vis a K -equivariant
vector bundle. Denote by U (£) the universal enveloping algebra of the Lie algebra ¢
of K. Then we can construct a ring homomorphism

U®) — T, DY) (a8, (11.1.6)
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from U (¢) to ' (Y, D},}) as follows. Let ¢ : p’sz = 0™V be the isomorphism giving
the K-equivariant structure of }, where p» : K x Y — Yando : K x Y — Y are
the second projection and the action of K on Y, respectively. Then the section 9, is
uniquely determined by the condition

p((@a®1) -go_l(o*s)) =0%0s) (seV,ach), (11.1.7)

where a € € in the left-hand side is regarded as a right-invariant vector field on K.
Note that if we identify U (¥) with the ring of right-invariant differential operators on
K, the formula (11.1.7) holds also for any a € U ().

Remark 11.1.1. In the complex analytic category, by regarding K as a complex Lie
group we have

(0a8)(y) = %(exp(ta)s((exp ta)fly)) o (act, sV, yeY).

Since I'(Y, V) is a K-module, it is naturally a U (¢€)-module. The corresponding
homomorphism U (¢) — End(I"(Y, V)) coincides with the one obtained by compos-
ing (11.1.6) with the homomorphism I'(Y, D}}) — End(I'(Y, V)) induced by the
inclusion D},} C Endc, (V).

11.2 Rings of twisted differential operators on flag varieties

Recall that for each A € P we have a G-equivariant line bundle £(A) on the flag
variety X = G/B (see Section 9.11). We set

D, =DP e p) (11.2.1)

(see (9.4.8) for the definition of the Weyl vector p). Namely, D, is the sheaf of
differential operators acting on L(A 4 p). Since L(A 4 p) is G-equivariant, we have
a homomorphism

D, :U(g) — I'(X,Dy) (ar> 9y) (11.2.2)
of associative algebras (see Section 11.1).

We denote by Mod,¢(D;.) the abelian category of D;-modules which are quasi-
coherent over Oy, and by Mod.(D,) its full subcategory consisting of coherent
D;-modules. We also denote by Mod(g) the category of U (g)-modules. By (11.2.2)
we have the additive functors

Mod,(D;) — Mod(g) (M > T'(X, M), (11.2.3)
Mod(g) — Mod;c(D;.) (M — D; ®ug) M). (11.2.4)

We easily see that the functor D) ®y gq) (e) is the left adjoint functor of I'(X, e).
Namely, we have

Homp, (Dy Qug) M, N) = Homy g)(M, I'(X, NY)) (11.2.5)
for any M € Mod(g) and N’ € Mod,¢(D;,).
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Example 11.2.1. Let G = SL,(C). We follow the notation in Example 9.11.1. The
restrictions of the sheaf D, on X = P! to the open subsets U} and U, are isomorphic
to the ordinary sheaves of differential operators, i.e., we have D,,|y, = Dy, and
Dyplu, = Dy,. Using the coordinates (z), (x) of Uy, Uy, respectively, the gluing
rule of these sheaves is given by

1 1
X = —, = —
z x
d 2 v d 24y e
— =—7"— —(n s —_— = —Xx"— —(n X.
dx < dz < dz dx
Moreover, the homomorphism ®,, : U(g) — I'(X, D,,) is given by
d d
ht—> 2z— —(n+1)=2x—+ n+1),
dz dx
d d
er> —— =x’— 4+ (n+ Dx, (11.2.7)
dz dx
fo 2L Lot d
— n = ——.
e $ T X

The aim of this chapter is to establish the following fundamental theorems due to
Beilinson—Bernstein [BB].

Theorem 11.2.2. Let A € P.

(1) The homomorphism ®; : U(g) — I'(X, D)) is surjective.
(ii) For any z € 3 we have ®,(z) = x,(2)id. Moreover, we have Ker ®; =
U (g)(Ker x5).

Here, x;. : 3 — C denotes the central character associated to A (see Section 9.4).
Theorem 11.2.3. Suppose that ). € P satisfies the condition
(LaYy g Nt =1{1,2,3,...) foranya € AT, (11.2.8)
Then for any M € Mod,.(D;) we have
HY(X, M) =0 (k #0). (11.2.9)
Theorem 11.2.4. Assume that ). € P satisfies the condition
(r,aY) ¢N={0,1,2,...} forany o € AT, (11.2.10)
Then for any M € Mody.(D;.), the morphism
D; Qug M'X, M) - M (11.2.11)

is surjective.
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The proof of these theorems will be given in subsequent sections.

Definition 11.2.5. Let x be a central character. We denote by Mod(g, x) the abelian
category of U (g)-modules with central character x. Namely, Mod(g, ) is the full
subcategory of Mod(g) consisting of U (g)-modules M satisfying the condition

zm = x(z)m (z€j, meM). (11.2.12)

We also denote by Mod ¢ (g, x) the full abelian subcategory of Mod(g, x) consisting
of finitely generated U (g)-modules.

For A € P the category Mod(g, x,) is naturally equivalent to that of I'(X, D, )-
modules by Theorem 11.2.2.

For A € P satisfying the condition (11.2.8) we denote by ModZC(DA) the full
subcategory of Mod,.(D;,) consisting of objects M € Mod,.(D;) such that we
have the following:

(a) The canonical morphism D; Qg q) I'(X, M) — M is surjective.
(b) For any non-zero subobject A" of M in Mody.(D;.) we have I'(X, ) # 0.

Set Mod{(D,) = ModZC(D;\) N Mod.(D;). By Theorem 11.2.4 we have
Mod;C(Dk) = Mod,(Dy) for A € P satisfying the condition (11.2.10). Indeed,
if VV'is a non-zero object of Mody(D;,), the surjectivity of Dy @y (g) T'(X, N) = N
implies I'(X, ) # 0.

Corollary 11.2.6.
(1) Assume that ). € P satisfies the condition (11.2.8). Then the functor I' (X, e)
induces equivalences

Mod (D;) = Mod(g, x5),  Modg(D;) = Mod (g, x2.)

of categories.
(i1) Assume that . € P satisfies the condition (11.2.10). Then the functor I' (X, e)
induces equivalences

Modyc(Dy) = Mod(g, x1),  Modc(Dy) = Mod (g, x1)
of abelian categories. The inverse functor is given by D; ®Qu qg) ().
Proof. (i) We first show that the canonical homomorphism
M — T'(X, D). Qu(g) M) (11.2.13)
is an isomorphism for any M € Mod(g, ;). Choose an exact sequence
(X, D)% — (X, D;)® — M — 0.

Note that the functor I'(X, e) : Modg.(Dy) — Mod(g, x,) is exact by Theo-
rem 11.2.3. Applying the right exact functor I'(X, D;, ®y q) (e)) to the above exact
sequence we obtain a commutative diagram
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rx,p,)® —— X, D)% —— M — 0

| | |

r'X, D)® —— I'(X, D)% —— I'(X, D; Qug M) —> 0

whose rows are exact (note that D) ®y g) I'(X, D;) = Dy Qr(x,p,) I'(X, D;) = D;,
by Theorem 11.2.2). Hence (11.2.13) is an isomorphism.

Let us show that the functor I'(X, e) : ModZC(D,\) — Mod(g, x,) is fully faith-
ful. Let M, M; € ModZC(DA). The homomorphism

I' : Homp, (M, M3) — Homy ) (I'(X, M1), I'(X, M3))

is injective since D; Quq) I'(X, M) — M is surjective. We now let ¢ €
Homy ) (I'(X, My), I'(X, M3)). Denote the kernel of D; @y )" (X, M) — M,
by k1. Applying the exact functor I'(X, e) to the exact sequence

0— Ky — D), Qu I'X, M) — M; — 0,
we obtain an exact sequence
0—TIX,K) —TX M) —TX, M) —0.

Here we have used the fact that (11.2.13) is an isomorphism. Hence we have
I'(X, K1) = 0. Let K, be the image of the composite of

Ky — D, ®U(g) I, My) — D, ®U(g) X, Mp) — M.

Then by I'(X, K1) = 0 and the exactness of I'(X, o) we have I'(X, K2) = 0. Since
M3, is an object of ModZC(D,\), we have K, = 0. Hence we obtain a homomorphism
v M (Z Dy Qu(y) X, Mp)/Ky) = M satisfying I'(y) = ¢.

We next show that for any M € Mod(g, x,) there exists M € ModZC(DA)
satisfying I'(X, M) = M. The set of subobjects K of D; ®ug) M satisfying
I'(X, K) = 0 contains a unique largest element L. Set M = D; ®yg) M/L. Then
by the definition of M we have M € Mody (D;). By applying the exact functor
I'(X, e) to the exact sequence

0— L— D), QugM— M —0,

we see that M = I'(X, M).

It remains to show that Mod{(D;,) and Mod ¢ (g, x;) correspond to each other un-
der this equivalence of categories Modzc(Dk) = Mod(g, x»). LetM € Mod (g, x5.)-
Since I'(X, D,) is a quotient of U (g), it is a left noetherian ring. Hence there exists
an exact sequence

rx, )% — rx, n,)%® — M —0,

for finite sets / and J. If we apply the right exact functor Dy ®yg) (e), we obtain
an exact sequence
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I
D;‘? —> D;‘?J — D, Qu(y) M — 0,

and hence D; ®yg) M is coherent. Since the object of Mody,.(D;) corresponding
to M is a quotient of Dy ®yg) M, it is also coherent. Let M € Mod¢(D,). Since
M is coherent, it is locally generated by finitely many sections. By the surjectivity
of the morphism D), ®y g) I'(X, M) — M we can take the local finite generators
from I'(X, M). Since X is quasi-compact, we see that M is globally generated by
finitely many elements of I" (X, M). This means that we have a surjective morphism
D;BI — M for a finite set /. From this we obtain a surjective homomorphism
(X, D;)® — I'(X, M), and hence I' (X, M) is a finitely generated U (g)-module.

Finally, the assertion (ii) follows from Theorem 11.2.4 and (the proof of) (i). O

For any A € P there always exists w € W such that w(A) € P satisfies the
condition (11.2.8),

(wh), «¥) ¢ Nt forany o € AT,

By x» = xwx) (see Section 9.4) we have Mod(g, x») = Mod(g, xwi)) =
Mod;C(Dw(A)). This means that we can translate various problems in Mod(g, x)
into those of Mody . (Du1))-

It is also necessary in representation theory to consider problems in Mod(g, x)
for a general element & € h* = C ®y P. In fact, the results in this section can be
formulated in this more general situation and are known to be true. For example, let
us consider the case when G = SL>(C). In Example 11.2.1 we assumed that n is an
integer. However, even if n is a general complex number, we can define the sheaf
Dy, by gluing the ordinary sheaves of differential operators on Uy and U, by the
rule (11.2.6). Furthermore, it is also possible to define a homomorphism U (g) —
I'(X, D,,) by (11.2.7). Namely, we can also perform the constructions in (11.2.6) and
(11.2.7) for general n € C (the condition n € Z was necessary only for the existence
of line bundles). The situation is similar for general semisimple algebraic groups G.
Although there is no corresponding line bundle for a generic > € h* = C ®yz P,
we can construct a sheaf D, of twisted differential operators and a homomorphism
®, : U(g) — I'(X, D)) of algebras, and then Theorems 11.2.2, 11.2.3, 11.2.4 hold
without any modification. In this book we only treat the case where A € P for the
sake of simplicity, and refer to Beilinson—Bernstein [BB] and Kashiwara [Kas14] for
details about the general case.

11.3 Proof of Theorem 11.2.2
As in the case of Dy we introduce a natural filtration {F, (U (g))} ez on U (g) by

0 (p<0)
Fp(U(g)) = | {the subspace spanned by (11.3.1)
products of at most p elements in g} (p = 0).
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Then we have
Fp (U@)Fp,(U (@) C Fp 4p,(U(g)), (11.3.2)
[Fp,(U(@). Fp,(U@)] C Fpispr—1(U(@)).

Hence if we set

g, U@ = Fp(U@)/Fpe1(U(@) and grU(@ =Per, U@, (11.3.3)
P

then gr U(g) is a commutative C-algebra. By the PBW theorem, this algebra is
isomorphic to the symmetric algebra S(g) over g. Also for D;, set

gr, Dy = Fp(D2)/Fp-1(D2)., gr Dy = @ er, D (11.3.4)
p

Then gr D, is a sheaf of commutative Ox-algebras. If we denote by 7 : T*X — X
the cotangent bundle of X, then we have a natural isomorphism gr D, ~ 7,Or=x.

We first prove the commutative version of Theorem 11.2.2 where U (g), D, are
replaced by gr D;, gr U (g), respectively. By applying the left exact functor I' (X, e)
to the exact sequence

00— Fp_1(Dy) — Fp(Dy) — gr, D) — 0, (11.3.5)
we obtain the exact sequence
0— I'(X, Fp—1(Dy)) — I'(X, F(Dy)) — I'(X, gr), D;). (11.3.6)

Hence we have I'(X, F,(Dy))/I'(X, Fp_1(D;)) C I'(X, gr, D). Therefore, by
O, (Fp(U(g))) C I'(X, Fp(D;)) we get a homomorphism

gr®, :S(g) =grU(g) — I'(X, gr Dy) (11.3.7)

of C-algebras. Denote by S(g)C the set of G-invariant elements in S(g) and set
S(g)f = S(g)G N (®p>0 S(g)p), where S(g), denotes the subspace of S(g) con-
sisting of homogeneous elements of degree p = 0.

Proposition 11.3.1. The homomorphism gr @, is surjective and its kernel Ker gr @,
is the ideal generated by S (g)fi.

Proof. By the identifications S(g) = C[g*] = I'(g*, Og+) and I'(X, gr D;) =
(X, pxOr+x) ET(T*X, Or+x), gr O, gives a homomorphism

I'(g*, Og:) - I'(T*X, Or+x) (11.3.8)

of C-algebras. Moreover, we see by a simple calculation that this homomorphism
(11.3.8) coincides with the pull-back y* of the moment map (see Section 10.3):

y:T*X — g*. (11.3.9)
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Recall that the image of y is the set A/ of nilpotent elements in g (we identify g* with
g by the Killing form of g as in Section 10.3). Let us factorize the morphism y as

X Lo N s g

Since y’ is a resolution of singularities of A/ and A is a normal variety, the induced
map y'* : TN, Opn) — [(T*X, Or«x) is an isomorphism. Furthermore, the
algebra homomorphism "™ : I'(g*, Og+) — I'(W, Oyy) is surjective because the
nilpotent cone A\ is a closed subvariety of g*. Hence their composite y* = y'* o y”"*
is also surjective, and its kernel is the defining ideal of A/ in g*. To finish the proof,
it suffices to note that this defining ideal is generated by S (g)ﬁ (see the proof of
Theorem 10.3.7). O

We next study how the center 3 of U (g) acts on L(A + p).
Proposition 11.3.2. For any z € 3, we have ®,(z) = y,.(z)id.

Proof. Note that for any z € 3 = U(g)¢ we have ®,(z) € I'(X, D;)°. We first
prove
I'(X, D;)¢ = Cid. (11.3.10)

Recall the notation in the proof of Proposition 11.3.1. Since there exists an open
dense G-orbit in A/ (Corollary 10.2.5), we have I'(N, Op)¢ = C. So it follows
from the isomorphism y’* that I'(X, gr D) =T(T*X, Or+x)° = C. Namely, we
have

C (p=0

0 (r-0. (11.3.11)

I'(X.gr, D)% = {

By taking the G-invariant part of (11.3.6), we get an exact sequence
0 — I'(X, F, 1(D:)® — T'(X, F(D,)) — T'(X, gr, D;)°.

If p = 0, it implies ['(X, Fo(D;))¢ = I'(X, Ox)® = C (this follows also from
the fact that X is projective). Furthermore, by induction on p we can show that
e, FP(DA))G = C for any p = 0. Hence the assertion (11.3.10) follows from
D, = Up Fp(DA)-

It remains to show that @, (z)s = x; (z)s for anon-zero local section s of L(A+p).
Take a non-zero element v in the fiber A(A + p).p of L(A + p) at eB € X, and
define a section s of L(A + p) on the open subset N~ B/B of X by

s(uB) = uvg (ueN). (11.3.12)
Since A(A + p)ep is a B-module associated to A + p, we have
D) (h)s = A+ p)(h)s (h €h). (11.3.13)

It also follows from the definition of s that
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D;(a)s =0 (aen™). (11.3.14)
Write z € 3 as
z=ur+uy (W eU®), upenl(@NUl@n)
(see Lemma 9.4.4). Then by (11.3.13), (11.3.14) we obtain
Dy (z)s = D) (u1)s = (ug, A + p)s.
Finally, under the notation in Theorem 9.4.3, we see that
(i, A+ p) =(p'@, 2+ p) =(f o p'(2), 1) = x.(2).
This completes the proof. O

Proof of Theorem 11.2.2. For p 2 0 let us set

I, = Ker , N F,(U(g)), (11.3.15)
Ip=Y EU@)N,
k+Il=p
K, =S@S@5NS@,= S@iSw@; c S,
k+l=p

>0

It suffices to prove that
Jy — Fp(U(g)) — I'(X, Fy(Dy)) — 0 (11.3.16)

is an exact sequence for any p = 0. We will prove this assertion by induction on p.
Assume that p = 0. Then we have obviously Fy(U(g)) = C. Moreover, since X
is projective, we have I'(X, Fo(D,)) = I'(X, Ox) = C. Finally, we have Iy = 0
and hence Jy = 0. The assertion is verified for p = 0. Assume that p > 0. Let us
consider the following commutative diagram:

0

l

Jp1t —— Fpa(U(g) —— TX, Fp1(Dy) —— 0

l l l

Jp —— F,U(g)) —— I'X,Fy(Dy) —— 0

l l l

K, —— S(@)p —_— F(X,grpD;L) — 0

l l

0 0.
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The commutativity is clear. It is also easy to see that all rows and all columns are
complexes. The exactness of the rightmost column follows from the fact that the
functor I'(X, e) is left exact. Furthermore, the exactness of the middle column is
trivial, and that of the first (resp. third) row is our hypothesis of (resp. follows from
Proposition 11.3.1). Hence to prove the exactness of the middle row it is sufficient to
show that the leftmost column is exact. Note that this exactness is clear except for the
surjectivity of J, — K. Hence it suffices to prove the surjectivity of /; — § (g)IG for
any! > 0. Since F;(U(g)) — S(g); is a surjective homomorphism of G-modules and
since all finite-dimensional G-modules are completely reducible, its G-invariant part

FWU(@)° =3nFU@) - S@°

is also surjective. Therefore, for any a € § (g)lG there exists 7/ € 3 N F;(U(g)) such
that 0;(z') = a (here oy : F;(U(g)) — S(g); is the natural map). Now let us set
z =27 — xn(2)1. Then we have z € I; and 0;(z) = a. The surjectivity of J, — K,
is verified. O

11.4 Proof of Theorems 11.2.3 and 11.2.4

For v € —P™ we have a surjective morphism
pv:Ox ®c L™ (v) = L(v) (11.4.1)

of Ox-modules by the Borel-Weil theorem. By taking its dual we get an injective
morphism
Homoy (L(v), Ox) = Ox ®c Home (L™ (v), C).

By Homo, (L(v), Ox) = L(—v) and Homg (L™ (v), C) = LT (—v) we can rewrite
it as
L(—v) = Ox @c LT (—v).

Applying the functor L(v)® @, , we obtain an injective morphism
iy:Ox — L) ®c LT (—v) (11.4.2)

of Ox-modules.
Now let A € P and let M be a D;-module. If we apply the functor M®p, to
(11.4.1) and (11.4.2), then we get morphisms

Py i Mc L™ (v) > Mo, L), (11.4.3)

iy M —> M®o, LO) ®c LT (—v) (11.4.4)

of Ox-modules. Since Ker(p,) and Im(i, ) are locally direct summands of the Ox-
modules Ox ®c L™ (v) and L(v)®c Lt (—v), respectively, the morphism p,, (resp. i,,)
is surjective (resp. injective). The following results will be essential in our arguments
in this section.
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Proposition 11.4.1.
(1) Assume that A € P satisfies the condition (11.2.10). Then Ker(py) is a direct
summand of M @c L™ (v) (globally on X) as a sheaf of abelian groups.
(ii) Assume that . € P satisfies the condition (11.2.8). Then Im(i,) is a direct
summand of M ®p, L(v) ®c L1 (—v) (globally on X) as a sheaf of abelian
groups.

Proof. In general, if M1, ..., My are g-modules, then their tensor product M| ® - - - ®
M; is also a g-module by

k
x~(m1®~-~®mk)=Zm1®~-~®x-mi®~--®mk (x € gand m; € M;).
i=1

Since M, L(v), L*¥(Fv) are g-modules, M R0y L(v) @c LT (—v) are also g-
modules, hence are U (g)-modules. Moreover, we easily see that (11.4.3) and (11.4.4)
are homomorphisms of U (g)-modules. Decomposing these U (g)-modules by the
action of the center 3 of U(g), we shall show that Ker(p,) and Im(i,) are direct
summands.

Note that L~ (v) has a filtration

L~ wW=L'>2L*’>.--.oL ' 5L ={0} (11.4.5)

by B-submodules L' satisfying the following conditions (a), (b):

(a) L'/L*!is the irreducible B-module which corresponds to i; € P. In particular,
we have dim L7 /L+! = 1.

(b) {wm1, ..., pur—1} are the weights of L™ (v), and we have u; < u; = i < j and
ni=v<<=i=1

Now consider the trivial vector bundle X x L™ (v) which corresponds to the sheaf
Ox ®c L™ (v). We define a filtration

XxL - (wW=U'>U0?>>--->U ' >U" (11.4.6)
of X x L™ (v) by
U ={(@gB, ) e X x L™ (v) |l eg(Lh). (11.4.7)

Denote by Vi the Ox-submodule of O ®c L™ (v) consisting of sections of U ! Then
the filtration
OxQcL W=V'>1V2>...... SV = (11.4.8)

satisfies the condition V' /V*1 = £(u;). Therefore, M ®c L~ (v) has a filtration
ML (1) =VI5V25...5V =0 (11.4.9)

satisfying W/V’”rl = M®p, L(u;). Similarly, we can define a filtration of M ®0,
L(v) ®c LT (=v)
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M®o, L0) @c LY (=) =W D W1 5... oWl =0 (11.4.10)

so that we have Wi+l /Wi = M ®0y L(v— ;). Note that the preceding morphisms
Py and i, coincide with the natural morphisms V! — V1/V2 and W2 — W, respec-
tively. Now let us consider the action of 3. Since M ®o, L(i) is a Dy, -module,
for any z € 3 we have (2 — 4. (2))(M ®0, L(1)) = 0 by Proposition 11.3.2. So,
it follows from (11.4.9) and (11.4.10) that

r—1

[ ]G = x0tm @) M ®c L™ (1) =0, (11.4.11)
i=1
r—1

H(Z — Xrtv—p; (D) M ®0y L) ®c LT (=v)) =0, (11.4.12)

i=1

for any z € 3. In particular, the actions of 3 on M ®c L™ (v) and M Qp, L(v) &c
L+ (—v) are locally finite. In general let N be a vector space equipped with a locally
finite 3-action. For a central character x, we set

N ={neN|"ze;3 peN;(z—x(@)n=0).

Then, it follows from the commutativity of 3 that we get a direct sum decomposition
N=6& s N X. Applying this general result to our situation, we obtain

M®c L™ (v) = PM &c L~ (w)*, (11.4.13)
X

M@0, L) ®c LT (—v) = M @0y L) & LT(—v)*.  (11.4.14)
X

Therefore, it remains for us to prove the following two assertions:

Under the condition (11.2.10), x+4,; = Xa+v impliesi = 1. (11.4.15)
Under the condition (11.2.8), x4v—;; = x5 impliesi = 1. (11.4.16)

First we prove (11.4.15). If x; 14, = X»+v, then there exists an element w € W such
that w(A + u;) = A + v, thatis, (w(A) — A) + (w(p;) —v) = 0. By (11.2.10) we
have w(L) — A = 0. Since w(u;) is also a weight of L™ (v), we have w(u;) —v = 0.
Consequently we obtain w(A) — A = w(u;) —v = 0. By (11.2.10) and w(A) = A
we get w = 1 and hence p; = v. This impliesi = 1.

Next we prove (11.4.16). By x5 4v—u; = xx there exists an element w € W such
thatw(A) = A+v—u;. By (ui —v)+(w)—1) =0, u; —v = 0andw(r)— X1 = 0,
we have p; = v. This implies i = 1. O

Proof of Theorem 11.2.3. Note that H*(X, M) = lim H*(X, N), where N ranges

N
through the family of coherent Ox-submodules of M. Hence it suffices to show that
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HX(X,N) = H*(X, M) (k # 0) is the zero map for any coherent Oy -submodule
N. According to Theorem 9.11.2 (ii) there exists v € —P* such that H*(X, N ®
L(v)) = 0. For such v € —P7 let us consider the following commutative diagram:

HK X, N) H*(X, M)
L@
HY X, N ®0, L) ® LT(—v))—— HY(X, M ®0, L) ® LT (—v)).

We have H* (X, N®0, LW)@c LT (—v)) = HY (X, N®0, L) ®c Lt (—v) = 0.
On the other hand, the map (i,), is injective by Proposition 11.4.1 (ii) . Hence
H*(X, N) — H¥(X, M) is the zero map. m]

Proof of Theorem 11.2.4. Denote the image of the morphism Dj, ®y ) I'(X, M) —
M by M’ and set M” = M/M’. We have to show that M” = 0. Assume
M"” £ 0. If we take a coherent Ox-submodule N # 0 of M”, then there exists
ve —Ptsothat I'(X, N ®oy L(v)) # 0 by Theorem 9.11.2 (ii). In particular, we
have I'(X, M” ®», L(v)) # 0. On the other hand, the map I'(X, M" ®@c L™ (v)) =
X, M")®cL™(v) - I'(X, M"®p, L(v)) is surjective by Proposition 11.4.1 (i).
Therefore, we obtain I'(X, M”) # 0. Now let us consider the exact sequence

0—IrXx,M)—rxMm)— rx,mM"» —o,

(the exactness follows from Theorem 11.2.3). Note that there exists an isomorphism

(X, M) =T (X, M) by the definition of M’'. Hence we get I'(X, M") = 0.
This is a contradiction. Thus we must have M” = 0. O

11.5 Equivariant representations and equivariant D-modules

The g-modules which can be lifted to representations of a certain large subgroup K
of G are especially important in representation theory. Such g-modules are called
K-equivariant g-modules, or simply (g, K)-modules. As a large subgroup K of G,
we mainly consider the following two cases:

K = B (a Borel subgroup). (11.5.1)

K=G={geG|0(g) =g},

) . . (11.5.2)
where 6 is an involution of G.

We will treat the case (11.5.1) in Chapter 12. The case (11.5.2) is closely related to
the study of admissible representations of real semisimple Lie groups. The precise
definition of K -equivariant g-modules is as follows.

Definition 11.5.1. Let K be a closed subgroup of G and set £ = Lie(K). We say that
a (not necessarily finite-dimensional) vector space M over C is a K -equivariant g-
module, if it has both a g-module structure and a K -module structure (see Section 9.6)
satisfying the following conditions:
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The action of £ on M obtained by differentiating that of K

coincides with the restriction of the g-action.

k-(a-m)=(Ad(K)@) - (k-m) (keK,aecg meM). (11.5.4)

(11.5.3)

We denote the category of K-equivariant g-modules by Mod(g, K). Moreover,
Mod(g, x, K) (resp. Mod ¢(g, x, K)) stands for its full subcategory consisting of
objects of which also belong to Mod(g, x) (resp. Mod ¢ (g, x)) as g-modules.

From now on, we introduce D-modules which correspond to K-equivariant g-
modules. Assume that an algebraic group K is acting on a smooth algebraic variety
Y. We define morphisms pp : K XY - Y, 0 : K xY > Y, m: KxK — K
by pa(k,y) = y,o(k,y) = ky, m(ky, ko) = kiko, respectively. Just by imitating the
definition of K -equivariant locally free Oy-modules in Chapter 9, we can define the
notion of K-equivariant D-modules as follows.

Definition 11.5.2. Let M be a Dy-module. Suppose that we are given an isomor-
phism
¢ pIM — o* M (11.5.5)

of Dk «y-modules satisfying the cocycle condition. Then we we say that M is
a K-equivariant Dy-module. Here the cocycle condition is the commutativity of
the diagram obtained by replacing V with M in (9.10.10). We denote the abelian
category of Oy-quasi-coherent (resp. Dy-coherent) and K -equivariant Dy-modules
by Mody(Dy, K) (resp. Mod.(Dy, K)).

By D_, = Dx we have Mod(g, x—,) = Mody(Dx) and Mod ¢ (g, x—p)
Mod.(Dyx) by Corollary 11.2.6.

Theorem 11.5.3. For any closed subgroup K of G, we have Mod(g, x—,, K)
Mod,(Dx, K) and Mod ¢ (g, x—p, K) = Mod.(Dx, K).

Proof. Since K is an affine variety, it is D-affine in the sense that the category
Mod,.(Dk) is equivalent to that of I'(K, Dg)-modules (see Proposition 1.4.3).
Moreover, we have also proved that the flag variety X of G is D-affine (see Corol-
lary 11.2.6). The arguments used to prove the D-affinity of X can also be applied
to K x X as well and we conclude that K x X is D-affine. Namely, the cate-
gory Mod,.(Dk xx) is equivalent to the category of I'(K x X, D x x)-modules.
As a result, giving an isomorphism ¢ : pJM — o*M of Dgxx-modules for
M e Mod,(Dx) is equivalent to giving an isomorphism

¢:T(K xX,psM)—T(K x X,0"M) (11.5.6)
of '(K x X, Dk xx)-modules. Note that we have

I'(K x X, psM) =T(K x X, Ox K M) (11.5.7)
=I'(K,O0x) @ '(X, M).
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On the other hand, if we define morphisms ¢; : K x X — K x X (i = 1,2) by
g1k, x) = (k,kx), e2(k, x) = (k, k_lx), then it follows from &; = 52_1, proégl =
o that

IN(K X X,0"M) ZT(K x X,e{py M) ZET(K x X, (62)xp3M) (11.5.8)
=T'(K x X, p;./\/l) =T(K,Or)QI'(X, M).

Therefore, bothI'(K x X, p; M) andI'(K x X, 0* M) are isomorphic toI'(K, Og)®

I'(X, M) as vector spaces. To distinguish the two actions of I'(K x X, Dgxx)

on I'(K, Og) ® I'(X, M) defined by (11.5.7) and (11.5.8), we denote the ac-

tion through the isomorphism (11.5.7) by (§,n) + & e n, and the one through

the isomorphism (11.5.8) by (¢£,n) +— &Mn (where £ € T'(K x X, Dxxx),

nel(K,Og)®I'(X, M)). We give descriptions of these actions in the following.
Note that we have

'K x X, Dgxx) =T(K x X, Dk ¥ Dx) =T(K, Dg) ® I'(X, Dx)

and
I'(K, D) =T(K, Ok) ®c U(®),

where £ = Lie(K) is identified with the set of left invariant vector fields on K. In
particular, I'(K, Dy) is generated by I'(K, Ok) and £. Moreover, it follows from
Theorem 11.2.2 that I'(X, Dx) = U(g)/U(g) Ker x_,. In particular, I'(X, Dyx) is
generated by the vector fields p = ®_,(p) on X corresponding to p € g. Now
note that an element 2 ® m in I'(K, Okg) ® I'(X, M) corresponds to the section
hop ® pz_lm of pyM = Ogxx ®p2_1(9x pz_lM (resp. the section 1o p; @ 0 ~'m

of 0* M = Ok xx®y-100, o ~! M) through the isomorphism (11.5.7) (resp. (11.5.8)),
where p; : K xX — K isthe first projection. Then it follows from these observations
and simple computations that

(feheh®@m)=fhem (fel(K,Ok)),

a@Deh®m)=a-h®m (ach), (11.5.9)
(I®@p)e(h®@m)=h®p-m (pe€g),
(felmhem)=fhem (f e I'(K, Ok)),

@e)mhem)=a-he@m—-(1Qa)mhem) (ackt), (11.5.10)
(1@p)Mh@m)=3,hhi®p;-m (pe€g),

where we set Ad(k)p = >, hi(k)p; (k € K, h; € T'(K,Ok), pi € g). Since the
two actions of ['(K, Ok) ® 1 are the same as we see in the formula above, the map
@ is uniquely determined by its restriction

o:T(X,M) - T(K,Og) (X, M) (11.5.11)
to '(X, M) =1® I'(X, M). From this map we obtain a morphism

T: K xI'X,M) - T'(X, M) (11.5.12)
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defined by

Pm) =Y hi@m; = t(k.m) =Y _ hi(k)m;. (11.5.13)

Hence giving ahomomorphism (11.5.6) of I' (K, Ok )-modules is equivalent to giving
an algebraic morphism (11.5.12) satisfying the condition

T (k, m) is linear with respect tom € I'(X, M). (11.5.14)
Furthermore, the cocycle condition for ¢ is equivalent to the condition
T(k1, T(ka, m)) = t(kika,m) (ki1,ka € K, m € I'(X, M)). (11.5.15)

Therefore, giving an isomorphism (11.5.6) of I' (K, Ok )-modules such that the corre-
sponding morphism ¢ : p M — o * M satisfies the cocycle condition is equivalent
to giving a K-module structure on I'(X, M) (k - m = t(k, m)). Finally, by using
(11.5.9), (11.5.10) we can easily check that the conditions for ¢ to preserve the actions
of £® 1, 1 ® g correspond, respectively, to (11.5.3), (11.5.4). This completes the
proof. O

Remark 11.5.4. We can also define for general A the notion of K-equivariant D, -
modules. Moreover, if A satisfies the condition (11.2.10) we have an equivalence
of categories Mod(g, xx, K) = Mod,.(D;., K) (see [Kas14]). However, in order to
present such general results we need to define an action of K on D,, by which the
arguments become more complicated. In order to avoid it we only treat in this book
the special case where A = —p.

11.6 Classification of equivariant D-modules

When a subgroup K of G is either (11.5.1) or (11.5.2), there exist only finitely many
K-orbits on X (in the case (11.5.1) it is a consequence of Theorem 9.9.4, and in the
case (11.5.2) this is a result of T. Matsuki [Mat]). This is one way of saying that K is
sufficiently “large.”” In such cases the following remarkable results hold.

Theorem 11.6.1. Let Y be a smooth algebraic variety and K an algebraic group
acting on Y. Suppose that there exist only finitely many K -orbits on Y. Denote the
category of K -equivariant regular holonomic Dy-modules by Mod,,(Dy, K). We
denote also by Y (K, Y) the set of pairs (O, L) ofa K -orbit O C Y and anirreducible
K -equivariant local system L on O™ (the notion of K -equivariant local systems can
be defined in the same way as in the case of equivariant D-modules. We call an
irreducible object in the category of K -equivariant local systems an irreducible K -
equivariant local system). Then we have the following:

(i) Mod.(Dy, K) = Mod,,(Dy, K). Thatis, the regular holonomicity of a coherent
Dy -module follows from the K -equivariance.
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(1) The irreducible objects in Mod.(Dy, K) are parameterized by the set T (K, Y).

Proof. (i) We first consider the case when Y consists of a single K -orbit, i.e., the case
when Y = K /K’ for a subgroup K’ of K. Denoting the one-point algebraic variety
by pt = {xo} we define morphisms

o:KxY —Y, p2: K xY —Y, i:K—> KxY,
m:K—Y, jipt—=1Y, l: K — pt

by o (k1. k2K') = kikoK', pa(ki, ko K') = koK', i(k) = (k™' kK'), (k) = kK',
Jj(x0) = K, I(k) = x, respectively. Then for any M € Mod.(Dy, K) we have

M= (proi) M =i"psMZi*o* M = (0 0i)" M
= (o )*M=1"j*M = Ok ®c (j*M)x,»

and it follows from the coherence of 7 * M that dim(j*M),, < oo. This implies that
7*M = Ok Qc (j* M)y, is aregular holonomic D-module. Since 7 is smooth, M
itself is also regular holonomic.

The general case can be proved by induction on the number of K-orbits. Let
M € Mod.(Dy, K). Take a closed K-orbit O in Y, set Y’ = Y\ O and consider the
injectionsi : O < Y, j : Y < Y. Then we have a distinguished triangle

- 1
/iTM—>M—> itm
i J

By our inductive assumption, (the cohomology sheaves of) j ¥ M and i T M are regular
holonomic. Hence (the cohomology sheaves of) | i) f M and Jii ¥ M are as well. This
implies that M is also regular holonomic.

(i) By the Riemann—Hilbert correspondence the category Mod,,(Dy, K) is
equivalent to the category Perv(Cy, K) of K-equivariant perverse sheaves on Y?",
The irreducible objects of Perv(Cy, K) are parameterized by the set Y(K, Y), where
a pair (O,L) € Y(K,Y) corresponds to the intersection cohomology complex
ICy(L). O

Remark 11.6.2. Let O = K /K’ be a K-orbit. Then the category of K -equivariant
local systems on O?" is equivalent to that of finite-dimensional representations of
K'/(K")? (here (K') is the identity component subgroup of K’). In particular, there
exists a one-to-one correspondence between irreducible K -equivariant local systems
on O and irreducible representations of the finite group K'/(K’)°.

By Theorem 11.5.3 and 11.6.1 we obtain the following result.

Corollary 11.6.3. Let K be a closed subgroup of G for which there exist only finitely
many K-orbits on the flag variety X of G. Then the irreducible K -equivariant g-
modules with the central character x_, are parameterized by the set Y (K, X).

Although we stated our results only in the case where the central characteris x_,,
we can argue similarly also in the general case to get a geometric classification of
irreducible K -equivariant g-modules. When K is of type (11.5.2), we thus obtain a
classification of irreducible admissible representations of real semisimple Lie groups.
This gives a new approach to the Langlands classification.
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Character Formula of Highest Weight Modules

In this chapter we will give an account of the famous character formula for irreducible
highest weight modules over semisimple Lie algebras (the Kazhdan—Lusztig conjec-
ture, a theorem due to Brylinski-Kashiwara and Beilinson—Bernstein). It became a
starting point of various applications of D-module theory to representation theory.

12.1 Highest weight modules

Let M be a (not necessarily finite-dimensional) h-module. For each u € h* we set
M,={meM|hm=upuh)m (hebh)) (12.1.1)

and call it the weight space of M with weight ;.. When M, # {0}, we say that p is a
weight of M and the elements of M), are called weight vectors with weight p. If an
h-module M satisfies the conditions

M= m,. (12.1.2)
neb*
dim M, < oo (u€h"), (12.1.3)

then we call M a weight module and define its character by the formal infinite sum

ch(M) = Z (dim M,,)e". (12.1.4)
nebh*
Definition 12.1.1. Let A € h*, and let M be a g-module. If there is an element m # 0

of M such that
meM,, nwm={0}, U(@m=M, (12.1.5)

we say that M is a highest weight module with highest weight ). In this case m is
called a highest weight vector of M.
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Lemma 12.1.2. Let M be a highest weight module with highest weight A, and let m
be its highest weight vector.

(i) M = U™ )m. Namely, M is generated by m as an nw™ -module.

i)y M = Galék M, and M; = Cm. In particular, M is a weight module as an b-
module and the highest weight vector of M is uniquely determined up to constant
multiples. (Here, the partial ordering of h* is the one defined in (9.3.17)).

Proof. (i) By m € M, we have U(h)m = Cm. It also follows from nm = 0 that
Um)ym = Cm. Byg=n~" @& b @ nand PBW we have U(g) = U )U(h)U (n).
Therefore,

M=U(gm=Un")m.

(i) Note that n™ is an h-module by the adjoint action. We can extend it to the
adjoint action of h on the whole U (n™) by

ad(Wu =hu —uh (heb,uelUm)).

By n= = @ ep+ §—« and U(n™),UMm7), C UMm™),4, wWe have a direct sum
decomposition U (n™) = @MSO Um™),. Henceby U(n™), M, C M, we obtain

M=Uw)m=Y M,=@M, M,=Uw), ;m).
nSA nEA

The assertion M; = Cm follows from U (n™)g = Cl1. O

Now let us introduce the notion of Verma modules which plays a crucial role in
subsequent arguments. For each 1 € h* we set

M) =U(g)/(U(g)n+ Z U(g)(h — A2(h)1)). (12.1.6)
hebh

Since U (g) is a left U (g)-module by its left multiplication and M (1) is a quotient of
U (g) by aleft U (g)-submodule, M (1) is naturally a left U (g)-module. We set

my=1¢€MQ). (12.1.7)

Lemma 12.1.3.
(i) The natural homomorphism U(m™) — M (L) (u — umy) is an isomorphism. In
other words, M (1) is a free U (n™)-module of rank one with a free generator m;,.
(i) The g-module M (A) is a highest weight module with highest weight A.
(iii) Assume that M is a highest weight module with highest weight \.. Letm € M be a
highest weight vector of M. Then there exists a unique surjective homomorphism
f M) — M of U(g)-modules such that f(m)) = m.

Proof. We first show (i). Set I = U(g)n+ Zheb U(g)(h—Xx(h)1). Thenitis enough
to prove that U(g) = U(n™) & I. By PBW there exists an isomorphism
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U @UMm @UM) —> Ug) (41 @ uz @ u3 — ujuru3) (12.1.8)

of vector spaces. Hence we have

D U@ =1 =Y U@HU®Um)(h — A1)

heb heb
=Y U@HUGIC S Umm)(h — 1))
heb
c U(n‘)(Z U(h)(h — A(h)l)) + U(g)n.
hebh
Therefore,

I=U@n+U®m) Y Ub)h—rh)l).

heh

Finally, by (12.1.8) we have the following chain of isomorphisms:

U(g) = U HUMHU M
= UM )HUMC@Umm)
=Um)U®) @ Ugn
= U(n)(@ ® ) Ub)h - m,)])) ® U(gn
hebh
=Um )l

This completes the proof of (i). By (i) we get M (1) # 0, and (ii) follows from this.
The assertion (iii) also follows directly from the definition of M (}). O

We call M (i) the Verma module with highest weight A. The characters of Verma
modules can be computed easily as follows. By Lemma 12.1.3 (i) we have M (1), =
Um™),—, and hence

ch(M())) = Zdim M) et = Z dim U (n")ge"
1 B0

s Z dim U (n")geP.
B0

Moreover, by PBW we obtain

S dimUm)pef = [ A +eP+e .. )=,
=<0 peat [pea+@ =)

and hence we get the character formula
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et

(12.1.9)

According to Lemma 12.1.3 (iii), any highest weight module is a quotient of a
Verma module. Namely, Verma modules are the “largest’”” highest weight modules.
The existence of the “smallest’ highest weight modules is also guaranteed by the next
lemma.

Lemma 12.1.4. Let & € b*. Then there exists a unique maximal proper g-submodule
of M(%).

Proof. Let N be a proper g-submodule of M(A). Since submodules of a weight
module are also weight modules, we have a direct sum decomposition

N =M. NN).

TN

Moreover, by dim M (1), = 1 and M(A) = U(g)M (i), we have M(A), N N =
0. In particular, we obtain N C P, _; M(%),. Therefore, the sum of all proper
submodules is also contained in P, _; M (%), This is the largest proper submodule
of M()). ]

Denote by K (1) the largest proper submodule of M (A1) and set
L) =MH)/K). (12.1.10)

Itis clear from the definition that L (1) is a highest weight module with highest weight
A, which is irreducible as a g-module. If M is a highest weight module with highest
weight A, then we have two surjective homomorphisms

Moy > m, MY L)

of g-modules. These homomorphisms are uniquely determined up to constant mul-
tiples. In this sense, M(X) (resp. L(A)) is the “largest” (resp. “smallest™) highest
weight module with highest weight A. It is natural to ask the following problem.

Basic Problem 12.1.5. Compute the character ch L(A) of the irreducible highest
weight module L(}).

Although the character of the Verma module M (1) was fairly easily computed
as (12.1.9), the computation of the character of L(X) is much more difficult. This is
because L(A) is a quotient of the Verma module M (i) by a submodule K (A) which
admits no explicit description in general. However, in the case of dominant integral
highest weights A € P, we have an isomorphism LT (1) 2~ L(A) (recall that L™+ (1)
is the finite-dimensional irreducible g-module with highest weight A introduced in
Section 9.5). In this case we have



12.1 Highest weight modules 293
Zwew(_l)l(w)ew(Hp)fp
HﬂeA+(l — e P)

= Y (D' ch(MwO.+ p) — p))
weW

ch(L(A)) =

(12.1.11)

by Weyl’s character formula. Therefore, our problem is to generalize the celebrated
Weyl character formula to general highest weights.

Lemma 12.1.6. Let M be a highest weight module with highest weight A. Then for
any 7 € 3 = (the center of U(g)) and m € M we have

m = Yyp(2)m.

Proof. Let mg be a highest weight vector of M. By M = U(g)my it is enough to
show that zmo = x4, (z)mg for any z € 3. Let us write

z=u+v weUW=CH*], ven U(@NU(gn

(see Lemma 9.4.4). By nmg = 0 we have zmo = umy = u())mg. Moreover, by the
definition of the Harish-Chandra homomorphism we obtain u(1) = (y (z))(A +p) =

Yo+ (2)- O

Proposition 12.1.7. Let M be a highest weight g-module with highest weight A. Then
M has a composition series of finite length, and each composition factor in it is
isomorphic to an irreducible g-module L(u) associated to . € b* satisfying the
condition

Wi, pu+peWh+p). (12.1.12)

Proof. If M is irreducible, then our assertion is obvious. So suppose that M is not
irreducible and take a proper submodule N # 0 of M. Then N is a weight module,
and any weight v of N is a weight of M. Since N is a proper submodule, this weight
v must satisfy v < A. We can choose a weight i (© < A) of N which is maximal in
the set of weights of N because the number of 1’s satisfying v < u < A is finite. If m
is a non-zero vector of Ny, then by goN;, C N4 and the maximality of p implies
nm = 0. This implies that U (g)m is a highest weight module with highest weight .
Hence we may assume from the beginning that N is a highest weight module with
highest weight . In this situation, we can prove

w<xi u+peWoh+p). (12.1.13)

Indeed, by Lemma 12.1.6 for any z € 3 we have z|y = x54,(2)id and z|y =
Xu+p(2)id. Consequently we get xiip = Xu+p. Hence it follows from Propo-
sition 9.4.5 that u + p € W(A + p). If N is not irreducible, applying the same
argument to N itself we can find a proper highest weight submodule N' # 0 of N
whose highest weight u’ satisfies

wW<pw<ir, p+peWp+p =Wi+p).
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Since W (A + p) is a finite set, repeating this procedure we obtain a proper irreducible
submodule N; # 0 of M having a highest weight p satisfying the condition (12.1.13).
Now M’ = M/Nj is a highest weight module with highest weight 1. If M’ is
irreducible, we are done. Otherwise, we apply the above arguments to M’ instead of
M. By repeating this procedure, we finally get an increasing sequence

0=NoCNCNrC---CM (12.1.14)

of proper submodules of M suchthat N; /N;_1 = L(u;), i < A, pi+p € W(A+p).
The number of i’s such that p; = w for any given p satisfying the condition (12.1.13)

does not exceed dim M,,, because ch(N;) = i‘l=1 ch(N;/Nji—1). Since W(A + p)
is a finite set, the increasing sequence (12.1.14) must terminate after a finite number
of steps. O

Let us denote by [M (A) : L(w)] the multiplicity of L (i) appearing in a composi-
tion series of the Verma module M (1) (by Artin—Schreier theorem, this number does
not depend on the choice of composition series). Then we have

ch(M() = Y [M() : L(w)]ch(L (). (12.1.15)
"

Now we consider the following problem.
Basic Problem 12.1.8. Compute the multiplicity [M (X) : L()].
Let us consider the equivalence relation on h* defined by
A~pusE=r—pneQ, u+pecWi+p). (12.1.16)

Then by Proposition 12.1.7 we have [M (1) : L(un)] # 0 only if A~u. Hence it is
enough to study Basic Problem 12.1.8 within each equivalence class. Now fix an
equivalence class A C g* and for any pair A, u € A seta,; = [M(X) : L(u)]. Then
we have

ap €N, ay =1; if2 % p, thenay, = 0. (12.1.17)

Therefore, the inverse matrix (buz)u,aen Of (@us)pu.ren satisfies the conditions
bur € Z, by =1; if A2 . thenby; =0. (12.1.18)

Using this notation we have

ch(M() = Y auch(L(n) (A€ A, (12.1.19)
J7ASVAN

ch(L(V) = Y buch(M(w) (A€ A), (12.1.20)
HEA

which shows that Basic Problem 12.1.8 is equivalent to Basic Problem 12.1.5. This
problem was initiated by Verma in the late 1960s and was intensively studied by
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many mathematicians (Bernstein—Gelfand—Gelfand, Jantzen) in the 1970s. The final
answer was given by Beilinson—-Bernstein and Brylinski—-Kashiwara around 1980 (the
settlement of the Kazhdan—Lusztig conjecture). This spectacular application of D-
module theory was astonishing to the researchers of representation theory, who had
been studying this problem by purely algebraic methods.

Example 12.1.9. Consider the case of g = s[(2, C). Let us take the basis £, e, f of
g in Example 9.5.3. Then we have h = Ch, h* = Cp, p(h) = 1. Foreach k € C the
Verma module M (kp) is given by

o0
M(kp) = €D Cuy (v-1 = 0),
n=0
hv, = (k = 2m)v,,  fop =vp41, evp=nk+1—n)v,_1.

Hence for £ ¢ N the Verma module M (kp) is irreducible and M (kp) = L(kp). For
k € N the largest proper submodule of M (kp) is given by ;- , 41 Cuy, and it is
isomorphic to M (—(k 4+ 2)p) = L(—(k + 2)p). Therefore, the answer to our basic
problems in this case is given by

M (kp) = L(kp) k¢N), (12.1.21)
ch(M(kp)) = ch(L(kp)) + ch(L(—(k +2)p))  (k € N), (12.1.22)
ch(L(kp)) = ch(M(kp)) — ch(M(—(k +2)p)) (k € N). (12.1.23)

12.2 Kazhdan-Lusztig conjecture

We will give the answer to Basic Problems 12.1.5, 12.1.8 for the equivalence class
A containing —2p with respect to the equivalence relation (12.1.16) on h*. In this
case we have A = {—wp — p | w € W}, and hence A is parameterized by the Weyl
group W. If we denote the longest element of W by wy, we have —wpp — p = 0 and
hence 0 € A. See Remark 12.2.8 below for other equivalence classes.

Note that the highest weight g-modules M such as M (—wp — p), L(—wp — p)
that we will treat are locally finite as b-modules (that is, for any m € M we have
dimU(b)m < oo). Moreover, M is a weight module as an h-module, and their
weights belong to P. Therefore, the action of b on M can be lifted to an algebraic B-
action, and M is a B-equivariant g-modules in the sense of Section 11.5. Furthermore,
by Lemma 12.1.6 such a g-module M has the central character x_,. Namely, we have

M(~wp — p). L(~wp — p) €Modf(g. x—p. B) (weW).  (122.1)
By the arguments similar to those in Proposition 12.1.7, we have the following.

Proposition 12.2.1. Let M € Mod (g, x—p, B). Then M has a composition series
of finite length, and each composition factor is isomorphic to an irreducible g-module
L(—wp — p) for some w € W.
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We denote by K (Mod (g, x—p, B)) the Grothendieck group of the abelian cat-
egory Mod s (g, x—p, B). Itis a free Z-module with a basis {[L(—w,o - p)]}wew.
By the arguments in Section 12.1 {[M(—wp — p)]},_, is also a basis of
K (Mod (g, x—p, B)). Hence the basic problem in Section 12.1 is to determine the
transfer matrices between these two bases of the free Z-module K (Mod (g, x—p, B)).

Namely, if we have

[L(=wp =] =D byu[M(=yo = p)], (12.2.2)
y
[M(—w/) - /0)] = Zayw [L(—y,O - :0)]
y
in K(Mod (g, x—p, B)), then we have
ch(L(—wp — p)) = Zbyw ch(M(—yp — p)), (12.2.3)

y

ch(M (~wp — p)) = D ayuw ch(L(~=yp — p)).
y

and X
@ywlywew = (Byw)ywew) (12.24)

Example 12.2.2. In the case of g = s[(2, C) wehave W = {e, s}. By Example 12.1.9
we get

Qee = Agg = Aoy = 1, age =0,

bee = bgy =1, bes =—1, by =0
in this case.

To state the solution to our basic problems we need some results on the Hecke
algebra H (W) of the Weyl group W. If we set S = {s4 | @ € [T} C W, then the pair
(W, S) is a Coxeter group. In general the Hecke algebra H (W) is defined for any
Coxeter group (W, S) as follows. Let us consider a free Z[q, g~ "1-module H(W)
with the basis {7y, }wew. We can define a Z[q, q’l ]-algebra structure on H (W) by

Tw, T, = Tww, ((w1) +1(w2) = [(wiw2)) (12.2.5)
(Tsy + D)(Ty —q) =0 (s €9). (12.2.6)

Note that T, = 1 by (12.2.5), where e is the identity element of W. We call this
Zlq, g~ '1-algebra the Hecke algebra of (W, S). The Hecke algebras originate from
the study by N. Iwahori on reductive groups over finite fields, and they are sometimes
called Iwahori—Hecke algebras.

Proposition 12.2.3. There exists a unique family {Py ,(q)}y wew of polynomials
Py w(q) € Zlq] (y, w € W) satisfying the following conditions:
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Pyw(q) =0 (v £ w), (12.2.7)

Py u(g) =1 (we W), (12.2.8)

deg Py w(q) = (l(w) —1(y) — 1)/2 (y < w), (12.2.9)

Y Pow@Ty=¢'" Y Py g HT . (12.2.10)
ySw y<w

We call Py ,(q) the Kazhdan—Lusztig polynomial.
Example 12.2.4. When g = s[(2, C) we have
Pee = Pys = Pes = 1, Pye = 0.
More generally, in the case where |S| < 2 we have

1 (y=w),

12.2.11
0 (yZw). ( :

Py,w(Q) = {

If g = sl(4,C) and S = {sy, 52, s3} with the relation s;s3 = 5351, then (12.2.11)
holds except for the cases (y, w) = (52, $2515352), (5153, S153525351) for which we
have Py ,,(q) =1+g4.

In [KL1] Kazhdan—Lusztig introduced the above-mentioned Kazhdan—Lusztig
polynomials and conjectured that

by = (=DM p (1) (12.2.12)

(the Kazhdan—Lusztig conjecture). They also predicted in loc. cit. that these Kazhdan—
Lusztig polynomials should be closely related to the geometry of Schubert varieties,
which was more precisely formulated in a subsequent paper [KL2] as follows.

For each w € W denote the intersection cohomology complex of the Schubert
variety X, by IC(Cy, ) and set

TCyx, =IC(Cx,)[—dim X,,]. (12.2.13)

Theorem 12.2.5 ([KLZ]). Fory,w € W consider the stalk H' (* Cx,)yp of the ith
cohomology sheaf H' ("Cx, ) of "Cx,, at yB € X. Then we have

Y dim H ("Cx,)yp)a? = Py.u(q). (122.14)

l
In particular, for an odd number i we have Hi(" Cx,)yp =0, and

Z(—l)j dim H/("Cx,)yp = Pyw(1). (12.2.15)
j

The proof of this theorem will be postponed until the end of Chapter 13.
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Example 12.2.6. Recall that for G = SL;(C) we have X = P!, Under the notation
in Example 9.11.1, we have X; = U; = Al X, = {eB} = AY. Hence in this case
we get "Cyx, = Cx, "Cyx, = Cx,.

As a conclusion, one should find a certain link between highest weight mod-
ules and intersection cohomology complexes of Schubert varieties in order to prove
the conjecture (12.2.12). Beilinson—-Bernstein [BB] and Brylinski—Kashiwara [BK]
could make such a link via D-modules on flag varieties, and succeeded in proving
the conjecture (12.2.12). Namely, we have the following.

Theorem 12.2.7. In the Grothendieck group K (Mod r(g, B, x—p)) we have
[L(—wp — p)] = Y _ (=D P, (DM (=yp — p)].
ySw

The strategy of the proof of Theorem 12.2.7 can be illustrated in the following
diagram:

g-modules

~

the Beilinson—Bernstein correspondence

~

D-modules on
flag varieties

A~

the Riemann—Hilbert correspondence

v

perverse sheaves on
flag varieties

We have already given accounts of the Beilinson—Bernstein correspondence and
the Riemann—Hilbert correspondence in Chapter 11 and Chapter 7, respectively. In
view of these correspondences it remains to determine which perverse sheaves cor-
respond to the g-modules M (—wp — p), L(—wp — p). This problem will be studied
in the next section. We note that Brylinski—Kashiwara gave a direct proof of the
Beilinson—Bernstein correspondence for the special case of highest weight modules.
In this book we employ the general results due to Beilinson—Bernstein.

Remark 12.2.8. We have described the answer to Basic Problem 12.1.5 only in the
case A = —wp — p for some w € W. The answer in the case A € P can be obtained
from this special case using the translation principle, which is a standard technique in
representation theory. More generally, for general A € h* we can perform the similar
arguments indicated in the above diagram using twisted differential operators, and the
problem turns out to be the computation of certain twisted intersection cohomology
groups. The result corresponding to Theorem 12.2.5 is shown for A € Q ®7 P C
C ®z P = b* (this rationality condition is necessary in order to apply the theory of
Weil sheaves or Hodge modules). The general case is reduced to this rational case
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by using Jantzen’s deformation argument [J]. The final answer is given in terms of
Kazhdan-Lusztig polynomials of the subgroup

WHh)={weW]|wk—Aie Q}

of W. For details we refer to [KT7]. We finally note that Kashiwara’s conjecture
on semisimple holonomic system (see Kashiwara [Kas17]), which would in partic-
ular give the result corresponding to Theorem 12.2.5 for all A, seems to have been
established by a recent remarkable progress (see Drinfeld [Dr], Gaitsgory [Gai], and
Mochizuki [Mo] and Sabbah [Sab2]).

12.3 D-modules associated to highest weight modules

In Chapter 11 we proved the equivalence of categories
Mod ¢ (g, B, x—p) — Mod.(Dx, B) = Mod,,(Dx, B). (12.3.1)

Let us denote by M,,, L, the objects in Mod,,(Dx, B) which correspond to
M(—wp — p), L(—wp — p) € Mod s (g, B, x—p), respectively. Namely, we set

My, = Dy ®U(g) My, Ly = Dx ®U(g) Ly (weW). (12.3.2)

In view of (12.3.1) our problem of determining the transfer matrix between two
bases {[M(—wp — p)l}wew, {[L(—wp — p)l}wew of the Grothendieck group
K(Mod (g, B, x—p)) can be reduced to determining the transfer matrix between
two bases {[My1}wew, {[Lw]}wew of K(Mod,,(Dx, B)). For this purpose, we
need more concrete descriptions of M, and L,,.

For w € W letiy, : X,, = X be the embedding. Then X,,\ X, is a divisor of
X by Theorem 9.9.5, and hence iy, is an affine morphism. Let us set

Ny = / Ox, = ims(Dxx, ®ny, Ox,) (w € W). (1233)

Then we have NV,, € Mod,,(Dy, B) because X,, is a B-orbit.

Lemma 12.3.1. Let w € W. Then

(i) We have ch(I' (X, Ny)) = ch(M (—wp — p)). In particular, in the Grothendieck
group K (Mod,;,(Dyx, B)) we obtain [M,] = [Ny].
(ii) The only Dx-submodule of N, whose support is contained in X ,,\ X, is zero.

Proof. (i) We define two subalgebras of g by

n = @ g0, M= @ Ja -

aeATNW(AT) aeATN(—w(AT))
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Then the corresponding unipotent subgroups Nj, N of G with the properties
Lie(N1) = ny, Lie(N>) = nj are determined. For each w € W = Ng(H)/H we fix
arepresentative w € Ng(H) of it and define a morphism ¢ : N x N — X by

p(n1,n2) =ninawB  (ny € Ny, ny € Np).

Then ¢ is an open embedding satisfying ¢({e} x N») = X,,. Namely, setting V =
Im(¢) we obtain the following commutative diagram:

4
Ni x N» = \% s X
{e} x N» Ty
Y
No - X

Therefore, we have

(X , iw*(DXeXw ®pyx,, OXw))

(Xw , Dx<x, ®py, 0x,,,>
=1(Xu. Dyex, ®ny, Ox,)
=1(N2. Dyisnyens @y, Oy ).

Moreover, by

DN1><N2<—N2 = (DNl,e ®ON1,e (C) Ac (Q%:; ®ON1.9 C) AcC Dst
we obtain

(X, Ny Z (Dy.e B0y, . C) ®c (2] 80y, . C) ®c T(N2, Ony).

~

Identifying n; with the set of right-invariant vector fields on Ny, we get Dy, =
U(ny)®c Oy, and hence Dy, ®0y, . C = U (ny). Furthermore, we have obviously
Q%I_Ll OOy, e C = A’n; (p = dimny). Since N, is a unipotent algebraic group,
the exponential map exp : np — N; is an isomorphism of algebraic varieties, and
hence we obtain I'(N2, On,) = '(np, Oy,) = S (nﬁ). Therefore, we have

p
DX, Ny) ZU@mD) ®c /\ mi ®c S®3). (12.3.4)

Recall that our problem was to study the action of b on I'(X, NVy,). Let us define an
H-action on N1 x N; by
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1

t-(ny,n) = (tnit™ ,tnzt_l) (t € Hyny € Ni,ny € Np).

Then ¢ is H-equivariant, from which we see that (12.3.4) is an isomorphism of b-
modules. Therefore, we obtain ch(I'(X, N,,)) = ch(U(ny)) ch(/A\”n) ch(S(n})).
We easily see that

1
ch(U(ny)) = —, (12.3.5)
[locatnuwand —e™)
1
ch(S(ny)) = —. (12.3.6)
[Teeatn—waryd —e™®)
Moreover, by p = 2 3"\ + o we have > wea-rw(a—) @ = —wp — p, and hence
ch(\"n1) = e vr 7. (12.3.7)

Therefore, we finally get

(D (X, N, <
ch(I'(X, Ny)) = == = ch(M(—wp — p)).
T Tlaear (=)
(i) Set Z = X\V and let j : V < X be the open embedding. Then we have a
distinguished triangle

RT7(Ny) —> Ny — juNoply) = .

It follows from the definition of A, that AV, — j«(Ny|y) is an isomorphism, and
hence we get RI'z(N,,) = 0. In particular, we have I'z(N,,) = 0. Thus the only
Dx-submodule of NV, whose support is contained in Z is zero. By X,,\X,, C Z the
assertion (ii) is now clear. |

We denote by L(X,, Oy, ) the minimal extension (see Section 3.4) of the regular

w

holonomic Dy, -module Oy, . We have obviously £(X,,, Ox,) € Mod,,(Dx, B).

Proposition 12.3.2. Let w € W. Then we have

(1) Ly = L(Xw, Ox,,),
(i1) My, = DN, (here D = Dy is the dualizing functor introduced in Section 2.6).

Proof. (i) By the results in Section 11.6 and the fact that X% is simply connected,
the set P of isomorphism classes of irreducible objects in Mod,,(Dx, B) is given
by P = {L(Xy, Ox,)}lwew. On the other hand, the set of isomorphism classes of
irreducible objects in Mod f(g, B, x—p) is {L(—wp — p)}wew. So by the definition
of L, we get P = {L,}wew. This means that for any w € W there exists a unique
y € W such that £,, = L(X,, Ox,). By the definition of M,, and £,, we see
that £,, = L(Xy, Ox,) is a composition factor of M,, (note that L(—wp — p)
is a composition factor of M(—wp — p)). Recall that by Lemma 12.3.1 (i) the
composition factors of M,, and those of \V,, are the same. Hence £,, = L(Xy, Ox,)
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is a composition factor of NVy,. By the results in Section 3.4, any composition factor
of Vy, should be written as £(X,, Ox,) for some x < w, which shows that y < w.
Hence we obtain y = w by an induction on w with respect to the Bruhat order.

(ii) Since the irreducible objects £(X,,, Ox,) of Mod,;(Dx, B) are self-dual,
the composition factors of M € Mod,;,(Dyx, B) and those of DM coincide. Hence
we have ch(I'(X, M)) = ch(I'(X, DM)). In particular, we get ch(I'(X, DN,)) =
ch(I'(X, Ny)) = ch(M(—wp — p)). We see from this that U (g) - I' (X, ]DJ\/'w)prfp
is a highest weight module with highest weight —wp — p. Hence there exists a
non-trivial homomorphism f; : M(—wp — p) — I'(X, DN,) of g-modules. Then
L(—wp — p) is not a composition factor of N = Coker( f1). From the exact sequence

M(=wp — p) L5 T(X, DN,)) —> N —> 0 (12.3.8)

of g-module, we obtain an exact sequence

My DNy — N — 0 (12.3.9)

of Dx-modules, where N' = Dy ®u(g) N. Taking its dual we obtain also the exact
sequence

0 — DN — Ny 2 DM, (12.3.10)
Since Ly, is not contained in the set of composition factors of N and DN, the support
of DN is contained in X,,\X,. Hence we get DAV = 0 by Lemma 12.3.1 (ii).
It follows that A/ = 0 and hence N = 0. In other words fj is surjective. We

conclude from this that f| is an isomorphism by ch(I'(X, DNy)) = ch(M (—wp —
p)). Therefore, f> is also an isomorphism. O

By the Riemann—Hilbert correspondence we get the following.

Corollary 12.3.3.
(i) DRx (M) = Cx, [dim X, ] (w € W).
(ii)) DRx (Ly) = "Cx, [dim X, ] (w € W).

Proof of Theorem 12.2.7. By the definition of M, and L,, it is enough to show that
(L] = Z (=D p (DM, (w e W) (12.3.11)
y=w

in the Grothendieck group K (Mod,,(Dx, B)). Let us define a homomorphism ¢ :
K (Mod,;(Dx, B)) — Z[W] of Z-modules by

p(MD =) (Z(—l)f dim H"(DRX(M))yB>y. (12.3.12)
yew N

Note that ¢ is well defined since we are taking an alternating sum of the dimensions
of cohomology groups. Then by Corollary 12.3.3 (i) we have ¢ ([M,,]) = (= 1)@ w



12.3 D-modules associated to highest weight modules 303

and ¢ is an isomorphism of Z-modules. Furthermore, by Corollary 12.3.3 (ii) and
Theorem 12.2.5 we obtain

P(Ly]) = (=)™ > (Z(—l)f dim H"(”(cxw)y3>y
y i

= (=D 3" Pyu(l)y

ySw

= > (=D L (De(MyD).

ySw

from which our claim (12.3.11) is clear. m]
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Hecke Algebras and Hodge Modules

In this chapter we give geometric realization of group algebras of Weyl groups (resp.
Hecke algebras) via D-modules (resp. via Hodge modules). We also include a proof
of Kazhdan—Lusztig’s theorem (Theorem 12.2.5, i.e., the calculation of intersection
cohomology complexes of Schubert varieties) using the theory of Hodge modules.

13.1 Weyl groups and D-modules

Let AG = {(g,g) | g € G} ~ G be the diagonal subgroup of G x G and consider
the diagonal action of AG on X x X. Let us give the orbit decomposition of X x X
for this AG-action. Since G acts transitively on X, we can take as a representative of
each AG-orbitin X x X an element of the form (e B, g B). Furthermore, two elements
(eB, g1B) and (eB, g2 B) lie in the same AG-orbit if and only if g; B and g, B lie in
the same B-orbit. Namely, there exists a bijection between the set of AG-orbits in
X x X and that of B-orbits in X. Under this bijection, the B-orbit X,, (w € W) in
X corresponds to the AG-orbit

Zy=AG(eB,wB) (weW) (13.1.1)
in X x X. Hence we obtain the orbit decomposition

XxX= ]_[ Zw- (13.1.2)
weW

We can also describe geometric properties of AG-orbits in X x X from the ones of
B-orbits in X as follows. Define morphisms py : X x X — X, i : X - X x X
(k =1,2) by

pi(a,b) =a, piy(a,b)=0>b, ii(a)=(eB,a), ix(a)=(a,eB). (13.1.3)

Then we can regard X x X via the projection p; as a G-equivariant fiber bundle on
X = G/B whose fiber i1(X) over eB € X is isomorphic to X. Moreover, for each
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w e W, Z, is a G-equivariant subbundle of X x X whose fiber over eB € X is
isomorphic to il_1 (Zy) = Xy. Hence we have

B B
XxX=GxX, Zy=GxXy, (WweWw) (13.1.4)

under the standard notation of associated fiber bundles (we can also obtain similar
descriptions using py and i in which Z, -1 corresponds to X,,).

Namely, the A G-orbit decomposition of X x X corresponds to that of the B-orbit
decomposition of X including geometric natures such as singularities of the closures.
In particular, we have the following by Theorem 9.9.5.

Proposition 13.1.1.

() Zw =11,<0 Zy-
(ii) dim Z,, = dim X + [(w).

In this chapter we will deal with AG-equivariant D-modules on X x X instead
of B-equivariant D-modules on X considered in Chapter 12. Indeed, we have the
following correspondence between them.

Proposition 13.1.2. The inverse image functors Lij = i;r[dim X] and Li5 =

12I [dim X] of D-modules induce the following equivalences of categories:
i¥ : Mod.(Dxxx, AG) — Mod.(Dx, B),
i : Mod.(Dxxx, AG) —> Mod.(Dx, B).
We omit the proof because it follows easily from the above geometric observa-
tions.

Note that
H”Li,’:(/\/l) =0 (p#0,k=1,2)

holds for any M € Mod,.(Dxxx, AG). Note also that
Mod.(Dxxx, AG) = Mod,;(Dxxx., AG) (13.1.5)

by Theorem 11.6.1. For w € W consider the embedding j,, : Z,, < X x X and set
N, = / Oz. My =Dy, L= L(Zw, Oz,). (13.1.6)
Jw

They are objects in Mod.(Dx xx, AG). Moreover, we have

it N = Ny, iT (M) = My, it(Ly) = Lo, (13.1.7)
BN =Ny, My =My, 5(Ly) = Loy h

under the notation of Chapter 12. Therefore, we get the following proposition.
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Proposition 13.1.3.

(i) K (Mode(Dxxx. AG)) = @ pew ZIMuwl = Byew ZILw).
(ii) For any w € W we have [M,] = [Ny ].

Let us define morphisms p13 : X x X x X - X x Xandr : X x X x X —
X xXxXxXby

pi1zla,b,c) =(a,c) r(a,b,c)=(a,b,b,c). (13.1.8)

Remark ’133.1.4;F0r any /W, N e Mod.(Dxxx, AG) and p # 0, we can prove that
HPLr*(M X N) = 0 (see the proof of Proposition 13.2.7 (i) below).

Proposition 13.1.5.
(i) The Grothendieck group K (Mod.(Dxxx, AG)) has a ring structure defined by

M- INT=) (D [ka (M xﬁ)]
P13

k

(ii) The ring K (Mod.(Dxxx, AG)) is isomorphic to the group ring ZIW] of the
Weyl group W by the correspondence [M,,] <> (—1)/® .

Proof. (i) The proofis a simple application of the base change theorem for D-modules.
By

Wy =y u o ((f

k P13 P13

[M]'(W]'[Zl)=2<—”k[”k/ ’*<ﬂ®(/ r*wm))]
k P13 P13

it suffices to prove that

/((/ rwxm)m)zf r*(/\’m(/ r*wxz))).
P13 P13 P13 P13

The left-hand side (LHS) of the above formula is given by

r*(M x/\N/)> X Z)} ,

(LHS):/ r*/ rx1x D*(MRNKL).
P13 pr3x1Ix1

Since the diagram

1
x4 XLy x5

plgxll lp]3><l><1

x3 L 5 x4

is a cartesian square (i.e., X* is the fiber product of r and py3 x 1 x 1), we get
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(LHS) =/ / Axr)*rx1x )" (MRNK L)
P13 Y pi3xl
=/ (rx1xDo(lxr) (MRNKEL).
pi1zo(pi3x1)
Similarly the right-hand side (RHS) can be rewritten as follows:
(RHS):/ (Ix1xr)o@rx )  MRNKL).
p13o(1xpi3)

Therefore, the assertion (i) follows from pj3 o (p13 x 1) = p13 o (1 x p13) and
rxIxDo(xr)=(0x1xr)o(rx1).
(i1) It is enough to prove the following two formulas:

[M,]- [My] = [M,y] ((y) +(w) = [(yw)), (13.1.9)
[M,]? = [M,] (s €S, (13.1.10)

where S = (s, | o € TT}. We first show (13.1.9). By [My,] = [Ny] = [, Oz,]

we get
B8 = 3t [H"/ ” (/ 0z, | Ozu,)}
P13 ]\ jw

=Yt |t O,
P13 j)’Xjuf ’

We see from [(y) + [(w) = [(yw) that for any (a, b) € Zy,, there exists a unique
¢ € X such that (a,c) € Zy and (c,b) € Z,. Conversely, if (a,c) € Z, and
(c,b) € Zy,then (a, b) € Zy,,. Hence if we define morphisms ¢ : Zyy, — Zy x Zy,
¥ 1 Zyy — X3 by ¢(a, b) = (a, c, ¢, b), ¥(a, b) = (a, c, b), then the diagram

Zyw —— Zy X Zyy

lﬁl l]v X Jw

x3 5  x¢

is the fiber product of r and jy x j,,. Therefore, it follows from this and p130Y = jyy

that
f r*/ - Oz,xz, =/ /(p*OZyXZw =/ Oz,, = Nyu.
P13 Jy X Jw pPi3 Yy Jyw

Hence we obtain (13.1.9). We next show (13.1.10). Note that Z; is smooth and
Zy = Zy U Z,. Moreover, Z, is a smogth closed subvariety of Z, of codimension

one. Let j; : Z; — Zs, Jo i Ze > Zs, js 1 Zs — X x X be the embeddings. Then
we have an exact sequence
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00— OZ — / Oz, — Oz, — 0 (13.1.11)
-/S' -]e

of DZ -modules. Since Z; is smooth, we have Zs = f; OZ' Hence by applying
the functor f; to (13.1.11) we get a new exact sequence

0— Ly —> N, — N, — 0 (13.1.12)

of Dy« x-modules. Therefore, we obtain [./ﬁ sl = [J\N/S] = [ZS] + [J\~/'e]. Since [./\76]
is the identity element 1 of K (Mod.(Dxxx, AG)) by (13.1.9), it suffices to prove

(L1 = —2[L,]. (13.1.13)
By the definition of [Zs] we have

L, = Z( 1)"|:Hk/mr*< 05 &/ O)}

N

_Z( 1)"[1{" / sz}
P13 AXJA

NowsetY = {(a,b,c) € X3 | (a,b), (b,c) € Zs}andlet j : ¥ — X x X x X be the
embedding. Then by virtue of the base change theorem, we have r*

f ; Oy and hence

7.x7, 97,7, =

2P =3 (-1 [Hk / Oy} .
pi3oj

k

Note that the image of pj3 0 j : ¥ — X x X is Z; and ¥ — Z; is a P'-bundle on
Z,. Consequently we get

Hk/ oy = | £ k=%D
pizoj 0 k#xD),

from which (13.1.13) follows immediately. O
Let us define morphisms p; : X X X — X,g: X x X > X x X x X by
pi(a,b) =a, q(a,b)=(a,b,b). (13.1.14)
Then we have the following similar result.

Proposition 13.1.6. Let K be a closed subgroup of G. Thena K (Mod.(Dxxx, AG))-
module structure on K (Mod.(Dy, K)) is defined by

[M]- V] = Z( Dk [H"/ q*(ﬂxm}

(M € Modc(DXXX, AG), N €Mod.(Dx, K)).
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The proof of this proposition is similar to that of Proposition 13.1.5 (i), and omit-
ted. By Propositions 13.1.5 and 13.1.6 the Grothendieck group K (Mod.(Dy, K))
is a W-module. Hence combining this result with Theorem 11.5.3, we see that the
Grothendieck group K (Mod (g, x—p, K)) of the abelian category of K -equivariant
g-modules is a representation space of the Weyl group W. We can prove that it
coincides with the coherent continuation representation due to G. Zuckerman and
D. Vogan. Namely, Propositions 13.1.5 and 13.1.6 give a D-module-theoretical in-
terpretation of coherent continuation representations.

If K = B, then we have

BAMI-IND = IM]- 3N (M, N € Modo(Dxxx, AG)).  (13.1.15)

Consequently K (Mod.(Dyx, B)) is isomorphic to the left regular representation of
the Weyl group W as a left K(Mod.(Dxxx, AG))(= Z[W])-module. One of the
advantages of using Mod.(Dxxx, AG) rather than Mod.(Dyx, B) is that we can
define a ring structure on its Grothendieck group by the convolution product.

13.2 Hecke algebras and Hodge modules

In this section we show that Hecke algebras naturally appear in the context of the ge-
ometry of Schubert varieties. Among other things we give a proof of Theorem 12.2.5
which was stated without proof in Chapter 12.

Let us reconsider the proof of the main theorem of Chapter 12 (the Kazhdan—
Lusztig conjecture, Theorem 12.2.7) in the view of the ring isomorphism

KMod.(Dxxx, AG)) =~ Z[W]

given in Section 13.1. The original problem was to determine the transfer matrix be-
tween the two bases {[M (—wp—p)1}, - {[L(—wo—p)1},, _y Of the Grothendieck
group K (Mod s (g, x—p, B)). By the correspondence between U (g)-modules and
Dyx-modules this problem is equivalent to determining the transfer matrix between
two bases {[Mw] }wew, {[Ew] }weW of K(Mod.(Dyx, B)), and its answer was given
by Kazhdan—Lusztig’s theorem (Theorem 12.2.5). Note that what we actually need in
this process is the following result, which is weaker than Kazhdan—Lusztig’s theorem
(see the proof of Theorem 12.2.7 at the end of Chapter 12 and Proposition 13.1.2).

Prgyosition 13.2.1. Under the ring isomorphism K (Mod.(Dxxx, AG)) ~ Z[W]
(My] < (=D!®w) in Proposition 13.1.5, we have

(L] < (=D 3" Py (Dy.

ySw

We reduced the proof of the Kazhdan—Lusztig conjecture to Proposition 13.2.1
above in Chapter 12 and derived it from Kazhdan—Lusztig’s theorem (Theorem
12.2.5).
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Recall that the Kazhdan—Lusztig polynomials Py ,,(¢) € Z[q] are the coefficients
of the elements

C, = Z Py u(q)Ty € H(W) (13.2.1)
y=w

in the Hecke algebra H(W) = @, Zlgq, q_l]Tw which are characterized by the
conditions (12.2.7),...,(12.2.10). Consider the ring H(W)|,=1 = Z ®z1g.4-11 HW)
given by the specialization ¢ — 1. Then we have a ring isomorphism H (W)|,=1 ~
Z[W] induced by 1 ® T, <> w. Therefore, Proposition 13.2.1 can be restated as
follows.

Proposition 13.2.2. There exists a ring isomorphism
K Mod.(Dxxx, AG)) =~ H(W)|4=1

such that » _
Myl < (DT l,21, L] < (=D'WCyly=r.

Note that the elements Cy|4—1 appearing in this proposition are obtained by
specializing the elements C,, which are characterized inside the Hecke algebra.
It indicates that the essence of our problem lies not in H(W)|,=1 but in H(W).
Hence it would be natural to expect the existence of some superstructure of
KMod.(Dxxx, AG)) which corresponds to H(W). The main aim of this section
is to construct such a superstructure using the theory of Hodge modules.

We need some results on Hodge modules. We use the notation in Section 8.3.
Recall that for the one-point algebraic variety pt, the category M H M (pt) coincides
with SH MP. We denote its Grothendieck group by

R=KMHM(pt) = K(SHMP). (13.2.2)

Since each object of M H M (pt) has a weight filtration W such that gr)¥ € SH(n)?,
we obtain a direct sum decomposition

R = @ R, (13.2.3)
nez
where
R, = K(SH®n)?) (neZ). (13.2.4)

Note that R, is a free Z-module with a basis consisting of the isomorphism classes
of irreducible objects in SH (n)?. The tensor product in M H M (pt) induces a ring
structure on R such that R is commutative and

RiR; C Ry (i,j €7Z). (13.2.5)
The unit element of R is represented by the trivial Hodge structure

Q" =(C,F,Q, W) e MHM pt), (13.2.6)
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gh =0 (p#£0). g =0 @n#0).

Furthermore, the dualizing functor in M H M (pt) induces an involution r > 7 of the
ring R with the property
R =R_; (i €Z). (13.2.7)

Finally, consider an injective homomorphism Z[g, g~!] < R of rings defined by
q" + [Qf(=n)]. Then we have

g € Ry, 7g=q " (13.2.8)

Now let Y be a smooth algebraic variety endowed with an action of an algebraic
group K. Then the notion of K-equivariant mixed Hodge modules on Y can be
defined similarly to the case of K-equivariant Dy-modules because we also have
inverse image functors in the category of mixed Hodge modules. We denote the
abelian category of K-equivariant mixed Hodge modules on Y by MHM (Y, K). Its
Grothendieck group is denoted by K (M HM (Y, K)). By the tensor product functor

MHM@t)y x MHM(Y,K) - MHM (Y, K) (13.2.9)

the Grothendieck group K (M HM (Y, K)) is naturally an R-module.

Let us consider the case where Y consists of a single K -orbit. This is exactly the
case when Y is a homogeneous space K /K’ for a closed subgroup K’ of K. In this
case we have the following equivalences of categories:

K -equivariant regular holonomic systems on Y

H

K -equivariant regular connections on Y

B

K -equivariant C-local systems on Y2"

B

finite-dimensional representations of K’/ (K’ )0 over C

Therefore, Mod.(Dy, K) = Mod,,(Dy, K) is equivalent to the category of finite-
dimensional representations of the finite group K’/(K")? over C. In the case of Hodge
modules the situation is more complicated, because Q-structures and filtrations are
concerned. However, as in the case of D-modules the next proposition holds.

Proposition 13.2.3. Assume that Y is a homogeneous space K /K’ of an algebraic
group K. Then we have

MHM(Y, K) ~ MHM(@pt, K'/(K"°).
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Namely, the problem of classifying equivariant mixed Hodge modules on a ho-
mogeneous space is equivalent to classifying mixed Hodge structures with actions
of a fixed finite group; however, it is a hard task in general. For a finite group G we
denote by Irr(G, Q) the set of the isomorphism classes of irreducible representations
of G over Q.

Proposition 13.2.4. Let G be a finite group and assume that all its irreducible rep-
resentations over QQ are absolutely irreducible. Then any H € M HM (pt, G) can be
uniquely decomposed as

H= P Ho®0) HyeMHM(@).
oelr(G,Q)

Proof. Suppose that we are given an action of G on H = (Hc, F,H,W) €
M H M (pt). By our assumption the G-module H over Q is decomposed as

H= @ (H, ®g o)  Hs = Homg(o, H).
oelr(G,Q)

Hence, if we denote the complexifications of H,;, o by H, ¢, oc, respectively, then
we have

He= P Hec®coo)= P (Hoc®qo).
oelr(G,Q) oelr(G,Q)

Since the filtration F of Hc is G-invariant, there exists a filtration F of H,, ¢ satisfying
Fp(Hg) = @P(Fy(H,.0) ®q 0).
o

It also follows from the G-invariance of the weight filtration W that we can define a
filtration W (we use the same letter W for it) of (H,, F') so that

Wa(H, F) = @ Wu(H,, F) ® 0)

holds. Hence our assertion holds for H, = (Hy.c, F, Hy, W). 0

Let Z be a smooth algebraic variety. For a Q-local system S on Z*" we define an
object

SH[dim Z] = (M, F, S[dim Z], W) € MF,,W(Dz, Q) (13.2.10)
by the conditions

DRz (M) = S ®q Cldim Z], (13.2.11)
gh =0 (p#£0). @) =0 (n#dim2).

By Propositions 13.2.3 and 13.2.4 we have the following result.
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Corollary 13.2.5. Let Y = K /K’ be a homogeneous space of K and assume that all
irreducible representations of K'/(K'")° over Q are absolutely irreducible. Denote
by Sy the local system on Y*" which corresponds to o € Irr(K//(K’)O, Q). Then for
any o we have Sf[dimY] € MHM(Y, K). Moreover, any H € MHM (Y, K) is
uniquely decomposed as

H= P (Ho@S dimY]) (H, e MHM(pt)).
oelrr(K'/(K)0,Q)

Corollary 13.2.6. Under the assumptions of Corollary 13.2.5, K(MHM (Y, K)) is
a free R-module with the basis {[Sf[dim Y1l |o eIr(K'/(K")°, Q)}.

Now let us return to consider the category MHM (X x X, AG). For each
w € W, we have the AG-equivariant Hodge module

Q7 [dim Z,) € MHM(Zy, AG) (13.2.12)

on the AG-orbit Z,, and by Corollary 13.2.6, the Grothendieck group
KMHM((Z,, AG)) is a free R-module of rank one, with basis [Qg [dim Z,,]].
Since the embedding j,, : Z,, < X x X is an affine morphism, we obtain three
embeddings

Juwses Juls Juige : MHM(Zy, AG) > MHM(X x X, AG) (13.2.13)

of categories (see Section 8.3), which induce (at the level of Grothendieck groups)
injective morphisms

Jwes Jw!s Juiye : KIMHM(Zy,, AG)) - K(MHM (X x X, AG)) (13.2.14)

of R-modules. Moreover, we have

KMHM(X x X, AG)) = P juxK(MHM(Z,, AG)) (13.2.15)
weW
= @ Ju KMHM(Zy, AG))
weW
= @ Juix K(MHM(Z,,, AG)).
weW

Now for w € W let us set

N = juke @, ldim Z, D). My = jun(@F, [dim Z,D).  (132.16)
L = jux (@4, [dim Z,)) = 1Y
Then in view of the above arguments we have three bases {[,/’\7 5 ]}weW’ {[ M g ] } e

{[Zg]}wew of the free R-module K(MHM (X x X, AG)). The underlying D-
modules of./\N/,‘;’, f\;l’fj, Zﬁ are Ny, My, Lo, respectively. At the level of D-modules,
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we proved L/\wa] = [M,,]. However, at the level of Hodge modules one has in general
V1 # M.

Similar to the constructions in Section 13.1 we define a product on the R-module
K(MHM(X x X, AG)) by

V1] Vo] = (—DdimX Z(—l)j[Hj(pmr*(Vl X V)] (13.2.17)
j
Vi,V € MHM(X x X, AG)),

where p13 : X X X X X > X xXandr : X x X x X - X x X x X x X are
the morphisms defined in Section 13.1. We also have the base change theorem in the
category of Hodge modules, and hence it is proved similarly to Proposition 13.1.5
that K(MHM (X x X, AG)) is endowed with a structure of an R-algebra by the
product defined above.

Proposition 13.2.7. Let V1, V> € MHM (X x X, AG). Then we have

O HIrXWVRW) =0 (j#—dimX).
(ii) r’(Vl X V) = r*(Vl X W)[—2dim X](— dim X). Here (e) is the Tate twist.

Proof. We define morphisms ¢; : X X G - X x X, ¢ : G x X - X x X,
V:iXXxGxX > XxXxXbyogi(x,g) = (gx,8B), ¢2(8,x) = (gB, gx),
v(xy, g, x2) = (gx1, gB, gx2), respectively. We first show that
o¥V =V, KQH[dimX] (V] € MHM(X)), (13.2.18)
oXV, = QY R V)[dim X] (V) € MHM(X)). (13.2.19)
Leto : G x X x X — X x X be the morphism defined by the G-action on X x X
and let pp : G x X x X — X x X be the projection. We also define morphisms

k:XXG—>GxXxX,i: X—>XxX,p: XxG— Xbyk(x,g) =(g,x,eB),
i(x) = (x,eB), p(x, g) = x, respectively. Then we have a chain of isomorphisms

XV = KXo XV ~ kX pX Yy = pXiky, = %Y R QL.

Since ¢ is smooth, we have Hj(pikvl = 0 for j # dim G — dim X. This implies
that there exists an object V| € M H M (X) such that
Ky oy Hyg: . . oy Hyg:
o, V1 =V KQg[dim G])[dim X — dim G] = V| X Qg [dim X].

This shows (13.2.18). The assertion (13.2.19) is proved similarly. Now let us define
amorphism7 : X x G x X - X x G x G x X by F(xy, g, x2) = (x1, &, &, x2).
Then by r o ¥ = (¢ X @2) o 7 we have
YXrX VRV = 7%V K QE K QE ®VS)[2dim X]
= V| K Q¢ ®Vj[2dim X].
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This implies that H/yXr*(V; K V,) = 0 for j # dimG — 2dim X. Since
¥ is smooth, we obtain from this that H/r*(V; K 1V,) = 0 for j # — dim X.
This completes the proof of (i). Moreover, the smoothness of i implies that
V= w*[Z(dim G — dim X)](dim G — dim X). Therefore, we get

YXF W R V) = ¢'r (Vi B V)[2(dim G — dim X)](dim G — dim X)
=7 (V] KQ¥ ® QA X V))[2dim G](dim G — dim X)
=V ®QE RV (—dim X).
The assertion (ii) follows from this. O

Recall that we have an embedding Z[g, ¢~'] < R of the rings, where R =
K(SHMP?).

Theorem 13.2.8. Define an isomorphism
F:K(MMHM(X x X, AG)) = R ®gz;, -1y HW)

of R-modules by F([/qg]) = (—1)l(w) Tw (w € W). Then F is an isomorphism of
R-algebras satisfying the conditions

FULY) = (=)' Cy,  FANYD = ("7 (wew).

Proof. First let us show that F is an isomorphism of R-algebras. By an argument
similar to the one in Section 13.1 we can prove that

(ME ) (ME = (M, (w1) + L(wa) = l(wiwn)),  (13.2.20)
[LHP? = —(¢+ DL G es), (13.2.21)

where S = {sy | @ € IT}. In particular, [ﬂf ] is the unit element. Moreover, it
follows from the exact sequence

0—>ﬂf—>ﬂf—>f§{—>0
in MHM (X x X, AG) that
M = [Z0 + [MP] s €9). (13.2.22)

Hence, if we set m,, = (= 1)/ [MH ] (w € W), then by (13.2.20), (13.2.21) and
(13.2.22) we have the relations

Moy My, = My, (I(wy) + 1H(wr) = (wiwy)), (13.2.23)
(msg — 1)(mg —q) =0 (s €9), (13.2.24)

which are exactly the same as the relations defining the products in H(W). This
means that F is an isomorphism of R-algebras.
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For each w € W define a homomorphism F,, : K(MHM(X x X, AG)) - R
of R-modules by

> DFHE RV = Fu(vD [ @F, [dim Z,1]. (13.2.25)
k

Since F,, satisfies Fw([ﬂf]) = §y,w We have
F(m) = Z (=D!'™F,(m)T, (me K(MHM(X x X, AG))). (13.2.26)
weW

Next, consider the endomorphism of the Grothendieck group
d: K(IMHM(X x X, AG)) > K(IMHM (X x X, AG)) (13.2.27)

induced by the duality functor D : MHM (X x X, AG) - MHM(X x X, AG).
By the properties of the functor D we have

d>=1, d@r-m)=7-d(m) (13.2.28)
(reR, me KIMHM(X x X, AG))).

Moreover, we have

d(1]- DaD) = (DI XY (DI [HY (pr3ger' DV BDV))]
J

= (=) X g XN (1) [HY (prayr* (DV) K DVy)]
J

by Proposition 13.2.7 (ii) and the fact that p3 is a projective morphism. Hence we
obtain

d(my -m2) = q¢¥™Xd(my) - d(m») (13.2.29)
(my,mye KIMHM (X x X, AG))).

If we set m = q%™Xd(m) for each m € K(MHM(X x X, AG)), then the map
m +> m is an involution of the ring K(M HM (X x X, AG)) and we have

rm=r-m (reR meKWMHMX x X, AG))). (13.2.30)

Now define an involution & > & of the ring H(W) by T,, = Tuj,ll (w e W),
g =q " andextendit to R ®y; HW)byr®@h=7r®h (r € R, h € H(W)).
Let us prove the relation

q,97"]

F(m) = F(m) (me KIMHM (X x X, AG))). (13.2.31)

Note that for any w € W we have
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DL = £ (dim X + [(w)). (13.2.32)
Let us consider the special case of w = s € S. Then it follows from (13.2.24) that
F@n) =q 'Ti+(q ' =) =1, =Fmy). (13.2.33)

Since K (Mod(X x X, AG)) is generated by the elements {m;};ecs as an R-module,
we see from this that (13.2.31) holds.

Now we can prove the remaining assertions. The proof of F ([/V q)y =
(— q)’(w)T ! iseasy. It follows immediately from N'¥ = (DMH)(— dim X —I(w))

and (13.2.31). So let us calculate F([ﬁg]). First set

Cly=(D'FLEY =3P, ,T, (P, <R. (13.2.34)

ySw

Then we have

Cl=q'™c!, (13.2.35)
P, =1 (13.2.36)
P, € @ R for y<w. (13.2.37)

i<Iw)—1(y)—1

Here (13.2.35) follows from (13.2.32). By the definition of 135 (13.2.36) is also clear.

Letus prove (13.2.37). Note that Hk ZH has mixed weights < dim Z,,+k because
EH has a pure weight dim Z,, Moreover by a property of intersection cohomology

complexes, we have Hk Jy [,5 = 0 for any k = 0. Therefore, if Hk Jy L:g # 0,
then it has mixed weights < dim Z,,. On the other hand, by (13.2.26) we have

(DTN L = P, [QF [dimZ,1]. (132.38)
k

Since ng [dim Z,] has the pure weight dim Z, we obtain Py/,,w € @i<l(w)—l(y) R;.
This shows (13.2.37). Using an argument completely similar to the one in [KL1],
we can prove that the element C;, € R ® H (W), satisfying the conditions (13.2.35),
(13.2.36), (13.2. 37) should be the same as C,, (we omit the details). Hence we get
Cl = Cy,and F(LH]) = (—D!®)C,, o

We note that Proposition 13.2.1 follows from Theorem 13.2.8 by the specialization
q 1.

Finally, let us give a proof of Theorem 12.2.5 making use of the theory of Hodge
modules. The argument below is a faithful translation of the one in Kazhdan-Lusztig
[KL2] which uses the theory of weights for étale sheaves in positive characteristic
instead of Hodge modules.

Proposition 13.2.9. If y < w, then H* jf Z,‘Z has the pure weight dim Z,, + k.
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In order to prove this we need the following.

Lemma 13.2.10. For ay, ...,ay € N7 define an action of C* on CN by
2o (X1, xn) = (@M, L, 2 ).

Let Z be a C*-invariant irreducible closed subvariety of CN and set j : {0} — CV.
Then j *(ICg ) has the pure weight dim Z.

Proof. By a standard property of intersection cohomology complexes we have
ij*(ICIZ'[) =0 (k = 0). (13.2.39)

Since the origin 0 is the unique fixed point of the action of C* on Z, we also have that
vk j*achy = gV, 1cl). (13.2.40)

Therefore, it suffices to show that H* ((CN , IC? ) has the pure weight dim Z + k for
any k < 0. Set Z' = Z \ {0}, and denote by i : CV \ {0} < CV the embedding.
Then we have a distinguished triangle

jxgiacty — et — i acty 2L
By
Jj1ICY) = Dj*DACY) = Dj* (CY (dim 2))
we have
HE(j'ack)) = @H*(* ACY)))(— dim Z).

Hence we obtain H*(j'(IC¥)) = 0 (k < 0) by (13.2.39). Therefore, it follows from
the distinguished triangle above that

AN, 1cd) = HRN@V\ {0}, 1CE) (k< 0).

Now it remains to prove that H*(CN \ {0}, IC?,) has the pure weight dim Z + k for
k <O.

By the assumption on the action of C* there exists a geometric quotients P =
(CN\ {0})/C*, 2" = Z'/C* of CN \ {0}, Z', respectively. Then Z” is a closed
subvariety of the projective variety P. Let ¢ : CV \ {0} — P be the canonical
quotient morphism with respect to the C*-action. By IC?, = (p*IC?,,[l] we have a
distinguished triangle

ICH, [—1](—1) —> ICH,[1] —> ggxICH TS .

From this we obtain a cohomology long exact sequence

e — HNPICE) () B B (P ICH)
— HYCV\ {0}, 1CH) — ...
By the hard Lefschetz theorem for Hodge modules, the homomorphism ¥ is injective
for k < 0. Therefore, for k < 0, H*(CN \ {0}, IC%)) is a quotient of H*T1 (P, 1CY).

The variety Z” being projective, H*T1(P, IC?,,) and hence H*(CN \ {0}, IC?,) must
have the pure weight dim Z” + k + 1 = dim Z + k. o
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Proof of Proposition 13.2.9. Taking a suitable open subset U of X x X we have a
commutative diagram

Z,NU — Z,NU — U

| ! |

where the horizontal arrows are embeddings. If we restrict the G-actionon X x X toa
one-dimensional torus in G, we can show that {0} ¢ Z C CV satisfies the assumption
of Lemma 13.2.10. Hence the assertion follows from Lemma 13.2.10. O

Theorem 13.2.11. Suppose that y = w. We define integers cy v, ;j € Z by Py w(q) =
Zj Cy.w,jq’ € Zlq). Then

(i) For k +1(w) — I(y) ¢ 2N we have H* j X (ZH) = 0.

(ii) The integers cy .y, j € Z are non-negative. Moreover, for k + l(w) — I(y) = 2j
(j 2 0) we have an isomorphism

HE X2 = (QY 1dim Z,1)%.
Proof. By Proposition 13.2.9 we have an expression
HE X (M) = Ne® QY [dim Zy] - (N € SH Kk +1(w) — 1(y))").

Therefore, by (13.2.38)

Z(_l)l(w)*Fl(y)*k[Nk] — ch,w,jqj-
k J

Since we have [Ni] € Ritiw)—i(y) and R = @, Ry, g € Rz, we obtain
k+l(w)—1l(y)=2j+1 = [N¢(]=0,
ke+1(w) —1(y) =2 = [N = cywjq’.

Hence our assertion follows from the fact that an object in S H (k)? is a direct sum of
finitely many irreducible objects. O

Now Theorem 12.2.5 is an immediate consequence of Theorem 13.2.11.
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Algebraic Varieties

A.1 Basic definitions

Let k[ X1, X2, ..., X, ] be a polynomial algebra over an algebraically closed field
k with n indeterminates X,..., X;. We sometimes abbreviate it as k[X] =
k[X1, X2, ..., Xy]. Let us associate to each polynomial f(X) € k[X] its zero set

V() ={x =1 x2,....x0) €k | f(x) = f(x1,x2,...,x,) =0}

in the n-fold product set k" of k. For any subset S C k[X] we also set V(S) =
N res V(f). Then we have the following properties:

G V(1) =0,V =k".
(ii) miel V(Si) = V(Uiel Si)-
(1) V(S1) U V(S) = V(S152), where S152 :={fg | f € 51, g € $»}.

The inclusion C of (iii) is clear. We will prove only the inclusion D. For x €
V(8152) \ V($>) there is an element g € S, such that g(x) # 0. On the other hand, it
follows fromx € V(§15;) that f(x)g(x) = O(Vf € S1). Hence f(x) = O(Vf € S)
and x € V(S1). So the part D was also proved.

By (i), (ii), (iii) the set k" is endowed with the structure of a topological space
by taking {V(S) | S C k[X]} to be its closed subsets. We call this topology of k"
the Zariski topology. The closed subsets V (S) of k" with respect to it are called
algebraic sets in k". Note that V (S) = V ((S)), where (S) denotes the ideal of k[ X]
generated by S. Hence we may assume from the beginning that S is an ideal of k[ X].
Conversely, for a subset W C k" the set

IW) = {f €kIX]| f(x) =0 ("x € W)}

is an ideal of k[X]. When W is a (Zariski) closed subset of k7, we have clearly
V(I (W)) = W. Namely, in the diagram

1%
ideals in k[ X] ‘ pa— ’ closed subsets in k"
I
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we have V o [ = Id. However, for an ideal J C k[X] the equality 7 (V (J)) = J does
not hold in general. We have only 7(V(J)) D J. The difference will be clarified
later by Hilbert’s Nullstellensatz.

Let V be a Zariski closed subset of k" (i.e., an algebraic set in k). We regard it as
a topological space by the relative topology induced from the Zariski topology of k”.
We denote by k[ V] the k-algebra of k-valued functions on V obtained by restricting
polynomial functions to V. It is called the coordinate ring of V. The restriction
map py : k[X] — k[V] given by py (f) := f|v is a surjective homomorphism of
k-algebras with Ker py = I(V), and hence we have k[V] >~ k[X]/I (V). For each
point x = (x1,x2,...,x,) € k" of V define a homomorphism e, : k[V] — k of
k-algebras by e, (f) = f(x). Then we get a map

e:V — Homy_ao(kK[V], k) (x —> ey),

where Homy_ g (kK[ V], k) denotes the set of the k-algebra homomorphisms from
k[V] to k. Conversely, for a k-algebra homomorphism ¢ : k[V] — k define
x = (x1,x2,...,%,) € k" by x; = ¢py(X;) (1 <i <n). Then we have x € V and
ex = ¢. Hence we have an identification V = Homy._y (k[V], k) as a set. Moreover,
the closed subsets of V are of the form V(,o;l(J)) ={xeV]e(J)=0}CV for
ideals J of k[V']. Therefore, the topological space V is recovered from the k-algebra
k[V]. It indicates the possibility of defining the notion of algebraic sets starting from
certain k-algebras without using the embedding into k”. Note that the coordinate ring
A = k[V] is finitely generated over k, and reduced (i.e., does not contain non-zero
nilpotent elements) because k[ V'] is a subring of the ring of functions on V with values
in the field k.

In this chapter we give an account of the classical theory of “algebraic varieties™
based on reduced finitely generated (commutative) algebras over algebraically closed
fields (in the modern language of schemes one allows general commutative rings as
“coordinate algebras’).

The following two theorems are fundamental.

Theorem A.1.1 (A weak form of Hilbert’ Nullstellensatz). Any maximal ideal of the
polynomial ring k[ X1, Xo, ..., X, ] is generated by the elements X; —x; (1 <i <n)
for a point x = (x1, X2, ..., x,) € k"

Theorem A.1.2 (Hilbert’s Nullstellensatz). We have I(V (J)) = ~/J, where ~/J
is the radical { f € k[X]| fN € J for some N > 0} of J.

For the proofs, see, for example, [Mu]. O
For a finitely generated k-algebra A denote by Specm A the set of the maximal
ideals of A. For an algebraic set V C k" we have a bijection

Homy_g(k[V], k) >~ Specm k[V] (e — Kere)

by Theorem A.1.1. Under this correspondence, the closed subsets in Specm k[V] >~ V
are the sets
V() ={meSpecmk[V]|m DI},
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where I ranges through the ideals of k[V']. Theorem A.1.2 implies that there is a one-
to-one correspondence between the closed subsets in Specm k[V] and the radical
ideals 1 (I = ~/T) of k[V].

A.2 Affine varieties

Motivated by the arguments in the previous section, we start from a finitely generated
reduced commutative k-algebra A to define an algebraic variety. Namely, we set
V = Specm A and define its topology so that the closed subsets are given by

{V(I)={m e Specm A | I C m} | I: ideals of A}.
By Hilbert’s Nullstellensatz (its weak form), we get the identification
V ~ Homk_alg(A, k).

We sometimes write a point x € V asm, € Specm A ore; € Homy_y(A, k). Under
this notation we have

fx) =ex(f) = (f modm,) ek

for f € A. Here, we used the identification k >~ A/m, obtained by the composite
of the morphisms k — A — A/m,. Hence the ring A is regarded as a k-algebra
consisting of certain k-valued functions on V.

Recall that any open subset of V is of the form D(I) = V \ V(I), where I is
an ideal of A. Since A is a noetherian ring (finitely generated over k), the ideal [ is
generated by a finite subset { fi, f>, ..., f} of I. Then we have

oy =v\(N\vim) =Upu.
i=1 i=1

where D(f) ={x e V| f(x) #0} = V\V(f)for f € A. We call an open subset
of the form D(f) for f € A a principal open subset of V. Principal open subsets
form a basis of the open subsets of V. Note that we have the equivalence

D(f) C D(g) <= V() Cc V(g) <= f € /()

by Hilbert’s Nullstellensatz.

Assume that we are given an A-module M. We introduce a sheaf M on the
topological space V = Specm A as follows. For a multiplicatively closed subset
S of A we denote by S~' M the localization of M with respect to S. It consists of
the equivalence classes with respect to the equivalence relation ~ on the set of pairs
(s, m) =m/s (s € S,m € M) givenby m/s ~ m'/s' < t(s'm —sm') =0
(3t € S). By the ordinary operation rule of fractional numbers S~!A is endowed
with a ring structure and S~ M turns out to be an S~! A-module. For f € A we set
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My = SJ?IM, where Sy := {1, f, f2,...}. Note that for two principal open subsets
D(f) C D(g) anatural homomorphism rjg} : Mg — My is defined as follows. We
have f" = hg (h € A, n € N), and then the element m/g' € M, is mapped to
m/g" = h'm/h'g' = h'm/f™ € My. In the case of D(f) = D(g) we easily see
My >~ Mg by considering the inverse.

Theorem A.2.1.

(1) For an A-module M there exists a unique sheaf[VI on'V = Specm A such that for
any principal open subset D(f) we have M(D(f)) = My, and the resmctlon
homomorphism M(D(f)) — M(D(g))for D(f) C D(g) is given by r

(ii) The sheaf Oy = Ais naturally a sheaf of k-algebras on V.
(iii) For an A-module M the sheaf M is naturally a sheaf of Oy -module. The stalk
of M at x € V is given by

My, = (AN m) " 'M = lim M.
F(0)#0

This is a module over the local ring Oy , == Am, = (AN m,) A

The key point of the proof'is the fact that the functor D(f) + M y on the category
of principal open subsets {D(f) | f € A} satisfies the “axioms of sheaves (for a basis
of open subsets),”” which is assured by the next lemma.

Lemma A.2.2. Assume that the condition (f1, fa, ..., fr) 2 l is satisfied in the ring
A. Then for an A-module M we have an exact sequence

r
0 — M =5 [ My 2 T Msy,.
i=1 i,j

where the last arrow maps (s;);_, to s; —sj € Mﬁ.fj 1<i,j<r).

Proof. Wefirstshow thatforany N € Nthereexists g1, ..., g, satisfying ) ; g fl.N =
1. Note that our assumption ( f1, f2,..., fr) 2 1 is equivalent to saying that for any
m € Specm A there exists at least one element f; such that f; ¢ m (Specm A =
Ui_; D(fi). If fi ¢ m, then we have fiN ¢ m for any N since m is a prime ideal.
Therefore, we get ( le , fZN sy er ) © 1, and the assertion is proved.

Let us show the injectivity of «. Assume m € Ker «. Then there exists N > 0
such that f¥m =0 (1 <i < r). Combining it with the equality ", g; /' = 1 we
getm=1Y ;g fNm=0.

Next assume that (m;) € ]—[l My, € Ker B. We will show that there is an element
m € M such that a(m) = (m;). It follows from our assumption that m; = m; in
Mf,'f_,' (1 <1i,j < r). This is equivalent to saying that (f,-fj)N(mi -mj) =0
(1 <i,j < r) for a large number N. That is, ijfl.Nmi = f,.Nf/ij. Now
setm = Y i g(fNmj) g fN = 1). Then forany 1 < [ < r we have
fm = fV g mi) = X s N (fVmi) = 2 i S fmi = f{Vmy and

le(m — my) = 0. Hence we have a(m) = (m;). O
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For a general open subset U = [ Ji_,; D(f;) of U we have
FU, M)={(s) e My, | si =sjinMysy, (1<i,j<r)
In particular, for Oy = A we have

I'(U, Oy) ={f : U — k| for each point of U,
there is an open neighborhood D(g) such that f|p) € Ag.}

Let (X, Ox) be a pair of a topological space X and a sheaf Oy of k-algebras on
X consisting of certain k-valued functions. We say that the pair (X, Ox) (or simply
X) is an affine variety if (X, Oy) is isomorphic to some (V, Oy) (V = Specm A,

Oy = X) in the sense that there exists a homeomorphism ¢ : X ==V such that

the correspondence f — f o ¢ gives an isomorphism I'(¢ (U), Oy) =>T'(U, Oy)
for any open subset U of V. In this case we have a natural isomorphism ¢* :

¢~ 'Oy =5 Ox of a sheaf of k-algebras. In particular, we have an isomorphism

¢§ : Oy, ¢(x) = Ox x of local rings for any x € X.

A.3 Algebraic varieties

Let (X, Oy)beapairofatopological space X and a sheaf Oy of k-algebras consisting
of certain k-valued functions. We say that the pair (X, Ox) (or simply X) is called a
prevariety over k if it is locally an affine variety (i.e., if for any point x € X there is an
open neighborhood U > x such that (U, Ox|y) is isomorphic to an affine variety).
In such cases, we call the sheaf Oy the structure sheaf of X and sections of Oy are
called regular functions. A morphism ¢ : X — Y between prevarieties X, Y is a
continuous map so that for any open subset U of Y and any f € I'(U, Oy) we have
fod eT(f7'U.Ox).

Aprevariety X is called an algebraic variety if it is quasi-compact and separated.
Let us explain more precisely these two conditions.

The quasi-compactness is a purely topological condition. We say that a topological
space X is quasi-compact if any open covering of X admits a finite subcovering. We
say “quasi’’ because X is not assumed to be Hausdorff. In fact, an algebraic variety
is not Hausdorff unless it consists of finitely many points. In particular, an algebraic
variety X is covered by finitely many affine varieties.

The condition of separatedness plays an alternative role to that of the Hausdorff
condition. To define it we need the notion of products of prevarieties.

We define the product Vi x V, of two affine varieties Vi, V> to be the affine
variety associated to the tensor product A ®; Az (A; = I'(V;, Oy,)) of k-algebras.
This operation is possible thanks to the following proposition.

Proposition A.3.1. For any pair A1, A of finitely generated reduced k-algebras the
tensor product A1 ®k Az is also reduced.
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Proof. Consider the embeddings V; C A™ (i =1,2)and V| x Vo, C A" Next,
define the ring k[V; x V,] to be the restriction of the polynomial ring k[A" 2] to
V1 x Va. Then the restriction map ¢ : k[Vi] @ k[V2] — k[V1 x V»] is bijective (the
right-hand side is obviously reduced). The surjectivity is clear. We can also prove
the injectivity, observing that for any linearly independent elements { f;} (resp. {g;})
in k[ V1] (resp. k[V>]) over k the elements {¢(f;g;)} are again linearly independent
in k[V] x V. O

By definition the product V| x V; of affine varieties V|, V5 has a finer topology
than the usual product topology.

Now let us give the definition of the product of two prevarieties X, Y. Let
X=U;Vi.Y =U iUj be affine open coverings of X and Y, respectively. Then the
productset X x Y iscoveredby { V; xU; }; j) (X xY = U(i’j) Vi xUj). Note that we
regard the product sets V; x U; as affine varieties by the above arguments. Namely, the
structure sheaf Oy, «y; is associated to the tensor product I'(V;, Ov,)®@I'(U;, Oy;).
Then we can glue (V; x Uj, Oy, xU;) to geta topology of X x Y and a sheaf Oxxy of
k-algebras consisting of certain k-valued functions on X x Y, for which (X x Y, Ox xy)
is a prevariety. This prevariety is called the product of two prevarieties X and Y. It
is the “fiber product” in the category of prevarieties.

Using these definitions, we say that a prevariety X is separated if the diagonal
set A = {(x, x) € X x X} is closed in the self-product X x X.

Let us add some remarks.

(i) If ¢ : X — Y is a morphism of algebraic varieties, then its graph I'y =
{(x, p(x)) € X x Y }isaclosed subset of X x Y.
(ii) Affine varieties are separated (hence they are algebraic varieties).

A.4 Quasi-coherent sheaves

Let (X, Ox) be an algebraic variety. We say that a sheaf F' of Ox-module (hereafter,
we simply call F an Ox-module) is quasi-coherent over Oy if for each point x € X
there exists an affine e open neighborhood V > x and amodule My over Ay = Ox (V)
such that F|y =~ MV as Oy-modules (MV is an Oy-module on V = Specm Ay
constructed from the Ay-module My by Theorem A.2.1). If, moreover, every My is
finitely generated over Ay, we say that F is coherent over Ox. The next theorem is
fundamental.

Theorem A 4.1.
(1) (Chevalley) The following conditions on an algebraic variety X are equivalent:
(a) X is an affine variety.
(b) For any quasi-coherent Ox-module F we have Hi(X, F)=0( > 1).
(c) For any quasi-coherent Ox-module F we have H (X, F)=0.
(i) Let X be an affine variety and A = Ox (X) its coordinate ring. Then the functor

Mod(A) > M —— M e Mod,(Ox)
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from the category Mod(A) of A-modules to the category Mod,(Ox) of quasi-
coherent Ox-modules induces an equivalence of categories. Namely, any quasi-
coherent Ox-module is isomorphic to the sheaf M constructed from an A-module
M, and there exists an isomorphism

Hom (M, N) = Homp, (M, N).
In particular, for a quasi-coherent Ox-module F we have
F ~ P/“_(\)?)

By Theorem A.4.1 (ii) local properties of a quasi-coherent Ox-module F' can
be deduced from those of the Ox (V)-module F (V) for an affine neighborhood V.
For example, F' is locally free (resp. coherent) if and only if every point x € X
has an affine open neighborhood V such that F (V) is free (resp. finitely generated)
over Ox (V).

Let us give some examples.

Example A.4.2. Tangent sheaf ® x and cotangent sheaf Q2 i( (In this book, 2y stands
for the sheaf Q := N'Q }( (n = dim X) of differential forms of top degree). We
denote by Endy Oy the sheaf of k-linear endomorphisms of Ox. We say that a section
0 € (EndrOx)(X) is avector field on X if for each open subset U C X the restriction
0U) := 0|y € (EndOx)(U) satisfies the condition

OWU)(fe) =0WU)( g+ fOWU)) ([, g€ Ox)).

For an open subset U of X, denote the set of the vector fields 6 (€ (End;Oy)(U)) on
U by ©(U). Then ®(U) is an Ox (U)-module, and the presheaf U +— ®(U) turns
out to be a sheaf (of Ox-modules). We denote this sheaf by ® x and call it the rangent

sheaf of X. When U is affine, we have Oy =~ D;;(Z) for A = Ox(U), where the
right-hand side is the Oy -module associated to the A-module

Derr(A) :={0 € Endy A | 0(fg) =0(f)g+ f0(2) (f. g € A)}
of the derivations of A over k. It follows from this fact that ®x is a coherent Ox-

module. Indeed, if A = k[X]/I (here k[X] = k[X1, X2, ..., X,;] is a polynomial
ring), then we have

Der (k[ X]) = P kX1 (9 = %)
i=1 i

(free k[ X]-module of rank n) and
Dery(A) >~ {6 € Dery(k[X]) | 6(1) C I}.

Hence Der,(A) is finitely generated over A.
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On the other hand we define the cotangent sheaf of X by QL = §~1(7/7?),
where 6 : X — X x X is the diagonal embedding, J is the ideal sheaf of §(X) in
X x X defined by

TJV)={f € Oxxx(V) | f(VN3X)) = {0}

for any open subset V of X x X, and §~! stands for the sheaf-theoretical inverse image
functor. Sections of the sheaf Q§( are called differential forms. By the canonical
morphism Ox — 8~ !Oyxx of sheaf of k-algebras Q}( is naturally an Ox-module.
We have a morphism d : Ox — Qi( of Ox-modules defined by df = f® 1 —
1 ® f mod §~' 72 It satisfies d(fg) = d(f)g + f(dg) for any f,g € Ox.
For a € Homp, (SZ;, Ox) we have ¢ o d € Oy, which gives an isomorphism
Homox(Qﬁ(, Ox) >~ Ox of Ox-modules.

A.5 Smoothness, dimensions and local coordinate systems

Let x be a point of an algebraic variety X. We say that X is smooth (or non-singular)
at x € X if the stalk Oy , is a regular local ring. This condition is satisfied if and
only if the cotangent sheaf 2 %( is a free Ox-module on an open neighborhood of x.
The smooth points of X form an open subset of X. Let us denote this open subset by
Xreg. An algebraic variety is called smooth (or non-singular) if all of its points are
smooth. It is equivalent to saying that Q}( is a locally free Ox-module. In this case
Oy is also locally free of the same rank by Hom o, (Qi(, Ox) >~ Ox. For a smooth
point x € X the dimension of X at x is defined by

dimy X :=rankp,  Ox , = rankp, Q& o

where Oy  and 2 §( are the stalks of ®x and Ql at x, respectively. It also coincides
with the Krull dimension of the regular local ring Oy . We define the dimension of
X to be the locally constant function on X defined by

(dim X)(x) := dim, X
If X is irreducible, the value dim, X does not depend on the point x € Xyeg.

Theorem A.5.1. Let X be a smooth algebraic variety of dimension n. Then for each
point p € X, there exist an affine open neighborhood V of p, regular functions
xi € k[V] = Ox(V), and vector fields 9; € Ox (V) (1 < i < n) satisfying the
conditions

[0;, 9;]1=0, 0;(x;)=46;; (1 <i, j<n)

@V = @?:] OV 3,‘.

Moreover, we can choose the functions x1, X2, . . ., X, So that they generate the max-
imal ideal m, of the local ring Ox , at p.
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Proof. By the theory of regular local rings there exist n(= dimy X) functions
X1,...,X, € m, generating the ideal m,. Then dxi,...,dx, is a basis of the
free Ox,,-module Q; > Hence we can take an affine open neighborhood V of

p such that Q&(V) is a free module with basis dxi, ..., dx, over Ox (V). Tak-
ing the dual basis 91,...,0, € Ox(V) =~ Homox(v)(Qk(V), Ox(V)) we get
3i(xj) = &;j. Write [9;, 8,1 as [9;, 8,1 = Y_)_, &9 (¢}, € Ox(V)). Then we
have gtl'j = [8,~, aj]x[ = 8i8jx1 — ajal‘X[ = 0. Hence [3,', aj] =0. O

Definition A.5.2. The set {x;, 9; | 1 < i < n} defined over an affine open neigh-
borhood of p satisfying the conditions of Theorem A.5.1 is called a local coordinate
system at p.

It is clear that this notion is a counterpart of the local coordinate system of a
complex manifold. Note that the local coordinate system {x;} defined on an affine
open subset V of a smooth algebraic variety does not necessarily separate the points
in V. We only have an étale morphism V. — k" given by g +— (x1(q), - .., x,(q))-

We have the following relative version of Theorem A.5.1.

Theorem A.5.3. Let Y be a smooth subvariety of a smooth algebraic variety X.
Assume that dim, Y = m, dim, X = n at p € Y. Then we can take an affine open
neighborhoodV of p in X and a local coordinate system {x;, d; | 1 <i < n}suchthat
YNV ={_qeV|xi(q) =0@m <i<n)}(hencek[YNV]=k[V]/> ;o k[V]xi)
and {x;, 0; | 1 < i < m} is a local coordinate system of Y N'V. Here we regard
0; (1 <i < m) as derivations on k[Y N'V] by using the relation d;x; =0 (j > m).

Proof. The result follows from the fact that smooth = locally complete intersec-
tion. O
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Derived Categories and Derived Functors

In this appendix, we give a brief account of the theory of derived categories without
proofs. The basic references are Hartshorne [Hal], Verdier [V2], Borel et al. [Bor3,
Chapter 1], Gelfand—Manin [GeM], Kashiwara—Schapira [KS2], [KS4]. We espe-
cially recommend the reader to consult Kashiwara—Schapira [KS4] for details on this
subject.

B.1 Motivation

The notion of derived categories is indispensable if one wants to fully understand the
theory of D-modules. Many operations of D-modules make sense only in derived
categories, and the Riemann—Hilbert correspondence, which is the main subject of
Part I, cannot be formulated without this notion. Derived categories were introduced
by A. Grothendieck [Hal], [V2]. We hear that M. Sato arrived at the same notion
independently in his way of creating algebraic analysis. In this section we explain
the motivation of the theory of derived categories and give an outline of the theory.

Let us first recall the classical definition of right derived functors. Let C, C’ be
abelian categories and F : C — (' a left exact functor. Assume that the category C
has enough injectives, i.e., for any object X € Ob(C) there exists a monomorphism
X — I into an injective object /. Then for any X € Ob(C) there exists an exact
sequence

0—X—1" 51— ...

such that ¥ is an injective object for any k € Z. Such an exact sequence is called an
injective resolution of X. Next consider the complex

I'=[0—> 17— I3~~~]
in C and apply to it the functor F. Then we obtain a complex
FUIN=[0— FUI°) — FUI") — F(U* — F(?) -]

in C’. As is well known in homological algebra the nth cohomology group of F(I°):
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H"F(I') = Ker[F(I") — F(I"™H]/Im[FU"™") — FU™)]

does not depend on the choice of injective resolutions, and is uniquely determined up
to isomorphisms. Set R"F(X) = H"F(I') € Ob(C’). Then R"F defines a functor
R'"F : C — C'. We call R"F the nth derived functor of F. For n < 0 we have
R"F = 0and R'F = F. Similar construction can be applied also to complexes in C
which are bounded below. Indeed, consider a complex

X'=[~~—>0—>O—>Xk—>Xk+l—>Xk+2—>---]

in C such that X’ = 0 for any i < k. Then there exists a complex
I'=[—0—0—1"— " — 2 ..]

of injective objects in C and a quasi-isomorphism f : X° — I, i.e., a morphism of
complexes f : X" — I which induces an isomorphism H!(X") ~ H'(I") for any
i € Z. We call I' an injective resolution of X". Since the injective resolution /°
and the complex F (/") are uniquely determined up to homotopy equivalences, the
nth cohomology group H"F(I") € Ob(C’) of F(I') is uniquely determined up to
isomorphisms. Set R"F(X") = H"F(I') € Ob(C’). If we introduce the homotopy
category K T(C) of complexes in C which are bounded below (for the definition see
Section B.2 below), this gives a functor R"F : K(C) — C’. Such derived functors
for “complexes’ are frequently used in algebraic geometry.

However, this classical construction of derived functors has some defects. Since
we treat only cohomology groups {H" F(I')},e7 of F(I'), we lose various impor-
tant information of the complex F(I') itself. Moreover, the above construction of
derived functors is not convenient for the composition of functors. For example, let
G : C' —> C” be another left exact functor. Then, for X € Ob(C) the equality
R'*J(G o F)(X) = R'G(R’F (X)) cannot be expected in general. The theory of
spectral sequences was invented as a remedy for such problems, but the best way
is to treat everything at the level of complexes without taking cohomology groups.
Namely, we want to introduce certain categories of complexes and define a lifting
RF (which will be also called a derived functor of F) of R" F’’s between such cate-
gories of complexes. This is the theory of derived categories. Indeed, the language
of derived categories allows one to formulate complicated relations among various
functors in a very beautiful and efficient way.

Now let us briefly explain the construction of derived categories. Let C(C) be the
category of complexes in C. Since the injective resolutions f : X — [ of X" are just
quasi-isomorphisms in C(C), we should change the family of morphisms of C(C) so
that quasi-isomorphisms are isomorphisms in the new category. For this purpose we
use a general theory of localizations of categories (see Section B.4). However, this
localization cannot be applied directly to the category C(C). So we first define the
homotopy category K (C) by making homotopy equivalences in C(C) invertible, and
then apply the localization. The derived category D(C) thus obtained is an additive
category and not an abelian category any more. Therefore, we cannot consider short
exact sequences 0 — X' — Y — Z° — 0 of complexes in D(C) as in C(C).
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Nevertheless, we can define the notion of distinguished triangles in D(C) which is a
substitute for that of short exact sequences of complexes. In other words, the derived
category D(C) is a triangulated category in the sense of Definition B.3.6. As in the
case of short exact sequences in C(C), from a distinguished triangle in D(C) we can
deduce a cohomology long exact sequence in C. Let F : C — C’ be a left exact
functor and assume that C has enough injectives. Denote by D*(C) (resp. D*(C'))
the full subcategory of D(C) (resp. D(C)) consisting of complexes which are bounded
below. Then we can construct a (right) derived functor RF : DT (C) — D¥(C’) of
F, which sends distinguished triangles to distinguished triangles. If we identify an
object X of C with a complex

[ —0—>0—>X—0—0— ]

concentrated in degree 0 and hence with an object of DV (C), we have an isomorphism
H"(RF(X)) >~ R"F(X) in C'. From this we see that the new derived functor RF :
DT (C) — D' (C’)extends classical ones. Moreover, this new construction of derived
functors turns out to be very useful for the compositions of various functors. Let
G : C' — C” be another left exact functor and assume that C” has enough injectives.
Then also the derived functors RG and R(G o F') exist and (under a sufficiently weak
hypothesis) we have a beautiful compositionrule RGo RF = R(G o F). Since in the
theory of D-modules we frequently use the compositions of various derived functors,
such a nice property is very important.

B.2 Categories of complexes

Let C be an abelian category, e.g., the category of R-modules over a ring R, the
category Sh(7p) of sheaves on a topological space Tp. Denote by C(C) the category
of complexes in C. More precisely, an object X" of C(C) consists of a family of
objects {X"},,c7 in C and that of morphisms {dy- : X" —> X"*t1}, .7 in C satisfying
d;’;—’l ody. = 0forany n € Z. Amorphism f : X" — Y in C(C) is a family of
morphisms { /" : X" —> Y"'},,c7 in C satisfying the condition dy.o f" = ol ody-
for any n € Z. Namely, a morphism in C(C) is just a chain map between two
complexes in C. For an object X~ € Ob(C(C)) of C(C) we say that X" is bounded
below (resp. bounded above, resp. bounded) if it satisfies the condition X! = 0 for
i < 0 (resp.i > 0, resp. |i| > 0). We denote by CT(C) (resp. C~(C), resp. C(C))
the full subcategory of C(C) consisting of objects which are bounded below (resp.
bounded above, resp. bounded). These are naturally abelian categories. Moreover,
we identify C with the full subcategory of C(C) consisting of complexes concentrated
in degree 0.

Definition B.2.1. We say that a morphism f : X' — Y in C(C) is a quasi-
isomorphism if it induces an isomorphism H"(X") >~ H"(Y") between cohomology
groups for any n € Z.



334 B Derived Categories and Derived Functors

Definition B.2.2.
(i) For a complex X* € Ob(C(C)) with differentials dy. : X" — X"t (n € Z) and
an integer k € Z, we define the shifted complex X'[k] by

X"[k] = X",
d?p[k] = (_l)kd;l('."k C XMk] = xntk Xn+1[k] — xntk+l
(i) For a morphism f : X — Y  in C(C), we define the mapping cone My" €
Ob(C(C)) by

M;Lp — Xn+1 @ Yn7

dy, - Mp=X""ey" — Myt = xnt2 g ynt!
Y NV
@y e (gD, D ).

There exists a natural short exact sequence

0— v Dy 29 x— 0
in C(C), from which we obtain the cohomology long exact sequence
o — H" ' (M) — H"(X') — H"(Y') —> H"(M;") —> -

in C. Since the connecting homomorphisms H"(X") —> H"(Y") in this long exact
sequence coincide with H"(f) : H*(X') — H"(Y") induced by f : X' — Y’, we
obtain the following useful result.

Lemma B.2.3. A morphism f : X" — Y in C(C) is a quasi-isomorphism if and only
ifH"(M¢") =0 for any n € Z.

Definition B.2.4. For a complex X" € Ob(C(C)) in C and an integer k € Z we define
the truncated complexes by

Sk =<k tly . xR Zk = Kerdé‘(- -0—->0—---],
2kly — p>ky [--— 0— 0— B! =Imd§- xS
For X" € Ob(C(C)) there exists a short exact sequence

0— Y 5 X — 7fx —0

in C(C) foreach k € Z. Note that the complexes <KX and 7= X satisfy the follow-
ing conditions, which explain the reason why we call them “truncated” complexes:

HI(X) j<k

Hj(tgkX') ~
0 Jj >k,

HI(X) j>k

HI(x7FX) ~ { .
0 Jj <k
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B.3 Homotopy categories

In this section, before constructing derived categories, we define homotopy categories.
Derived categories are obtained by applying a localization of categories to homotopy
categories. In order to apply the localization, we need a family of morphisms called
a multiplicative system (see Definition B.4.2 below). But the quasi-isomorphisms
in C(C) do not form a multiplicative system. Therefore, for the preparation of the
localization, we define the homotopy categories K #(C) # = ¥, +, —, b) of an abelian
category C as follows. First recall that a morphism f : X" — Y in C*(C) (# =
@, +, —, b) is homotopic to 0 (we write f ~ 0 for short) if there exists a family
{s, : X" — Y"1}, .z of morphisms in C such that /" = s"!o dy- + d?‘l o s" for
anyn € Z:

-1
d dr.

Xn—l X" Xn+1
| 7l
Ynfl d;l"_l V& dy- Yn+1

We say also that two morphisms f, g € Homes# () (X', Y7) in c*(C) are homotopic
(we write f ~ g for short) if the difference f — g € Homg#(c) (X', ¥7) is homotopic
to 0.

Definition B.3.1. For # = @, +, —, b we define the homotopy category K*(C) of
C by

Ob(K*(C)) = Ob(C*(C)),

Homy# ) (X", Y") = Homew o) (X', Y7) /HU(X ", Y,

where Ht(X", Y7) is a subgroup of Hom# ¢y (X", Y7) defined by Ht(X", Y7) = {f €
Homes o) (X', Y) | f ~ 0}.

The homotopy categories K*(C) are not abelian, but they are still additive cate-
gories. We may regard the categories K¥(C) (# = +, —, b) as full subcategories of
K (C). Moreover, C is naturally identified with the full subcategories of these homo-
topy categories consisting of complexes concentrated in degree 0. Since morphisms
which are homotopic to 0 induce zero maps in cohomology groups, the additive
functors H" : K*(C) — C (X' — H"(X")) are well defined. We say that a mor-
phism f : X" — Y in K*(C) is a quasi-isomorphism if it induces an isomorphism
H"(X") ~ H™"(Y") for any n € Z. Recall that a morphism f : X" — ¥ in C*(C)
is called a homotopy equivalence if there exists a morphism g : ¥ — X' in C*(C)
such that g o f ~ idx- and f o g ~ idy-. Homotopy equivalences in C*(C) are
isomorphisms in K*(C) and hence quasi-isomorphisms. As in the case of the cat-
egories C*#(C), we can also define truncation functors 2k . K(C) - KT(C) and
tSFL K@) - K (0).

Since the homotopy category K #(C) is not abelian, we cannot consider short exact
sequences in it any more. So we introduce the notion of distinguished triangles in
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K*#(C) which will be a substitute for that of short exact sequences in the derived
category D*(C).

Definition B.3.2.
(i) A sequence X' —> Y' —> Z' —> X'[1] of morphisms in K#(C) is called a
triangle.
(ii) A morphism of triangles between two triangles X" —> Y| — Z1" — X [1]
and Xo" —> Y2' —> Z»" —> Xo'[1]in K#(C) is a commutative diagram

X1 Yy Zy X1[1]
11
X5 Y Zy Xo'[1]

in K*(C).
(iii) We say that a triangle X' — Y — Z" — X[1]in K*(C)isa distinguished

triangle if it is isomorphic to a mapping cone triangle X’ —f> Yoo — a(f) My @

Xo'[1] associated to a morphism f : Xo° —> Yy in Cc*(0), i.e., there exists a
commutative diagram

f a(f) B(f)

Xo Yo' My L5 x0T
| ! ! !
X Y 7z —— XTI

in which all vertical arrows are isomorphisms in K*#(C).

A distinguished triangle X° — Y — Z° — X'[1] is sometimes denoted by

Y Z
\ %1]
e

Proposition B.3.3. The family of distinguished triangles in Co = K*(C) satisfies the
following properties (TR0O) ~ (TRS5):

X'—>Y'—>Z'i>orby

(TRO) A triangle which is zsomorphtc to a distinguished triangle is also distinguished.

(TR1) For any X° € Ob(Cyp), X~ —> X —> 0 — X'[1] is a distinguished
triangle.
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(TR2) Any morphism f : X' —> Y  in Cy can be embedded into a distinguished
triangle X~ i) Y'— 7' — X'[1].

(TR3) A triangle X~ —f> v -5 7z LN X'[1] in Cy is distinguished if and only if
v 5z —h> X'1] ﬂ) Y'[1] is distinguished.

(TR4) Given two distinguished triangles X’ i) YI' — Zy" — X [1] and
X5 i) )" — Zy" — X5'[1] and a commutative diagram

N

X —— Y

I

X, f2 Yy

in Co, then we can embed them into a morphism of triangles, i.e., into a com-
mutative diagram in Cy:

X Y Zy X1'[1]
th l v hml

1
Xy Yy Zy X5[1].

(TRS) Let
x Ly — zy — x71
Y -5 70— Xo — Y[1]
X g—of> 7z — Yy — X'[1],
be three distinguished triangles. Then there exists a distinguished triangle

Zy —> Yo —> Xo —> Zo'[1] which can be embedded into the commuta-
tive diagram

X Y Zo X[1]

id 8 id
x 2L 7 Yo' X[1]
f id fl]
o ‘
Y Z Xo Y[1]

id
Zo Yo' Xo Zo'[1].

For the proof, see [KS2, Proposition 1.4.4]. The property (TRS) is called the
octahedral axiom, because it can be visualized by the following figure:
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Yo
TR

Zo < Xo
LN
/ /N
X gof 7
T L

Corollary B3.4. Set Co = K*(C) and let X' -1 v* =55 7 % X'[1] be a

distinguished triangle in Cy.
H}‘l Hl‘l
(i) For any n € 7 the sequence H"(X") —(f)> H"(Y") A H"(Z) inC is
exact.

(i1) The composite g o f is zero.

(iii) For any W™ € Ob(Cy), the sequences
Homg¢ (W', X') — Homg (W', Y') — Homg, (W', Z)
Homg¢,(Z', W) — Homg, (Y, W) — Homg, (X", W)

associated to the distinguished triangle X~ i> v -5 7 LN X'[1] are exact
in the abelian category Ab of abelian groups.

Corollary B.3.5. Set Cy = K*(C).

(i) Let
X Yy Z X1[1]
fl gl hl f[l]l
X7 Yy Zy X5 [1].

be a morphism of distinguished triangles in Cy. Assume that [ and g are isomor-
phisms. Then h is also an isomorphism.

()Let X —> Y — Z' —> X [1]and X' —> Y —> Z"" —> X'[1] be two
distinguished triangles in Co. Then Z" ~ Z".

(iii) Let X~ Yy 7 — X'[1] be a distinguished triangle in Cy. Then u is
an isomorphism if and only if Z" =~ (.

By abstracting the properties of the homotopy categories K*(C) let us introduce
the notion of triangulated categories as follows. In the case when Cy = K*(C) for an
abelian category C, the automorphism 7 : Cy —> Cp in the definition below is the
degree shift functor (e)[1] : K#(C) — K*(C).



B.4 Derived categories 339

Definition B.3.6. Let Cy be an additive category and T : Cy — Cp an automorphism
of Co.

(i) A sequence of morphisms X — ¥ — Z — T(X) in Cy is called a triangle
in Cp.

(ii) Consider a family 7 of triangles in Cp, called distinguished triangles. We say
that the pair (Cy, 7)) is a triangulated category if the family 7 of distinguished
triangles satisfies the axioms obtained from (TRO) ~ (TRS5) in Proposition B.3.3
by replacing (e)[1]’s with 7'(e)’s everywhere.

It is clear that Corollary B.3.4 (ii), (iii) and Corollary B.3.5 are true for any
triangulated category (Co, 7). Derived categories that we introduce in the next section
are also triangulated categories. Note also that the morphism ¥ in (TR4) is not unique
in general, which is the source of some difficulties in using triangulated categories.

Definition B.3.7. Let (Cy, 7), (C), T') be two triangulated categories and T : Cyp —
Co, T" : Cy — C the corresponding automorphisms. Then we say that an additive
functor F : Co — C| is a functor of triangulated categories (or a d-functor) if
FoT =T'oF and F sends distinguished triangles in Cy to those in C).

Definition B.3.8. An additive functor ' : Cp —> A from a triangulated cate-
gory (Cp, 7) into an abelian category A is called a cohomological functor if for
any distinguished triangle X — Y — Z — T (X), the associated sequence
F(X) — F(Y) — F(Z)in A is exact.

The assertions (i) and (iii) of Corollary B.3.4 imply that the functors H" :
K*(C) — C and Homg# ) (W', o) : K*(C) — Ab are cohomological func-
tors, respectively. Let F : Cp —> A be a cohomological functor. Then by using the
axiom (TR3) repeatedly, from a distinguished triangle X — Y — Z — T(X)
in Cp we obtain a long exact sequence

. —> F(T7'Z2) — F(X) — F(Y) — F(Z) — F(TX)
— F(TY) — ---

in the abelian category A.

B.4 Derived categories

In this section, we shall construct derived categories D* (C) from homotopy categories
K*(C) by adding morphisms so that quasi-isomorphisms are invertible in D*(C). For
this purpose, we need the general theory of localizations of categories. Now let Cy
be a category and S a family of morphisms in Cp. In what follows, for two functors
Fi, F>: Ay — Ay (e Fun(A;, A2)) we denote by Hom gy 4, 4,) (F1, F2) the set
of natural transformations (i.e., morphisms of functors) from Fj to F5.
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Definition B.4.1. A localization of the category Co by S is a pair ((Cp)s, Q) of a
category (Cp)s and a functor Q : Cy — (Cp)s which satisfies the following universal
properties:

(i) O(s) is an isomorphism for any s € S.
(ii) For any functor F' : Cp — C; such that F(s) is an isomorphism for any s € S,
there exists a functor Fg : (Cp)s — C; and an isomorphism F >~ Fg o Q of

functors: 0
Co —— (Co)s
F // 31:
l v s
C.

(iii) Let G1, Gy : (Co)s — Ci be two functors. Then the natural morphism

Hom gyn(cpys.c)(G1, G2) —> Hompy,c,.c)(G1o Q,Gao Q)
is a bijection.

By the property (iii), Fs in (ii) is unique up to isomorphisms. Moreover, since the
localization ((Cp)s, Q) is characterized by universal properties (if it exists) it is unique
up to equivalences of categories. We call this operation “a localization of categories”
because it is similar to the more familiar localization of (non-commutative) rings. As
we need the so-called “Ore conditions’ for the construction of localizations of rings,
we have to impose some conditions on § to ensure the existence of the localization

((Co)s. Q).

Definition B.4.2. Let Cy be a category and S a family of morphisms. We call the
family S a multiplicative system if it satisfies the following axioms:

M1) idy € S forany X € Ob(Cp).
M2) If f, g € S and their composite g o f exists, then go f € S.
(M3) Any diagram

Y/

|
XL)Y

in Cp with s € § fits into a commutative diagram

x 5,y

L

inCo witht € S. We impose also the condition obtained by reversing all arrows.
(M4) For f, g € Homg, (X, Y) the following two conditions are equivalent:
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(i)3s:Y — Y/,s e Ssuchthatso f =50 g.
()7t : X' — X,t € Ssuchthat for=got.

Let Cp be a category and S a multiplicative system in it. Then we can define a
category (Co)s by

(objects): Ob((Cp)s) = Ob(Cp).
(morphisms): For X, Y € Ob((Cp)s) = Ob(Cp), we set

Hom(gy (X, ¥) = (X <~ W L5 1) |5 5}/ ~

where two diagrams (X S Wi i) Y) (s;1 € §) and (X &2 W, i) Y) (s €8)
are equivalent (~) if and only if they fit into a commutative diagram

2N

withs3 € S. We omit the details here. Let us just explain how we compose morphisms
in the category (Cp)s. Assume that we are given two morphisms

[(X <~ W -1 ¥)] € Homgy)s (X. ¥)
[(v <= W, %5 2)] € Homc,, (Y, 2)

(s, t € S)in (Cp)s. Then by the axiom (M3) of multiplicative systems we can
construct a commutative diagram

/\
/\/\

with u € § and the composite of these two morphisms in (Cp)s is given by

[(x & wy &5 Z)] € Homcy)s (X, Z).

Moreover, there exists a natural functor Q : Co —> (Cp)s defined by
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0(X)=X for X € Ob(Cy),
HomCO(Xv Y) — Hom(Co)S(Q(X)t Q(Y))
W W

f — [x & x Loy
for any X, Y € Ob(Cp).

We can easily check that the pair ((Cp)s, Q) satisfies the conditions of the localization
of Cp by S. Since morphisms in § are invertible in the localized category (Cp)s, a

morphism [(X < w i) Y)]in (Cp)s can be written also as Q(f) o Q(s)~'. If,
moreover, Cy is an additive category, then we can show that (Cp)s is also an additive
category and Q : Cyp — (Cp)s is an additive functor. Since we defined the localization
(Co)s of Co by universal properties, also the following category (Cp)> satisfies the
conditions of the localization:

(objects): Ob((Cp)®) = Ob(Cyp).
(morphisms): For X, Y € Ob((C)%) = Ob(Cp), we set

Hom,c,s (X, ¥) = {(X 5> w <~ v) |se s}/ ~

where we define the equivalence ~ of diagrams similarly. Namely, a morphism in
the localization (Cp) s can be written also as Q(s)*1 o Q(f)fors € S. The following
elementary lemma will be effectively used in the next section.

Lemma B.4.3. Let Cy be a category and S a multiplicative system in it. Let Jo be a
Sull subcategory of Cy and denote by T the family of morphisms in Joy which belong
to S. Assume, moreover, that for any X € Ob(Cy) there exists a morphisms : X — J
in S such that J € Ob(Jp). Then T is a multiplicative system in [y, and the natural
SJunctor (Jo)Tt — (Co)s gives an equivalence of categories.

Now let us return to the original situation and consider a homotopy category
Co = K*(C) # = @, 4+, —, b) of an abelian category C. Denote by S the family of
quasi-isomorphisms in it. Then we can prove that S is a multiplicative system.

Definition B.4.4. We set D*(C) = (K*(C))s and call it a derived category of C. The
canonical functor Q : K*(C) — D*(C) is called the localization functor.

By construction, quasi-isomorphisms are isomorphisms in the derived category
D*(C). Moreover, if we define distinguished triangles in D*(C) to be the triangles
isomorphic to the images of distinguished triangles in K#(C) by Q, then D*(C) is a
triangulated category and Q : K #(C) — D*(C)isafunctor of triangulated categories.
We can also prove that the canonical morphisms C — D(C) and D*(C) — D(C)
(# = +, —, b) are fully faithful. Namely, the categories C and D*(C) (# = +, —, b)
can be identified with full subcategories of D(C). By the results in the previous
section, to a distinguished triangle X° — Y — Z° — X'[1] in the derived
category D¥(C) we can associate a cohomology long exact sequence
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oo —> H Y Z2)— H'X) — HY) — H(Z) — H'(X) — ---

in C. The following lemma is very useful to construct examples of distinguished
triangles in D*(C).

Lemma B.4.5. Any short exact sequence 0 — X' l) v 5% 72 — 0in

C*(C) can be embedded into a distinguished triangle X l) v -2z — X'[1]
in D*(C).

Proof. Consider the short exact sequence
0 — Mgy~ —— My’ ez o0

idx- 0

in C*(C). Since the mapping cone M;q - 18 quasi-isomorphic to 0 by Lemma B.2.3,
we obtain an isomorphism¢ : M "~ Z"in D*(C). Hence there exists a commutative
diagram

X f v a(f) M, B(f) X[1]
id id <PZJV id

. o 71
X f Y 8 Z.ﬁ(f) [ X1]

° -1
in D*(C), which shows that X Sy 8 g P X'[1] is a distinguished

triangle. O

Definition B.4.6. An abelian subcategory C’ of C is called a thick subcategory if
for any exact sequence X; — X» — X3 — X4 — Xs in C with X; € Ob(()
(i=1,2,4,5), X3 belongs toC'.

Proposition B.4.7. Let C' be a thick abelian subcategory of an abelian category C
and Dg, (C) the full subcategory of D* (C) consisting of objects X" such that H"(X") €
Ob(C") for any n € Z. Then Dg, (C) is a triangulated category.

B.5 Derived functors

Let C and C’ be abelian categories and F : C — C’ an additive functor. Let us consider
the problem of constructing a d-functor F: D*(C) - D*(C’) between their derived
categories which is naturally associated to F : C — C’. This problem can be easily
solved if # = + or — and F is an exact functor. Indeed, let Q : K#(C) — D*(C),
Q' : K*(C') — D*(C’) be the localization functors and consider the functor K*F :
K*(C) — K*(C') defined by X' +— F(X’). Then by Lemma B.2.3 the functor K* F
sends quasi-isomorphisms in K*(C) to those in K*(C’). Hence it follows from the
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universa{properties of the localization Q : K #(C) — D*(C) that there exists a unique
functor F : D*(C) — D¥(C’) which makes the following diagram commutative:

Kty —XE ke

Ql lQ’

D*(C) —F» D* ().

In this situation, we call the functor F : D¥(C) — D*(C’) a “localization” of Q’ o
K*F : K*(C) — D*(C’). However, many important additive functors that we
encounter in sheaf theory or homological algebra are not exact. They are only left
exact or right exact. So in such cases the functor Q' o K*F : K*(C) — D*(C")
does not factorize through Q : K*(C) — D*(C) in general. In other words, there
is no localization of the functor Q' o K*F. As a remedy for this problem we will
introduce the following notion of right (or left) localizations. In what follows, let Co
be a general category, S a multiplicative system in Co, F : Cop — C; a functor. As
before we denote by Q : Co — (Cp)s the canonical functor.

Definition B.5.1. A right localization of F is a pair (Fs, t) of a functor Fs : (Co)s —
C1 and a morphism of functors t : F — Fgo Q such that for any functor G : (Cp)s —
C1 the morphism

Hom gy ((cyys.c)(Fs, G) —> Homp,,c,.c)(F, G o Q)

is bijective. Here the morphism above is obtained by the composition of
Hom zy(cy)s,c) (Fs, G) —> Hompy,cy.cp)(Fs o Q, G o Q)

— Hom punicy.cy) (F, G 0 Q).

We say that F is right localizable if it has a right localization.

The notion of left localizations can be defined similarly. Note that by definition
the functor Fy is a representative of the functor

G — HomFun(Co,C])(Fa Go Q).

Therefore, if a right localization (Fs, ) of F exists, it is unique up to isomorphisms.
Let us give a useful criterion for the existence of the right localization of F : Cy — Cj.

Proposition B.5.2. Let Ty be a full subcategory of Cy and denote by T the family of
morphisms in Jy which belong to S. Assume the following conditions:

(i) For any X € Ob(Cy) there exists a morphism s : X — J in S such that
J € Ob(Jp).
(i) F (¢) is an isomorphism for any t € T.
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Then F is localizable.

A very precise proof of this proposition can be found in Kashiwara—Schapira [KS4,
Proposition 7.3.2]. Here we just explain how the functor Fs : (Cp)s — Cj is defined.

First, by Lemma B.4.3 there exists an equivalence of categories © : (Jo)7 = (Cp)s.
Let ¢t : Jo — Cp be the inclusion. Then by the condition (ii) above the functor
F ot : Jy — C factorizes through the localization functor Jy — (Jo)7 and we
obtain a functor Fr : (Jop)r — C;. The functor Fs : (Co)s — C; is defined by
Fs=Frod™ ! -

(Jo)r —— Ci

'

Co)s.-

Now let us return to the original situation and assume that F : C — C’ is a left
exact functor. In this situation, by Proposition B.5.2 we can give a criterion for the
existence of a right localization of the functor Q' o K™F : KT(C) — D™ (C') as
follows.

Definition B.5.3. A right derived functor of F is a pair (RF, t) of a d-functor RF :
D™ (C) — D' (C’) and a morphism of functors 7 : Q" 0o K7 (F) — RF o Q

k+©) 8 g+

QJ v’ Qi
e

p+©) 25 pr)
such that for any functor G : D*(C) — DT (C’) the morphism

Hom g, (p+ ¢y, p+ ey (RF, G) —> Hom gy (k+(cy.p+(cy(Q 0 KT(F), G o Q)

induced by t is an isomorphism. We say that F is right derivable if it admits a right
derived functor.

Similarly, for right exact functors F we can define the notion of left derived
Sfunctors LF : D~ (C) — D~ (C’). By definition, if a right derived functor (R F, ) of
a left exact functor F exists, it is unique up to isomorphisms. Moreover, for an exact
functor F the natural functor DT (C) — D™ (C’) defined simply by X' > F(X)
gives a right derived functor. In other words, any exact functor is right (and left)
derivable.

Definition B.5.4. Let F : C — C’ be an additive functor between abelian categories.
We say thata full additive subcategory 7 of C is F-injective if the following conditions
are satisfied:

(i) For any X € Ob(C), there exists an object I € Ob(J) and an exact sequence
0— X—1.
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() If0 — X' — X — X” — 0is an exact sequence in C and X', X € Ob(J),
then X” € Ob(J).

(iii) For any exact sequence 0 — X’ — X — X” — 01in C such that X', X, X" €
Ob(J), the sequence 0 — F(X') - F(X) — F(X"”) — 0in (’ is also exact.

Similarly we define F-projective subcategories of C by reversing all arrows in the
conditions above.

Example B.5.5.

(1) Assume that the abelian category C has enough injectives. Denote by Z the
full additive subcategory of C consisting of injective objects in C. Then 7 is
F-injective for any additive functor F : C — C’ (use the fact that any exact
sequence 0 - X' — X — X” — 0in C with X’ € Ob(Z) splits).

(ii) Let T be a topological space and set C = Sh(Tp). Let F = I'(Tp, @) : Sh(Tp) —
Ab be the global section functor. Then F = ' (T, e) is left exact and

J = {flabby sheaves on Tp} C Sh(7p)

is an F-injective subcategory of C.

(iii) Let Ty be a topological space and R a sheaf of rings on 7. Denote by Mod(R)
the abelian category of sheaves of left R-modules on 7j and let P be the full
subcategory of Mod(R) consisting of flat R-modules, i.e., objects M € Mod(R)
such that the stalk M, at x is a flat R-module for any x € 7y. For a right R-
module N, consider the functor Fy = N @ (e) : Mod(R) — Sh(Tp). Then
the category P is Fy-projective. For the details see Section C.1.

Assume that for the given left exact functor F : C — (' there exists an F-
injective subcategory 7 of C. Then it is well known that for any X~ € Ob(K*(C))
we can construct a quasi-isomorphism X* — J' into an object J* of K*(J). Such
an object J' is called an F-injective resolution of X'. Moreover, by Lemma B.2.3
we see that the functor Q' o KT F : KT (J) — DV (C’) sends quasi-isomorphisms
in KT (J) to isomorphisms in D*(C’). Therefore, applying Proposition B.5.2 to the
special case when Cy = K (C), C; = D(C'), Jo = K™ (J) and S is the family of
quasi-isomorphisms in K (C), we obtain the fundamental important result.

Theorem B.5.6. Let F : C — C' be a left (resp. right) exact functor and assume
that there exists an F-injective (resp. F-projective) subcategory of C. Then the right
(resp. left) derived functor RF : DY (C) — DV (C') (resp. LF : D=(C) — D~ (C"))
of F exists.

Let F : C — (' be a left exact functor and 7 an F-injective subcategory of C.
Then the right derived functor RF : DT(C) — DT (C’) is constructed as follows.
Denote by S (resp. T) the family of quasi-isomorphisms in K *(C) (resp. K (7).

Then there exist an equivalence of categories ® : KT(J)7 =K+ (C)s = DT(C)
and anatural functor ¥ : K+ (J7)r — DV (C")inducedby KT F : K*(C) — K (C")
such that RF = W o ®~!. Consequently the right derived functor RF : D1 (C) —
DT(C) sends X' € Ob(DT(C)) to F(J') € Ob(DT(C")), where J* € Ob(KT(J))
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is an F-injective resolution of X . If C has enough injectives and denote by Z the
full subcategory of C consisting of injective objects in C, then we have, moreover,
an equivalence of categories KT(Z) ~ DT (C). This follows from the basic fact
that quasi-isomorphisms in K T (Z) are homotopy equivalences. Using this explicit
description of derived functors, we obtain the following useful composition rule.

Proposition B.5.7. Let C, C', C” be abelian categoriesand F : C — C', G : C' — C”
left exact functors. Assume that C (resp. C') has an F-injective (resp. G-injective)
subcategory J (resp. J') and F(X) € Ob(J') for any X € Ob(J). Then J is
(G o F)-injective and

R(GoF)=RGoRF:D"C) — DT (.

Definition B.5.8. Assume that a left exact functor F : C — (' is right derivable.
Then for each n € Z we set

R'F =H"oRF: D" () — C.

Since RF : DT (C) — D™ (C’) sends distinguished triangles to distinguished
triangles, the functors R" F : D+ (C) — C’ defined above are cohomological functors.
Now let us identify C with the full subcategory of DT (C) consisting of complexes
concentrated in degree 0. Then we find that for X € Ob(C), R"F(X) € Ob(C’)
coincides with the nth derived functor of F in the classical literature.

B.6 Bifunctors in derived categories

In this section we introduce some important bifunctors in derived categories which
will be frequently used throughout this book. First, let us explain the bifunctor
RHom(e, e). Let C be an abelian category. For two complexes X', Y™ € Ob(C(C))
in C define a new complex Hom (X", Y") € Ob(C(Ab)) by

Hom"(X',Y") = ]_[ Home (X', Y/)

j—i=n

d"=dfon-cyy s ] HomeX', ¥y — [ Home(X',v7)
j—i=n j—i=n+1
w w

. 1

(fijy —  {gij = (D" gy jodi +d) o fi j_1}.
This is the simple complex associated to the double complex Hom(X ", Y"), which
satisfies the conditions

Kerd" >~ Homcc) (X', Y'[n])
Imd" ! ~ H(X", Y'[n])
H"[Hom (X', Y")] ~ Homg ) (X', Y'[n]).

for any n € Z. We thus defined a bifunctor
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Hom “(e, ) : C(C)°®? x C(C) —> C(Ab),

where (e)°P denotes the opposite category. 1t is easy to check that it induces also a
bifunctor
Hom (e, 0) : K(C)? x K(C) — K (Ab)

in homotopy categories. Similarly we also obtain
Hom (e, ) : K~ (O)® x KT(C) — KT (Ab),

taking boundedness into account. From now on, assume that the category C has
enough injectives and denote by 7 the full subcategory of C consisting of injective
objects. The following lemma is elementary.

Lemma B.6.1. Let X € Ob(K(C)) and I' € Ob(K'(T)). Assume that X' or I’
is quasi-isomorphic to 0. Then the complex Hom (X', Y") € Ob(K(Ab)) is also
quasi-isomorphic to 0.

Let X' € Ob(K (C)) and consider the functor
Hom (X', ) : KT (C) — K (Ab).

Then by Lemmas B.2.3 and B.6.1 and Proposition B.5.2, we see that this functor
induces a functor
R;yHom (X', ) : DT(C) —> D(Ab)

between derived categories. Here we write “Rj;” to indicate that we localize the
bifunctor Hom “(e, ) with respect to the second factor. Since this construction is
functorial with respect to X', we obtain a bifunctor

Ry Hom (e, 0) : K(C)®® x DT(C) —> D(Ab).

By the universal properties of the localization Q : K(C) — D(C), this bifunctor
factorizes through Q and we obtain a bifunctor

R;R;; Hom (e, e) : D(C)® x DT (C) — D(AD).

We set RHom¢ (e, ) = R;R;; Hom (e, @) and call it the functor RHom. Similarly
taking boundedness into account, we also obtain a bifunctor

RHom¢(e, @) : D™ (C)°? x DT(C) — D1 (Ab).
These are bifunctors of triangulated categories. The following proposition is very
useful to construct canonical morphisms in derived categories.

Proposition B.6.2. For Z' € Ob(KT(C)) and I' € Ob(KT(T)) the natural mor-
phism
Q : HOIIIKJr(C)(Z', 1) —> HOIIIDJr(C)(Z', I)

is an isomorphism. In particular for any X', Y" € Ob(DV(C)) and n € 7Z there exists
a natural isomorphism

H"RHom¢ (X', Y") = H" Hom (X', I') = Homp+ ) (X", Y'[n]),

where 1" is an injective resolution of Y.
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In the classical literature we denote H"RHome (X', Y7) by Ext; (X', Y7) and call
it the nth hyperextension group of X and Y.
Next we shall explain the bifunctor e ®* e. Let T be a topological space and R
a sheaf of rings on Ty. Denote by Mod(R) (resp. Mod (R°P)) the abelian category of
sheaves of left (resp. right) R-modules on 7y. Here R°P denotes the opposite ring of
R. Set C; = Mod(R°P) and C; = Mod(R). Then there exists a bifunctor of tensor
products
e @pr e :Cy x Co —> Sh(Tp).
For two complexes X € Ob(C(Cy)) and Y™ € Ob(C(C,)) we define a new complex
(X" ®r Y') € Ob(C(Sh(Tp))) by
X erY) =[] X ®rY/
i+j=n
A" =dlyg v [l xXery! — [] x'@rY/
i+j=n i+j=n+1
W W
i @y} {d- () x yj + (=D ®dy-(y)) ).
This is the simple complex associated to the double complex X" ®% Y . We thus
defined a bifunctor

(e ®r @) : C(C1) x C(C2) —> C(Sh(Tp))
which also induces a bifunctor
(e ®Rr 0)": K(C1) x K(C2) —> K(Sh(Tp))
in homotopy categories. Similarly we also obtain
(e®@r @) : K~ (C1) x K™ (C2) — K™ (Sh(Tp)),

taking boundedness into account. Note that in general the abelian categories C; =
Mod(R°P) and C; = Mod(R) do not have enough projectives (unless the topological
space Tp consists of a point). So we cannot use projective objects in these categories
to derive the above bifunctor. However, it is well known that for any ¥ € Ob(C»)
there exist a flat R-module P € Ob(C;) and an epimorphism P — Y. Therefore, we
can use the full subcategory P of C; consisting of flat R-modules.

Lemma B.6.3. Let X° € Ob(K (Cy)) and P° € Ob(K ~(P)). Assume that X or P’
is quasi-isomorphic to 0. Then the complex (X' @ P’)" € Ob(K (Sh(Ty))) is also
quasi-isomorphic to 0.

By this lemma and previous arguments we obtain a bifunctor
e ®% o : D(Ci) x D™ (C2) —> D(Sh(Tp))
in derived categories. Taking boundedness into account, we also obtain a bifunctor
e ®% e: D7 (C1) x D™ (C2) — D™ (Sh(Tp)).

These are bifunctors of triangulated categories. In the classical literature we denote
H7'(X' ®7L2 Y') by Torrzz(X', Y") and call it the nth hypertorsion group of X and Y.



C

Sheaves and Functors in Derived Categories

In this appendix, assuming only few prerequisites for sheaf theory, we introduce
basic operations of sheaves in derived categories and their main properties with-
out proofs. For the details we refer to Hartshorne [Hal], Iversen [Iv], Kashiwara—
Schapira [KS2], [KS4]. We also give a proof of Kashiwara’s non-characteristic
deformation lemma.

C.1 Sheaves and functors

In this section we quickly recall basic operations in sheaf theory. For a topological
space X we denote by Sh(X) the abelian category of sheaves on X. The abelian group
of sections of F € Sh(X) on an open subset U C X is denoted by F(U) or I'(U, F),
and the subgroup of I' (U, F) consisting of sections with compact supports is denoted
by I'.(U, F). We thus obtain left exact functors I'(U, e), ' (U, e) : Sh(X) — Ab
for each open subset U C X, where Ab denotes the abelian category of abelian
groups. If R is a sheaf of rings on X, we denote by Mod(R) (resp. Mod(R°P)) the
abelian category of sheaves of left (resp. right) R-modules on X. Here R°P denotes
the opposite ring of R. For example, in the case where R is the constant sheaf
Zyx with germs Z the category Mod(R) is Sh(X). For F, G € Sh(X) (resp. M, N
€ Mod(R)) we denote by Hom(F, G) (resp. Homy (M, N)) the abelian group of
sheaf homomorphisms (resp. sheaf homomorphisms commuting with the actions of
R)on X from F to G (resp. from M to N). We thus obtain left exact bifunctors

Hom(e, @) : Sh(X)°P x Sh(X) — Ab,
Homp, (e, @) : Mod(R)°P x Mod(R) —> Ab.

For a subset Z C X, we denote by iz : Z — X the inclusion map.

Definition C.1.1. Let f : X — Y be a morphism of topological spaces, F € Sh(X)
and G € Sh(Y).
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(i) The direct image f.F € Sh(Y) of F by f is defined by f, F(V) = F(f~1(V))
foreach opensubset V' C Y. This gives aleft exact functor f, : Sh(X) — Sh(Y).
If Y is the space pt consisting of one point, the functor f is the global section
functor I'(X, e) : Sh(X) — Ab.

(ii) The proper direct image fiFF € Sh(Y) of F by f is defined by fiF(V) = {s €
F(f_l(V))|f|supps :supps — V  isproper} for each open subset V C Y.
This gives a left exact functor f) : Sh(X) — Sh(Y). If Y is pt, the functor f is
the global section functor with compact supports ¢ (X, @) : Sh(X) — Ab.

(iii) The inverse image f~'G € Sh(X) of G by f is the sheaf associated to the
presheaf (f~'G)’ defined by (f~'G)'(U) = 11_11)1 G (V) for each open subset
U C X, where V ranges through the family of open subsets of ¥ containing
f(U). Since we have an isomorphism (f_lG)x >~ Gy forany x € X, we
obtain an exact functor f_l : Sh(Y) — Sh(X).

When we treat proper direct images f; in this book, all topological spaces are
assumed to be locally compact and Hausdorff. For two morphisms f : X — Y,
g : Y — Z of topological spaces, we have obvious relations g o fi = (g 0 f)«,
gofi=(gof)and flog™! = (gof)~'. For F € Sh(X) and asubset Z C X the
inverse image iglF € Sh(Z) of F by the inclusion map iz : Z — X is sometimes
denoted by F|z. If Z is a locally closed subset of X (i.e., a subset of X which is
written as an intersection of an open subset and a closed subset), then it is well known
that the functor (i), : Sh(Z) — Sh(X) is exact.

Proposition C.1.2. Let

X — Y

be a cartesian square of topological spaces, i.e., X' is homeomorphic to the fiber
product X xy Y'. Then there exists an isomorphism of functors g~ o fi > f/og'~!:
Sh(X) — Sh(Y").

Definition C.1.3. Let X be a topological space, Z C X a locally closed subset and
F € Sh(X).

(i)Set Fz = (iz)(iz)~'F € Sh(X). Since we have (Fz), ~ F, (resp. (Fz)x ~0)
for any x € Z (resp. x € X \ Z), we obtain an exact functor (e)z : Sh(X) —
Sh(X).

(ii) Take an open subset W of X containing Z as a closed subset of W. Since the
abelian group Ker[ F(W) — F(W '\ Z)] does not depend on the choice of W, we
denote it by 'z (X, F). This gives a left exact functor 'z (X, e) : Sh(X) — Ab.

(iii) The subsheaf I'z(F) of F is defined by I'z(F)(U) = I'zny (U, F|y) for each
opensubset U C X. This gives a left exact functor I'z(e) : Sh(X) — Sh(X). By
construction we have an isomorphism of functors I'(X, @) o I'z(e) = I'z(X, e).
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Note that if U is an open subset of X and j = iy : U — X, then there exists an
isomorphism of functors j, o j~! ~ 'y (e).

Lemma C.1.4. Let X be a topological space, Z a locally closed subset of X and Z'
a closed subset of Z. Also let Zy, Z> (resp. Uy, Ua) be closed (resp. open) subsets of
X and F € Sh(X).

(i) There exists a natural exact sequence

0— FZ\Z’—> Fz—> sz—>0 (Cll)
in Sh(X).
(1) There exist natural exact sequences
0—> FZ/(F) — FZ(F) — FZ\Z/(F), (C12)
0— FZ]ﬂZQ(F) — le(F) 52 FZz(F) — FZ]UZZ(F)7 (C13)
0 — 'y, (F) — Ty, (F) & 'y, (F) — Ty,nu, (F). (C.1.4)
in Sh(X).

Recall that a sheaf F' € Sh(X) on X is called flabby if the restriction morphism
F(X) — F(U) is surjective for any open subset U C X.

Lemma C.1.5.

(i) Let Z be a locally closed subset of X and F € Sh(X) a flabby sheaf. Then the
sheaf 'z (F) is flabby. Moreover, for any morphism f : X — Y of topological
spaces the direct image fi F is flabby.

(ii)Let 0 - F' — F — F” — 0 be an exact sequence in Sh(X) and Z a
locally closed subset of X. Assume that F' is flabby. Then the sequences 0 —
IFz(X,F) > Tz(X,F) > Tz(X,F") - 0and 0 — T'z(F') - T'z(F) —
I'z(F") — 0 are exact.

(iii) Let 0 - F' — F — F” — 0 be an exact sequence in Sh(X) and assume that
F’ and F are flabby. Then F" is also flabby.

(iv) In the situation of Lemma C.1.4, assume, moreover, that F is flabby. Then there
are natural exact sequences

0—Tz(F) — T'z(F) — I'z\z(F) — 0, (C.1.5)
0— Izinz,(F) — Iz, (F) ® I z,(F) — T'z,uz,(F) — 0, (C.1.6)
0 — I'y,uy,(F) — Ty (F) ® Ty, (F) — Ty,nu,(F) — 0. (C.1.7)

in Sh(X).

Definition C.1.6. Let X be a topological space and R a sheaf of rings on X.

(i) For M, N € Mod(R) the sheaf Homyi (M, N) € Sh(X) of R-linear homomor-
phisms from M to N is defined by Homy (M, N)(U) = Homp,,(M|y, N|y)
for each open subset U C X. This gives a left exact bifunctor Homp (e, e) :
Mod(R)°? xMod(R) — Sh(X). Bydefinition we have I'(X; Homi (M, N)) =
Homp (M, N).
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(ii) For M € Mod(R°P), N € Mod(R) the tensor product M @z N € Sh(X)
of M and N is the sheaf associated to the presheaf (M ®x N)' defined by
(M @r NY((U) = MU) ®Rr() N(U) for each open subset U C X. Since by
definition we have an isomorphism (M ® g N)x >~ M, @k, N, forany x € X,
we obtain a right exact bifunctor ¢ @ e : Mod(R°P) x Mod(R) — Sh(X).

Note that for any M € Mod(R) the sheaf Homy (R, M) is a left R-module
by the right multiplication of R on R itself, and there exists an isomorphism
Homp (R, M) >~ M of left R-modules. Now recall that M € Mod(R) is an
injective (resp. a projective) object of Mod(R) if the functor Homy (e, M) (resp.
Homp (M, e)) is exact.

Proposition C.1.7. Let R be a sheaf of rings on X. Then the abelian category
Mod(R) has enough injectives.

An injective object in Mod(R) is sometimes called an injective sheaf or an in-
jective R-module.

Definition C.1.8. We say that M € Mod(R) is flat (or a flat R-module) if the functor
e ®R M : Mod(R°P) — Sh(X) is exact.

By the definition of tensor products, M € Mod(R) is flat if and only if the stalk
M is a flat Ry-module for any x € X. Although in general the category Mod(R)
does not have enough projectives (unless X is the space pt consisting of one point),
we have the following useful result.

Proposition C.1.9. Let R be a sheaf of rings on X. Then for any M € Mod(R) there
exist a flat R-module P and an epimorphism P — M.

Lemma C.1.10. Let 0 — M’ — M — M" — 0 be an exact sequence in Mod(R).

(1) Assume that M’ and M are injective. Then M" is also injective.
(i1) Assume that M and M" are flat. Then M’ is also flat.

Proposition C.1.11. Let f : Y — X be a morphism of topological spaces and R a
sheaf of rings on X.

(i) Let M| € Mod(R°P) and M, € Mod(R). Then there exists an isomorphism
My @i fTIMy > 7N (M) @R M) (C.1.8)

in Sh(Y).
(ii) Let M € Mod(R) and N € Mod(f~'R). Then there exists an isomorphism

Homp (M, fuN) =~ fiHom ;1 (f ' M, N) (C.1.9)

in Sh(X), where fN is a left R-module by the natural ring homomorphism
R — f*f_lR. In particular we have an isomorphism

Homp (M, f,N) ~ Hom ;i (f ' M, N). (C.1.10)

Namely, the functor f is a right adjoint of f~.
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(iii) Let M € Mod(R°P) and N € Mod(f~'R). Then there exists a natural mor-
phism
M @R iN — fi(f'M®1r N) (C.1.11)

in Sh(X). Moreover, this morphism is an isomorphism if M is a flat R°P-module.

Corollary C.1.12. Let f : Y — X be a morphism of topological spaces, R a sheaf
of rings on X and N € Mod(f~'R) an injective f~"R-module. Then the direct
image fyN is an injective R-module.

Lemma C.1.13. Let Z be a locally closed subset of X, R a sheaf of rings on X and
M, N € Mod(R). Then we have natural isomorphisms

I'zHomp (M, N) ~ Homp(M,TzN) ~ Homg (Mz, N). (C.1.12)

Corollary C.1.14. Let R be a sheaf of rings on X, Z a locally closed subset of X
and M, N € Mod(R). Assume that N is an injective R-module. Then the sheaf
Homp (M, N) (resp. U'zN) is flabby (resp. an injective R-module). In particular,
any injective R-module is flabby.

C.2 Functors in derived categories of sheaves

Applying the results in Appendix B to functors of operations of sheaves, we can
introduce various functors in derived categories of sheaves as follows.

Let X be a topological space and R a sheaf of rings on X. Since the cate-
gory Mod(R) is abelian, we obtain a derived category D(Mod(R)) of complexes
in Mod(R) and its full subcategories D*(Mod(R)) (# = +, —, b). In this book
for # = @, +, —, b we sometimes denote D* (Mod(R)) by D¥(R) for the sake of
simplicity. For example, we set DV (Zyx) = D7 (Sh(X)). Now let Z be a locally
closed subset of X, and f : ¥ — X a morphism of topological spaces. Consider the
following left exact functors:

I'(X,e),[(X,0), Tz(X,e): Mod(R) —> Ab,
I'z(e) : Mod(R) — Mod(R), (C.2.1)
fer fi : Mod(f~'R) — Mod(R).

Since the categories Mod(R) and Mod(f~'R) have enough injectives we obtain
their derived functors

RI(X, o), RI.(X,e),R['z(X, o) : DT(R) — D1 (Ab),
RIz(e) : DY (R) — DT(R), (C.2.2)
Rf..Rf, : DY (f~'R) — D*(R).

For example, for M° € DT (R) the object RT'(X, F') € DT (Ab) is calculated
as follows. First take a quasi-isomorphism M' =" in CT(R) such that I* is
an injective R-module for any k € Z. Then we have RI['(X, F") ~ I'(X, ).
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Since by Lemma C.1.5 the full subcategory J of Mod(R) consisting of flabby
sheaves is I'(X, e)-injective in the sense of Definition B.5.4, we can also take

a quasi-isomorphism M’ = J " in C*(R) such that J* € J for any k € Z and
show that RI'(X, F') >~ I'(X, J'). Let us apply Proposition B.5.7 to the identity
I'z(X,e) = '(X,e)0z(e) : Mod(R) — Ab. Then by the fact that the func-
tor I'z(e) ~ Hompr(Rz, e) sends injective sheaves to injective sheaves (Corol-
lary C.1.14), we obtain an isomorphism

RI(X,RIz(M")) ~RI'z(X, M") (C23)

in DT (Ab) for any M° € DT (R). Similarly by Corollary C.1.12 we obtain an
isomorphism

RI(X, Rf,(N)) ~RI(Y, N') (C.2.4)

in DY (Ab) forany N' € D*(f~'"R) (also the similar formula R['.(X, Rf\(N")) ~
RI.(Y, N°) can be proved). For M° € DT(R) and i € Z we sometimes denote
H'RI'(X, M), HRI'z2(X, M"), H'RTz(M") simply by H'(X, M"), H,(X, M"),
Hé (M), respectively. Now let us consider the functors

£~ Mod(R) — Mod(f~'R),
(8)7 : Mod(R) —> Mod(R), (C.2.5)
(iz)1: Sh(Z) — Sh(X).

Since these functors are exact, they extend naturally to the following functors in
derived categories:

71 D*R) — D*(f7'R),
(e)z : D¥(R) — D*(R), (C.2.6)
(iz)1: D*(Sh(Z)) — D*(Sh(X))

for# =0, +, —, b. Let Z’ be a closed subset of Z and Z;, Z (resp. Uy, U;) closed
(resp. open) subsets of X. Then by Lemma C.1.5 and LemmaB.4.5, for M" € DT (R)
we obtain the following distinguished triangles in D (R):

Mpy — My — My -5, (C2.7)
RT/(M') —> RTz(M) —> RT 77 (M") 25 (C2.8)

. . . o+l
RI'z,nz,(M") — RI'z, (M) @ Rl'z,(M") —> RI'z,uz,(M") —>, (C.2.9)

. . . o T+l
RI'y,uu,(M) — RI'y,(M") ® RT'y,(M") — RI'y,np,(M') — . (C.2.10)

The following result is also well known.
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Proposition C.2.1. Let

X —— Y

L
!
X —— Y
be a cartesian square of topological spaces. Then there exists an isomorphism of
functors g™' o Rfi > Rf/ o g'~' : DT(Sh(X)) = DT (Sh(Y")).

For the proof see [KS2, Proposition 2.6.7]. From now on, let us introduce bifunc-
tors in derived categories of sheaves. Let R be a sheaf of rings on a topological space
X. Then by applying the construction in Section B.6 to C = Mod(R) we obtain a
bifunctor

RHomgp (e, @) : D™ (R)°® x DT(R) — DT (Ab). (C.2.11)
Similarly we obtain a bifunctor
RHomp (e, ) : D™ (R)® x DT(R) — D™ (Sh(X)). (C.2.12)

For M" € D™(R) and N° € DT (R) the objects RHomg (M', N) € DT (Ab) and
RHomp(M', N) € DT (Sh(X)) are more explicitly calculated as follows. Take a
quasi-isomorphism N =" such that 7* is an injective R-module for any k € Z
and consider the simple complex Hom, (M", I') € CT(ADb) (resp. Homzp (M', I') €
CT(Sh(X))) associated to the double complex Homp (M", I) (resp. Homp (M", I'))
as in Section B.6. Then we have isomorphisms RHomz (M", N') >~ Homy, (M", I')
and RHomR(M', N') ~ Homzn(M',I'). For M € D~(R), N' € D"(R) and
i € 7 we sometimes denote H' RHomp (M", N*), H' RHomy (M', N°) simply by
Extr(M',N°), Extr(M’, N°), respectively. Since the full subcategory of Sh(X)
consisting of flabby sheaves is I'(X, e)-injective, from Corollary C.1.14 and the
obvious identity I' (X, HomR (e, ®)) = Homp, (e, @), we obtain an isomorphism

RI(X, RHomp(M', N')) ~ RHomp (M', N') (C.2.13)

in D*(Ab) forany M" € D™ (R) and N" € DT (R). Let us apply the same argument
to the identities in Lemma C.1.13. Then by Lemma C.1.5 and Corollary C.1.14 we
obtain the following.

Proposition C.2.2. Let Z be a locally closed subset of X, R a sheaf of rings on X,
M € D™ (R)and N € DY (R). Then we have isomorphisms

RTzRHomir(M', N) ~ RHomir(M',RT'zN") >~ RHompr(Mz', N'). (C.2.14)
Similarly, from Proposition C.1.11 (ii) we obtain the following.

Proposition C.2.3 (Adjunction formula). Ler f : Y — X be a morphism of
topological spaces, R a sheaf of ringson X. Let M" € D™ (R)and N' € DT (f~'R).
Then there exists an isomorphism
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RHomrp(M', Rf N') =~ Rf*RHoquR(f_lM', N°) (C.2.15)
in DV(Sh(X)). Moreover, we have an isomorphism
RHomp (M, RfeN") 2 RHom ;-1 (f ~'M", N) (C.2.16)
in DT (Ab).

By Proposition B.6.2 and the same argument as above, we also obtain the follow-
ing.

Proposition C.2.4. In the situation of Proposition C.2.3, for any L' € DT (R) and
N' € DT (f~'R) there exists an isomorphism

Hom p+ () (L', RfN") ~ Hom s (p-i) (f 7' L', N°). (C.2.17)

Namely, the functor f~' : DY(R) — DY(f~'R) is a left adjoint of Rf, :
DY (f~'R) - DT(R).

Next we shall introduce the derived functor of the bifunctor of tensor products.
Let X be a topological space and R a sheaf of rings on X. Then by the results in
Section B.6, there exists a right exact bifunctor of tensor products

o @7 o : Mod(RP) x Mod(R) —> Sh(X), (C.2.18)
and its derived functor
o ®% e: D (R®P) x D™ (R) — D~ (Sh(X)). (C.2.19)

From now on, let us assume, moreover, that R has finite weak global dimension,
i.e., there exists an integer d > 0 such that the weak global dimension of the ring
R is less than or equal to d for any x € X. Then for any M~ € C*(Mod(R))
(resp. CP(Mod(R))) we can construct a quasi-isomorphism P° — M’ for P €
C*(Mod(R)) (resp. C®(Mod(R))) such that P* is a flat R-module for any k € Z.
Hence we obtain also bifunctors

e ®% o : D¥(RP) x D*(R) — D*(Sh(X)) (C.2.20)
for # = 4+, b. By definition, we immediately obtain the following.

Proposition C.2.5. Let f : Y — X be a morphism of topological spaces and R a
sheaf of rings on X. Let M" € D™ (R°P) and N € D™ (R). Then there exists an
isomorphism

v ®§.,1R FOIN = i ek N (C.2.21)

in D~ (Sh(Y)).

The following result is also well known.
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Proposition C.2.6 (Projection formula). Let f : Y — X be a morphism of topo-
logical spaces and R a sheaf of rings on X. Assume that ‘R has finite weak global
dimension. Let M" € DT (R°P) and N* € DV (f~'R). Then there exists an isomor-
phism

M ®% RAN =>RA(f'M ®§.,1R N (C.2.22)
in D*(Sh(X)).

For the proof see [KS2, Proposition 2.6.6].

Finally, let us explain the Poincaré—Verdier duality. Now let f : X — Y be a
continuous map of locally compact and Hausdorff topological spaces. Let A be a
commutative ring with finite global dimension, e.g., a field k. In what follows, we
always assume the following condition for f.

Definition C.2.7. We say that the functor f; : Sh(X) — Sh(Y) has finite cohomo-
logical dimension if there exists an integer d > 0 such that for any sheaf F' on X we
have H*Rfi(F) = 0 for any k > d.

Theorem C.2.8 (Poincaré-Verdier duality theorem). In the situation as above,
there exists a functor of triangulated categories f' : DY (Ay) — DT (Ax) such
that for any M" € D?(Ax) and N° € DT (Ay) we have isomorphisms

Rf RHoma,(M', f'N') =~ RHom, (Rf M', N°), (C.2.23)
RHomu, (M', f'N*) >~ RHomgu, (Rf\M", N°) (C.2.24)

in DY (Ay) and D (Mod(A)), respectively.

We call the functor f' : DT (Ay) — D1 (Ayx) the mwisted inverse image functor
by f. Since the construction of this functor f'(e) is a little bit complicated, we do
not explain it here. For the details see Kashiwara—Schapira [KS2, Chapter III]. Let
us give basic properties of twisted inverse images. First, for a morphism g : ¥ — Z
of topological spaces satisfying the same assumption as f, we have an isomorphism
(go /) ~ f'og' of functors.

Theorem C.2.9. Let f : X — Y be as above. Then for any M" € DT (Ax) and
N' e DT (Ay) we have an isomorphism

Homp+(a,) (M, f'N°) > Homp+ s,y (Rf\ M, N°).

Namely, the functor f': DY (Ay) — DY (Ay) isaright adjoint of Rfy : DT (Ayx) —
D¥(Ay).

Proposition C.2.10. Let f : X — Y be as above. Then for any N € DY(Ay) and
N>" € DY (Ay) we have an isomorphism

f'RHoma, (N1", N2') = RHoma, (f 'Ny', f'N2).
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Proposition C.2.11. Assume that X is a locally closed subset of Y and let f =iy :
X —— Y be the embedding. Then we have an isomorphism

FUNY = FTIRT 0 (N) = RT £ (N) | x (C.2.25)
in DY (Ax) forany N' € DT (Ay).

Proposition C.2.12. Assume that X and Y are real C'-manifolds and f : X — Y is
a C'-submersion. Setd = dim X — dim Y. Then

() H/ (f'(Ay)) = 0 forany j # —d and H=%(f'(Ay)) € Mod(Ax) is a locally
constant sheaf of rank one over Ay.
(ii) For any N € DV (Ay) there exists an isomorphism

Ay &%, fTI(N) = FI(N). (C.2.26)

Definition C.2.13. In the situation of Proposition C.2.12 we set oryx;y =
H_d(f!(Ay)) € Mod(Ay) and call it the relative orientation sheaf of f : X — Y.
If, moreover, Y is the space {pt} consisting of one point, we set ory = orx;y €
Mod(Ay) and call it the orientation sheaf of X.

In the situation of Proposition C.2.12 above we thus have an isomorphism
f!(Ay) >~ ory/y[dim X — dim Y] and for any N* € D1 (Ay) there exists an iso-
morphism

FHUNY) ~orx)y ®ay £ (N)[dim X — dim Y. (C.2.27)

Note that in the above isomorphism we wrote ® 4, instead of ®ﬁx because ory,y is
flat over Ay.

Definition C.2.14. Let f : X — Y be as above. Assume, moreover, that Y is the
space {pt} consisting of one point and the morphism f is X — {pt}. Then we set
wx = f!(A{pt}) € DT (Ay) and call it the dualizing complex of X. We sometimes
denote wy " simply by wy.

To define the dualizing complex wyx ™ € DT (Ax) of X, we assumed that the
functor fi : Sh(X) — Sh({pt}) = Ab for f : X — {pt} has finite cohomological
dimension. This assumption is satisfied if X is a topological manifold or a real analytic
space. In what follows we assume that all topological spaces that we treat satisfy this
assumption.

Definition C.2.15. For M" € D?(Ax) we set
Dx(M') = RHomay (M", wx’) € D (Ax)
and call it the Verdier dual of M.

Since for the morphism f : X — Y of topological spaces we have f'wy’ ~ wx’,
from Proposition C.2.10 we obtain an isomorphism
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(f oDy)(N) =~ Dxo fTH(N) (C.2.28)
forany N € DY (Ay). Similarly, from Theorem C.2.8 we obtain an isomorphism
(Rf,oDx)(M") =~ (Dy o Rf)(M") (C.2.29)
forany M" € DY(Ay).

Example C.2.16. In the situation as above, assume, moreover, that A is a field
k, X is an orientable C'-manifold of dimension n, and ¥ = {pt}. In this case
there exist isomorphisms wyx =~ orx[n] ~ kx[n]. Let M € Db(kx) and set
Dy (M) = RHoka (M, kx). Then by the isomorphism (C.2.29) we obtain an
isomorphism H"~'(X, Dy (M")) ~ [H/(X, M")]* for any i € Z, where we set
H!(X,e) = H'RI'¢(X, o). In the very special case where M" = kx we thus ob-
tain the famous Poincaré duality theorem: H" (X, kx) ~ [H!(X, kx)]*.

C.3 Non-characteristic deformation lemma

In this section, we prove the non-characteristic deformation lemma (due to Kashi-
wara), which plays a powerful role in deriving results on global cohomology groups
of complexes of sheaves from their local properties. First, we introduce some basic
results on projective systems of abelian groups. Recall that a pair M = (M,,, pp.m)
of a family of abelian groups M, (n € N) and that of group homomorphisms
Pn.m : My — M, (m > n) is called a projective system of abelian groups (indexed
by N) if it satisfies the conditions: p, , = idy, for any n € Z and p,,m © P, i = Pn.1
foranyn <m <[. f M = (M,, pn.») is a projective system of abelian groups,
we denote its projective limit by l(ln M for short. We define morphisms of projective
systems of abelian groups in an obvious way. Then the category of projective systems
of abelian groups is abelian. However, the functor lim(x) from this category to that
of abelian groups is not exact. It is only left exact. As a remedy for this problem we
introduce the following notion.

Definition C.3.1. Let M = (M,,, pn.m) be a projective system of abelian groups. We
say that M satisfies the Mittag-Leffler condition (or M-L condition) if for any n € N
decreasing subgroups 0, (M;;,) (m > n) of M, is stationary.

Let us state basic results on projective systems satisfying the M-L condition. Since
the proofs of the following lemmas are straightforward, we leave them to the reader.

Lemma C.3.2. Let
0O—L—M—N—0

be an exact sequence of projective systems of abelian groups.

(i) Assume L and N satisfy the M-L condition. Then M satisfies the M-L condition.
(1) Assume M satisfies the M-L condition. Then N satisfies the M-L condition.
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Lemma C.3.3. Let
0O—L—M-—N—0

be an exact sequence of projective systems of abelian groups. Assume that L satisfies
the M-L condition. Then the sequence

00— limL — limM — limN — 0
<~ <~ <~
is exact.

Now let X be a topological space and F* € D?(Zy). Namely, F’ is a bounded
complex of sheaves of abelian groups on X.

Proposition C.3.4. Let {U,}, cn be an increasing sequence of open subsets of X and
set U = U,eNnU,. Then

(i) The natural morphism ¢; - H'(U, F') — lim H (U, F’) is surjective for any
i €. )

(ii) Assume that for an integer i € 7. the projective system {H' =\ (U,, F')},eN sat-
isfies the M-L condition. Then ¢; : H'(U, F') — lim H(U,, F’) is bijective.

n

Proof. We may assume that each term F ! of F' is a flabby sheaf. Then we have
H'(U,F)=H'(F'(U))=H' (l(ir_n F'(Uy)). Hence the morphism ¢; is
n

H' (im F'(Uy)) — 1im H' (F"(Uy)).

Note that for any i € Z the pr_ojective system {F i(Un)}neN satis_ﬁes the M-L
cqndition by the ﬂabbingss of F'. Set Z, = Ker[F'(U,) — FItLU,)] and
B, = Im[FI~Y(U,) — F(U,)]. Then we have exact sequences

0— Z! — Fi(U,) — B! — 0 (C.3.1)

and by Lemma C.3.2 (ii) the projective systems {B,i}neN satisfy the M-L condition.
Therefore, applying Lemma C.3.3 to the exact sequences

0— Bl — Z\ — H'(Uy, F) — 0 (C32)

we get an exact sequence

0 — lim B: — lim Z! — lim H' (U, F") —> 0. (C.3.3)
<~ <~ <~
n n n

Since the functor l(igl(*) is left exact, we also have isomorphisms

lim 7l ~ Ker[lim Fi(U,) — lim Fi*Y(U,)] = Ker[F/(U) — FT(U)).

n n n

Now let us consider the following commutative diagram with exact rows:
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Fi-Y(U) —— Ker[FI(U) » FI*Y(U)] —— H!(U;F) —— 0

| J L

0 —— limB, —— lim Z! ——— limH (U, F) —— 0
<— <— <—
n n n

Then we see that ¢; is surjective. The assertion (i) was proved. Let us prove (ii).
Assume that the projective system {H’ “1(U,, F)},en satisfies the M-L condition.
Then applying Lemma C.3.2 (i) to the exact sequence (C.3.2) we see that the projective
system {fol Inen satisfies the M-L condition. Hence by Lemma C.3.3 and (C.3.1)
we get an exact sequence

0— limZz ' — FI~Y(U) — lim B! — 0,
e e

which shows that the left vertical arrow in the above diagram is surjective. Hence ¢;
is bijective. This completes the proof. O

We also require the following.

Lemma C.3.5. Let {M;, p; s} be a projective system of abelian groups indexed by R.
Assume that for any t € R the natural morphisms

o : My —> lim M,
&
s<t
By lim Mg — M,
—
s>t

are injective (resp. surjective). Then for any pairt; < to the morphism py, 1, : My, —
M;, is injective (resp. surjective).

Proof. Since the proof of injectivity is easy, we only prove surjectivity. Let?; < #; and
m1 € My, . Denote by § the set of all pairs (1, m) of 11 <t < tp andm € M, satisfying
pr,,1(m) = my. Let us order this set S in the following way: (r,m) < (', m’) <
t <t and p,(m’) = m. Then by the surjectivity of o, for any s we can easily
prove that S is an inductively ordered set. Therefore, by Zorn's lemma there exists a
maximal element (¢, m) of S. If t = 1, then p;, 1, (m) = my. If t < 1, then by the
surjectivity of B;’s for any s, there exist 3 with 1 < t3 < 1, and m3 € M, such that
Prt,1;(m3) = m. This contradicts the maximality of the element (7, m). O

Now let us introduce the non-characteristic deformation lemma (due to Kashi-
wara). This result is very useful to derive global results from the local properties
of F* € D’(Cx). Here we introduce only its weak form, which is enough for the
applications in this book (see also [KS2, Proposition 2.7.2]).

Theorem C.3.6 (Non-characteristic deformation lemma). Let X be a C°°-mani-
fold, {Q};cr a family of relatively compact open subsets of X, and F* € D”(Cy).
Assume the following conditions:
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(i) For any pair s < t of real numbers, 25 C ;.
(ii) Foranyt e R, @, = |J,_, Qs.
(iii) For "t € R, (,-, (2 \ Q) = 9 and for "x € 3R, we have

[RFX\Q[ (F)]x ~ 0.

Then we have an isomorphism

RT (U Q. F') ~SRI(Q, F)

seR

foranyt € R.

Proof. We prove the theorem by using Lemma C.3.5. First let us prove that for any
t €e Rand i € Z the canonical morphism

lim H (2, F) —> H'(Q, F)
s>t
is an isomorphism. Since we have RI'x\q, (F)|3q, = 0 by the assumption (iii), we
obtain o
RT'(2;, RIx\q, (F')) ~ RI'(082;, RT'x\q, (F)) ~ 0.

Then by the distinguished triangle

Rx\q, (F) — F' —> RTg, (F) -5
we get an isomorphism
RI(Q;, F) ~ RI(Q, F).

Taking the cohomology groups of both sides we finally obtain the desired isomor-
phisms ' .
h_r)nH’(Qs,F'):H’(Q,,F'). (C3.4)

s>t
Now consider the following assertions:
(A) : lim HY(Q, F)) =~ H' (Q, F)
s<t
fori € Z and t € R. Assume that for an integer j the assertion (A)f is proved for
any i < j and ¢ € R. Then by Lemma C.3.5 we get an isomorphism H'(Q,, F’) ~
H' (2, F') for any i < Jj and any pair s > t. This implies that for each 7 € R
the projective system {H/~! (€2,_1, F)}yen satisfies the M-L condition. Hence by
Proposition C.3.4 the assertion (A)’j isprovedforany ¢ € R. Repeating this argument,

we can finally prove (A)! foralli € Zandall r € R. Together with the isomorphisms
(C.3.4), we obtain by Lemma C.3.5 an isomorphism RI' (2, F") >~ RI'(€2,, F’) for
any pair s > t. This completes the proof. O



D

Filtered Rings

D.1 Good filtration

Let A be a ring. Assume that we are given a family F = {F;A},;cz of additive
subgroups of A satisfying

(a) FFA=0forl <O,

b) 1 € FyA,

(¢) F1A C Fi41A,

(d) (FiA)(FnA) C FiimA,
€ A=,y FA.

Then we call (A, F) a filtered ring. For a filtered ring (A, F') we set

g A=Pef A, gl A=FA/F_ A
IeZ

The canonical map FjA — grlF A is denoted by o;. The additive group grf A is
endowed with a structure of a ring by

01(a)om(b) = o14m(ab).

We call the ring gr’” A the associated graded ring.
Let (A, F) be a filtered ring. Let M be a (left) A-module M, and assume that we
are given a family F = {F, M} ,c7 of additive subgroups of M satisfying

(@) FyM =0for p <0,
(b) FyM C Fp 1M,

(©) (F1A)(FpM) C FipM,
() M =,ez FpM.

Then F is called a filtration of M and (M, F) is called a filtered (Ieft) A-module. For
a filtered A-module (M, F) we set
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g M=PehM.  ghlM=F,M/F, M.
PEZL

Denote the canonical map F,M — grg M by t,. The additive group erf M is
endowed with a structure of a gr” A-module by

o1(@)Ty(m) = T14p(am).

We call the gr/ A-module gr” M the associated graded module.

We can also define the notion of a filtration of a right A-module and the associated
graded module of a right filtered A-module. We will only deal with left A-modules
in the following; however, parallel facts also hold for right modules.

Proposition D.1.1. Let M be an A-module.

(i) Let F be afiltration of M such that gr¥ M is finitely generated over gr* A. Then
there exist finitely many integers py (k = 1,...,r) and my € Fp, M such that

forany p we have F\,M = ZPZPk (Fp—p A)my. In particular, the A-module M
is generated by finitely many elements my, . .., mg.
(1) Let M an A-module generated by finitely many elements my, ..., my. For py €

Zik=1,...,r)set FM = szpk(Fp,pkA)mk. Then F is a filtration of M
such that gr¥ M is a finitely generated gt A-module.

Proof. (i) Wetakeintegers py (k =1, ...,r)andmy € Fp M sothat{t,, (mi)}1<k<r
generates the gr” A-module gr’ M. Then we can show FpM = szpk (Fp—p A)my,
by induction on p. (ii) is obvious. O

Corollary D.1.2. The following conditions on an A-module M are equivalent:

(i) M is a finitely generated A-module,
(ii) there exists a filtration F of M such that gt¥ M is a finitely generated gr® A-
module.

Let (M, F)beafiltered A-module. If gr? M is a finitely generated gr’ A-module,
then F is called a good filtration of M, and (M, F) is called a good filtered A-module.

Proposition D.1.3. Let M be a finitely generated A-module and let F', G be filtrations
of M. If F is good, then there exist an integers a such that for any p € 7. we have

FyM C GpraM.
In particular, if G is also good, then for a > 0 we have
Fp-aM C GyM C Fpi oM (Yp).
Proof. By Proposition D.1.1 we can take elements mj (1 < k < r) of M and integers

pr (1 < k < r) such that F,M = szpk(Fp_pkA)mk. Take g; € Z such that
my € Gy M and denote the maximal value of gx — py by a. Then we have
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FoM = )" (Fp_p Ami C Y (Fp_p A)Gy M

P=DPk P=Pk
C > Gprige-pM C GpiaM.
P=Pk
The proof is complete. O

Let (M, F) be a filtered A-module, and let
O—-L—->M-—-N-=0

be an exact sequence of A-modules. Then we have the induced filtrations of L and
N defined by

FpL=F,MNL, FpN =Im(F,M — N),
for which we have the exact sequence
0> gL - gfM—gfN-oO

Hence, if (M, F) is a good filtered A-module, then so is (N, F'). If, moreover, ng A
is a left noetherian ring, then (L, F') is also a good filtered A-module.

Proposition D.1.4. Let (A, F) be afilteredring. Ifgr” Aisaleft (or right) noetherian
ring, then so is A.

Proof. In order to show that A is a left noetherian ring it is sufficient to show that
any left ideal / of A is finitely generated. Define a filtration F of a left A-module
I by Fyl = 1IN Fy,A. Then grf I is a left ideal of gr’” A. Since gr” A is a left
noetherian ring, grf I is finitely generated over gr’ A. Hence I is finitely generated
by Corollary D.1.2. The statement for right noetherian rings is proved similarly. O

D.2 Global dimensions

Let (M, F), (N, F) befiltered A-modules. An A-homomorphism f : M — N such
that f(F,M) C F,N forany p is called a filtered A-homomorphism. In this case we
write f : (M, F) — (N, F). A filtered A-homomorphism f : (M, F) — (N, F)
induces a homomorphism gr f : grf M — grf N of grf A-modules. A filtered
A-homomorphism f : (M, F) — (N, F) is called strict if it satisfies f(F,M) =
Im f N F,N. The following fact is easily proved.

Lemma D.2.1. Let f : (L, F) - (M, F), g: (M, F) — (N, F) be strict filtered
A-homomorphisms such that L — M — N is exact. Then gr¥ L — grf M —
arf’ N is exact.

Let W be a free A-module of rank r < oo with basis {wy};<;<,. For integers
pr (1 £ k < r) we can define a filtration F of W by FPW = ", (Fp—,, A)wy. This
type of filtered A-module (W, F) is called a filtered free A-module of rank . We can
easily show the following.
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Lemma D.2.2. Assume that A is left noetherian. For a good filtered A-module
(M, F) we can take filtered free A-modules (W;, F) (i € N) of finite ranks and strict
filtered A-homomorphisms (Wiy1, F) — (W;, F) (i € N) and Wy, F) — (M, F)
such that

> W > Wy—> M —0

is an exact sequence of A-modules.
For filtered A-modules (M, F), (N, F) and p € Z set
FPHoma(M,N) ={f € Homg(M,N) | f(F;M) C Fy4.,N (Vq € Z)}.
This defines an increasing filtration of the abelian group Hom 4 (M, N). Set

grj Homa(M, N) = F,, Homa(M, N)/F,_1 Homa(M, N),

ng Homs (M, N) = @gr,’j Homu (M, N).
p

Then we have a canonical homomorphism
F F F
gr” Homy (M, N) — Homgrp algr” M, gr” N)
of abelian groups. The following is easily proved.

Lemma D.2.3. Let (M, F) be a good filtered A-module and (N, F) a filtered A-
module.

(i) Homs (M, N) = UpeZ FpHomu (M, N).
(ii) F, Homs (M, N) = 0 for p < 0.
(iii) The canonical homomorphism ng Homy (M, N) — Homgrp A(ng M, ng N)
is injective. Moreover, it is surjective if (M, F) is a filtered free A-module of
finite rank.

Lemma D.2.4. Let (A, F) be a filtered ring such that gr¥ A is left noetherian. Let
(M, F) be a good filtered A-module and (N, F) a filtered A-module. Then there
exists an increasing filtration F of the abelian group Ext)y (M, N) such that

@) Ext’IA(M, N)=U,ez F,Ext}, (M, N),
(ii) F,,Ext’A.(M, N) =0 for p <0, _
(iii) grf Ext!y (M, N) is isomorphic to a subquotient ofEXt’ng A(ng M, grf N).

Proof. Take (Wi, F) (i € N), (Wir1, F) — (Wi, F) (i € N) and (W, F) —
(M, F) as in Lemma D.2.2. Then we‘have Ext;(M, N) = HY(K') with K* =
Homy (W., N). Note that each term K' = Homg(W;, N) of K  is equipped with
increasing filtration F satisfying d'(F,K') C F,K'™!, where d' : K — K'*!
denotes the boundary homomorphism.

Consider the complex grf K* with ith term grf K'. We have grf K* ~
Homy,r 4 (gr” W., gr” N) by Lemma D.2.3. Hence by the exact sequence
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~~—>ngW1 —>ngW0—>ngM—>O,
(see Lemma D.2.1) we obtain
Ext;rFA(ng M, grf Ny = Hi(HomngA(ng w., gt Ny ~ Hi(grf K.
Now define an increasing filtration of H WK) = Ext"A (M, N) by
F,H' (K') =Im(H (FPK') — H'(K")).
For eachi € N we have

K'=|JF,K'.  FK'=0(p<O0).
p

by Lemma D.2.3. From this we easily see that

H (K') =UFpHi(K'), F,H' (K)=0(p <0).
P

It remains to show that gr” H?(K") is a subquotient of H' (gr’ K*). By definition
we have

grh H'(K') = (F,K' NKerd' +Imd'~")/(F, 1K' NKerd' +Imd'™"),
H'(grf K') = Ker(F,K' — grb K'Y /(F,_ K" +d'" (F,K'™")).

Set L = F,K' NKerd'/(F,—1K' NKerd' +d'~'(F,K'~!)). Then we can easily
check that L is isomorphic to a submodule of H' (grlf K") and that grlf H'(K)isa
quotient of L. O

Let us consider the situation where N = A (with canonical filtration F) in
Lemma D.2.3 and Lemma D.2.4. Let (A, F) be a filtered ring and let (M, F)
be a good filtered A-module. We easily see that the filtration F' of the right
A-module Homy (M, A) is a good filtration and the canonical homomorphism
gr’ Homy (M, N) — Homg,r 4(gr” M, gr” N) preserves the gr” A-modules struc-
ture. Hence (the proof of) Lemma D.2.4 implies the following.

Lemma D.2.5. Let (A, F) be a filtered ring such that gr¥ A is left noetherian, and let
(M, F) be a good filtered A-module. Then there exists a good filtration F of the right
A-module Exti4 (M, A) such that gr® Exti4 (M, A) is isomorphic to a subquotient of
ExtérF A(ng M, grt A) as a right gr¥ A-module.

Theorem D.2.6. Let (A, F) be a filtered ring such that gr®” A is left (resp. right)
noetherian. Then the left (resp. right) global dimension of the ring A is smaller than
or equal to that of gr¥” A.

Proof. We will only show the statement for left global dimensions. Denote the left
global dimension of grf A by n. If n = oo, there is nothing to prove. Assume that
n < 0o. We need to show Extg(M, N) =0 (i > n) for arbitrary A-modules M, N.
Since A is left noetherian, we may assume that M is finitely generated. Choose a good
filtration F of M and a filtration F of N. Then we have Ext; F A(ng M, gt N) =

0 (i > n). Hence the assertion follows from Lemma D.2.4. m|
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D.3 Singular supports

Let R be a commutative noetherian ring and let M be a finitely generated R-module.
We denote by supp(M) the set of prime ideals p of R satisfying M, # 0, and by
suppo (M) the set of minimal elements of supp(M). We have p € supp(M) if and
only if p contains the annihilating ideal

Anng(M) ={r € R | rM = 0}.

In fact, we have

VAnng(M) = ﬂ p.

pesupp(M)

For p € suppy(M) we denote the length of the artinian Ry-module My by £, (M).
We set £4(M) = 0 for a prime ideal q ¢ supp(M). For an exact sequence

0—-L—->M-—-N-—=0
of finitely generated R-modules we have
supp(M) = supp(L) U supp(N).
Moreover, for p € suppy (M) we have
Lo(M) =Ly (L) +L£y(N).

In the rest of this section (A, F) denotes a filtered ring such that grf’ A is a
commutative noetherian ring. Let M be a finitely generated A-module. By choosing
a good filtration F we can consider supp(gr” M) and Ep(ng M) for p € suppy(M).

Lemma D.3.1. supp(gr! M) and ¢, (gr? M) for p € suppy(M) do not depend on the
choice of a good filtration F.

Proof. We say two good filtrations F and G are “adjacent’ if they satisfy the condition
FFMcGMcFaM (Yiel).

We first show the assertion in this case. Consider the natural homomorphism
oi - FM/F,_1M — GiM/Gi_1M. Then we have Keryp; ~ G;_1M/F;_ 1M =~
Coker ¢; 1. Therefore, the morphism ¢ : grf M — gr® M entails an isomorphism
Ker ¢ >~ Coker ¢. Consider the exact sequence

0— Kergp — grf' M £ ngM — Cokergp — 0
of finitely generated grf” A-modules. From this we obtain

supp(gr’” M) = supp(Ker ¢) U supp(Im @),
supp(gr® M) = supp(Im ) U supp(Coker ).
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Hence Ker ¢ ~ Coker ¢ implies supp(gr? M) = supp(gr® M). Moreover, for p €
suppy (gr” M) = supp,(gr® M) we have
p(grf M) = €y (Ker @) + £y (Im @) = £, (gr® M).

The assertion is proved for adjacent good filtrations.
Let us consider the general case. Namely, assume that ' and G are arbitrary good
filtrations of M. For k € Z set

FOM=FM+GiuM (i€l
By Proposition D.1.3 F®) is a good filtration of M satisfying the conditions
FO=F (k<0),

FO =Gkl (k> 0),
F® and F*+D are adjacent,

where G[k] is a filtration obtained form G by the degree shift [k]. Therefore, our
assertion follows form the adjacent case. O

Definition D.3.2. For a finitely generated A-module M we set
SS(M) = supp(gr” M),
SSo(M) = suppo(ng M),
Ju = /Anngr Algrf M) = ﬂ P,
peSSo(M)
d(M) = Krull dim (ng A /JM) ,
my(M) = Ly(zr" M) (p € SSo(M) or p ¢ SS(M)),

where F is a good filtration of M. SS(M) and Jj; are called the singular support
and the characteristic ideal of M, respectively.

Lemma D.3.3. For an exact sequence
O0—-L—->M-—>N-—=0
of finitely generated A-modules we have

SS(M) = SS(L) U SS(N),
d(M) = max{d(L), d(N)},
mp(M) =mp(L) +mp(N)  (p € SSo(M)).

Proof. Take a good filtration F of M. With respect to the induced filtrations of L and
N we have a short exact sequence

0—>ngM—>ngN—>ngL—>0.

Hence the assertions for SS and £, are obvious. The assertion for d follows from the
one for SS. 0
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Since ng A is commutative, we have [F, A, F;A] C Fp,-1A. Here, fora, b €
A we set [a, b] = ab — ba. Hence we obtain a bi-additive product

(yigh Axef A= gh, (A ({0p(), 04(b)} = 0pig-i(la, b])).
Its bi-additive extension
(,ViagfAxgfA— gl A
is called the Poisson bracket. It satisfies the following properties:

(1) {a,b}+1{b,a} =0,
() {{a, b}, c} + {{b, c}, a} + {{c, a}, b} =0,
>iii) {a, bc} = {a, b}c + bla, c}.

We say that an ideal I of gr’ A is involutive if it satisfies {I, I} C 1.
We state the following deep result of Gabber [Ga] without proof.

Theorem D.3.4. Assume that (A, F) is a filtered ring such that the center of A con-
tains a subring isomorphic to Q and that gr¥ A is a commutative noetherian ring.
Let M be a finitely generated A-module. Then any p € SSo(M) is involutive. In
particular, Jyy is involutive.

D.4 Duality

In this section (A, F) is a filtered ring such that grf” A is a regular commutative ring
of pure dimension m (a commutative ring R is called a regular ring of pure dimension
m if its localization at any maximal ideal is a regular local ring of dimension m). In
particular, grf” A is a noetherian ring whose global dimension and Krull dimension
are equal to m. Hence A is a left and right noetherian ring with global dimension
< m by Proposition D.1.4 and Theorem D.2.6. We will consider properties of the
Ext-groups Ext’A (M, A) for finitely generated A-modules M.

Note first that for any (left) A-module M the Ext-groups Exti4 (M, A) are endowed
with a right A-module structure (i.e., a left A°P-module structure, where A°P denotes
the opposite ring) by the right multiplication of A on A. Since A has global dimension
< m, we have ExtlA (M, A) = 0fori > m. Moreover, if M is finitely generated, then
ExtQ(M , A) are also finitely generated since A is left noetherian.

Let us give a formulation in terms of the derived category. Let Mod(A) and
Mod 7 (A) denote the category of (left) A-modules and its full subcategory consisting
of finitely generated A-modules, respectively. Denote by D?(A) and D;’c (A) the
bounded derived category of Mod (A) and its full subcategory consisting of complexes
whose cohomology groups belong to Mod s (A). Our objectives are the functors

D = RHomy (e, A) : D?(A) - D’}(AOP)OP,
D' = R Hom 4op (e, A°P) : D’}(AOP) — D’}(A)OP,

where D[}Z(AOP) is defined similarly.
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Proposition D.4.1. We have ) oD >~ 1d and D o D' >~ 1d.

Proof. By symmetry we have only to show I’ oD ~ Id. We first construct a canonical
morphism M" — D'DM" for M" € D?-(A). Set H =DM = RHomy(M", A). By
RHom g, a0(M ®z H', A) >~ RHomu (M, RHom e (H", A°P))

we have
Hom g, a0 (M ®7 H', A) >~ Hom4 (M, R Homgo (H, A?))

Hence the canonical morphism M" ®7 H (= M" ®7 RHomas(M', A)) — A in
D" (A ®7 A°P) gives rise to a canonical morphism

M — RHomuo(H', A%®)(= D'DM)

in D?(A). It remains to show that M — DM is an isomorphism. By taking a free
resolution of M" we may replace M" with A. In this case the assertion is clear. O

For M € Dl;(A) (or Dl}(AOP)) we set

SS(M') = |_JSS(H' (M)).

1

We easily see by Lemma D.3.3 that for a distinguished triangle

L' — M — N =L
we have SS(M") C SS(L") USS(N).
Proposition D.4.2. For M" € D? (A) (resp. Dl;.(AOP)) we have SS(DM") = SS(M")
(resp. SS(ID'M") = SS(M")).
Proof. By Proposition D.4.1 and symmetry we have only to show SS(DM") C
SS(M") for M" € D}bc(A). We use induction on the cohomological length of M".
We first consider the case where M° = M € Modf(A). Take a good filtration

F of M and consider a good filtration F of Ext’A(M, A) as in Lemma D.2.5. By
Lemma D.2.5 we have

SS(Exti‘(M, A)) = supp(ng Extf4 (M, A)) C supp(Ext;rFA(ng M, ng A))
c supp(gr’ M) = SS(M).
The assertion is proved in the case thre M = M € Modf(A). Now we consider
the general case. Set k = min{i | H'(M") # 0}. Then we have a distinguished

triangle

HY(M)[—k] —> M —> N' =5,

where N' = =K+ M. By
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Hi M) (i #h)

BN =1, (i = k)

we obtain SS(M) = SS(N') USS(HX(M")). Moreover, by the hypothesis of induc-
tion we have SS(DN") C SS(N) and SS(DH*(M")) c SS(H*(M")). Hence by the
distinguished triangle

DN — DM" —> (DHX(M))[k] >
we obtain
SS(DM") C SS(DHX(M")) USS(DN") C SS(H*(M")) USS(N") = SS(M").
The proof is complete. O
For a finitely generated A-module M set
j(M) :=min{i | Ext}, (M, A) # 0}.

Theorem D.4.3. Let M be a finitely generated A-module.
D) jM) +d(M) =m,

(i) d(Ext'y (M, A)) <m —i (i € Z),

(i) d(Ext,™ (M, A)) = d(M).

(Recall that m denotes the global dimension of gr’” A.)

The following corresponding fact for regular commutative rings is well known
(see [Ser2], [Bj1]).

Theorem D.4.4. Let R be a regular commutative ring of dimension m'. For a
Jfinitely generated R-module N we set d(N) := Krull dim(R/ Anng N) and j(N) :=
min{ i | Extz (N, R) # 0}.

) d(N) + j(N) =m',

(i) d(Extx(N, R)) <m’ —i (i € Z),

(i) d Ext;™ (N, R)) = d(N).

Proof of Theorem D.4.3. We apply Theorem D.4.4 to the case R = arf A, Fix
a good filtration F of M. By Lemma D.2.4 (iii) we have SS(Ext),(M, A)) C

supp(Ext;rF , (" M, gr” A)) and hence
d(Ext'y(M, A)) < d(Ext;rF LG’ Mg A)).
Thus (ii) follows from the corresponding fact for gr’ A. Moreover, we have

Exti‘(M, A) = 0 fori < j(gr M). Hence in order to show (i) and (iii) it is
sufficient to verify
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s F
dExt)® M (M, A)) = d(M).
By Proposition D.4.2 we have

d(M)= max d(Exty(M, A)).
i2j(er’ M)

Fori > j(grf M) we have
dExty(M, A)) <m —i <m— j(grF M) =d(gr" M) =d(M),

ar’ M)

and hence we must have d(Exti‘( (M, A) =d(M). O

Corollary D.4.5. For an exact sequence
0O—->L—->M-—N-—=>0
of finitely generated A-modules we have

J (M) = min{j (L), j(N)}.

D.5 Codimension filtration

In this section (A, F) is a filtered ring such that gr’” A is a regular commutative ring
of pure dimension m. For a finitely generated A-module M and s > 0 we denote
by C¥(M) the sum of all submodules N of M satisfying j(N) > s. Since C*(M)
is finitely generated, we have j(C*(M)) > s by Corollary D.4.5 and hence C*(M)
is the largest submodule N of M satisfying j(N) > s. By definition we have a
decreasing filtration

o=Cc"t'"M)ycc"Myc---cclm)cc®m) =M.

We say that a finitely generated A-module M is purely s-codimensional if C*(M) =
M and CST (M) = 0.

Lemma D.5.1. For any finitely generated A-module M C*(M)/C**t1(M) is purely
s-codimensional.

Proof. Set N = C*(M)/C*t1(M). Then we have j(N) > j(C*(M)) > s and hence
C*(N) = N. Set K = Ker (C*(M) — N/C**1(N)). Then by the exact sequence

0—> ' M) > K > (V) =0

we have j(K) = min{j(C*t(M)), j(CT1(N))} > s + 1. By the maximality of
CSTH(M) we obtain K = CH (M), i.e., CSHI(N) = 0. O
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We will give a cohomological interpretation of this filtration.
For a finitely generated A-module M and s > 0 we set

T*(M) = Ext%o, (t2° R Homz (M, A), A%P).
By Proposition D.4.1 we have T°(M) = M. By j(Ext*(M, A)) > s we have

Extf{or} (Ext®(M, A), A°P) = 0. Hence by applying R Hom 4op (e, A°P) to the distin-
guished triangle

ExtS, (M, A)[—s] —> t2*RHoma(M, A) —> ="' RHoma (M, A) e
and taking the cohomology groups we obtain an exact sequence
0 — T°TH(M) — T5(M) — Ext’op (Ext’, (M, A), A°P).
Hence we obtain a decreasing filtration
0=T""'"M)ycT"M)C---cT' M) cT' M) =M.
Proposition D.5.2. For any s we have C*(M) = T*(M).
Proof. By j(Ext}o, (Ext®(M, A), A°)) > s we see from the exact sequence
0— T°T\(M) - T(M) - Ext’op (Exty (M, A), A°P)

using the backward induction on s that j(T*(M)) > s. Hence T*(M) C C*(M). 1t
remains to show the opposite inclusion. Set N = C*(M). By j(N) > s we have

12 RHomu (N, A) = RHoms (N, A),

and hence N = T*(N). By the functoriality of 7% we have a commutative diagram

TS(N) ——— N
T5(M) —— M,
which implies N C T*(M). O

Theorem D.5.3. Let M be a finitely generated A-module which is purely s-codimen-
sional. Then for any p € SSo(M) we have

Krull dim((grf A)/p) =m — 5.

Proof. The assertion being trivial for M = 0 we assume that M # 0. In this case we
have j(M) = s. Let F be a good filtration of M. Then there exists a good filtration
F of N = Ext’, (M, A) such that grf’ N is a subquotient of Ext;rF A(ng M, gt A).
Hence
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SS(N) = supp(erf’ N) supp(Ext;rFA(ng M, grf A))
C supp(ng M) =SS(M).
On the other hand since M is purely s-codimensional, we have
M=TSM)/T*T' (M) Ext’op (Ext}y (M, A), A?) = Ext}yop (N, A°P)
and hence SS(M) C SS(Ext’,, (N, A°?)) C SS(N). Therefore, we have

SS(M) = supp(er” M) = supp(Ext} , (zr" M, g A)).

By j(zr" M) = j(M) = s we have j((zr" A)/p) = s for any p € suppy(er” M).
Set A = {p € suppy(gr’ M) | j((grf A)/p) = s5)}. By a well-known fact in
commutative algebra there exists a submodule L of grf M such that j(L) > s and
suppo(ng M/L) = A. We need to show supp(grf M) = supp(gr’ M/L). We have
obviously supp(grf” M) > supp(grf M/L). On the other hand by Ext* (L, grf A) =
0 we have an injection Ext* (grf M, grf” A) — Ext*(grf M/L, gr’ A), and hence

supp(gr’ M) = supp(Ext*(gr” M., gr’ A)) C supp(Ext*(gr” M/L, gr’ A))
C supp(ng M/L).

The proof is complete. O
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Symplectic Geometry

In this chapter we first present basic results in symplectic geometry laying special
emphasis on cotangent bundles of complex manifolds. Most of the results are well
known and we refer the reader to Abraham—Mardsen [AM] and Duistermaat [Dui]
for details. Next we will precisely study conic Lagrangian analytic subsets in the
cotangent bundles of complex manifolds. We prove that such a Lagrangian subset is
contained in the union of the conormal bundles of strata in a Whitney stratification
of the base manifold (Kashiwara’s theorem in [Kas3], [Kas8]).

E.1 Symplectic vector spaces

Let V be a finite-dimensional vector space over a field k. A symplectic formo on'V is
a non-degenerate anti-symmetric bilinear form on V. If a vector space V' is endowed
with a symplectic form o, we call the pair (V, o) a symplectic vector space. The
dimension of a symplectic vector space is even. Let (V, o) be a symplectic vector
space. Denote by V* the dual of V. Then for any 6 € V* there exists a unique
Hy € V such that

<0,v>=0(v,Hg) (vevV)

by the non-degeneracy of o. The correspondence 6 — Hpy defines the Hamiltonian
isomorphism H : V* >~ V. For a linear subspace W of V consider its orthogonal
complement Wt = {v € V|o(v, W) = 0} with respect to o. Then again by the
non-degeneracy of o we obtain dim W 4 dim W+ = dim V. Now let us introduce
the following important linear subspaces of V.

Definition E.1.1. A linear subspace W of V is called isotropic (resp. Lagrangian,
resp. involutive) if it satisfies W ¢ WL (resp. W = W, resp. W > W).

Note that if a linear subspace W C V is isotropic (resp. Lagrangian, resp. invo-
lutive) then dim W < %dim V (resp. dim W = 1 dim V, resp. dim W > % dim V).
Moreover, a one-dimensional subspace (resp. a hyperplane) of V is always isotropic
(resp. involutive).
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Example E.1.2. Let W be a finite-dimensional vector space and W* its dual. Set
V = W @ W* and define a bilinear form o on V by

o((x,8), (&) =<x§>—<x &> (v, §eV=WaoW.

Then (V, o) is a symplectic vector space. Moreover, W and W* are Lagrangian
subspaces of V.

E.2 Symplectic structures on cotangent bundles

A complex manifold X is called a (holomorphic) symplectic manifold if there exists
a holomorphic 2-form o globally defined on X which induces a symplectic form on
the tangent space 7y X of X ateach x € X. The dimension of a symplectic manifold
is necessarily even. As one of the most important examples of symplectic manifolds,
we treat here cotangent bundles of complex manifolds.

Now let X be acomplex manifold and 7' X (resp. T* X) its tangent (resp. cotangent)
bundle. We denote by = : T7*X — X the canonical projection. By differentiating
7t we obtain the tangent map 7’ : T(T*X) — (T*X) xx (TX) and its dual p; :
(T*X) xx (T*X) — T*(T*X). If we restrict p, to the diagonal T*X of (T*X) xx
(T*X) thenwe getamap T*X — T*(T*X). Since this map is a holomorphic section
of the bundle T*(T*X) — T*X, it corresponds to a (globally defined) holomorphic
1-form ax on T*X. We call ayx the canonical 1-form. If we take a local coordinate
(x1,x2,...,x,) of X on an open subset U C X, then any point p of T*U C T*X

can be written uniquely as p = (x1, X2, ..., Xn; E1dx1 + &2dxy + - + &,dx,) where
& € C. Wecall (xq, x2, ..., xn; &1, &2, ..., &) the local coordinate system of 7*X
associated to (xi, x2, ..., x,,). In this local coordinate of 7*X the canonical 1-form

ax is written as ax = ) ;_, &dx;. Setox =dax =Y r_, d& A dx;. Then we see
that the holomorphic 2-form ox defines a symplectic structure on T, (7*X) at each
point p € T*X. Namely, the cotangent bundle 7*X is endowed with a structure of
a symplectic manifold by ox. We call oy the (canonical) symplectic form of T*X.
Since there exists the Hamiltonian isomorphism H : T;,"(T*X ) = T,(T*X) at each
p € T*X, we obtain the global isomorphism H : T*(T*X) ~ T(T*X). For a
holomorphic function f on 7*X we define a holomorphic vector field H to be the
image of the 1-form df by H : T*(T*X) >~ T(T*X). The vector field H is called
the Hamiltonian vector field of f. Define the Poisson bracket of two holomorphic
functions f, g on T*X by {f, g} = Hy(g) = ox(Hy, Hg). In the local coordinate
(X1, X2, .o, Xns €1, &2, ..., &) of T*X we have the explicit formula

n
af d af a
’ o 8%',’ ax; 0x; 8%'[
We can also easily verify the following:

{f.g}=—{g. [}
{f.hgy =h{f g} +glf h},
{{f g}, h}y +{{g. ), fY+{{h, f}. g} =0.
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Moreover, we have [Hy, Hg] = Hyy ), where [Hy, H,] is the Lie bracket of Hy
and H,.

Definition E.2.1. An analytic subset V of T*X is called isotropic (resp. Lagrangian,
resp. involutive) if for any smooth point p € Vieg of V the tangent space 7),V at p is
a isotropic (resp. a Lagrangian, resp. an involutive) subspace in 7, (T*X).

By definition the dimension of a Lagrangian analytic subset of T*X is equal to
dim X.

Example E.2.2.
(i)Let Y C X be a complex submanifold of X. Then the conormal bundle Ty X of
Y in X is a Lagrangian submanifold of 7% X.
(ii) Let f be a holomorphic function on X. Set A y = {(x, grad f(x)|x € X}. Then
A ¢ is a Lagrangian submanifold of 7*X.

For an analytic subset V of T*X denote by Zy the subsheaf of O7xx consisting
of holomorphic functions vanishing on V.

Lemma E.2.3. For an analytic subset V of T*X the following conditions are equiv-
alent:

(1) V is involutive.

(i) {Zv,Zv} C Iy.

Proof. By the definition of Hamiltonian isomorphisms, for each smooth point p €
Vieg Of V the orthogonal complement (7), V)t of T,V in the symplectic vector space
T,(T*X) is spanned by the Hamiltonian vector fields Hy of f € Zy. Assume that V
isinvolutive. If f, g € Zy then the Hamiltonian vector field H s is tangent to Ve and
hence {f, g} = Hf(g) = 0 on Vieg. Since {f, g} is holomorphic and V;eg is dense in
V,{f, g} = 0 on the whole V, i.e., {f, g} € Zy. The part (i) = (ii) was proved.
The converse can be proved more easily. O

E.3 Lagrangian subsets of cotangent bundles

Let X be a complex manifold of dimension n. Since the fibers of the cotangent bundle
T*X are complex vector spaces, there exists a natural action of the multiplicative
group C* = C\ {0} on T*X. We say that an analytic subset V of T*X is conic if
V is stable by this action of C*. In this subsection we focus our attention on conic
Lagrangian analytic subsets of 7*X.

First let us examine the image H(ay) of the canonical 1-form ay by the
Hamiltonian isomorphism H : T*(T*X) ~ T(T*X). In a local coordinate
(X1, X2, ..., Xns €1, &2, ..., &) of T*X the holomorphic vector field H (ax) thus ob-
tained has the form

n a
Hax) ==Y &—.
im0

It follows that — H («x) is the infinitesimal generator of the action of C* on T*X.
We call this vector field the Euler vector field.
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Lemma E.3.1. Let V be a conic complex submanifold of T*X. Then V is isotropic
if and only if the pull-back ax |y of ax to V is identically zero.

Proof. Assume that ax|y is identically zero on V. Then also the pull-back of the
symplectic 2-form oy = day to V vanishes. Hence V is isotropic. Let us prove the
converse. Assume that V is isotropic. Then for any local section § of the tangent
bundle TV — V we have

(ax.8) = ox (8, H(ax)) =0

on V because the Euler vector field —H («y) is tangent to V by the conicness of V.
This means that ax |y is identically zero on V. O

Corollary E.3.2. Let A be a conic Lagrangian analytic subset of T*X. Then the
pull-back of ax to the regular part Aveg of A is identically zero.

Let Z be an analytic subset of the base space X and denote by T;reg X the closure
of the conormal bundle TZEg X of Zyeg in T*X. Since the closure is taken with respect

to the classical topology of T*X, it is not clear if TZ*regX is an analytic subset of 7* X

or not. In Proposition E.3.5 below, we will prove the analyticity of TZegX . For this
purpose, recall the following definitions.

Definition E.3.3. Let S be an analytic space. A locally finite partition S = | |, 4 S«
of S by locally closed complex manifolds Sy s is called a stratification of § if for each
Sy the closure S, and the boundary 95, = S \ Sy are analytic and unions of Sg’s.
A complex manifold S, in it is called a stratum of the stratification S =] |, e Sa-

Definition E.3.4. Let S be an analytic space. Then we say that a subset S” of S is
constructible if there exists stratification S = | |,.4 Se of S such that S’ is a union
of some strata in it.

For an analytic space S the family of constructible subsets of S is closed under
various set-theoretical operations. Note also that by definition the closure of a con-
structible subset is analytic. Moreover, if f : S — S’ is a morphism (resp. proper
morphism) of analytic spaces, then the inverse (resp. direct) image of a constructible
subset of S’ (resp. S) by f is again constructible. Now we are ready to prove the
following.

Proposition E.3.5. T;rcg X is an analytic subset of T*X.

Proof. We may assume that Z is irreducible. By Hironaka’s theorem there exists a
proper holomorphic map f : ¥ — X from a complex manifold ¥ and an analytic
subset Z" # Z of Z suchthat f(Y) = Z, Zy := Z\ Z' is smooth, and the restriction of
ftoYy:= f_l(Zo) induces a biholomorphicmap f|y, : Yo = Zo. From f : ¥ — X
we obtain the canonical morphisms

Ty <y w1 x -2 1)
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We easily see that TZ)X =wy p;] (TI;‘0 Yy), where T{,"O Yy >~ Yy is the zero-section of
T*Yy C T*Y. Since T;‘O Yy is a constructible subset of T*Y and @ is proper, TZ)X
is a constructible subset of 7*X. Hence the closure w = W is an analytic
subset of 7% X. O

By Example E.2.2 and Proposition E.3.5, for an irreducible analytic subset Z of X
we conclude that the closure Tg‘mg X is anirreducible conic Lagrangian analytic subset
of T*X. The following result, which was first proved by Kashiwara [Kas3], [Kas8],
shows that any irreducible conic Lagrangian analytic subset of 7*X is obtained in
this way.

Theorem E.3.6 (Kashiwara [Kas3], [Kas8]). Let A be a conic Lagrangian analytic
subset of T*X. Assume that A is irreducible. Then Z = 7w (A) is an irreducible
analytic subset of X and A = TZE“X .

Proof. Since A is conic, Z = m(A) = (TgX) N A is an analytic subset of X.
Moreover, by definition we easily see that Z is irreducible. Denote by A the open
subset of 77~ (Zyeg) N Areg consisting of points where the map 7 | Areg has the maximal
rank. Then Ag is open dense in 7z ! (Zreg) N A and the maximal rank is equal to dim Z.
Now let p be a point in Ag. Taking a local coordinate (xg, x2, ..., x,) of X around
the point 77(p) € Zeg, we may assume that Z = {x; = xp = --- = x4 = 0} where
d = n —dim Z. Let us choose a local section s : Zeg ~> Areg 0f 7] Areg such that
s(m(p)) = p. Letip,, : Areg <> T*X be the embedding. Then by Corollary E.3.2
the pull-back of the canonical 1-form oy t0 Zeg by i Areg © 8 is zero. On the other
hand, this 1-form on Zs has the form £74.1(x")dxq41 + - - - + &, (x")dx,, where we
set x’ = (X4+1,...,%n). Therefore, the point p should be contained in {£;41] =
--- =&, = 0}. We proved that Ay C TZCgX. Since dim Ag = dim T}‘regX =n we

obtain TzegX = A C A. Then the result follows from the irreducibility of A. O

To treat general conic Lagrangian analytic subsets of 7*X let us briefly explain
Whitney stratifications.

Definition E.3.7. Let S be an analytic subset of a complex manifold M. A stratifica-
tion § = | |,c4 So of S is called a Whitney stratification if it satisfies the following
Whitney conditions (a) and (b):

(a) Assume that a sequence x; € S, of points converges to a point y € Sg (o # B)
and the limit 7" of the tangent spaces Ty; Sy exists. Then we have 7,5 C T.

(b) Let x; € Sy and y; € Sg be two sequences of points which converge to the same
point y € Sg (¢ # B). Assume further that the limit / (resp. T') of the lines /;
jointing x; and y; (resp. of the tangent spaces Ty, Sy ) exists. Then we havel C T.

Itis well known that any stratification of an analytic set can be refined to satisfy the
Whitney conditions. Intuitively, the Whitney conditions means that the geometrical
normal structure of the stratification § = | |,.4 So is locally constant along each
stratum Sy as is illustrated in the example below.
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Example E.3.8 (Whitney’s umbrella). Consider the analytic set S = {(x, y,z) €
C? | y2 = zx?} in C? and the following two stratifications § = |_|l.2:1 Siand § =
LIP_, Siof §:

S ={x.y.20eC |x=y=0}

Sy =S\

S1=1{0}

S ={(x,y,2)€C | x=y=0}\5
S3=8\(S1u$)

Then the stratification S = |_|;-Q’=1 S; satisfies the Whitney conditions (a) and (b), but
the stratification § = |_|7_, S does not.

We see that along each stratum S; (i = 1, 2, 3), the geometrical normal structure
of § = |_|i3:1 S; is constant.

Now consider a Whitney stratification X = | |,.4 X« of a complex manifold X.
Then it is a good exercise to prove that for each point x € X there exists a sufficiently
small sphere centered at x which is transversal to all the strata X,’s. This result
follows easily from the Whitney condition (b). For the details see [Kas8], [Schu].
Moreover, by the Whitney conditions we can prove easily that the union | |, 4 TX*Q X
of the conormal bundles T;aX is a closed analytic subset of 7*X (the analyticity
follows from Proposition E.3.5). The following theorem was proved by Kashiwara
[Kas3], [Kas8] and plays a crucial role in proving the constructibility of the solutions
to holonomic D-modules.

Theorem E.3.9. Let X be a complex manifold and A a conic Lagrangian analytic
subset of T*X. Then there exists a Whitney stratification X = | |,c4 Xo of X
such that
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Ac| | x

acA

Proof. Let A = U;er A; be the irreducible decomposition of A and set Z; = w(A;).
Then we can take a Whitney stratification X = |_| wea Xo of X such that Z; is a union
of strata in it for any i € I. Note that for each i € I there exists a (unique) stratum
Xy; C (Z)reg which is open dense in Z;. Hence we have A; = T(*Zi)regX = T;u_ X
by Theorem E.3.6 and A = Ui/ Ai C UgeaTy X. ]
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