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VANISHING CYCLES AND
THEIR ALGEBRAIC COMPUTATION

NOTRE DAME, MAY 2013
(VERSION OF MAY 24, 2013)

Claude Sabbah

Abstract. In these lectures, we review recent results concerning the algebraic com-
putation of vanishing cycles of an algebraic function on a complex quasi-projective
variety. The first lecture presents various constructions of the complex of vanishing
cycles and its fundamental properties. In the second lecture, we consider the case of
a projective function and we explain an algebraic formula of Barannikov and Kontse-
vich for computing the dimension of each vanishing hypercohomology space. Lastly,
in the third lecture, we relax the assumption of projectivity of the function and we
focus on the algebraic computation of the monodromy.
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INTRODUCTION

In his celebrated book [Mil68], J. Milnor considers a germ of holomorphic function
f : (Cn+1, 0) → (C, 0) having a critical point at the origin of Cn+1. He shows the
existence of a fibration f/|f | : S2n+1

ε rK → S1, for ε > 0 small enough, where S2n+1
ε

is the sphere of radius ε centered at the origin and K = S2n+1
ε ∩f−1(0). Moreover, the

fibre is diffeomorphic to the complex analytic fibre f−1(η) ∩Bε for 0 < η � ε, which
is now called the “Milnor fibre” Fε,η. In fact, one can prove more precisely that the
original Milnor fibration is diffeomeorphic to the fibration f : Bε∩f−1(S1

η)→ S1
η and

such a topological fibration also exists on possibly singular analytic spaces [Lê 76].
The cohomology of the Milnor fibre is known to be nonzero in degrees between 0

and n at most (because it is a Stein manifold of dimension n), and if n > 1 its H0

has dimension 1 (i.e., the Milnor fibre is connected). The cohomology Hk(Fε,η) for
k 6= 0 is called the vanishing cohomology of f at the origin.

Moreover, Milnor has shown that, if f has an isolated critical point at the origin,
that is, if dimC{x0, . . . , xn}/(∂f/∂x0, . . . , ∂f/∂xn) =: µ(f) < ∞, then Fε,η has the
homotopy type of a bouquet of µ(f) spheres, so that in particular Hk(Fε,η,Z) = 0

for k ∈ [1, n − 1] and Hn(Fε,η,Z) ' Zµ. This gives an algebraic computation of the
dimension of the space of vanishing cycles, defined topologically.

The fibration endows the Milnor fibre of a self-diffeomorphism, well-defined up to
isotopy, called the monodromy diffeomorphism. It induces on the vanishing cohomol-
ogy an automorphism T(k) : Hk(Fε,η)→ Hk(Fε,η). In the case of an isolated singular-
ity, Brieskorn [Bri70] has shown how to compute algebraically the monodromy T(n),
by using the Gauss-Manin differential equation attached to f , and more precisely by
considering the now called Brieskorn lattice. This opened the door for Hodge theory
to enter in the realm of singularities of functions. The important property used here
is that the critical locus of f , being an isolated point, is projective.

The purpose of these lectures is to explain how the previous results can be extended
to the case of an algebraic function on a smooth quasi-projective variety. Hodge theory
will now be at the source of the formulas instead of being a consequence.





LECTURE 1

NEARBY AND VANISHING CYCLES IN
COMPLEX TOPOLOGY

Summary. We introduce the sheaf-theoretic construction of nearby and vanish-
ing cycles by the simplest case of a sheaf on a disc, and we give a global formula
for the sum of dimensions of vanishing cycles of a perverse sheaf on the affine
line. Then we explain the general definition by relying on this simple case.

1.1. Dimension one

1.1.a. Training on the disc. Let ∆ be a disc with coordinate t and let ∆∗ = ∆r{0}
be the punctured disc. We will consider the closed and open complementary inclusions

{0} ↪ i0−−−→ ∆
j←−−↩ ∆∗.

Local systems. Let L be a locally constant sheaf of finite dimensional C-vector spaces
(a local system for short) on ∆∗. Recall that the data of L correspond to that of a
finite dimensional vector space L together with an automorphism T as follows:

• Choose a universal covering map

p : ∆̃∗ −→ ∆∗

and choose a generator T of π1(∆∗) ' Z, which then acts on ∆̃∗.
• Lift L to ∆̃∗ as p−1L ; this local system is then isomorphic to a constant one.
• Set L = Γ(∆̃∗, p−1L ) which is equipped with an action of T. Equivalently,

L = i−1
0 j∗p∗p

−1L

Constructible sheaves. Let L be as above and let us consider the sheaf F = j∗L

on ∆. It is constructible with respect to the stratification (∆, 0) means that j−1F is a
local system L on ∆∗ and i−1

0 F is a finite dimensional vector space. More precisely
i−1
0 j∗L consists of invariants sections of L , that is,

i−1
0 j∗L = ker

[
(T− Id) : L −→ L

]
,
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and this identification is given by the adjunction morphism Id→ p∗p
−1F :

i−1
0 j∗L = i−1

0 F −→ i−1
0 (j ◦ p)∗(j ◦ p)−1F .

We get a similar morphism for any sheaf F which is constructible with respect to
(∆, 0). The right-hand term, which only depends on j−1F , is denoted by ψtF , and
is a vector space with monodromy T. The morphism i−1

0 F → ψtF need neither be
injective (as above) nor surjective (as it would be if F is a skyscraper sheaf supported
at the origin, so that j−1F = 0).

The complex of C-vector spaces i−1
0 F → ψtF (with ψtF in degree zero) is denoted

by φtF . It comes equipped with a monodromy action

i−1
0 F //

Id
��

ψtF

T
��

=

φtF

T
��

i−1
0 F // ψtF φtF

Constructible complexes. Let now F • be a bounded complex of C-vector spaces on ∆

with constructible cohomology sheaves (w.r.t. the stratification (∆, 0). We set

(1.1.1) ψtF := i−1
0 R(j ◦ p)∗(j ◦ p)−1F

which is a complex of C-vector spaces with an automorphism and finite dimensional
cohomology, and we have a natural morphism

i−1
0 F −→ ψtF

induced by adjunction, from which we construct φtF with its monodromy(1) T, as a
complex with finite dimensional cohomology. We have a distinguished triangle

i−1
0 F −→ ψtF

can−−−−→ φtF
+1−−−→

which gives rise to a long exact sequence of finite dimensional C-vector spaces:

· · · −→H j(i−1
0 F ) −→H jψtF

H j can−−−−−−−→H jφtF −→H j+1(i−1
0 F ) −→ · · ·

Perversity. Given a constructible complex F , we ask whether ψtF and φtF have
cohomology in at most a single degree. Let us consider two basic examples:

(1) If F = j∗L , then ψtF = L is in degree zero and i−1
0 F → ψtL is identified

with the inclusion ker(T − Id) ↪→ L, so φtF is identified with the vector space
Im(T− Id) ⊂ L.

(2) If F is a skyscraper sheaf i0,∗F at the origin, then ψtF = 0 and φtF '
i−1
0 F [1].

(1)Be careful here that there is a categorical caveat here, see e.g. [Dim04, p. 105]).
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In order to put both situations in the same framework, and in a way independent of
the dimension of the underlying manifold (here this dimension is one), we set

(1.1.2) pψtF = ψtF [−1], pφtF = φtF [−1].

The complexes j∗L [1] and i0,∗F both satisfy that pψtF and pφtF have nonzero
cohomology in degree zero at most.

Definition 1.1.3. A constructible complex on (∆, 0) is perverse if
• j−1F = L [1] for some local system L on ∆∗,
• i−1

0 F has nonzero cohomology in degrees −1 and 0 at most,
• i!0F has nonzero cohomology in degrees 0 and 1 at most.

Theorem 1.1.4. A constructible complex F is perverse if and only if pψtF and pφtF

have nonzero cohomology in degree zero at most.

Example 1.1.5. The complexes j∗L [1] and i0,∗F are perverse. In fact, the category
of perverse complexes is abelian, each object has a Jordan-Hölder sequence, and each
perverse complex is a successive extension of such objects.

1.1.b. On the affine line. Let now F be a bounded complex of C-vector spaces on
the affine line A1 with coordinate t, which is constructible with respect to the strati-
fication (A1

t, C), where C is a finite set of points. Let now ∆ be an disc containing C,
let ∆ be its closure, and let I be a nonempty closed arc-interval on its boundary ∂∆.

Proposition 1.1.6. Assume that F is perverse. Then Hk
c (∆r I,F ) = 0 for k 6= 0 and

we have

(1.1.6 ∗) dimH0
c(∆ r I,F ) =

∑
c∈C

dim pφt−cF .

Proof. According to Example 1.1.5 suitably extended to the case of the stratification
(A1, C), we are reduced to considering the cases F = ic,∗F and F = j∗L [1], where
now j denotes the inclusion A1 r C ↪→ A1. The first one being easy, let us consider
the second one.

That H−1
c (∆r I, j∗L [1]) = H0

c (∆r I, j∗L ) = 0 is clear: if a section of j∗L on ∆

vanishes on I, it vanishes on the complement of C in ∆ (by uniqueness of analytic
continuation), so such a section is supported on C; but clearly j∗L does not have
any nonzero section supported on C.

The vanishing of H1
c (∆ r I, j∗L [1]) = H2

c (∆ r I, j∗L ) is deduced by a duality
argument. Denote by Ic the closure of the complementary arc-interval ∂∆ r I. We
have a natural pairing

H0
c (∆ r I, j∗L

∨)⊗H2
c (∆ r Ic, j∗L ) −→ H2

c (∆,C) ' C

which can be proved to be nondegenerate. So the previous argument applied to the
dual local system L ∨ implies the vanishing of H2

c (∆ r I, j∗L ).
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We can now conclude that

dimH0
c (∆ r I, j∗L [1]) = dimH1

c (∆ r I, j∗L ) = −χ(∆, β!β
−1j∗L ),

where β : ∆ r I ↪→ ∆ denotes the open inclusion and β! means “extension by zero”.
We have

−χ(∆, β!β
−1j∗L ) = −χ(∆ r (I ∪ C)) · rk L −

∑
c∈C

dim(j∗L )c.

On the one hand, −χ(∆ r (I ∪ C)) = −χ(∆) + χ(I) + χ(C) = #C. On the other
hand, dim(j∗L )c = rk L − dimφt−cj∗L , so

dimH0
c (∆ r I, j∗L [1]) = #C · rk L −

∑
c∈C

(rk L − dimφt−cj∗L )

=
∑
c∈C

dimφt−cj∗L .

1.2. Construction of nearby cycles and vanishing cycles

Settings. LetX be a complex manifold and let f : X → C be a holomorphic function.
We will consider the behaviour of f along its zero set f−1(0).

1.2.a. Foreword. The construction of Milnor recalled in the introduction associates
to each point x of f−1(0) a family of vector spaces: the vanishing cohomology spaces
of f at x. They are zero if x does not belong to the critical locus Crit(f). If the
critical locus of f (which is a closed analytic subset of f−1(0)) has dimension > 1,
it is natural to understand how these spaces glue along this locus, in other words, it
is natural to define sheaves whose germ at each x are equal to these spaces. As it is
usual, we will first define a complex of sheaves supported on the critical locus whose
cohomology sheaves are the desired sheaves. Lastly, it will be easier to define first
the nearby cycle sheaves (or complex of sheaves), which does not delete the zero-th
cohomology. As a consequence, such a complex will be supported on f−1(0) an not
only on the critical locus.

1.2.b. Nearby cycles and vanishing cycles. The definition of the nearby cycles
of the constant sheaf CX (Deligne [Del73]) is similar to Formula (1.1.1). We consider
the cartesian diagram

X0
� � i0 //

f
��

X

f
��

X∗? _
j

oo

�f
��

X̃∗

��

p
oo

{0} �
� i0 // ∆ ∆∗? _

j
oo ∆̃∗

p
oo

so that p : X̃∗ → X∗ is a cyclic covering with group Z.
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Definition 1.2.1. The complex ψfCX of nearby cycles along f−1(0) of the sheaf CX is
given by

ψfCX := i−1
0 R(j ◦ p)∗(j ◦ p)−1CX

This is a complex of C-vector spaces, equipped with the monodromy operator T. The
cone of the natural morphism

CX0
= i−1

0 CX −→ ψfCX

induced by adjunction, is the complex φtCX of vanishing cycles, equipped with its
monodromy(2) T. We have a distinguished triangle

CX0
= i−1

0 CX −→ ψfCX
can−−−−→ φfCX

+1−−−→.

Remark 1.2.2. Although the previous setting is the one we will be interested in, the
definition can be extended in a natural way in two directions:

(1) The complex manifold X can be replaced with an arbitrary topological space X
with a continuous map to the (topological) disc ∆.

(2) The constant sheaf CX can be replaced with an arbitrary bounded complex of
sheaves of C-vector spaces.

Of course, nice properties will be obtained when one considers stratified spaces (in the
sense of Goresky-MacPherson [GM88]) and complexes with constructible cohomology
(with respect to the given stratification).

1.3. Main properties

1.3.a. Behaviour under proper push-forward. The following statement holds
in the general context of Remark 1.2.2, and is a direct consequence of basic results in
sheaf theory.

Theorem 1.3.1. Consider a diagram of continuous maps

X
π //

f
  

X ′

f ′
��

∆

and assume that π is proper. Let F be an object of Db(CX). Then

Rπ∗ψfF ' ψf ′Rπ∗F , Rπ∗φfF ' φf ′Rπ∗F .

(2)Be careful here that there is a categorical caveat here, see e.g. [Dim04, p. 105]).
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For example, if f : X → ∆ is a proper map from a complex manifold X to a disc
with coordinate t (as we will consider in the next lecture), we obtain

(1.3.2) Rf∗ψfCX ' ψtRf∗CX , Rf∗φfCX ' φtRf∗CX ,

which reduces the study to the case considered in §1.1.

1.3.b. Constructibility.

Theorem 1.3.3. The complex ψfCX has C-constructible cohomology (i.e., there exists
a Whitney stratification of X0 such that the cohomology sheaves of ψfCX are locally
constant sheaves of finite dimensional C-vector spaces on each stratum). Moreover,
for each x ∈ X0 and k ∈ N, H k(ψfCX)x ' Hk(Fε,η,C), where Fε,η is the Milnor
fibre of f at x.

The second point can be obtained by considering the direct image complex on the
Milnor tube Tε,η = Bε ∩ f−1(Dη), 0� η � ε� 1.

1.3.c. Perversity. On a complex manifold X, the constant sheaf shifted by dimX,
denoted CX [dimX] is a perverse complex. We denote it by pCX in order to forget
the reference to the dimension. Recall the definition (1.1.2).

Theorem 1.3.4 ([Bry86]). The complexes pψf
pCX and pφf

pCX are perverse (either
on X0 or, applying Ri0,∗, as complexes on X).

One proof consists in proving the property of support and in proving the com-
mutation of the functors pψf ,

pφf with Poincaré-Verdier duality (and use that pCX
is self-dual). Another proof consists in using the equivalence of categories “Regu-
lar holonomic DX -modules” ∼ “Perverse sheaves on X” through the de Rham functor
(Riemann-Hilbert correspondence) and defining functors ψf , φf for regular holonomic
DX -modules which make the obvious diagram commute.

We can now make (1.3.2) more precise.

Corollary 1.3.5. Assume that f : X → ∆ is proper. Then for each j ∈ Z,

(pH jRf∗)(
pψf

pCX) ' pψt(
pH jRf∗)

pCX , (pH jRf∗)(
pφf

pCX) ' pφt(
pH jRf∗)

pCX .



LECTURE 2

ALGEBRAIC COMPUTATION OF THE DIMENSION OF
THE VANISHING CYCLE SPACES

Summary. We will give an algebraic formula for the dimension of the space of
vanishing cycles in the global setting below.
Assumptions for this lecture. In this lecture, we consider a regular func-
tion f on a smooth complex quasi-projective variety X, that we will write as
f : X → A1

t, where A1
t is the affine line with coordinate t. We will moreover

assume that f is projective. We will use the Zariski topology, except otherwise
stated by the use of the exponent “an”.
Main technique in this lecture. We use the properness assumption to reduce,
by push-forward by f , to the case X = A1

t and replace OX with a (filtered)
holonomic C[t]〈∂t〉-module.

2.1. Milnor’s formula

For a germ f : (Cn+1, 0) → (C, 0) with an isolated critical point, the formula for
the dimension of the cohomology of the Milnor fibre F at the origin is

dimHn(F,C) = dimC{x0, . . . , xn}/J(f), J(f) := (∂f/∂x0, . . . , ∂f/∂xn).

There are various proofs of this result. One of them consists in deforming f by adding
a generic linear form and to count the number of simple critical points of the deformed
function.

The proof of Brieskorn goes as follows. On the one hand, the right-hand term is
identified with the cohomology in degree n+ 1 of the complex

(∗) 0 −→ O(Cn+1,0)
df−−−→ Ω1

(Cn+1,0)

df−−−→ · · · df−−−→ Ωn+1
(Cn+1,0) −→ 0

which is known to have no other nonzero cohomology. On the other hand, one con-
siders the complex (where z is a new formal variable)

0 −→ O(Cn+1,0)[[z]]
zd− df−−−−−−−→ Ω1

(Cn+1,0)[[z]] −→ · · ·
zd− df−−−−−−−→ Ωn+1

(Cn+1,0)[[z]] −→ 0

and
(a) one shows that it has nonzero cohomology in degree n+ 1 at most,
(b) its (n+ 1)st cohomology (the Brieskorn module of f) is C[[z]]-free,
(c) its rank is equal to dimHn(F,C).
The first two points allow us to identify the fiber at z = 0 of the Brieskorn module

with the (n+ 1)st cohomology of (∗), and the third point gives the conclusion.
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2.2. Twisted de Rham complexes and vanishing cycles

From an algebraic point of view, the twisted de Rham cohomology produces spaces
having the same dimension as those of vanishing cycles for all the critical values of f
together. The analogue of (c) above generalizes as follows.

Theorem 2.2.1. We have for each j∑
c∈C

dimHj−1(f−1(c), φf−c(CXan)) = dimHj
(
X, (Ω

•
X ,d− df∧)

)
.

Using the perverse convention, and setting pCX = CX [dimX], this amounts to
proving for each k:∑

c∈C
dimHk(f−1(c), pφf−c(

pCXan)) = dimHk
(
X, (ΩdimX+•

X ,d− df∧)
)
.

Proof. By reduction to dimension one. Let us first consider the following setting on
the affine line A1 with coordinate t: a regular holonomic C[t]〈∂t〉-module M , whose
analytic de Rham complex F := pDRanM is a perverse sheaf. On the one hand,
Proposition 1.1.6 gives

(∗) dimH0
c(∆ r I,F ) =

∑
c∈C

dim pφt−cF .

Here we will take for ∆ the affine line and for ∆ its compactification as a disc.
On the other hand, the right hand in the theorem, adapted to our dimension one

setting, reads

(∗∗) dimH0(A1, (Ω1+•
A1 ⊗M,∇− dt)).

Because A1 is affine, we can compute this cohomology as that of the complex (where
the dot indicates the term in degree zero):

M
∇− dt−−−−−−→M ⊗ dt

•
,

that is also,

M
∂t − 1−−−−−−→M

•
.

The latter space can be computed analytically on ∆, by considering the sheaf A mod
∆

on ∆ of holomorphic functions on ∆ which have moderate growth along ∂∆. The
moderate de Rham complex is

A mod
∆

⊗C[t] M
et ◦ ∂t ◦ e−t−−−−−−−−−−→ A mod

∆
⊗C[t] M.

When restricted to ∆, this complex is nothing but the holomorphic de Rham complex,
that we have denoted by F . On the boundary ∂∆, we obtain the natural extension
of F , or zero, depending whether et has moderate growth (that is, rapid decay) in the
direction corresponding to a point in the boundary, or not. Taking hypercohomology
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of this moderate de Rham complex gives (∗∗), which makes the link with (∗) and ends
the proof in dimension one.

The reduction to dimension one goes as follows. Let us consider the perverse com-
plex pCXan = CXan [dimX]. On the one hand, Rf∗pCXan is a constructible complex,
and its perverse cohomology pH k(Rf∗

pCXan) in degree k is isomorphic to the analytic
de Rham complex of the kth Gauss-Manin system Mk : H kf+OX (push-forward in
the sense of D-modules).

Due to the preservation of perversity by pφf and the compatibility with proper
push-forward, we find, for each c ∈ C,

pφt−c
pDRanMk ' pφt−c

pH k(Rf∗
pCXan) 'Hk(f−1(c), pφf−c

pCXan).

According to our preliminary study in dimension one, we are reduced to proving

Hk(X, (Ω
•+dimX
X ,d− df) = H0(A1, (Ω1+•

A1 ⊗M
k,∇− dt))

= coker
[
(∂t − 1) : Mk −→Mk

]
.

This is an easy exercise in D-module theory.

2.3. The Barannikov-Kontsevich theorem

2.3.a. Statement of the theorem and consequences.

Theorem 2.3.1 (Barannikov-Kontsevich). We have for each k

dimHk
(
X, (Ω

•
X ,d− df∧)

)
= dimHk

(
X, (Ω

•
X ,df∧)

)
.

Corollary 2.3.2 (Th. 2.2.1 and Th. 2.3.1). We have for each k∑
c∈C

dimHk−1(f−1(c), φf−c(CXan)) = dimHk
(
X, (Ω

•
X ,df∧)

)
.

Remark 2.3.3 (The need of Hodge theory). Let Y be a smooth complex projective
variety and let ω be a holomorphic global 1-form on Y . Problem: to compare the
dimensions dimHk

(
Y, (Ω•Y ,d + ω)

)
and dimHk

(
Y, (Ω•Y , ω)

)
.

Assume first that ω = 0. Then

dimHk
(
Y, (Ω

•
Y ,d)

)
= dimHk

(
Y, (Ω

•
Y , 0)

)
=

⊕
p+q=k

Hq(Y,ΩpY )

by Hodge Theory. If ω 6= 0, Hodge Theory implies that ω is closed, hence the
holomorphic connection d + ω on OY is integrable. It follows from complex Hodge
Theory (due to Arapura, 1997, see also §2.4.b), that

dimHk
(
Y, (Ω

•
Y ,d + ω)

)
= dimHk

(
Y, (Ω

•
Y , ω)

)
.

More precise results in this direction have been given by Arapura (1997). See also
§2.4.b for a short proof relying on results of Simpson. For the theorem of Barannikov-
Kontsevich, the new difficulty is the pole of df along f = ∞, which may be of high
order (see §2.4.c). On the other hand, in this setting, it is not known whether the
hypercohomology spaces can be computed by a kind of vanishing cycle formula or not.
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Remark 2.3.4. A proof by reduction to characteristic p has been obtained in 2007
by Ogus and Vologodsky as a consequence of their characteristic p analogue of the
non-abelian Hodge theory of Simpson.

2.3.b. Sketch of proof (C.S., 1999). We introduce the “Brieskorn modules”. Con-
sider the complex (Ω•X [z], zd− df∧).

Proposition 2.3.5. For each k, Gk0 := Hk(X, (Ω•X [z], zd− df∧)) is a free C[z]-module
of finite rank.

Once this proposition is proved, then

Hk
(
X, (Ω

•
X ,df∧)

)
= Gk0/zG

k
0

and
Hk
(
X, (Ω

•
X ,d− df∧)

)
= Gk0/(z − 1)Gk0

have the same dimension.

Idea of proof of the proposition. It is done by reduction to dimension one as in the
proof of Theorem 2.2.1. Let us first consider an analogous statement in dimension
one. We consider a holonomic C[t]〈∂t〉-module M with regular singularities at all its
singularities (infinity included), and equipped with a goof filtration F•M , that is,
• FkM is a C[t]-submodule of M of finite type for each k ∈ Z,
• FkM = 0 for k � 0,
• for each k, ∂tFkM ⊂ Fk+1M ,
• there exists ko such that, for each j > 0,

Fj+koM = FkoM + · · ·+ ∂jtFkoM.

Consider the Rees module

RFM =
⊕
j

FkM · zk ⊂ C[z, z−1]⊗C M.

We have RFM/zRFM'grFM . Let us denote by ∇ the connection on M , defined by
∇∂tm = ∂tm for each m ∈M . We note that RFM is endowed with an action of z∂t.

Lemma 2.3.6. We have H0
(
A1
t, (Ω

•
A1t
⊗ RFM, z∇ − dt)

)
= 0 and, if M has a regular

singularity at infinity, the C[z]-module H1
(
A1
t, (Ω

•
A1t
⊗RFM, z∇−dt)

)
is free of finite

rank.

Proof. The lemma can be restated by saying that the map

(2.3.7) RFM
z∂t − 1−−−−−−−→ RFM

is injective and its cokernel G0(M,F•M) is C[z]-free of finite rank. Let us check this.
An element of RFM is uniquely written as

∑
kmkz

k with mk ∈ FkM . we have

(z∂t − 1)
∑
k

mkz
k =

∑
k

(∂tmk−1 −mk)zk
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and the injectivity is clear since mj = 0 for j � 0. Let us identify the cokernel. Let us
set G = C[∂t, ∂

−1
t ]⊗C[∂t] M and let us denote by l̂oc : M → G the natural morphism.

Then G is a C[∂t, ∂
−1
t ]-module that we regard as a C[z, z−1]-module through the

identification z ↔ ∂−1
t . One checks easily that the map

M ⊗C C[z, z−1]
z∂t − 1−−−−−−−→M ⊗C C[z, z−1]

is injective and its cokernel is identified to G (regarded as a C[z, z−1]-module) by the
map

∑
k nkz

k 7→
∑
k(∂t)

knk ∈ G. Another easy exercise shows that the cokernel of
(2.3.7) is sent injectively in G as a C[z]-submodule.

The last step of the proof now uses the property thatM has a regular singularity at
infinity. Standard results of differential equations in dimension one imply that, with
this assumption, G is C[z, z−1]-free. Therefore, G0(M,F•M) is torsion free, hence
free over C[z].

In order to end the proof of the proposition, we reduce to dimension one, by
identifying Gk−dimX

0 (of the proposition) to G0(Mk, F•M
k), where Mk is as in the

proof of Theorem 2.2.1 and F•M
k is the push-forward filtration. The non-trivial

Hodge-theoretic point used here is that the spectral sequence attached to the push-
forward by f of the DX-module OX with its trivial filtration (FkOX = OX if k > 0

and FkOX = 0 otherwise) degenerates at E1. This is a consequence of M. Saito’s
theory of polarized Hodge D-modules [Sai88].

2.4. Appendix: various generalizations

2.4.a. The logarithmic and the mixed Hodge module variants. Let D be a
divisor with normal crossings in X and let j : U = X rD ↪→ X denote the inclusion.

Theorem 2.4.1 (logarithmic variant). We have for each k∑
c∈C

dimHk−1(f−1(c), φf−c(Rj∗CUan)) = dimHk
(
X, (Ω

•
X(logD),d− df∧)

)
= dimHk

(
X, (Ω

•
X(logD),df∧)

)
.

Let (M , F•M ) be a filtered holonomic DX -module which underlies a mixed Hodge
D-module, and let ∇ its connection. In particular, ∇(FpM ) ⊂ Fp+1M ⊗ Ω1

X , and
induces a graded morphism grF∇ : grFM → grFM ⊗ Ω1

X of degree 1.

Theorem 2.4.2 (variant for mixed Hodge modules). We have for each k∑
c∈C

dimHk−1(f−1(c), φf−c(DRan M )) = dimHk
(
X, (Ω

•
X ⊗M ,∇− df∧)

)
= dimHk

(
X, (Ω

•
X ⊗ grFM , grF∇− df∧)

)
.
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2.4.b. Generalization to closed one-forms: the projective case. The results
in the following subsections come from discussions with Takuro Mochizuki. They are
given to show the powerfulness of the techniques of Simpson (projective case) and
Mochizuki (quasi-projective case).

Let Y be a smooth complex algebraic variety and let ω be an algebraic closed
1-form on Y , whose zero set is denoted by Z.

Lemma 2.4.3. There exists a neighbourhood V of Zan in Y an and a holomorphic func-
tion f : V → C such that f|Z=0 and ω|V = df .

Proof. Given any point x of Z, there exists an open neighbourhood Vx of x in Y an and
a unique holomorphic function fx : Vx → C such that fx|Z∩Vx

= 0 and dfx = ω|Vx
:

choose first a simply connected neighbourhood V ′x of x in Y an, so that there a unique
such fx : V ′x → C. Since Z ∩ V ′x is the critical locus of fx, it is contained in the
critical fibers of fx. One can then shrink V ′x to Vx so that Z ∩ Vx is connected, hence
contained in f−1

x (0). Then, for y ∈ Z ∩ Vx, we have fx|Vx∩Vy
= fy|Vx∩Vy

, showing
that f is defined on V :=

⋃
x∈Z Vx.

Theorem 2.4.4. For each k we have

dimHk(Y, (Ω
•
Y ,d + ω)) = dimHk(Y, (Ω

•
Y , ω)).

Proof. One can work with holomorphic objects, and we will forget the exponent an

during the proof. We regard (OY ,d + ω) as a holomorphic rank-one bundle with flat
connection. The trivial metric is harmonic for this flat bundle, and the associated
holomorphic Higgs bundle is (E, ∂E , θ) with E = C∞Y , ∂E = ∂ − 1

2 ω and θ = 1
2ω.

From [Sim92, Lemma 2.2] we have

dimHk(Y, (Ω
•
Y ,d + ω)) = dimHk(Y, (E ⊗ Ω

•
Y , ω)),

where we still denote by E the holomorphic bundle ker ∂E . Since the complex
(E ⊗ Ω•Y , ω) is acyclic away from Z, we have

Hk(Y, (E ⊗ Ω
•
Y , ω)) = Hk(V, (E|V ⊗ Ω

•
V , ω)).

On the other hand, E|V ' OV through the multiplication by ef/2.

2.4.c. Generalization to closed one-forms: the quasi-projective case. We
still assume that Y is projective, but we also only assume that ω is a closed rational
1-form, with pole divisor D. We set X = Y rD. We make the following assumptions:

(1) the order of the pole of ω along each irreducible component of D is > 2,
(2) the closure Z of the zero set of ω in X does not intersect D.

Notice that these assumptions remain valid for π∗ω if π : Y ′ → Y is a proper modifi-
cation which is an isomorphism above X.

Theorem 2.4.5. With these assumptions, for each k we have

dimHk(X, (Ω
•
X ,d + ω)) = dimHk(X, (Ω

•
X , ω)).
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Example 2.4.6. Assume that there exists f : Y → P1 such that ω = df . Then both
assumptions are satisfied. One recovers Theorem 2.3.1 as a particular case.

Proof. Theorem 2.4.5 is a direct consequence of the results of [Moc11], but we will
make explicit the way one derives it. Since the statement does not depend on the
compactification Y of X, we can assume that D has normal crossings, and therefore
(OY (∗D),d + ω) is a good wild meromorphic flat bundle in the sense of [Moc11].

The point is now to prove the following lemma:

Lemma 2.4.7. There exists a rank-one meromorphic bundle E on Y such that

dimHk(Y, (Ω
•
Y (∗D),d + ω)) = dimHk(Y, (Ω

•
Y ⊗ E,ω)).

In this lemma, we consider analytic objects. We can now argue as for Theorem 2.4.4
since Z(ω) ∩D = ∅: the cohomology in the right-hand term is supported on Z(ω),
and thus isomorphic to Hk(Y, (Ω•Y (∗D), ω)); by GAGA (see [Del70, §II.6.6]), both
terms in the lemma can be computed by using the Zariski topology, and the equality
is now that asserted in the theorem.

Proof of Lemma 2.4.7. Since ω has a pole of order > 2 along each component ofD, the
DY -module (OY (∗D),d +ω) is an irreducible holonomic DY -module, which therefore
comes by restriction to z = 1 from a RY -module M which is part of an object
T = (M ,M , C) of R-Triples(Y ) underlying a polarized wild twistor D-module.

We thus have (OY (∗D),d + ω) = M /(z − 1)M and, setting E = M /zM that
we regard a OY -module with Higgs field 1

2ω, the push-forward theorem [Moc11,
Th. 18.1.1] applied to the constant map Y → pt implies the equality in the lemma,
since that strictness is preserved by projective push-forward.

It remains to prove that E is a locally free OY (∗D)-module. Note that we already
know that E|X is equal to the Higgs bundle computed in the proof of Theorem 2.4.4.
Recall (see [Moc11, §12.1]) that M is constructed locally near each zo ∈ C, and the
construction is seen to be independent of zo. The local RY -module M (zo) is the
RY -module generated by the OY -module denoted by Q

(zo)
<1 E in loc. cit. Since the

order of the pole of ω along each component of D is > 2, the filtration Q(zo)
• E is

constant, and therefore M = QE is OY (∗D)-locally free. By restricting to z = 0, we
conclude that E = M /zM is OY (∗D)-locally free.





LECTURE 3

ALGEBRAIC COMPUTATION OF THE MONODROMY
ON THE VANISHING CYCLE SPACES

Summary. We will give an algebraic formula for the monodromy on the space
of vanishing cycles in the quasi-projective setting below.
Assumptions for this lecture. In this lecture, we consider a regular func-
tion f on a smooth complex quasi-projective variety X, that we will write as
f : X → A1

t, where A1
t is the affine line with coordinate t. We do not assume

that f is projective.

3.1. Position of the problem

We consider a commutative diagram with κ open and g proper:

X �
� κ //

f
  

X ′

g
��

A1

Our goal is to compute in algebraic terms the monodromy on each space (k ∈ N) of
vanishing cycles Hk(f−1(c), φf−cCX). We first make clear the meaning of “algebraic
terms” in the simplest case of a local system on a punctured disc (see Lecture 1).

In general, let E be a finite dimensional C-vector space equipped with an automor-
phism T. Given a choice of a logarithm of T, that is, writing T = exp(−2πiM) for
some endomorphism M : E → E, we denote by R̂H−1(E,T) the C((z))-vector space
E((z)) := E ⊗C C((z)), equipped with the connection ∇ = d + M dz/z. The (formal)
Riemann-Hilbert correspondence R̂H (in dimension one) make equivalent the data
of a finite dimensional C((z))-vector space equipped with a connection ∇ having a
regular singularity (i.e., whose matrix in a suitable C((z))-basis has at most a simple
pole) and the data (E,T). We have made explicit a quasi-inverse functor.

Given c ∈ C, we set

Ê−c/z = (C((z)),d + cdz/z2) = (C((z)),d− d(c/z)).

If c 6= 0, this rank-one C((z))-vector space with connection has an irregular singularity.
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Given a vector space E((z)) with connection ∇ (e.g. as above), the twisted vector
space with connection Ê−c/z⊗(E((z)),∇) is by definition nothing but E((z)) equipped
with the twisted connection ∇− d(c/z).

Ê−c/z ⊗ (E((z)),∇) :=
(
E((z)),∇− d(c/z)

)
.

Choose (Ekc ,T) =
(
Hk(f−1(c), φf−cCX),T

)
. Note that the sum is finite according

to the algebraic version of Sard’s theorem.

Problem 3.1.1. To give an algebraic formula for
⊕

c∈C
(
Ê−c/z ⊗ R̂H−1(Ekc ,T)

)
(in terms of f).

Having such a formula allows one to recover the critical values c (by looking at the
pole of order two) and then, fixing c and untwisting by Ê c/z, one recovers R̂H−1(Ekc ,T)

hence (Ekc ,T).

3.2. The case where f is proper

Theorem 3.2.1.
(1) Assume f is proper. Then we have(
C((z))⊗C[z,z−1] H

k
(
X, (Ω

•
X [z, z−1],d− df/z)

)
,∇∂z

)
'
⊕
c∈C

Ê−c/z ⊗ R̂H−1
(
Hk−1

(
f−1(c), φf−cCXan

)
,T
)
,

(2) Without the properness assumption, we only have(
C((z))⊗C[z,z−1] H

k
(
X, (Ω

•
X [z, z−1],d− df/z)

)
,∇∂z

)
'
⊕
c∈C

Ê−c/z ⊗ R̂H−1
(
Hk−1

(
g−1(c), φg−cRκ∗CXan

)
,T
)
,

Remark 3.2.2 (What is∇∂z?) The twisted de Rham complex

OX [z, z−1]
d− df/z
−−−−−−−−→ Ω1

X [z, z−1] −→ · · ·
d− df/z
−−−−−−−−→ ΩdimX

X [z, z−1]

is equipped termwise with an action ∇∂z = ∂/∂z − f . That it commutes with the
differential is seen by setting formally d− df/z = ef/z ◦ d ◦ e−f/z.

Sketch of the proof. Since f is proper, we will argue by reduction to dimension one.
Given a regular holonomic C[t]〈∂t〉-module M we consider G = C[∂t, ∂

−1
t ] ⊗C[∂t] M

as in the proof of Lemma 2.3.6. We set z = ∂−1
t , so that G is a C[z, z−1]-module.

If M has only regular singularities, it is known that G is a free C[z, z−1]-module of
rank equal to

∑
c∈C dim pφt−c

pDRMan. More precisely, the stationary phase formula
gives

C((z))⊗C[z] G '
⊕
c∈C

Ê−c/z ⊗ R̂H−1(pφt−c
pDRMan,T).
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In order to get the first equality, we apply this stationary phase formula to the Gauss-
Manin systems of f (i.e., direct images of OX by f as a D-module). The point is that
the vanishing cycle functor commutes with proper direct images.

If f is not proper, we replace f with g, and we consequently work with the complex
Rκ∗CXan . The argument is then similar by reduction to dimension one.

3.3. The case where f is not proper

We now consider Problem 3.1.1 when f is not proper. The second statement of
Theorem 3.2.1 does not give the desired formula, since in general(

Hk−1
(
g−1(c), φg−cRκ∗CXan

)
,T
)
6=
(
Hk−1

(
f−1(c), φf−cCXan

)
,T
)
.

Example 3.3.1. Let f ∈ C[t] be a non-constant polynomial in one variable and let X
be the Zariski open set of A1 complementary to {f ′ = 0}. Then the complex

C[t, 1/f ′][z, z−1]
z∂t − f ′−−−−−−−→ C[t, 1/f ′][z, z−1]

has cohomology in degree one only, and this cohomology is a free C[z, z−1]-module of
rank equal to deg f ·#{f(t) | f ′(t) = 0}, according to 3.2.1(2) for instance. But, by
the choice of X, f has no critical point on X, hence no vanishing cycle.

On the other hand, let us remark that the formal twisted de Rham complex

C[t, 1/f ′]((z))
z∂t − f ′−−−−−−−→ C[t, 1/f ′]((z))

has zero cohomology and is a possible candidate to the desired formula. Indeed, let
us show for instance that the differential is onto. This amounts to showing that, given
ψko , ψko+1, . . . in C[t, 1/f ′], we can find ϕko , ϕko+1, . . . in C[t, 1/f ′] such that

ψko = −f ′ϕko , ψko+1 = ∂tϕko − f ′ϕko+1, . . . , ψk+1 = ∂tϕk − f ′ϕk+1, . . . ,

a system which can be solved inductively because f ′ is invertible in C[t, 1/f ′]. This
is in fact a general property.

Theorem 3.3.2 (C.S. [Sab10], C.S.-M. Saito [SS12]). If f : X → C is a regular function
on a smooth quasi-projective variety X. Then we have(

Hk
(
X, (Ω

•
X((z)),d− df/z)

)
,∇∂z

)
'
⊕
c∈C

Ê−c/z ⊗ R̂H−1
(
Hk−1

(
f−1(c), φf−cCXan

)
,T
)
,

Remarks 3.3.3.
(1) This statement was conjectured by M. Kontsevich as a possible way to define

vanishing cycles for a function on a smooth formal scheme (article with Soibelman on
Cohomological Hall algebras).



20 LECTURE 3. ALGEBRAIC COMPUTATION OF THE MONODROMY

(2) When f is proper, the left-hand term in 3.2.1(1) can be identified with that of
3.3.2.

Idea of the proof of Theorem 3.3.2. The left-hand term in the theorem is a cohomol-
ogy computed in the Zariski topology of X, while the right-hand term is defined in
the analytic topology of X. The proof will consist in two identifications:(

Hk
(
X, (Ω

•
X((z)),d− df/z)

)
,∇∂z

)
'
(
Hk
(
Xan, (Ω

•
Xan((z)),d− df/z)

)
,∇∂z

)
'
⊕
c∈C

Ê−c/z ⊗ R̂H−1
(
Hk−1

(
f−1(c), φf−cCXan

)
,T
)
,

The strategy is to replace these global identifications with local ones in the analytic
category.
• We first replace the first term with a hypercohomology computed in the analytic

topology. For that purpose, we consider a commutative diagram

(3.3.4)
X

f
��

� � j // Y

F
��

C �
�

// P1

such that Y rX is a divisor D in Y , and we have(
Hk
(
X, (Ω

•
X((z)),d− df/z)

)
,∇∂z

)
'
(
Hk
(
Y, (Ω

•
Y (∗D)((z)),d− dF/z)

)
,∇∂z

)
.

Moreover, although some care is to be taken because one the one hand the differential
of the complexes involved are not OY ((z))-linear and on the other hand one should be
careful with the operation ((z)), one has a GAGA type theorem(

Hk
(
Y, (Ω

•
Y (∗D)((z)),d− dF/z)

)
,∇∂z

)
'
(
Hk
(
Y an, (Ω

•
Y an(∗D)((z)),d− dF/z)

)
,∇∂z

)
.

• The first identification is now a consequence of a local statement:

(3.3.5) (Ω
•
Y an(∗D)((z)),d− dF/z)

)
' Rj∗(Ω

•
Xan((z)),d− df/z)

)
,

and the compatibility with the connection ∇∂z is obvious from the naturality of the
morphism.

Notice here that, due to ((z)), we cannot set z = 1 in this formula, and this is
fortunate because

(Ω
•
Y an(∗D),d− dF )

)
6' Rj∗(Ω

•
Xan((z)),d− df)

)
,

due to the irregularity of the connection d− dF along F−1(∞) ⊂ D, which is due to
the pole of f along F−1(∞), producing a pole of order > 2 of df . The conclusion is
that “adding ((z)) in the complexes” regularizes the irregular connection d− dF .
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• For the second identification, we try to consider both terms on an equal footing,
and we introduce the complex K •

f :=
(
Ω•Xan [∂t],d − df · ∂t

)
. This is a complex of

sheaves of f−1DA1an -modules.
The sheaf DA1an is a subsheaf of the sheaf of formal micro-differential operators

ÊA1an defined as follows. As a sheaf of C-vector spaces, it equal to OX((z)). In other
words, a germ of section of ÊA1an at to ∈ A1an is a formal Laurent series

∑
k>ko

ak(t)zk,
where the holomorphic germs ak(t) are all defined on some fixed neighbourhood of to
the domain of definition is not allowed to shrink when k → ∞). The ring structure
is not the standard commutative one. It is defined in such a way that the natural
morphism

DA1an = OX〈∂t〉 −→ ÊA1an

p∑
k=0

ak(t)∂kt 7−→
p∑
k=0

ak(t)z−k

is a ring morphsm. In particular, the ring structure on ÊA1an is not commutative, and
ÊA1an is a left and right DA1an -module. We set

K̂ •
f := f−1ÊA1an ⊗f−1DA1an

K •
f .

Lemma 3.3.6. The natural morphism of complexes

(3.3.6 ∗) K̂ •
f −→

(
Ω
•
Xan((z)),d− df/z

)
is a quasi-isomorphism.

This result is due to M. Saito. It had also been proved by M. Kapranov in 1991
[Kap91].
• Preliminary conclusion. If we forget the ∇∂z -action, which can be controlled due

to the naturality of the morphisms, we can concatenate (3.3.6 ∗) with (3.3.5) to get a
natural isomorphism

Rj∗K̂
•
f
∼−→ (Ω

•
Y an(∗D)((z)),d− dF/z),

hence, by taking hypercohomology on Y an,

Hk(Xan, K̂ •
f )

∼−→Hk
(
Y an, (Ω

•
Y an(∗D)((z)),d− dF/z)

)
'Hk

(
X, (Ω

•
X((z)),d− df/z)

)
.

• This is completed with the isomorphism

(3.3.7) H k(K̂ •
f ) '

⊕
c∈C

R̂H−1(H k−1φf−cCXan ,T)

already observed by M. Kapranov (but up to some grading), and which shows the link
between vanishing cycles and microlocalization.
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• Conclusion. It remains to show an identification

Hk(Xan, K̂ •
f ) ' R̂H−1

(
Hk−1

(
f−1(c), φf−cCXan

)
,T
)
,

which is not a direct consequence of (3.3.7). A supplementary result of degeneration
of some spectral sequence is needed.

Final comment. For proving (3.3.6 ∗) and (3.3.5), one makes an explicit local com-
putation when D is a divisor with normal crossings and one shows that the previous
statements can be reduced to this case. Although this uses a variant of the decom-
position theorem of Beilinson, Bernstein and Deligne (or the corresponding analytic
statement by M. Saito), this variant does not need a true use of Hodge theory, so
Theorem 3.3.2, although it needs more sophisticated arguments, is in fact in the same
spirit as Theorem 2.2.1, and is not related to Theorem 2.3.1.
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