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Abstract We prove that in a family of projective threefolds defined over an algebraically
closed field, the locus of rational fibers is a countable union of closed subsets of the locus
of separably rationally connected fibers. When the ground field has characteristic zero, this
implies that the locus of rational fibers in a smooth family of projective threefolds is the
union of at most countably many closed subfamilies.
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1 Introduction

Let f : X → T be a projective equidimensional morphism onto a connected reduced scheme
T of finite type over an algebraically closed field k. Assume that the fibers Xt := f −1(t) are
varieties for all t ∈ T , and let n denote the relative dimension of f . We will refer to f as a
family of projective varieties. We are interested in understanding the algebraic structure of
the rational locus

Rat( f ) := {t ∈ T | Xt is a rational variety}
of the family.
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128 T. de Fernex, D. Fusi

It follows by general facts that Rat( f ) is a countable union of locally closed subsets of T .
Once singularities are allowed, it is easy to pick up examples of families of rational varieties
that specialize to nonrational ones. In characteristic zero, however, the following question
regarding smooth families has been around for some time.

Question 1.1 Assuming that f : X → T is a smooth family of projective varieties over
an algebraically closed field of characteristic zero, is Rat( f ) equal to a countable union of
closed subsets of T ?

The answer is easy and well-known in dimension one, and follows from Castelnuovo’s
rationality criterion in dimension two. It is expected that in higher dimensions Rat( f ) can
be a proper subset, possibly with infinitely many components; this should occur for instance
in smooth families of cubic fourfolds.

In this paper we study the three-dimensional case. We do not put conditions on the charac-
teristic of the ground field k; for this reason we consider the separably rationally connected
locus

SRC( f ) := {t ∈ T | Xt is separably rationally connected}
of the family. There is an inclusion Rat( f ) ⊂ SRC( f ), and equality holds for projective
families of relative dimension n ≤ 2. We prove the following result.

Theorem 1.2 For every family f : X → T of projective varieties of dimension three over
an algebraically closed field, Rat( f ) is a countable union of closed subsets of SRC( f ).

In the case where the ground field has characteristic zero, this yields a positive answer to
Question 1.1 in dimension three.

Corollary 1.3 For a smooth family f : X → T of projective threefolds over an algebraically
closed field of characteristic zero, Rat( f ) is a countable union of closed subsets of T .

The proof of these results is based on two basic properties: the countability and properness
of the irreducible components of Hilbert schemes, and the fact that divisorial valuations are
geometric. In characteristic zero, one can alternatively use the Weak Factorization Theorem in
place of the property on valuations. A key step of the proof is a result regarding one-parameter
degenerations of rational varieties, which is stated and proven below in Theorem 3.1. A
special case of this result, where the ground field is k = C and the degeneration is given by a
smooth family of complex threefolds, was also obtained using Hodge theoretic methods by
Timmerscheidt [15].

In view of Theorem 1.2, one could ask, as a plausible extension of Question 1.1 to arbi-
trary characteristics, whether given any family f : X → T of projective varieties over an
algebraically closed field, Rat( f ) is always a countable union of closed subsets of SRC( f ).
The examples discussed below in Example 3.4 suggest however that this may be false in
higher dimensions, even in characteristic zero; in fact, in view of these examples, it seems
likely that the hypothesis on the dimension in the theorem is optimal. It is important to remark
that the families in these examples are not smooth, so they do not bring enough evidence
to disbelieve Question 1.1. Rather, they suggest that if a positive answer is expected to this
question, then the smoothness of the family should play a key role in the proof.

We do not know the full history of Question 1.1. It is an old problem to find an example
of a family of nonrational projective varieties that specializes to a smooth rational variety.
The question whether in smooth families the locus of rational fibers can always be expressed
as a countable union of closed subsets has been considered in conversations between Paolo
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Francia and Alessandro Verra; it is likely that the same question has been raised by other
mathematicians as well. The special case of cubic hypersurfaces in P

5 is representative:
rationality questions about cubic fourfolds have attracted the attention of the mathematical
community for a long time, starting with the work of Morin [14] and Fano [5] if not earlier.
The construction of countably many families of rational cubic fourfolds due to Hassett [8,9],
in particular, fits naturally in the context of Question 1.1 and has prompted more people to
consider the rationality problem from this point of view.

2 General properties

We work over an algebraically closed field k. All schemes are assumed to be of finite type over
k. With the term variety we mean an integral scheme. A morphism of varieties f : X → Y
is separable if it is dominant and the field extension K (X) ⊃ K (Y ) is separably generated.
A variety X is rational if its function field is purely transcendental over k, or, equivalently,
if X is birational to P

n where n = dim X . A variety X is separably rationally connected if
there is a variety V and a morphism u : P

1 × V → X such that

u(2) : P
1 × P

1 × V → X × X

is separable, or equivalently, is dominant and smooth at the generic point (cf. [10, Definition
IV.3.2]).

The following property is a direct consequence of the definition (cf. [10, Proposition
IV.3.3.1]).

Proposition 2.1 If X and X ′ are two proper varieties that are birationally equivalent, then
X is separably rationally connected if and only if X ′ is.

It is straightforward from the definitions that a proper rational variety is separably rationally
connected, and the converse holds in dimension two (cf. [10, Exercise IV.3.3.5]).

Proposition 2.2 Let X be a proper surface. If X is separably rationally connected, then it
is rational.

Proof By Lipman [13], there exists a resolution of singularities of X . Since both rationality
and separably rational connectedness are birational properties, we may thus assume without
loss of generality that X is smooth. Then, by Kollár [10, Theorem IV.3.7], there is a morphism
g : P

1 → X such that f ∗TX is ample. This implies that every section of (∧q�X )
⊗m , for any

q,m ≥ 1, vanishes along g(P1). As these curves cover a dense set in X , we conclude that all
sections of (∧q�X )

⊗m are zero. Therefore X is rational by Castelnuovo’s criterion. �

Suppose now that f : X → T is a family of projective varieties parameterized by a

connected, reduced scheme T of finite type over k. The rational locus Rat( f ) of the family
has the following algebraic structure.

Proposition 2.3 Rat( f ) is a countable union of locally closed subsets of T .

We learned the following proof, which simplifies our original arguments, from Claire
Voisin.

Proof Let P := T × P
n , where n is the relative dimension of f . First observe that every

closed subscheme Z ⊂ X ×T P determines a birational map Xt ��� Pt ∼= P
n for every

t such that Zt is irreducible and both projections Zt → Xt and Zt → Pt are birational;
conversely, all birational maps from fibers of f to P

n arise in this way.
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Consider the relative Hilbert scheme H := Hilb(X ×T P/T ) of X ×T P , and let U → H
be the universal family: U is a closed subscheme of X ×T P ×T H , flat over H . For every
irreducible component Hj of H , consider the set of points h ∈ Hj such that Uh is irreducible
and, if t ∈ T is the image of h, then the projections Uh → Xt and Uh → Pt are birational.
By applying Lemma 2.4 to U j → X ×T Hj → Hj and U j → P ×T Hj → Hj where
U j := U ×H Hj , we see that this set is constructible in Hj . By Chevalley’s theorem, its
image in T is also constructible, and as such can be written as a finite union of locally closed
subsets. The union of all these sets, as Hj varies among the irreducible components of the
Hilbert scheme, is Rat( f ). The statement then follows by the fact that the Hilbert scheme
has countably many irreducible components. �

Lemma 2.4 Let U → V → H be morphisms of schemes of finite type over k, with U → H
flat and V → H projective. Then the set h ∈ H such that Uh is irreducible and Uh → Vh is
birational is constructive.

Proof Assuming without loss of generality that H is irreducible, these properties hold at the
generic point of H if and only if they hold over a nonempty open set of H . The statement
then follows by Noetherian induction. �

Remark 2.5 An analogous property is satisfied by the locus of unirational varieties: the
argument easily adjusts to this case by relaxing the condition on Uh → Xt from being
birational to being dominant. A related result concerning the behavior of uniruledness in
families is proven in [10, Therem IV.1.8], where it is shown that the locus of uniruled varieties
in an equidimensional proper family is a countable union of closed subsets of the base.

Regarding the general structure of SRC( f ), several interesting cases are covered by the
following proposition.

Proposition 2.6 Let f : X → T as above.

(a) In any setting where embedded resolution of singularities exists, SRC( f ) is a con-
structible subset of T .

(b) If f is smooth, then SRC( f ) is open in T .
(c) If f is smooth and k has characteristic zero, then SRC( f ) is open and closed in T (and

thus is either empty or equal to T ).

Proof The assertions in (b) and (c) are proven in [10, Theorem IV.3.11]. Regarding (a), first
note that f is separable as it has reduced fibers (cf. [7, Theorem II.8.6A and Proposition
II.8.10]) , and so is the restriction of f over any locally closed subset of T . Let Y → X
be a resolution of singularities, and consider the composition map g : Y → T . Since g
is separable, there is a nonempty open set T ◦ in the regular locus of T over which the
induced map g◦ : g−1(T ◦) → T ◦ is smooth (the proof of [7, Corollary III.10.7] goes through
without assumptions on the characteristic of the ground field as long as one assumes that the
morphism is separable). By (b), SRC(g◦) is an open subset of T ◦. Note on the other hand
that SRC( f )∩ T ◦ = SRC(g◦) by Proposition 2.1, since every fiber of g◦ is birational to the
corresponding fiber of f . Thus the assertion follows by Noetherian property, by considering
a suitable stratification of T . �

Remark 2.7 A different definition of separably rational connectedness has been considered
in works of de Jong, Graber, and Starr (cf. [4,6]), where a projective variety X is said to be
separably rationally connected if there exists a morphism g : P

1 → Xreg such that g∗TXreg

is ample. It is elementary to see that this property is open in families. It follows by the
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deformation theory of rational curves (see for instance the argument in the proof of [10,
Theorem IV.3.5]) that a projective variety that is separably rationally connected in the sense
of de Jong, Graber and Starr is also separably rationally connected in the sense defined in
the previous section, and the two notions coincide whenever X is smooth by Kollár [10,
Theorem IV.3.7]. It is however not clear to us whether being separably rationally connected
in the sense of de Jong, Graber and Starr is a birational property among projective varieties.
In particular, we do not know whether a rational projective variety is necessarily separably
rationally connected in this sense.

It is easy to construct examples of families of rational projective varieties degenerating
to singular varieties that are not rational, and vice versa. We do not know any example of a
(connected) smooth family of projective varieties containing both rational and nonrational
members. It is expected in general that one needs to consider countable unions in Proposi-
tion 2.3 and in Question 1.1.

Example 2.8 Complex cubic fourfolds in P
5 form a particularly interesting class of varieties

from the point of view of rationality. The quest for rational examples goes back at least to
Morin [14], who gave an incorrect argument that would have implied that the general cubic
in X ⊂ P

5 is rational. In the same paper, however, Morin correctly proves the rationality
of general Pfaffian cubic fourfolds: these span a codimension one family of smooth rational
cubics fourfolds which was further studied by Fano [5], Tregub [16], and Beauville and
Donagi [2]. A crucial step in the study of cubic fourfolds is Voisin’s proof of a Torelli
Theorem for these varieties [17]. More examples of rational cubic fourfolds were found by
Zarhin [19], and later Hassett [8,9] constructed a countable series of distinct families of
smooth rational cubic fourfolds: these are parameterized by divisors on the family of cubics
containing a plane, which has codimension one in the whole space of cubics. It is expected
on the other hand that not only the general cubic in P

5, but also the very general element
among those containing a plane is not rational. An explicit conjecture has been formalized in
the language of derived categories by Kuznetsov [12]. Knowing this conjecture would give
an example of a family where the rational locus is, strictly speaking, a countable union of
closed subfamilies.

3 The three dimensional case

In dimension three, we have the following property regarding one-parameter degenerations
of rational projective varieties.

Theorem 3.1 Let f : X → T be a projective morphism from a variety X onto a smooth
curve T defined over an uncountable algebraically closed field k. Let 0 ∈ T be a closed
point. Assume that Xt is a rational variety for every t �= 0. Then every reduced, irreducible
component D of X0 that is separably rationally connected is rational.

Proof Using the same notation as in the proof of Proposition 2.3, there are countably many
irreducible locally closed subsets

Si ⊂ H := Hilb(X ×T (T × P
3)/T ), i ∈ N,

such that, if U is the universal family of H then, for every h ∈ Si ,Uh gives a birational
correspondence between a fiber Xt of X and P

3, and the rational locus of f is given by the
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union

Rat( f ) =
⋃

i

Ti

of the images Ti ⊂ T of the sets Si . Note that each Ti is an irreducible constructible subset
of T , and thus is either a point or an open subset.

Since we are assuming that Rat( f ) = T � {0} and the ground field is uncountable, there
is at least one index i0 such that Ti0 is a dense open subset of T . Let Si0 be the closure of
Si0 in H . By the properness of the Hilbert scheme over T, Si0 maps onto T . Let C ⊂ Si0 be
a general complete intersection curve; we assume in particular that C is irreducible, that it
intersects Si0 , and that the map C → T is surjective. Note that C ∩ Si0 is open and dense in
C . Let then T ′ → C be the normalization, let g : T ′ → T be the composition map, and fix
a point 0′ ∈ g−1(0). The fiber product X ′ := T ′ ×T X is a variety, and by base change we
obtain a projective morphism

f ′ : X ′ → T ′

with fiber X ′
0′ ∼= X0 over 0′.

Let H ′ := Hilb(X ′ ×T ′ (T ′ × P
3)/T ′), with universal family U ′. By base change, we

have a commutative diagram

UT ′ ��

��

U ′

��

�� U

��
T ′ ��

��
��

��
��

��
��

��
��

H ′

��

�� H

��
T ′ �� T

,

where

UT ′ := U ×H T ′ = U ′ ×H ′ T ′

is the pullback of the universal family to T ′. By construction, the image of the induced map
UT ′ → X ′ ×T ′ (T ′ × P

3) is a closed subscheme

Z ′ ⊂ X ′ ×T ′ (T ′ × P
3)

such that for every s ∈ g−1(Ti0) the fiber Z ′
s is irreducible and both projections Z ′

s → X ′
s

and Z ′
s → {s} × P

3 are birational. Since g−1(Ti0) is an open dense subset of T ′, it follows
that the support of Z ′ is the graph of a birational map

φ : X ′ ��� T ′ × P
3

defined over T ′.
Let D′ be the irreducible component of X ′

0′ mapping to D via the isomorphism X ′
0′ ∼= X0.

Since the fiber X ′
0′ is a Cartier divisor on X ′ that is reduced at the generic point ηD′ of D′, ηD′

is contained in the regular locus of X ′. Thus the vanishing order at ηD′ defines a divisorial
valuation on the function field of X ′. Let ν be the induced valuation on the function field of
T ′ × P

3. Note that the center C0 of ν in T ′ × P
3 is contained in the fiber {0′} × P

3.
Consider the sequence of blow-ups

· · · → Yi → Yi−1 → · · · → Y1 → Y0 := T ′ × P
3
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where each gi : Yi → Yi−1 is the blow-up of Yi−1 along the the center Ci−1 of ν. Note that,
for every i,Ci is contained in the exceptional divisor of the blow-up gi , and gi (Ci ) = Ci−1.

By induction on i , both Yi−1 and Ci−1 are smooth at the generic point of Ci−1, and
therefore there is a dense open set Y ◦

i−1 ⊂ Yi−1, contained in the regular locus of Yi−1, such

that C◦
i−1 := Ci−1 ∩ Y ◦

i−1 is smooth and the induced map g−1
i (Y ◦

i−1) → Y ◦
i−1 is the blow-up

of the normal bundle Ni−1 of C◦
i−1 in Y ◦

i−1. In particular, the restriction of the exceptional
locus of gi over C◦

i−1 is isomorphic to the projective bundle PC◦
i−1
(Ni−1).

It follows by a theorem of Zariski (cf. [11, Lemma 2.45]) that there is an integer m ≥ 0
such that the center Cm of ν has codimension one in Ym and ν is given by the order of
vanishing at the generic point of Cm . In particular, Cm is birational to D′ since both their
function fields are equal to the residue field of the valuation (geometrically, Cm is the proper
transform of D′ under the birational map X ′ ��� Ym). We can pick m to be the least integer
with these properties.

If m = 0, then the center of ν in T ′ × P
3 is the whole fiber {0′} × P

3. This means that φ
induces a birational map from D′ to {0′} × P

3, and therefore D′ is rational.
Suppose then that m ≥ 1. In this case the projection Cm → Cm−1 is a surjective map

from a threefold to a variety of dimension at most two. Note that Cm is separably rationally
connected, since it is birational to X0 which is separably rationally connected by hypothesis,
and being separably rationally connected is a birational property (see Proposition 2.1). Since
the map Cm → Cm−1 is smooth over C◦

m−1, it follows that Cm−1 is separably rationally
connected too. The assumption on the relative dimension of f implies that dim Cm−1 ≤ 2. If
Cm−1 has dimension at most one then it is clearly rational, and the same conclusion holds if
Cm−1 is a surface by Proposition 2.2. Note, on the other hand, that Cm contains g−1(C◦

m−1)

as a dense open set, and the latter is isomorphic to PC◦
m−1
(Nm−1). We conclude that Cm is

rational. Therefore D is rational. �

Remark 3.2 If the ground field k has characteristic zero then one can use an alternative
argument, based on the Weak Factorization Theorem [1,18], to prove Theorem 3.1. The
argument goes as follows. Let φ : X ′ ��� T ′ × P

3 and D′ be as in the proof of the theorem,
and suppose that φ contracts D′ (so that it does not induce directly a birational map from
D′ to {0′} × P

3). Let Y → X ′ be a resolution of singularities. By the Weak Factorization
Theorem applied to the induced birational map Y ��� T ′ × P

3, we can find a sequence of
blow-ups pi and blow-downs q j with smooth irreducible centers

Z1

p1

�����
��

�� q1

���
��

��
� Z2

p2

����
��

�� q2

���
��

��
� Zn

pn

�������� qn

����������

Y = Y 0 Y 1 Y 2 . . . Y n−1 Y n = T ′ × P
3

(we allow isomorphisms among the maps pi and q j ). Since φ contracts D′, there is a model
Zi , for some 1 ≤ i ≤ n, where the proper transform Di of D′ is the exceptional divisor
of qi : Zi → Y i . Since Di is rationally connected, so is its image Wi := qi (Di ), which is
therefore rational. This implies that Di is rational, as it is isomorphic to the projectivization
of the normal bundle of Wi in Y i . Therefore D is rational.

Remark 3.3 When the ground field is k = C and the family f : X → T is smooth, Theo-
rem 3.1 also follows by Timmerscheidt [15, Theorem 1].

Proof of Theorem 1.2 The statement of the theorem is trivial if the ground field k if finite or
countable, since in this case any subset of T can be expressed as a countable union of closed
subsets. Thus we can assume that k is uncountable.
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By Proposition 2.3, Rat( f ) is a countable union of locally closed subsets of Ri ⊂ T .
Suppose that Rat( f ) cannot be written as a countable union of closed subsets of SRC( f ).
Then we can find a point p ∈ SRC( f )� Rat( f ) that belongs to the closure Ri of Ri in T for
some i . Let S ⊂ Ri be a curve passing through p and with generic point in Ri . Let S̃ → S
be the normalization of S and fix a point 0 ∈ S̃ in the pre-image of p. Let then T̃ ⊂ S̃ be an
open neighborhood of 0 such that T̃ � {0} maps into Ri . By taking the base change

f̃ : X̃ := X ×T T̃ → T̃ ,

we reduce to the setting of Theorem 3.1, which implies that X̃0 is rational. Since X̃0 ∼= X p ,
this contradicts the fact that p �∈ Rat( f ). �

Proof of Corollary 1.3 In the hypothesis of Question 1.1, assume that f has relative dimen-
sion 3. Suppose that Rat( f ) �= ∅. Then SRC( f ) is nonempty, and thus it is equal to T by
Proposition 2.6. Therefore the corollary reduces to a special case of Theorem 3.1. �

Example 3.4 Consider the projection P

1 × P
n → P

1. Fix a point 0 ∈ P
1, and let W be a

smooth hypersurface of degree n in the fiber {0} × P
n . By de Fernex [3], W is nonrational

if n ≥ 4 and the ground field has characteristic zero. Although W might be stably rational
(which would mean that W × P

m is rational for some m), it is quite possible that W × P
1 is

nonrational. In fact, it is conceivable (and possibly expected) that W is not even unirational
if it is general, and this would certainly imply that W × P

1 is not rational. Now, let L =
OP1(2)� OPn (n) and IW be the ideal sheaf of W in P

1 × P
n . The sheaf L ⊗ IW is globally

generated, and thus the linear system |L ⊗ IW | defines a rational map

ψ : P
1 × P

n ��� X ⊂ PH0(L ⊗ IW )

which is resolved by the blow-up Y = BlW (P1×P
n) of IW . Here X denotes the closure of the

image of the map. The map ψ is defined over P
1, and thus there is a morphism f : X → P

1.
Furthermore, ψ induced an isomorphism away from the fibers over 0, so that Xt ∼= P

n

for t �= 0. On the other hand the fiber X0 is birational to W × P
1. Indeed, the induced

morphism ψ ′ : Y → X contracts the proper transform of {0} × P
n to a point and maps the

exceptional divisor of the blow-up birationally to the fiber X0, which is thus isomorphic to
the projective cone in P

n+1 over W . In particular, X0 is not rational if W ×P
1 is not rational;

note however that X0 is always separably rationally connected (for every W in characteristic
zero, and for general W in positive characteristics by Zhu [20]). This example suggests that
the analogous statement of Theorem 3.1 in higher dimensions may be false, possibly starting
from dimension four.
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