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Abstract

We prove that the general quartic double solid with k ≤ 7 nodes does not admit a
Chow theoretic decomposition of the diagonal, (or equivalently has a nontrivial univer-
sal CH0 group,) and the same holds if we replace in this statement “Chow theoretic”
by “cohomological”. In particular, it is not stably rational. We also deduce that the
general quartic double solid with seven nodes does not admit a universal codimen-
sion 2 cycle parameterized by its intermediate Jacobian, and even does not admit a
parametrization with rationally connected fibers of its Jacobian by a family of 1-cycles.
This finally implies that its third unramified cohomology group is not universally trivial.

0 Introduction

Let X be a smooth connected complex projective variety. If CH0(X) = Z (or equivalently
the subgroup CH0(X)0 ⊂ CH0(X) of 0-cycles of degree 0 is 0), we have the Bloch-Srinivas
decomposition of the diagonal (see [5]) which says that for some integer N ̸= 0,

N∆X = Z1 + Z2 in CHn(X ×X), n = dimX, (1)

where Z2 = N(X × x) for some point x ∈ X(C) and Z1 is supported on D × X, for
some proper closed algebraic subset D & X. Denoting K = C(X), (1) is equivalent by
the localization exact sequence to the fact that the diagonal point δK of XK , that is, the
restriction to Spec(K)×X of ∆X , satisfies

NδK = NxK in CHn(XK) = CH0(XK).

When there exists a decomposition as in (1) with N = 1, we will say that X admits a Chow
theoretic decomposition of the diagonal. As explained in [2, Lemma 1.3], this is equivalent
to saying that CH0(X) is universally trivial, in the sense that for any field L containing C,
CH0(XL)0 = 0.

By taking cohomology classes in (1), one gets as well a decomposition

N [∆X ] = [Z1] + [Z2] in H2n(X ×X,Z), n = dimX, (2)

where Z1, Z2, D are as above, from which Bloch and Srinivas [5] deduce a number of in-
teresting consequences. When there exists a decomposition as in (2) with N = 1, that
is

[∆X ] = [Z1] + [X × x] in H2n(X ×X,Z), (3)

where Z1 is supported on D ×X, for some proper closed algebraic subset D ⊂ X, we will
say that X admits a cohomological decomposition of the diagonal. We started the study of
this property in [27], mainly in the case of rationally connected threefolds.
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In either of its forms (Chow-theoretic or cohomological), the existence of a decomposition
of the diagonal is an important criterion for rationality, as noticed in [2], [27]. This property
is in fact invariant under stable birational equivalence, where we say that X and Y are stably

birational if X × Pr
birat∼= Y × Ps for some integers r and s. As this property is obviously

satisfied by projective space, an X not satisfying this criterion is not stably rational.
We compare these two properties (the existence of a Chow-theoretic and cohomological

decompositions of the diagonal) in [28], showing in particular that they are equivalent for
cubic fourfolds and odd dimensional smooth cubic hypersurfaces.

It is a basic fact, proved in [27], that a smooth complex projective variety X with non-
trivial Artin-Mumford invariant (the torsion subgroup of H3(X,Z)) does not admit a coho-
mological decomposition (and a fortiori a Chow-theoretic decomposition) of the diagonal.
This is the starting point of this paper and combined with a degeneration (or specialization)
argument (see Theorem 1.1), this will provide us with simple examples of smooth projective
unirational threefolds with trivial Artin-Mumford invariant which do not admit a decom-
position of the diagonal, hence are not stably rational. Note that these varieties also have
trivial higher degree unramified cohomology groups by [12].

Let us now discuss a little more precisely the results in this paper, distinguishing the
Chow-theoretic and cohomological cases.

0.1 Chow-theoretic decomposition of the diagonal and application
to stable rationality

The first examples of unirational threefolds with nontrivial torsion in their degree 3 inte-
gral Betti cohomology were constructed by Artin and Mumford [1]. These varieties are
desingularizations of certain special 10-nodal quartic double solids (that is, double covers
Y → P3 ramified along a quartic surface with 10 nodes in special position). The exam-
ples we consider are smooth quartic double solids, for which the quartic surface is smooth,
or desingularizations of k-nodal quartic double solids, for which the quartic surface has k
ordinary quadratic singularities, but unlike the Artin-Mumford examples, the nodes of the
quartic surface will be in general position. They are unirational (see [3]), a fact which in the
nodal case is immediate to prove by considering the preimages in Y of lines in P3 passing
through the node : these curves are rational and the family of these curves endows Y with
a conic bundle structure, which furthermore contains a multisection which is a rational sur-
face, giving unirationality. If the quartic surface has at most seven nodes in general position,
then X has no torsion in its integral cohomology. We will prove by a degeneration argument
(cf. Theorem 1.1,(i)) the following result.

Theorem 0.1. (Cf. Theorem 1.6) Let X be the desingularization of a very general quartic
double solid with at most seven nodes. Then X does not admit an integral Chow-theoretic
decomposition of the diagonal, hence it is not stably rational.

Remark 0.2. The family of 6 or 7-nodal quartic double solids, or equivalently 6 or 7-nodal
quartic surfaces in P3, is not irreducible (see [15]). Observe however that there is an unique
irreducible component M of the space M ′ of nodal quartic surfaces in P3 with k ≤ 7 nodes
dominating (P3)(k) by the map ϕ : M → (P3)(k) which to a k-nodal quartic associates its
set of nodes. This is what we mean in the Theorem above by “general quartic double solid
X with k ≤ 7 nodes”. Indeed, given a set z of k ≤ 7 points in general position, the set Mz

of quartics which are singular along z is a projective space. One easily checks that a generic
point in this projective space parameterizes a nodal quartic surface with exactly k nodes.
Thus if U is the Zariski open set of (P3)(k) consisting of points z such that the dimension
of Mz is minimal (in fact it is easily proved that this dimension is the expected dimension
34− 4k), one finds that ϕ−1(U) is a Zariski open set in a projective bundle over U , hence is
irreducible. In fact, we also get results for quartic double solids with 8 or 9 nodes, but their
parameter spaces are reducible and we do not know to which component of their parameter
spaces our results apply.
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The case of seven nodes is particularly interesting, because the intermediate Jacobian of
X in this case is of dimension 3, hence is as a principally polarized abelian variety isomorphic
to the Jacobian of a curve. Thus the Clemens-Griffiths criterion for rationality is satisfied
in this case, and as a consequence, even the irrationality of the very general 7-nodal double
solid proved above was unknown. In the case of k ≤ 6, the irrationality of the very general
k-nodal quartic double solid was already known using the Clemens-Griffiths criterion, (this
is proved [30] for all smooth quartic double solids and we refer to [7] for the nodal case,)
but its stable irrationality was unknown.

Remark 0.3. De Fernex and Fusi [13] prove that in dimension 3, rationality is stable under
specialization to nodal fibers. Thus, if rationality instead of stable rationality is considered,
the above statement concerning the irrationality of the very general k-nodal double solid with
k ≤ 7 could be obtained by applying their argument. Note however that our degeneration
theorem (Theorem 1.1) works in any dimension, while theirs works only in dimension 3.

0.2 Cohomological decomposition of the diagonal and cycle-theoretic
applications

We wish to describe in more detail in this paragraph which kind of information can be
extracted from the non-existence of a cohomological decomposition of the diagonal, as this
provides more explicit obstructions to stable rationality. A general reason why it should be
more restrictive than the rational decomposition (2) is the following : If the positive degree
cohomology H∗>0(X,Q) has geometric coniveau ≥ 1, that is, vanishes on the complement
of a divisor D ⊂ X, a property which is implied by the decomposition (2), the same is
true for the positive degree integral cohomology H∗>0(X,Z) (possibly for a different divisor
D′). Indeed, as noted in [12], the Bloch-Ogus sheaves Hi(Z) on XZar associated to the
presheaves U 7→ Hi(U,Z) have no Z-torsion, as a consequence of the Bloch-Kato conjecture
proved by Voevodsky [25]. It follows from this that the class [∆X ]− [X ×x] vanishes on the
Zariski open set U ×X of X, where U := X \D′. This shows that assuming (2), one gets a
decomposition

[∆X ] = α+ [X × x] in H2n(X ×X,Z)

where α is an integral cohomology class supported on D′ × X. The decomposition (3) is
a much stronger statement since it asks that the class α is the class of an algebraic cycle
supported on D′.

The following example on the other hand shows that in the absence of torsion in coho-
mology, we need some transcendental cohomology in order to prove the non-existence of an
integral cohomological decomposition of the diagonal :

Example 0.4. If X is a smooth projective variety such that H∗(X,Z) has no torsion and is
algebraic, that is, is generated by classes of algebraic subvarieties, then X admits an integral
cohomological decomposition of the diagonal. This follows from the Künneth decomposition
which expresses the Betti cohomology class of the diagonal as a Z-linear combination of
classes pr∗1α ⌣ pr∗2β, and from the fact that all cohomology classes on X are algebraic.

In the presence of non-trivial odd degree cohomology (necessarily of degree ≥ 3 if we
already have a rational decomposition as in (2)), the integral decomposition (3) becomes
restrictive, even when the integral cohomology is torsion free, as shows our theorem 0.9.
The obstruction we find is a sort of secondary obstruction which we describe now. Recall
that if H3(X,OX) = 0, the intermediate Jacobian of X, defined as the complex torus

J3(X) = H3(X,C)/(H3(X,Z)⊕ F 2H3(X,C)), (4)

is an abelian variety. Furthermore the generalized Hodge conjecture [17] predicts that the
Griffiths Abel-Jacobi map

AJX : CH2(X)hom → J3(X)
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is surjective. When CH0(X) = Z, this is proved by Bloch and Srinivas [5] who even prove
under this assumption the much stronger result that AJX : CH2(X)hom → J3(X) is an
isomorphism (see also [23]). The situation is then similar to the case of divisors, where we
have the Abel-Jacobi isomorphism AJX : Pic0(X) ∼= J1(X) and where it is well-known that
there exists a universal (or Poincaré) divisor P on J1(X) × X with the property that the
morphism ϕP : J1(X) → J1(X), which to l ∈ J1(X) associates AJX(Dl), is the identity.
Our second main result in this paper is that, from this last viewpoint, codimension ≥ 2
cycles actually behave differently than divisors, and as we will see, this is related to the
cohomological decomposition of the diagonal. Let us make the following definition:

Definition 0.5. Let X be a smooth projective variety such that AJX : CH2(X)hom → J3(X)
is an isomorphism (note that J3(X) is then automatically an abelian variety). We will
say that X admits a universal codimension 2 cycle if there exists a codimension 2 cycle
Z ∈ CH2(J3(X)×X) such that Z|a×X is homologous to 0 for a ∈ J3(X) and the morphism
induced by the Abel-Jacobi map

ΦZ : J3(X) → J3(X), a 7→ AJX(Za),

is the identity of J3(X).

Remark 0.6. Note that under the same assumption H3(X,OX) = 0, there is an integral
Hodge class α of degree 4 on J3(X)×X which is determined up to torsion by the property
that

α∗ : H1(J
3(X),Z) → H3(X,Z)/torsion

is the canonical isomorphism given by the definition (4) of J3(X) as a complex torus and
by the fact that α is of type (1, 3) in the Künneth decomposition of H4(J3(X)×X,Z).

The rational cohomological decomposition of the diagonal (2) implies that Nα (modulo
torsion) is algebraic (see Lemma 2.5 and [5]). So for a smooth complex projective variety
X with CH0(X) = Z, saying that X admits a universal codimension 2 cycle is equivalent
to saying that this degree 4 integral Hodge class on J3(X) × X, which is known to be
Q-algebraic, is actually algebraic (modulo the torsion of H4(J3(X)×X,Z)).

We proved in [27] that if X has dimension 3, the integral cohomological decomposition
(3) has the following consequences (consequence 1 is due to Bloch and Srinivas [5] and uses
only the rational cohomological decomposition (2)):

Theorem 0.7. Assume a smooth projective 3-fold has an integral cohomological decompo-
sition of the diagonal. Then

1. Hi(X,OX) = 0 for i > 0.

2. H∗(X,Z) has no torsion.

3. The even degree integral cohomology of X consists of classes of algebraic cycles.

4. There exists a universal codimension 2 cycle Z ∈ CH2(J3(X)×X).

Conversely, if 1 to 4 hold and furthermore the following property holds:

5. J3(X) has a 1-cycle z ∈ CHg−1(J3(X)) whose cohomology class [z] ∈ H2g−2(J3(X),Z)
is the minimal class θg−1

(g−1)! , where g := dim J3(X), and θ ∈ H2(J3(X),Z) is the class of the

natural principal polarization on J3(X),

then X admits an integral cohomological decomposition of the diagonal.

Remark 0.8. More recently, we proved in [28] that Property 5 above is also implied by the
existence of a cohomological decomposition of the diagonal, but we will not need this result
here.
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If we consider a rationally connected threefold X, 1 and 3 are always satisfied (1 is
standard and 3 is proved in [26]). The Artin-Mumford example [1] shows that 2 does
not always hold even for unirational threefolds and this provides by the theorem above an
obstruction to the existence of an integral cohomological decomposition of the diagonal.

Property 4 is much harder to analyze and it is still unknown if it is satisfied for the
general cubic threefold (this result is claimed in [31] but the proof is incorrect, as there is
a missing term in the formula used for ch(OX(1)) in the proof of Theorem 2.3 of loc. cit.).
We prove in [28] that it is satisfied by “many” smooth cubic threefolds, (more precisely,
there is a countable union of subvarieties of codimension ≤ 3 in the moduli space of cubic
threefolds parameterizing cubic threefolds satisfying property 4). One of our main results
in this paper is the fact that Property 4 can fail for some unirational threefolds. In fact,
we will exhibit unirational threefolds X for which property 2 (the Artin-Mumford criterion)
and property 5 of Theorem 0.7 are satisfied, but not admitting an integral cohomological
decomposition of the diagonal. Such a threefold X does not admit a universal codimension
2 cycle by Theorem 0.7.

Theorem 0.9. (Cf. Theorem 1.6 and Theorem 1.10.) (i) Let X be the desingularization
of a very general quartic double solid with at most seven nodes. Then X does not admit an
integral cohomological decomposition of the diagonal.

(ii) If X is the desingularization of a very general quartic double solid with exactly seven
nodes, then X does not admit a universal codimension 2 cycle Z ∈ CH2(J3(X)×X).

Concerning property 5, that is, the question whether J3(X) has a 1-cycle in the minimal

class θg−1

(g−1)! , this is a very classical completely open question for most rationally connected

threefolds (in particular the cubic threefold, for which we prove in [28] that a positive answer
to this question is equivalent to the fact that the cubic threefold has universally trivial CH0

group) but also for very general principally polarized abelian varieties of dimension ≥ 4. The
Clemens-Griffiths criterion for rationality [9] states that if a smooth projective threefold is
rational, its intermediate Jacobian is isomorphic as a principally polarized abelian variety
to a product of Jacobians of smooth curves. By the Matsusaka characterization of products
of Jacobians [22], another way to state the Clemens-Griffiths criterion is to say that there
exists an effective 1-cycle in J3(X) (that is, a combination with positive coefficients of

curves in J3(X)) whose cohomology class is the minimal class θg−1

(g−1)! . This condition is

much more restrictive geometrically than Property 5 above. In particular cases, it can be
solved negatively for a general X by a dimension count for the number of parameters for
Jacobians of curves, or for a specific X by the precise study of the geometry of the Theta
divisor. This cannot be done with the question of the existence of a 1-cycle in the minimal
class that is not necessarily effective. We will not be concerned by this problem however,
since in the examples we will analyze closely, namely the 7-nodal quartic double solids, we
will have dimJ3(X) = 3 so J3(X) will automatically satisfy the Clemens-Griffiths criterion.
Together with the triviality of the Artin-Mumford invariant, this allows us to entirely focus
on property 4, which by Theorem 0.7 above is the only obstruction to the existence of a
cohomological decomposition of the diagonal.

Our next result (Theorem 0.10) will relate the non-existence of a universal codimension 2
cycle to the vanishing of the universal third unramified cohomology with torsion coefficients
introduced in [2]. Unramified cohomology with torsion coefficients has been used by Colliot-
Thélène and Ojanguren [10] as a powerful tool to detect irrationality (see also [24]). In the
paper [2], the authors introduce the notion of “universal triviality of the third unramified
cohomology group of X”. We just sketch here the idea and refer to [2] for more details. The
universal triviality of the third unramified cohomology group of X with torsion coefficients
is equivalent to the fact that for any smooth quasi-projective variety U and any class α ∈
H3

nr(U×X,Q/Z), there is a Zariski dense open set U ′ ⊂ U such that α|U ′×X is the pull-back
of a class β ∈ H3(U ′,Q/Z). In the paper [2], the notion is more elegantly formulated since
the authors can use the étale cohomology of the variety XK where K is the function field
of U , but in the context of Betti cohomology, we have to formulate it by taking the direct
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limit over Zariski open sets. In any case, the notion is obviously particularly interesting for
those varieties with vanishing third unramified cohomology group with torsion coefficients,
as it is the case for rationally connected threefolds (see [12]).

Theorem 0.10. (Cf. Theorem 2.1) Let X be a smooth complex projective variety of dimen-
sion n with CH0(X) = Z. Assume

1. H∗(X,Z) has no torsion and the Künneth components of the diagonal are algebraic.

2. The group H3
nr(X,Q/Z) is trivial (or equivalently by [12], the integral Hodge classes

of degree 4 on X are algebraic).

Then the degree 3 unramified cohomology of X with torsion coefficients is universally trivial
if and only if there is a universal codimension 2 cycle Z ∈ CH2(J3(X)×X).

These hypotheses apply to any rationally connected threefold with no torsion in H3 (see
Corollary 2.3), and also to cubic fourfolds, proving in particular the universal triviality of
the third unramified cohomology group with torsion coefficients of any smooth cubic fourfold
(see Example 2.2).

Corollary 0.11. If X is as in Theorem 0.9, (ii), the universal third unramified cohomology
group of X with coefficients in Q/Z is not universally trivial.

0.3 A geometric application

We conclude this paper with a result of a more geometric nature. It concerns the following
weaker version (*) of property 4 of Theorem 0.7, originating in work of de Jong and Starr
(see [14]), which is very natural if one thinks of the geometry of the Abel map for 0-cycles
on curves:

(*) There exist a smooth projective variety B and a codimension 2 cycle Z ∈ CH2(B×X)
inducing a surjective map

ΦZ : B → J3(X), b 7→ AJX(Zb)

with rationally connected general fibers.

Property (*) is satisfied by cubic threefolds (see [21]). In [27], we observed that (*)
has already very nice consequences on the integral Hodge conjecture (for instance, if X is
rationally connected and H3(X,Z) has no torsion, property (*) implies that the integral
Hodge conjecture holds for products C ×X, where C is a smooth curve).

Coming back to Theorem 0.9, (ii), we will even prove a stronger statement (see Theorem
1.10), namely that in the situation and with the notation above, X does not satisfy property
(*). This in particular answers negatively the following question originally asked by Harris,
de Jong and Starr, solved positively for the intersection of two quadrics [6] and for many
degrees for the cubic threefold [21], [19], [27]:

Question: Let X be a rationally connected threefold. Is it true that the Abel-Jacobi
map on the main component of the family of rational curves of sufficiently positive class has
rationally connected general fiber?

(Note that the paper [14] exhibits a totally different behaviour for rational curves on cubic
fourfolds. Note also that Castravet [6] gives examples of X as above, with H2(X,Z) = Z
and for which the family of free rational curves of degree d is reducible for all degrees d, the
general point of the “main component” parameterizing a very free rational curve.)

The method of the proof of Theorems 0.1 and 0.9, (i), is by degeneration of the general
quartic double solid Xt, (or the general k-nodal double solid Xt,) to the Artin-Mumford
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nodal quartic double solid X0. Our general result proved in Section 1 is the general spe-
cialization theorem 1.1 implying in our case that the non-existence of a decomposition of
the diagonal (Chow-theoretic or cohomological) for a desingularization of X0 implies the
non-existence also for the very general smooth double solid Xt, or for the desingularization
X̃t of a very general double solid with k ≤ 7 nodes. The interesting fact in this degeneration
argument is the following: the desingularization of the Artin-Mumford double solid does
not admit an integral cohomological decomposition of the diagonal because it has some non-
trivial torsion in its integral cohomology. The desingularization of the general k ≤ 7-nodal
double solid then does not admit an integral cohomological decomposition of the diagonal,
but it has no torsion anymore in its integral cohomology. The non-existence of integral
cohomological decomposition of the diagonal thus implies that another property from 1 to
5 in Theorem 0.7 must be violated, and when k = 7, the only one which can be violated is
the existence of a universal codimension 2 cycle.

Thanks. I thank Jean-Louis Colliot-Thélène for sending me the very interesting paper
[2], for inspiring discussions related to it and for his criticism on the exposition.

1 A degeneration argument

We prove in this section the following degeneration (or specialization) result.

Theorem 1.1. Let π : X → B be a flat projective morphism of relative dimension n ≥ 2,
where X is smooth and B is a smooth curve 1. Assume that the fiber Xt is smooth for t ̸= 0,
and has at worst ordinary quadratic singularities for t = 0. Then

(i) If for general t ∈ B, Xt admits a Chow theoretic decomposition of the diagonal
(equivalently, CH0(Xt) is universally trivial), the same is true for any smooth projective

model X̃o of Xo.
(ii) If for general t ∈ B, Xt admits a cohomological decomposition of the diagonal, and

the even degree integral homology of a smooth projective model X̃o of Xo is algebraic (i.e.

generated over Z by classes of subvarieties), X̃o also admits a cohomological decomposition
of the diagonal.

Remark 1.2. As the proof will show, the assumptions on the singularities of the central
fiber can be weakened as follows: For (i), it suffices to assume that the central fiber is

irreducible and admits a desingularization X̃o → Xo with smooth exceptional divisor E,
whose connected components Ei have universally trivial CH0 group2. For (ii), it would
suffice to know also that with the same conditions on the desingularization, the even degree
integral homology of X̃o is algebraic, the odd degree cohomology of E is trivial and the
even degree integral homology of E is without torsion and generated by classes of algebraic
cycles. These properties are clearly satisfied when E is a disjoint union of smooth quadrics.

Remark 1.3. Theorem 1.1 will be used in applications in the following form: If the desingu-
larization X̃o of the central fiber does not admit an integral Chow-theoretic or cohomological
decomposition of the diagonal, the very general fiber Xt does not admit an integral Chow-
theoretic or cohomological decomposition of the diagonal. This is because the set of points
t ∈ Breg such that the fiber Xt is smooth and admits an integral Chow-theoretic (resp. co-
homological) decomposition of the diagonal is a countable union of closed algebraic subsets
of Breg, see below.

1I thank J.-L. Colliot-Thélène for bringing to my attention the fact that the smoothness assumption I
had originally put on X was in fact not used in the proof.

2A. Pirutka and J.-L. Colliot-Thélène [11] have indeed applied successfully the same method in the case
of a specialization to more complicated singularities, generalizing our results to quartic threefolds, instead
of quartic double solids.
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Proof of Theorem 1.1. (i) For a general t ∈ B, there exist an effective divisor Dt ⊂ Xt and
a cycle Zt supported on Dt ×Xt such that for any point xt ∈ Xt, one has

∆Xt = Zt + Xt × xt in CHn(Xt ×Xt). (5)

The set of data (Dt, xt, Zt) above is parameterized by a countable union of algebraic varieties
over B whose image in B contains a Zariski open set. It follows by a Baire category argument
that one of these algebraic varieties dominates B, so that there is a smooth finite cover
B′ → B and a divisor D ⊂ X ′ := B′ ×B X , which we may assume to contain no fiber of
X ′ → B′, a section σ : B′ → X ′ and a codimension n cycle Z in X ′ ×B′ X ′ supported on
D ×B′ X ′, with the properties that for general t ∈ B′,

∆X ′
t
= Zt + X ′

t × σ(t) in CHn(X ′
t ×X ′

t ), (6)

where Zt = Z|X ′
t×X ′

t
, which makes sense even if X ′ ×B′ X ′ is singular, because X ′

t ×X ′
t is a

Cartier divisor in X ′ ×B′ X ′ (see [16, 2.3]). Now we use the following general classical fact
(we include a proof for completeness):

Proposition 1.4. Let π : Y → B be a flat morphism of algebraic varieties, where B is
smooth, and let Z ∈ CHk(Y) be a cycle. Then the set BZ of points t ∈ B such that
Zt := Z|Yt

vanishes in CH(Yt) is a countable union of proper closed algebraic subsets of B.

Proof. For any t ∈ B such that Z and Yt intersect properly and Z|Yt
= 0 in CH(Yt), there

exist subvarieties Wi,t ⊂ Yt and nonzero rational functions ϕi,t on W̃i,t
ji,t→ Yt such that∑

i ji,t∗div ϕi,t = Z|Yt
. The data (Wi,t, ϕi,t) are parameterized by a countable union of

quasi-projective irreducible varieties Ml
αl→ B, whose image in B is exactly the set BZ . We

may assume that the Ml’s are smooth. For each of these varieties Ml, there exists a closed
algebraic subvariety Bl ⊂ B, such that Imαl contains a Zariski open set B0

l of Bl. Let
B0

l = αl(M
0
l ). For any point t of B0

l , we have Z|Yt
= 0 in CH(Yt) and it only remains

to show that this remains true for any point of Bl, since we then have BZ = ∪lBl. We
observe now that we can assume that the Ml’s carry universal objects, and thus that the
cycle Zl := α′

l
∗Z is rationally equivalent to 0 on Y ′

Ml
, where

Y ′
Ml

:=Ml ×B Y π′

→Ml,

and α′
l : Y ′

Ml
→ Y is the natural map. Let now Ml be a smooth partial completion of Ml

on which the morphism αl extends to a projective morphism αl : Ml → B whose image is
equal to Bl by properness. Denote by Y ′

Ml
the fibered product Ml ×B Y, and α′

l : Y ′
Ml

→ Y
the natural map. Then Imαl = Bl, and for any s ∈Ml with image t ∈ Bl, we have

α′
l
∗
(Z)|Y′

Mls

= Z|Yt
in CH(Yt).

Since the cycle α′
l
∗
(Z) vanishes on the Zariski open set π′−1

(M0
l ), we thus conclude applying

to M = Ml, W = Y ′
Ml

, Γ = α′
l
∗
(Z) the following fact which follows from the localization

exact sequence and Fulton’s refined intersection theory:

Lemma 1.5. Let f :W →M be a flat morphism, and Γ be a cycle on W . Assume there is
a Zariski dense open set M0 of M such that Γ|W 0 = 0 in CH(W 0), where W 0 := f−1(M0).
Then for any t ∈M , Γ|Wt

= 0 in CH(Wt).

It follows that for any t ∈ Ml, the restriction of the cycle α′
l
∗
(Z) to the fiber π′−1

(t) ⊂
Y ′
Ml

is trivial, and this implies that for any t ∈ Bl, the restriction of the cycle Z to the fiber

π−1(t) ⊂ Yt is trivial.
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By Proposition 1.4, the locus of points t ∈ B′ such that (6) holds is a countable union of
closed algebraic subsets of B′. As it contains by assumption a Zariski open set, we conclude
that (6) holds for any t ∈ B′. Choose for t any point o′ over o ∈ B. Then identifying X ′

o′

with Xo we conclude that there exist a divisor Do ⊂ Xo, a point xo ∈ Xo and a cycle Zo

supported on Do ×Xo, such that

∆Xo = Zo + Xo × xo in CHn(Xo ×Xo). (7)

Let τ : X̃o → Xo be the desingularization obtained by blowing-up the singular points.
It remains to deduce from (7) that X̃o satisfies the same property. Let xi, i = 1, . . . , N be
the singular points of Xo, and Ei := τ−1(xi). By assumption, Ei is a smooth quadric of
dimension ≥ 1, and in particular Ei is rational and has universally trivial CH0 group. Let
E := ∪iEi. Then (7) restricted to

(Xo \ {x1, . . . , xN})× (Xo \ {x1, . . . , xN}) ∼= (X̃o \ E)× (X̃o \ E)

provides:

∆X̃o\E = Zo + (X̃o \ E)× xo in CHn((X̃o \ E)× (X̃o \ E)). (8)

where Zo is supported on Do × (X̃o \ E) for a proper closed algebraic subset Do of X̃o \ E.
The localization exact sequence allows to rewrite (8) as

∆X̃o
= Zo + X̃o × xo + Z in CHn(X̃o × X̃o). (9)

where Zo is supported on D′
o × X̃o for a proper closed algebraic subset D′

o $ X̃o and Z is

supported on X̃o × E ∪ E × X̃o. Writing Z as Z1 + Z2, where Z1 is supported on E × X̃o,
and Z2 is supported on X̃o ×E, it is clear that up to replacing in (9) Zo by Zo +Z1 and D′

o

by D′
o ∪ E, we may assume that Z = Z2 is supported on

X̃o × E =
⊔
i

X̃o × Ei.

Let Z2,i be the restriction of Z2 to the connected component X̃o × Ei. As dimZ2 = n =

dim X̃o and Ei has universally trivial CH0 group, one can write for each i

Z2,i = Z ′
2,i + µiX̃o × xi (10)

in CHn(X̃o × Ei), where xi is a point of Ei, µi ∈ Z and Z ′
2,i is supported on Di × Ei for

some proper closed algebraic subset Di of X̃o.
Combining (9) and (10), we finally conclude that

∆X̃o
= Z ′

o + X̃o × xo +
∑
i

µiX̃o × xi in CHn(X̃o × X̃o), (11)

where Z ′
o = Zo +Z1 +

∑
i Z

′
2,i is supported on D′′

o × X̃o for a proper closed algebraic subset

D′′
o = D′

o ∪ E ∪ (∪iDi) of X̃o. Formula (11) implies that
∑

i µi = 0 and that CH0(X̃o)

is generated by the xi, i = o, 1, . . . , N , which easily implies that CH0(X̃o) = Z since the
central fiber is irreducible under our assumptions (this is why we impose the condition that
the fiber dimension is ≥ 2; in fact, Theorem 1.1 is wrong if the fiber dimension is 1, because
the disjoint union of two P1 does not admit a Chow-theoretic decomposition of the diagonal).
Hence (11) gives

∆X̃o
= Z ′

o + X̃o × xo in CHn(X̃o × X̃o),

which concludes the proof of (i).

9



(ii) The proof of (ii) works very similarly. We first construct as before a smooth finite
cover B′ → B, a divisor D ⊂ X ′ := B′ ×B X , which we may assume to contain no fiber of
X ′ → B′, a section σ : B′ → X ′ and a codimension n cycle Z in X ′ ×B′ X ′ supported on
D ×B′ X ′, with the properties that for general t ∈ B′ (so in particular X ′

t is smooth), we
have the equality of cycle classes

[∆X ′
t
] = [Zt] + [X ′

t × σ(t)] in H2n(X ′
t ×X ′

t ,Z) = H2n(X ′
t ×X ′

t ,Z), (12)

where Zt = Z|X ′
t×X ′

t
. We now work in the analytic setting and restrict to X ′

∆, where ∆ is a
small disc in B′ centered at a point o′ of B′ over o ∈ B, such that X ′

∆ retracts continuously
for the usual topology on the central fiber X ′

o′ , (the retraction map being homotopic over
∆ to the identity,) so that X ′

∆ ×∆ X ′
∆ retracts similarly on X ′

o′ × X ′
o′

∼= Xo × Xo. Then we
conclude that (12) implies

[∆Xo
] = [Zo] + [Xo × xo] in H2n(Xo ×Xo,Z), (13)

where the cycle classes are from now on taken in homology. This is because the topological
retraction from X ′

∆ ×∆ X ′
∆ to X ′

o′ ×X ′
o′ induces an isomorphism

H∗(X ′
o′ ×X ′

o′ ,Z) ∼= H∗(X ′
∆ ×∆ X ′

∆,Z)

and by flatness, the classes

[∆X ′
t
], [Zt] ∈ H2n(X ′

∆ ×∆ X ′
∆,Z)

are constant (that is, independent of t) in

H2n(X ′
∆ ×∆ X ′

∆,Z) = H2n(X ′
o′ ×X ′

o′ ,Z).

With the same notation X̃o, xi, Ei, E as in the proof of (i), we deduce from (13) by taking
the image in the relative homology of the pair (Xo×Xo, (Xo×{x1, . . . xN}∪{x1, . . . xN}×Xo))
the following equality in the relative homology group

H2n(Xo×Xo, (Xo×{x1, . . . xN}∪{x1, . . . xN}×Xo),Z) = H2n(X̃o×X̃o, (X̃o×E∪E×X̃o),Z)

[∆X̃o
]rel = [Zo]rel + [Xo × xo]rel in H2n(X̃o × X̃o, (X̃o × E ∪ E × X̃o),Z), (14)

where the subscript “rel” indicates that we consider the homology class in the relative
homology group H2n(X̃o × X̃o, (X̃o × E ∪ E × X̃o),Z). Formula (14) and the long exact
sequence of relative homology imply that the homology class

[∆X̃o
]− [Zo]− [X̃o × xo] ∈ H2n(X̃o × X̃o,Z)

comes from a homology class

β ∈ H2n(X̃o × E ∪ E × X̃o,Z).

Note now that the closed subset

X̃o × E ∪E × X̃o ⊂ X̃o × X̃o

is the union of X̃o×E and E×X̃o glued along E×E. We thus have a Mayer-Vietoris exact
sequence

. . .H2n(X̃o×E,Z)⊕H2n(E×X̃o,Z) → H2n(X̃o×E ∪E×X̃o,Z) → H2n−1(E×E,Z) → . . .
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As E ×E =
⊔

i,j Ei ×Ej and Ei ×Ej has trivial homology in odd degree, we conclude that
H2n−1(E × E,Z) = 0, so that β comes from a homology class

γ = (γ1, γ2) ∈ H2n(X̃o ×E,Z)⊕H2n(E × X̃o,Z) = H2n−2(X̃o ×E,Z)⊕H2n−2(E × X̃o,Z).

We now use the assumption made on X̃o, namely that its even degree cohomology is algebraic.
As the cohomology of E has no torsion and is algebraic, we get by the Künneth decomposition
that

H2n−2(E × X̃o,Z) = ⊕0≤2i≤2n−2H
2i(E,Z)⊗H2n−2−2i(X̃o,Z)

is generated by classes of algebraic cycles zj × z′j ⊂ E × X̃o and similarly for X̃o × E.
Putting everything together, we get an equality

[∆X̃o
]− [Zo]− [Xo × xo] =

∑
j

nj [zj × z′j ] +
∑
k

n′k[z
′
k × zk] in H2n(X̃o × X̃o,Z).

This provides us with an integral cohomological decomposition of the diagonal for X̃o since
in the term on the right, all the cycle classes of the form [X̃o × point] are cohomologous
and they have to sum-up to zero, while all the other terms [z′k × zk] with dim z′k < n are

supported on D × X̃o for some proper closed algebraic subset D of X̃o.

Let us now deduce from Theorem 1.1 the following result:

Theorem 1.6. (cf. Theorem 0.1 and Theorem 0.9, (i)) Let X̃ be the natural desingulariza-
tion of a very general quartic double solid X with k ≤ 7 nodes. Then the integral cohomology
of X̃ has no torsion, but X̃ does not admit an integral cohomological decomposition of the
diagonal. A fortiori, X̃ does not admit a Chow-theoretic decomposition of the diagonal, that
is, equivalently, the group CH0(X̃) is not universally trivial.

Proof. The first statement is proved in [15], if we observe in the nodal case that X̃ admits a
unirational parametrization of degree 2 (as all nodal quartic double solids do, see paragraph

0.1). This indeed implies that the torsion in H∗(X̃,Z) is of order 2, while Endrass [15]

proves that there is no 2-torsion in H∗(X̃,Z) if X̃ has less than 10 nodes.
We next claim the following:

Lemma 1.7. The general quartic double solid X with k ≤ 7 nodes can be specialized to
the Artin-Mumford double solid Xo constructed in [1]. In particular, its desingularization
obtained by blowing-up its k nodes can be specialized onto the partial desingularization of Xo

obtained by blowing-up the corresponding k nodes.

Postponing the proof of the lemma, we now conclude as follows: First of all, as X̃o has by
Artin-Mumford [1] some nontrivial 2-torsion in its integral cohomology, it does not admit an
integral cohomological decomposition of the diagonal (see [27] or Theorem 0.7). We use now

[26] which guarantees that the even degree integral cohomology of X̃o is algebraic, because

X̃o is uniruled of dimension 3. It then follows from Lemma 1.7 and Theorem 1.1 that the
very general X̃ as in Corollary 1.6 does not admit an integral cohomological decomposition
of the diagonal.

Proof of Lemma 1.7. The data of a k-nodal quartic double solid is equivalent to the data
of the corresponding quartic ramification surface which is also k-nodal. Let us consider a
general Artin-Mumford quartic surface S. It has 10 nodes P0, . . . , P9, where P0 is the point
defined in coordinates X0, . . . , X3 by X0 = X1 = X2 = 0 and the Pi, i ≥ 1 are above 9
points Oi ∈ P2 via the linear projection P3 99K P2 from P0. The 9 points Oi, i ≥ 1 form the
reduced intersection of two plane cubics. The general deformation theory of K3 surfaces
(see [32]) tells us that the Artin-Mumford surface with 10 nodes P0, . . . , P9 can have its
nodes smoothed independently, keeping the other nodes. Let us prove this statement in a
more algebraic and elementary way.
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Sublemma 1.8. For any k ≤ 10, there exist a smooth quasiprojective variety B, and a
family of quartic surfaces π : S → B, S ⊂ B × P3 with the following property: The general
fiber of π is k-nodal and there exists a non-empty proper closed algebraic subset B′ ⊂ B of
codimension 10− k parameterizing 10-nodal Artin-Mumford surfaces3.

Proof. First of all, we claim that if S ⊂ P3 is a s + 1-nodal quartic surface defined by a
quartic polynomial f , then the set Z of nodes Pi, i = 0, . . . , s of S imposes s+1 independent
conditions to quartic polynomials. Indeed, one easily check that there exists an irreducible
nodal curve in the linear system |IZ(4)| (since |IZ(3)| contains the partial derivatives of f ,
this linear system has no base point on S \ Z and cuts Z schematically, hence it is nef on

the blow-up S̃ of S along Z; thus |IZ(4)| is nef and big on S̃). Then the normalized curve

n : C̃ → C contains the set Z̃ = n−1(Z), and we have KC̃ = n∗(OC(4))(−Z̃); thus, as C̃ is

irreducible, we have g(C̃) = g(C)− |Z|, which provides

h0(C̃, n∗(OC(4))(−Z̃)) = g(C̃) = g(C)− |Z| = h0(OC(4))− |Z|.

As H0(C̃, n∗(OC(4))(−Z̃)) contains H0(C,OC(4)⊗ IZ), one concludes that

h0(C,OC(4)⊗ IZ) ≤ h0(OC(4))− |Z|

which proves the claim.
This implies classically that in the projective space PN of all quartic homogeneous poly-

nomials on P3, the hypersurface D consisting of quartic polynomials with one node has s+1
(in our case, 10) analytic smooth branches intersecting transversally at f . Concretely, the

normalization D̃ of D is defined as the subvariety of P3 × PN defined by

D̃ = {(x, g) ∈ P3 × PN , g is singular at x},

and the branches Di of D passing through f are in one to one correspondence with the
preimages of D̃ → D over f , that is the nodes Pi of S.

Coming back to our situation, the nodes P1, . . . , Pk being fixed, the intersection of the
corresponding analytic branches Di, i = 1, . . . , k is smooth and we can construct a smooth
algebraic variety B containing it as an analytic open set as follows: B will be an adequate
Zariski open neighborhood of (P1, . . . , Pk, f) in the set

{(x1, . . . , xk, g) ∈ P3 × PN , g is singular at xi, for i = 1, . . . , k}.

This variety B maps naturally by the second projection to PN , and the pull-back to B of
the universal family Suniv ⊂ PN × P3 provides us with a family

S → B, S ⊂ P3 ×B,

of quartic K3 surfaces, such that the general fiber Sb has k nodes P1,b, . . . , Pk,b, while the
fibers Sb0 for b0 ∈ B′ $ B are Artin-Mumford quartics with 10 nodes, k of them being the
specialization of P1,b, . . . , Pk,b. Here, with the notation just introduced, the image of B′ in
PN is the Zariski closure of the intersection ∩9

i=0Di of all branches. The argument above
shows that the family is furthermore complete, that is, has 34− k parameters.

Recall now from Remark 0.2 that there is an unique irreducible component M of the
space M ′ of nodal quartic surfaces in P3 with k ≤ 7 nodes, dominating (P3)(k) by the
map ϕ : M → (P3)(k) which to a k-nodal quartic associates its set of nodes. Denote by
ψ : B → M ′ the classifying map, where B is as in Sublemma 1.8. In order to prove that
ψ(B) is Zariski open in M , which is the content of the lemma, it suffices to show that the
map ϕ ◦ψ : B → (P3)(k) is dominating. Let us do it for k = 7, the other cases being similar
and easier. We have the following:

3One can even show that the total space S is smooth, but this is not useful here.
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Sublemma 1.9. Let St be a small general deformation of S with 7 nodes P1,t, . . . , P7,t.
Then the set of quartic surfaces which are singular at all the points Pi,t is of dimension 6.

Proof. It suffices to prove the statement when St is very general. First of all we claim that
the Galois group of the cover Σ → M parameterizing the nine singular points Oi of the
surface Sm, m ∈ M , where M is the parameter space for Artin-Mumford quartic surfaces,
acts on the set of 9 points {O1, . . . , O9} as the full symmetric group. This fact can be proved
by applying Harris’ principle in [18]. Namely, one just has to prove the following points:

1) The Galois group of the function field ofM acts bitransitively on the set {O1, . . . , O9}.
Equivalently, the variety Σ×M Σ \∆Σ is irreducible.

2) The image contains transpositions, which appear as the local monodromy of the cover
Σ →M at a point of simple ramification.

The variety M parameterizes the triples (E1, E2, C), where E1 and E2 are plane cubics,
and C is a conic everywhere tangent to E1 and E2 (see [1]). The variety Σ parameterizes
the quadruples (O,E1, E2, C) where (E1, E2, C) ∈M and O is one of the intersection points
of E1 and E2. Let us fix C and the degree 3 divisors D1 such that 2D1 = E1 ∩ C, D2

such that 2D2 = E2 ∩ C of C. Then one gets a subvariety MC,D1,D2 ⊂ M and its inverse
image ΣC,D1,D2 ⊂ Σ. It clearly suffices to proves 1) and 2) for the general cover ΣC,D1,D2 →
MC,D1,D2 . For the point 1), we project ΣC,D1,D2 ×MC,D1,D2

ΣC,D1,D2 \ΣC,D1,D2 to P2 × P2

by the map p which to ((O,E1, E2, C), (O
′, E1, E2, C)) associates (O,O′). Observe now

that MC,D1,D2 is a Zariski open set in A3 × A3, the general element being of the form
(e1 + xc, e2 + yc) where c is the equation of C, e1 is given so that the restriction of e1 to
C has divisor 2D1, e2 is given so that the restriction of e2 to C has divisor 2D2, and x, y
are two arbitrary homogeneous polynomials of degree 1 on P2. The fiber of p over a general
couple of points (O,O′) then consists of the set of equations (e1 + xc, e2 + yc) such that
e1 + xc and e2 + yc vanish on O and O′. This gives a system of four affine equations which
has maximal rank except if O or O′ belongs to C. But of course, the last situation does not
occur generically on ΣC,D1,D2 , hence we conclude that for a dense Zariski open set Σ0

C,D1,D2

of ΣC,D1,D2 , Σ
0
C,D1,D2

×M Σ0
C,D1,D2

\∆Σ0
C,D1,D2

is irreducible.

For the point 2), as the equations above clearly show that ΣC,D1,D2 is smooth at a point
(O, x, y) where O does not belong to C, it suffices to show that there exists such a point
(O, x, y) ∈ ΣC,D1,D2 with E1, E2 meeting tangentially at O and transversally at the other
remaining 7 points. For this, we fix the point O not on C, and fix E1 (with equation e1+xc)
passing through O. We then look at the set of equations e2+ yc vanishing at O and tangent
to E1 at O. The restriction of these equations provides a linear system of dimension 2 on E1,
and one easily checks that for general choice of C, D1, D2, E1, O, its base-locus is reduced
to the point O with multiplicity 2. By Bertini, the general intersection E1 ∩ E2 for E2 as
above has only the point O for double point. This proves the claim.

One easily deduces from this that for any choice of P1, . . . , P7, the classes ei of the
corresponding exceptional curves of the minimal desingularization S̃ of S and the class h =
c1(OS(1)) generate a primitive sublattice of H2(S̃,Z) (equivalently, there are no relations
with coefficients in Z/2Z between these classes). Hence for the very general deformation
St as above, its Picard group is freely generated by the classes ei, i = 1, . . . , 7, and h. Let
τ : X → P3 be the blow-up of P3 at the points P1,t, . . . , P7,t, with exceptional divisors

D1,t, . . . , D7,t intersecting the proper transform S̃t along Ei,t. The surface S̃t belongs to the
linear system |L|, L := τ∗(OP3(4))(−2

∑
iDi,t) and we want to prove that dim |L| = 6. As

H1(X,OX) = 0, this is equivalent to saying that h0(S̃t, L|S̃t
) = 6, and also to h1(S̃t, L|S̃t

) =

0. Let Lt := L|S̃t
. As Lt is big, this last vanishing is satisfied if Lt is numerically effective,

hence if the linear system |Lt| has no base curve on which Lt has negative degree, which is

equivalent (see [20, Chapter 2, 1.6]) to saying that there is no smooth rational curve C ⊂ S̃t

such that

Lt.C < 0, and C2 = −2 (15)
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with Lt(−C) effective. Let C be such a curve, and write its class c ∈ H2(S̃t,Z) as

c = λh+
∑
i

niei,

with λ, ni integers. Furthermore ni ≤ 0 as otherwise C has to be one of the Ei,t, and does
not satisfy the condition Lt.C < 0. The two numerical conditions (15) write

4λ2 − 2
7∑

i=1

n2i = −2, 16λ+ 4
7∑

i=1

ni < 0. (16)

Of course one has 4 > λ > 0 because C is effective and Lt(−C) is effective. In fact, the case
λ = 3 is impossible because the linear system |Lt(−C)| has dimension ≥ 5. So only λ = 1, 2
are possible.

For λ = 1 we get from (16)

2−
7∑

i=1

n2i = −1, 4 +
7∑

i=1

ni < 0. (17)

and for λ = 2 we get

8−
7∑

i=1

n2i = −1, 8 +
7∑

i=1

ni < 0. (18)

It is easy to check that neither (17) nor (18) has an integral solution with all ni’s ≤ 0. and
this concludes the proof of the sublemma.

Sublemma 1.9 tells us that the fibers of ϕ ◦ ψ are at most 6-dimensional. Hence

dim (Imϕ ◦ ψ) = 21 = dim (P3)(7),

which concludes the proof of Lemma 1.7.

We conclude this section with the following result which concerns property 4 of Theorem
0.7 and more generally property (*):

Theorem 1.10. (cf. Theorem 0.9, (ii)) Let X̃ be the natural desingularization of a general

quartic double solid X with 7 nodes. Then X̃ admits no universal codimension 2 cycle
Z ∈ CH2(J3(X̃)× X̃).

More precisely, there is no smooth connected projective variety B equipped with a codi-
mension 2 cycle Z ∈ CH2(B × X̃) which is cohomologous to 0 on fibers b×X, b ∈ B, and

such that the morphism ΦZ : B → J3(X̃) induced by the Abel-Jacobi map of X̃ is surjective
with rationally connected general fibers.

Proof. We use the following strengthening of Theorem 0.7 (this is [27, Theorem 4.9] com-
bined with the result of [26] guaranteeing the algebraicity of H4(Y,Z) for Y a rationally
connected threefold):

Theorem 1.11. Let Y be a rationally connected 3-fold satisfying the following properties:
(a) H∗(Y,Z) has no torsion;
(b) There is a codimension 2-cycle Z ∈ CH2(B × Y ) inducing a surjective map ΦZ :

B → J3(Y ) with rationally connected general fibers;
(c) J3(Y ) has a 1-cycle in the minimal cohomology class θg−1/(g − 1)!, g = dim J3(Y ).
Then Y admits an integral cohomological decomposition of the diagonal.
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Take now for Y the desingularization X̃ of the general double solid X with 7 nodes.
Then property (a) holds as already mentioned. The property dimJ3(X̃) = 3 is satisfied for
any double solid X → P3 ramified along a nodal quartic with 7 nodes imposing independent
conditions to quadrics in P3, see [8, Corollary 2.32]. Property (c) is thus satisfied in our

case because the set z of nodal points is general, so that dimJ3(X̃) = 3, and any ppav

of dimension 3 is a Jacobian. As Theorem 1.6 says that X̃ does not admit an integral
cohomological decomposition of the diagonal, we conclude that (b) must fail.

2 Application to the universal degree 3 unramified co-
homology with torsion coefficients

We prove in this section Corollary 0.11, that we will get as a direct consequence of the
following result (cf. Theorem 0.10):

Theorem 2.1. Let X be a smooth complex projective variety of dimension n with CH0(X) =
Z. Assume

1. H∗(X,Z) has no torsion and the Künneth components δ0, . . . , δ4 of the diagonal are
algebraic.

2. The group H3
nr(X,Q/Z) is trivial (or equivalently by [12], the integral Hodge classes

of degree 4 on X are algebraic).

Then the degree 3 unramified cohomology of X is universally trivial if and only if there is a
universal codimension 2 cycle Z ∈ CH2(J3(X)×X).

Here and below, the Künneth components δi act as identity on Hi(X,Z), and as 0 on
Hj(X,Z) for i ̸= j. They are well-defined because H∗(X,Z) is torsion-free.

Example 2.2. This theorem applies for example to cubic 4-folds. Indeed, by [29], they
satisfy the integral Hodge conjecture in degree 4 and the other assumptions are easy to
check. Obviously, they have trivial CH0 group. The fact that there is no torsion in the
cohomology of a smooth hypersurface in projective space is a consequence of the Lefschetz
theorem on hyperplane sections. Finally, the Künneth components of their diagonal are
algebraic, because their cohomology groups of degree 6 and 2 are cyclic, generated by the
class γ of a line and the class h of a hyperplane section respectively. Thus the components
δ2 and δ6 which are the projectors on H2 and H6 respectively are given by δ2 = γ ⊗ h and
δ6 = h⊗ γ. It follows that the remaining Künneth component

δ4 = [∆X ]− δ0 − δ8 − δ2 − δ6

is algebraic.
As their intermediate Jacobian is trivial, one concludes by Theorem 2.1 that their third

unramified cohomology with torsion coefficients is universally trivial. This generalizes the
main result of [2] with a completely different proof. Auel, Colliot-Thélène and Parimala
prove that the unramified cohomology of degree 3 with torsion coefficients of a very general
cubic fourfold X containing a plane is universally trivial. Their method uses the K-theory
of quadric bundles.

We get similarly

Corollary 2.3. Let X be a rationally connected threefold with no torsion in H3(X,Z). Then
the third unramified cohomology of X with coefficients in Q/Z is not universally trivial if
and only if X does not admit a universal codimension 2 cycle.
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Proof. We just have to check the assumptions of Theorem 2.1. As X is rationally connected,
we clearly have CH0(X) = Z and furthermore, the fact that H3(X,Z) has no torsion implies
that the whole integral cohomology H∗(X,Z) has no torsion. The Künneth components δ2
and δ4 of the diagonal ofX (which act by projection onH2(X,Z) andH4(X,Z) respectively)
are algebraic because H2(X,Z) and H4(X,Z) are generated by algebraic classes. (Note that
for the cohomology group H4(X,Z), the fact that it is generated by classes of curves is not
obvious and proved in [26].) Thus the last component

δ3 = [∆X ]− δ0 − δ2 − δ4 − δ6

is also algebraic. Finally, assumption 2 in Theorem 2.1 reduces again to the fact already
mentioned that H4(X,Z) is algebraic.

Corollary 2.4. (cf. Corollary 0.11) Let X be the natural desingularization of a very general
quartic double solid with 7 nodes. Then the third unramified cohomology group of X with
torsion coefficients is not universally trivial.

Proof. Indeed, there is no torsion in H3(X,Z); this has been already mentioned before and
is proved by Endrass [15]. As we know by Theorem 1.10 that the desingularization of the
very general double solid X with 7 nodes does not admit a universal codimension 2 cycle,
the corollary is thus a consequence of Corollary 2.3.

Proof of Theorem 2.1. Let us first show that if X has trivial CH0 group, satisfies the as-
sumptions 1 and 2 of the theorem and has no universal codimension 2 cycle, then it has a
nontrivial universal third unramified cohomology group with torsion coefficients. We recall
from the introduction that the meaning of this statement is that there exist a smooth quasi-
projective variety U , and an unramified cohomology class α ∈ H3

nr(U × X,Q/Z) with the
property that for any Zariski dense open subset U ′ ⊂ U , α|U ′×X is not the pull-back of a
cohomology class β ∈ H3(U ′,Q/Z).

The fact that H∗(X,Z) has no torsion implies that there is a Künneth decomposition of
cohomology with integral coefficients of U ×X for any variety U . On the other hand, the
fact that the Künneth components δi, 0 ≤ i ≤ 4, of the diagonal of X (which are defined in
integral coefficients cohomology) are algebraic implies that for any U and any algebraic cycle
z of codimension ≤ 2 on U ×X, the Künneth components of [z] are algebraic, since they are
obtained by applying the correspondences δi, 0 ≤ i ≤ 4, seen as relative self-correspondences
of U ×X ×X over U , to [z].

According to [12], where the result is stated for smooth projective varieties but works
in the smooth quasi-projective case as well, there is an exact sequence, for any smooth
quasi-projective Y :

0 → H3
nr(Y,Z)⊗Q/Z → H3

nr(Y,Q/Z) → Tors(H4(Y,Z)/H4(Y,Z)alg) → 0, (19)

where H4(Y,Z)alg ⊂ H4(Y,Z) is the subgroup of cycle classes [Z], Z ∈ CH2(Y ). Using
this exact sequence, in order to prove that the third unramified cohomology group of X
is not universally trivial, it suffices to exhibit a smooth projective variety B, and a degree
4 cohomology class α on B × X, such that Nα is algebraic for some N ̸= 0, but α|U×X

cannot be written as a sum a + pr∗1b, with a algebraic on U × X and b ∈ H4(U,Z)tors,
for any dense Zariski open set U ⊂ B. Such a class indeed provides a torsion class α in
H4(B × X,Z)/H4(B × X,Z)alg; by the exactness on the right in (19), there exists a lift
α̃ ∈ H3

nr(B ×X,Q/Z); then α̃|U×X is not in pr∗1H
3(U,Q/Z) for any U ⊂ B dense Zariski

open. Indeed, we have a commutative diagram
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H3(U,Q/Z) //

��

H4(U,Z)tors

��
H3(U ×X,Q/Z) //

��

H4(U ×X,Z)tors

��
H3

nr(U ×X,Q/Z) // H4(U ×X,Z)/H4(U ×X,Z)alg

(20)

where the first two vertical maps are pull-back maps pr∗1 , and the first two horizontal ones
are induced by the exact sequence

0 → Z → Q → Q/Z → 0.

The third horizontal map is the last map of (19) for Y = U ×X. So if α̃|U×X belonged to
pr∗1H

3(U,Q/Z), its image in H4(U ×X,Z)/H4(U ×X,Z)alg, which is also the restriction of
α to U ×X), would come from a torsion class in H4(U,Z), which we have excluded.

We now construct B and α: We take B := J3(X). We first prove:

Lemma 2.5. There is an integer N , and a codimension 2 cycle ZN ∈ CH2(J3(X) × X)
such that ZN |t×X is cohomologous to 0 for any t ∈ J3(X) and

ΦZN
: J3(X) → J3(X), t 7→ AJX(ZN,t)

is equal to N IdJ3(X).

Proof. Indeed, as we know that CH0(X) = Z, the Abel-Jacobi map

ΦX : CH2(X)hom → J3(X)

is surjective (see [5]). Hence there exist a varietyW and a codimension 2 cycle Z ∈ CH2(W×
X) such that

ΦZ :W → J3(X), ΦZ(t) = AJX(Zt),

is a surjective morphism of algebraic varieties. Replacing W by a linear section if necessary,
we may assume that ΦZ : W → J3(X) is generically finite of degree N . We now take for
ZN the cycle (ΦZ , IdX) ∗ (Z). It is immediate to check that ΦZN

: J3(X) → J3(X) is equal
to N IdJ3(X). Thus the lemma is proved.

The condition that ΦZN
: J3(X) → J3(X) is equal to N IdJ3(X) is equivalent to the

fact that the Künneth component of type (1, 3) of [ZN ] induces N times the canonical
isomorphism between H1(J

3(X),Z) and H3(X,Z). Furthermore, as explained above, by
taking the Künneth component of type (1, 3), we may assume [ZN ] is of Künneth type (1, 3).
Recall now from Remark 0.6 that there is also an integral (Hodge) class α on J3(X)×X which
is of Künneth type (1, 3) and induces the canonical isomorphism between H1(J

3(X),Z) and
H3(X,Z). We thus have

[ZN ] = Nα in H4(J3(X)×X,Z).

Hence we constructed the class α and to finish we just have to prove the following:

Lemma 2.6. For any dense Zariski open set U ⊂ J3(X), the image of α in

H4(U ×X,Z)/H4(U ×X,Z)alg

is nonzero modulo pr∗1H
4(U,Z)tors.
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Proof. Otherwise α|U×X = a + pr∗1b, where a is algebraic and b is torsion, for some dense
Zariski open set U ⊂ J3(X). But α|U×X is of Künneth type (1, 3) while pr∗1b is of Künneth
type (4, 0). As the Künneth decomposition, which works as well on U , preserves algebraic
classes, we conclude by projection on the Künneth component of type (1, 3) that α|U×X = a
is algebraic on U ×X. (Note that, alternatively, we can restrict to a smaller Zariski open
set, where the torsion class b vanishes.) This means that there is a decomposition

α = α1 + α2

in H4(J3(X)×X,Z), where α1 is the class of a cycle Z on J3(X)×X and α2 is a cohomology
class supported on D×X, where D = J3(X)\U . But then the Künneth component of type
(1, 3) of α2 must be 0. So the Künneth component of type (1, 3) of Z is equal to α and Z
is a universal codimension 2 cycle on J3(X)×X, contradicting our assumption.

In the other direction, let us prove that if X satisfies the assumptions of Theorem 2.1
and has a universal codimension 2 cycle, then its third unramified cohomology group with
torsion coefficients is universally trivial.

Let thus B be a smooth quasi-projective complex variety and let B be a smooth projective
completion of B. Let α ∈ H3

nr(B ×X,Q/Z). We want to show that up to shrinking B to a
Zariski open set B′, α = pr∗1β for some class β ∈ H3(B′,Q/Z). Note that H3

nr(B×X,Q/Z)
contains H3

nr(B ×X,Z)⊗Q/Z.

Lemma 2.7. If X has trivial CH0 group, the map pr∗1 : H3
nr(B,Z) → H3

nr(B ×X,Z) is an
isomorphism.

Proof. Indeed, this map has a left inverse, namely the restriction map rB×x to B×x for any
point x ∈ X(C). Furthermore it follows from the Merkurjev-Suslin theorem (or the Bloch-
Kato conjecture) that the groups H3

nr(B,Z) and H3
nr(B × X,Z) have no torsion. Thus it

suffices to show that the map pr∗1 : H3
nr(B,Q) → H3

nr(B ×X,Q) is an isomorphism. This
is however implied by the Bloch-Srinivas decomposition of the diagonal (1) for some integer
N ̸= 0, which is satisfied by X since CH0(X) = Z. This gives as well a decomposition over
B:

N(B ×∆X) = Z1 + Z2 in CHn(B ×X ×X), n = dimX, (21)

where Z2 = N(B ×X × x) for some point x ∈ X(C) and Z1 is supported on B ×D ×X,
for some proper closed algebraic subset D & X. As recalled in [12, Appendix], the various
cycles γ appearing in this equality act on unramified cohomology of B ×X via

η 7→ γ∗η := prB,1∗(pr
∗
B,2η · [γ]BO),

where the class [γ]BO ∈ Hn((B×X ×X)Zar,Hn(Z)) is the Bloch-Ogus cycle class of γ (see
[4]), and prB,1, prB,2 are the two projections from B ×X ×X to B ×X. As B ×∆X acts
as identity on H3

nr(B ×X,Q) and Z∗
1 acts as 0 on H3

nr(B ×X,Q), one gets that

N IdH3
nr(B×X,Q) = Z∗

2 = N(pr∗1 ◦ rB×x),

which proves the result.

From Lemma 2.7, we see that it suffices to show that, up to passing to a dense Zariski
open subset of B if necessary, the image of α in the quotient

H3
nr(B ×X,Q/Z)

H3
nr(B ×X,Z)⊗Q/Z

is 0. By the exact sequence (19), this quotient is isomorphic to the torsion of the group
H4(B ×X,Z)/H4(B ×X,Z)alg. So the result follows from the following:
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Lemma 2.8. Let X satisfy the assumptions of Theorem 2.1. Then, if X has a universal
codimension 2 cycle, for any B and any degree 4 class α ∈ H4(B ×X,Z), such that Nα is
algebraic for some integer N ̸= 0, there is a dense Zariski open subset B′ ⊂ B, such that
the class α is algebraic in B′ ×X.

Proof. First of all, as the integral cohomology of X is torsion free, there is a Künneth
decomposition

α =
∑

0≤i≤4

αi,4−i,

where αi,4−i ∈ Hi(B,Z) ⊗ H4−i(X,Z). Furthermore, this decomposition is obtained by
applying to α the Künneth projectors δi, 0 ≤ i ≤ 4 of X. As we know that the δi’s are
algebraic for i ≤ 4, each class αi,4−i satisfies the property that Nαi,4−i is algebraic.

Consider first the term α4,0 ∈ pr∗1H
4(B,Z) and write it α4,0 = pr∗1β, β ∈ H4(B,Z).

Then Nβ is algebraic on B, so there is a dense Zariski open set B′ ⊂ B such that Nα = 0
in H4(B′,Z). The Bloch-Kato conjecture then implies that there is a dense Zariski open set
B′′ ⊂ B such that α = 0 in H4(B′′,Z) since it implies that the sheaf H4(Z) on BZar has no
Z-torsion.

Next consider the class α2,2 ∈ p∗H2(B,Z)⊗H2(X,Z) and write it

α2,2 =
∑
i

pr∗1βi ⌣ pr∗Xαi, βi ∈ H2(B,Z),

where prX : B × X → X is the second projection and the αi’s form a basis of the free
abelian group H2(X,Z), which is generated by divisors classes since CH0(X) = Z. The
group H2n−2(X,Z) admits a Poincaré dual basis α∗

i , with < αi, α
∗
j >= δij . The Q-vector

H2n−2(X,Q) is generated by classes of curves, since H2(X,Q) is generated by divisor classes
and for any ample line bundle L on X, the topological Chern class l = c1,top(L) ∈ H2(X,Q)
provides a Lefschetz isomorphism

ln−2 ⌣: H2(X,Q) ∼= H2n−2(X,Q).

Thus there exists a nonzero integer N ′ such that N ′α∗
i = [zi] in H2n−2(X,Z) for some

1-cycles zi ∈ CHn−1(X). It thus follows that

βi = pr1∗(α2,2 ⌣ pr∗Xα
∗
i ), N

′βi = pr1∗(α2,2 ⌣ pr∗X [zi]).

As Nα2,2 is algebraic, so are the classes NN ′βi. This implies that the classes βi themselves
are algebraic, by the same argument as before since they restrict to torsion classes on some
Zariski open set B′ ⊂ B, and this implies that they have to vanish identically on a dense
Zariski open set B′′ ⊂ B.

The term α0,4 ∈ pr∗XH
4(X,Z) ∼= H4(X,Z) satisfies the condition that Nα0,4 is algebraic.

The assumption 2 made on X implies that α0,4 itself is algebraic.
As H1(X,Z) = 0, we are thus left with α1,3 ∈ H1(B,Z)⊗H3(X,Z). We have now:

Lemma 2.9. (i) The class α1,3 is the restriction to B × X of a class α1,3 ∈ H1(B,Z) ⊗
H3(X,Z) which has the property that Nα1,3 is algebraic.

(ii) There is a morphism ϕ : B → J3(X) such that (ϕ, IdX)∗α = α1,3, where α is the
integral Hodge class on J3(X)×X introduced in Remark 0.6.

Proof. (i) The class Nα1,3 extends to an integral cohomology class on B ×X because it is
algebraic. As the Künneth components of the diagonal of X are algebraic, one may even
assume that the class Nα1,3 extends to an integral cohomology class β on B ×X which is
algebraic and of Künneth type (1, 3). As H∗(X,Z) has no torsion, this class β can be seen
as a morphism

β∗ : H3(X,Z) → H1(B,Z)
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which has the property that, denoting by rB : H1(B,Z) → H1(B,Z) the restriction to B,
the composite morphism

rB ◦ β∗ = Nα1,3∗ : H3(X,Z) → H1(B,Z)

is divisible by N . On the other hand, it is quite easy to prove that the restriction map rB
is injective and that its cokernel is torsion free. Thus the morphism β∗ is also (uniquely)
divisible by N , and so is β, which proves (i).

(ii) The class Nα1,3 being algebraic, it is an integral Hodge class on B × X, so α1,3 is
also an integral Hodge class. But the morphisms from B to J3(X) identify (modulo the
translations of J3(X)) to the morphisms of complex tori between AlbB and J3(X) which
themselves identify to the morphisms of Hodge structures

H1(B,Z)/torsion → H3(X,Z)

because H3(X,Z) has no torsion, and finally these morphisms of Hodge structures identify
to the integral Hodge classes of Künneth type (1, 3) on B ×X.

Hence the class α1,3 provides us with a morphism

ϕ : B → J3(X)

and it is a formal fact to prove following the chain of identifications above that

(ϕ, IdX)∗(α) = α1,3.

The proof is now finished because we assumed that X admits a universal codimension
2 cycle. This is equivalent to saying that the class α of Remark 0.6 is algebraic because
H3(X,Z) has no torsion. Lemma 2.9 thus implies that α1,3 is algebraic.

The proof of Theorem 2.1 is finished.
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