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1. Introduction

There are two fundamentally distinct ways of viewing a Riemann surface: the complex analytic point
of view, in which it becomes a compact complex manifold, and the algebro-geometric point of view, in
which it becomes a smooth projective complex variety. Many questions about Riemann surfaces can be
approached from either side, but there are some that seem completely opaque from one side. One such
question is the following:

Question 1.1. Given a Riemann surface X, can it be de�ned over a number �eld?

More precisely, given a (smooth, projective) curve X over C, is there a number �eld K and a curve X
over K such that X = X ×K C? Concretely, can X be realised as the zero locus of a set of polynomials
with coe�cients in K? This question is natural from the algebro-geometric point of view. But it seems
impenetrable from the complex analytic point of view. Belyi's theorem is a remarkable statement that
bridges this gap�it gives a topological characterisation of Riemann surfaces that can be de�ned over a
number �eld.

Theorem 1.2 (Belyi). Let X be a Riemann surface. The following two are equivalent:

(1) X can be de�ned over a number �eld.
(2) X can be realised as a branched cover of P1

C with branch locus contained in {0, 1,∞}.

The second condition means that there exists a �nite morphism

f : X → P1
C,

which is unrami�ed over P1
C \ {0, 1,∞}. Such a map f : X → P1

C is called a Belyi map. It is not unique.
Belyi's theorem says that X admits a Belyi map if and only if it can be de�ned over a number �eld.

The three points {0, 1,∞} are not special. We could have chosen any three points, or just said �three
points�, without specifying which ones. After all, any set of 3 points on P1 can be moved to any other set
of 3 points by a projective linear transformation, so all of these versions are equivalent.

Saying that X is de�ned over a number �eld is equivalent to saying that X is de�ned over Q.

1.1. Belyi's theorem and uniformisation. Consider a Riemann surface X with a Belyi map f : X →
P1

C. Let U = P1
C \ {0, 1,∞} and set X◦ = f−1(U). Then f : X◦ → U is a covering space. The universal

cover of U is the upper half plane H. Let Λ = Γ(2) ⊂ PSL2(Z) be the kernel of PSL2(Z) → SL2(Z/2Z).
Then Λ is isomorphic to the free group on 2 letters. It is the fundamental group of U is Λ, and it acts on
H by fractional linear transformations (

a b
c d

)
: z 7→ az + b

cz + d
.

Since X◦ → U is a covering space of �nite degree, the fundamental group of X◦ embeds as a �nite index
subgroup G ⊂ Λ and

X◦ = H/G.
An equivalent form of Belyi's theorem is that X can be de�ned over a number �eld if and only if it can
be realised as (the compacti�cation of ) H/G for a �nite index subgroup G ⊂ Λ.
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2. Defined over Q implies ∃ Belyi map

The goal of this section is to prove that if X is de�ned over Q, then it admits a Belyi map. The proof
is elementary but involves some work by hand. This is what Belyi proved in his 1979 paper. (The other
direction was already known and follows by �general principles�.) I present a proof from Köck [2004].

2.1. Step 1: Pick φ : X → P1 de�ned over Q. Since X is a smooth projective curve over Q, there
exists a �nite map φ : X → P1

Q
. Pick one. Let S ⊂ P1(Q) be the set Critφ of critical values of φ. Then,

by de�nition, φ is unrami�ed over P1
Q
\ S.

2.2. Step 2: Arrange so that Critφ ⊂ P1(Q). We do this using the following.

Lemma 2.1. Let φ : X → P1
Q

be a �nite map and S ⊂ P1(Q) a �nite set containing Critφ. Then there

exists a �nite map p : P1
Q → P1

Q such that Crit(p ◦ φ) ⊂ P1(Q).

Proof. Enlarge S so that it is Gal(Q/Q)-invariant (add all the Galois conjugates). Let Sirr ⊂ S be the
set of points of S that are not Q-points. We induct on the size n of Sirr. If n = 0, then we are done.
Otherwise, consider p : P1

Q → P1
Q de�ned by the polynomial

p(x) =
∏
s∈Sirr

(x− s).

Note that p is de�ned over Q and sends Sirr to 0. Let R ⊂ A1(Q) be the set of roots of p′(x). Then the
critical points of p consist of R and the point at in�nity. The critical values of p◦φ are contained in the set
S′ = p(S)∪p(R)∪{∞}. Note that S′ is Gal(Q/Q)-invariant. The only possible irrational points in S′ are
the points of p(R), of which there are at most (n− 1). We replace φ by p ◦φ and continue inductively. �

2.3. Step 3: Arrange so that Critφ ⊂ {0, 1,∞}.

Lemma 2.2. Let S ⊂ P1(Q) be a �nite set. Then there exists a �nite map f : P1
Q → P1

Q such that

f(S) ∪ Crit f ⊂ {0, 1,∞}.

Proof. The magic sauce is the fuction q : P1
Q → P1

Q de�ned by the polynomial

q(x) = c · xm(1− x)n,

where m,n are positive integers and c ∈ Q is a constant. The critical points of q are {0, 1,∞, m
m+n}. The

map q sends 0, 1 7→ 0 and ∞ 7→ ∞. By choosing the right c, we can ensure that it sends m
m+n to 1. Then

the critical values of q lie in 0, 1,∞.
To prove the lemma, we may assume that S contains at least 3 points. After applying a fractional linear

transformation, we may assume that S contains {0, 1,∞}. Write S = {0, 1,∞} ∪ T , where T is disjoint
from {0, 1,∞}. We induct on the size of T . If T is empty, there is nothing to prove. Otherwise, pick a
t ∈ T . Using a combination of z 7→ 1−z and z 7→ 1/z, both of which preserve the triplet {0, 1,∞}, we may
assume that t ∈ Q satis�es 0 < t < 1. Then t = m

m+n for some positive integers m,n. Let q : P1
Q → P1

Q be

as above. We let S′ = q(T )∪{0, 1,∞}. Then S′ = {0, 1,∞}∪T ′, where T ′ ⊂ q(T−{t}) has fewer elements
than T . By the inductive hypothesis, there is a g : P1

Q → P1
Q such that g(q(S′)) ∪ Crit g ⊂ {0, 1,∞}.

Then f = g ◦ q satis�es f(S) ∪ Crit f ⊂ {0, 1,∞}. �

To �nish the construction of the Belyi map, let φ : X → P1 be as in Step 2, namely, with Critφ ⊂ P1(Q).
Apply the last lemma with S = Critφ to get an f : P1 → P1 with f(S) ∪ Crit f ⊂ {0, 1,∞}. Then
f ◦ φ : X → P1 is a Belyi map.

3. ∃ Belyi map implies defined over Q

The goal of this section is to prove that if X admits a Belyi map f : X → P1
C, then X can be de�ned

over Q. As mentioned before, this follows by quite soft arguments in algebraic geometry.
Let K ⊂ C be a �eld. Given an e�ective divisor D ⊂ P1

C, we say that D is K-rational if it is the divisor
of a homogeneous form F (X,Y ) whose coe�cients are in K. In other words, D is obtained by base-change
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from an e�ective divisor on P1
K . Let X be a smooth projective curve of genus g over K and φ : X → P1

K

a �nite map of degree d. To φ, we can associate an e�ective divisor Brφ ⊂ P1
K of degree b = 2g + 2d− 2,

called the branch divisor. The set of C-points underlying Brφ is the set of critical values of φ, but the
divisor also contains the data of multiplicities for each point that encodes the amount of rami�cation over
each point, and it also turns out to be K-rational. The branch divisor is de�ned as the divisor associated
to a homogeneous form called the discriminant of φ. The map φ is unrami�ed over the complement of
Brφ. (We will not go into the construction of Brφ.)

Proposition 3.1. Let X be a smooth projective curve over C and let φ : X → P1 be a �nite map. If Brφ
is K-rational for some sub�eld K ⊂ C, then X can be de�ned over a �nite extension of K.

The �easy� direction of Belyi's theorem follows from this proposition, since any divisor supported on
{0, 1,∞} is Q-rational.

3.1. Sketch of a proof of Proposition 3.1. Fix a genus g and a degree d. The key point is that there
is a moduli space that parametrizes degree d and genus g branched covers of P1. I will �rst explain a false
(but �morally � true) version of what this means and then make corrections.

Consider maps φ : X → P1 where X is a smooth projective curve of genus g and φ is a �nite map of
degree d, up to isomorphism, where we treat two maps φ1 : X1 → P1 and φ2 : X2 → P1 as isomorphic if
there is an isomorphism i : X1 → X2 making the following diagram commute:

X1 X2

P1 P1.

i

φ1 φ2

Proposition 3.2 (Not literally true). There is a scheme Hd,g of �nite type over Q with a natural isomor-
phism

Hd,g(K) ∼= {φK : XK → P1
K}/iso

for every �eld extension K/Q.

In fact, the natural isomorphism holds for Hd,g(S) for any Q-scheme S, with the correct de�nition of
the right hand side. But for us, �elds will su�ce.

Let me explain what �natural� means. The left and right hand sides of the equation in Proposition 3.2
are functors in K. Given K → L, we have a natural induced maps

Hd,g(K)→ Hd,g(L),

obtained by treating a K-point as an L-point, and

{φK : XK → P1
K} → {φL : XL → P1

L}
obtained by applying −×K L. The propostion asserts a natural isomorphism of these functors.

Similarly, there is a moduli space that parametrizes degree b divisors on P1.

Proposition 3.3 (Literally true). There is a scheme Pb of �nite type over Q with a natural isomorphism

Pb(K) ∼= {Divisors of degree b on P1
K}

for every �eld extension K/Q.

In fact, it is easy to see what Pb is: it is just the projective space Pb. To be precise, let V be the degree
b homogeneous component of Q[X,Y ]. Then Pb = PV .

Recall that we have a rule φ 7→ Brφ that takes a �nite cover and gives a branch divisor. This rule can
be used to de�ne a morphism of schemes

Br: Hd,g → Pb.

Proposition 3.4. The morphism Br is quasi-�nite. That is, it has �nite �bers.
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Proof. It is enough to check that given any C-point of Pb, there are only �nitely many C points of Hd,g
in its pre-image. That is, given a divisor B ⊂ P1

C of degree b, we must prove that there are only �nitely
many φ : X → P1

C with Brφ = B, up to isomorphism. Any such φ gives a covering space Xo → U ,
where U = P1

C \ B. By the theory of covering spaces in complex analysis, covering spaces X◦ → U are
equivalent to branched covers of Riemann surfaces X → P1 unbranched outside B (and all such covers
are algebraic). On the other hand, a degree d covering space of U is determined by its monodromy, which
is a homomorphism

π1(U)→ Sd.

The group π1(U) is �nitely generated and the group Sd is �nite, so there are only �nitely many such
homomorphisms. �

We now have the tools to �nish the proof of Proposition 3.1. Consider φ : X → P1
C whose branch

divisor Brφ ⊂ P1
C is K-rational. The branch divisor corresponds to a C-point of Pb. Saying that it is

K-rational is equivalent to saying that this point arises from a K-point SpecK → Pb. Then φ : X → P1
C

corresponds a C-point of the �ber product

Hd,g ×Pb
SpecK.

Since Hd,g → Pb is quasi-�nite, this �ber product is a �nite K-scheme, that is, it is the spectrum of a
K-algebra A of �nite length. As a result, any homomorphism A → C factors as A → A/m → C, where
m ⊂ A is a maximal ideal (this uses that A is of �nite length; in general m is only prime). By the
Nullstellensatz, L = A/m is a �nite extension of K. So the C-point φ : X → P1

C of Hd,g arises from an
L-point, where L/K is a �nite extension. In particular, X is obtained by base-change from a curve de�ned
over L.

It is now time to come clean. As I confessed, Proposition 3.2 is not true. But it is true if we replace
�scheme� by �Deligne�Mumford stack�. The rest of the argument goes through almost verbatim. Alterna-
tively, we can use a weaker notion of moduli space called a `coarse' moduli space. It is perhaps not wise to
go into the details, but the key point is that then Proposition 3.2 is literally true (with the word �scheme�
in place) but only for algebraically closed K/Q. But this su�ces for our purposes. The same argument
as before implies that φ : X → P1

C arises from a K point, which is just as good.

3.1.1. References for this section. The space Hd,g is called the Hurwitz space. Its existence and properties
over C have been known at least since Riemann. Fulton in Fulton [1969] constructs it over Z[1/d!] but
with an additional condition of simple branching. Romagny and Wewers Romagny and Wewers [2006]
construct it more generally. But both of these references deal with mixed characteristics, where the theory
is harder. In characteristic 0, the space we want also follows from the existence of the Kontsevich space of
maps treated, for example, in Fulton and Pandharipande [1997] (over C, but the arguments should work
at least over Q if not Q). But they also treat the case of singular curves, making it harder than it needs
to be. It can be a good exercise to just write your own proof of Proposition 3.2 using the existence of the
moduli stack of curvesMg. There is an obvious forgetful map Hd,g →Mg, and it is not too hard to show
that this map is representable by schemes.

3.2. A more direct argument. Let us sketch a more direct argument for Proposition 3.1 that does not
rely on the existence of the moduli space. It will bring up some ideas that may be helpful. The proof is
based on Hammer and Herrlich [2003].

Let X/C be a C-scheme with the structure map X
π−→ SpecC. Let σ : C→ C be a �eld automorphism.

Denote by Xσ/C the C-scheme X
π′
−→ SpecC where π′ = σ ◦ π. It is useful to think of this procedure for

a�ne schemes, say for exampleX = SpecA where A is aC-algebra. Take, for example A = C[x, y]/f(x, y),
where

f(x, y) =
∑

ai,jx
iyj , for ai,j ∈ C.

Then Xσ = SpecAσ, where Aσ is the same ring as A but the embedding C → Aσ is di�erent. As a
C-algebra, Aσ is in fact isomorphic to C[x, y]/fσ(x, y), where

fσ(x, y) =
∑

σ−1(ai,j)x
iyj .
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Thus, we may think Xσ/C as the C-scheme obtained from X/C where the coe�cients of the de�ning
equations have been changed by applying σ−1.

Remark 3.5. Consider the sets of complex points X(C) versus Xσ(C). We have a bijection between these
two sets obtained by applying σ. But σ : C → C will not be holomorphic (except for σ = id) or even
continuous (except for σ = id or complex conjugation). So it will not give a biholomorphism between
X(C) and Xσ(C).

Suppose X can be de�ned over a sub�eld K ⊂ C and σ ∈ Aut(C/K). Then the coe�cients of a set of
de�ning equations of X are �xed by σ, so X/C and Xσ/C are isomorphic.

De�nition 3.6. Let X be a scheme over C. Let G(X) ⊂ Aut(C/Q) be the subgroup consisting of σ such
that X/C and Xσ/C are isomorphic. The �eld of moduli of X, denoted by M(X), is the sub�eld of C
�xed by G(X)

M(X) = CG(X).

Strictly speaking, G(X) and M(X) depend on X/C�that is, X along with the structure map and not
just X�but this is usually dropped from the notation.

Suppose X can be de�ned over K ⊂ C. Then Aut(C/K) ⊂ G(X). The �xed �eld of Aut(C/K) is K
(not obvious, but true; the proof needs the axiom of choice because the extension K/C can be in�nite,
but this is ultimately true because C is algebraically closed). So we get the inclusion M(X) ⊂ K. It is
not always possible to have equality�it may not be true that X can be de�ned overM(X)�but it is only
a �nite extension away.

Proposition 3.7. Let X/C be a smooth projective curve and let M = M(X) be its �eld of moduli. Then
there exists a �nite extension K/M such that X can be de�ned over K.

Proof. We want to exhibit a �nite extension K/M and a K-scheme Y such that X is isomorphic to Y ×KC
as a C-scheme.

It may be helpful to keep a running example in mind, such as the X de�ned by the (homogenisation) of

y2 = (x3 − π).

Then the �eld of moduli is Q and our proof will in fact show that X is isomorphic to a curve de�ned over
Q. This is easy to see directly, but it is instructive to see how it comes about in the proof.

Since X/C is of �nite type, it is de�ned over a sub�eld L ⊂ C which is �nitely generated over M . We
can write L = frac A where A is a �nitely generated M -algebra. Then we can �spread out� X → SpecL
to a π : X → SpecA. By shrinking A if necessary, we may assume that π is smooth and proper. Then, by
construction, we have

X = X ×A C,

along the map A→ C that is the composite of A→ L and L→ C.
In our running example, we can take L = Q(t) with the map L→ C given by t 7→ π and A = Q[t, t−1]

and X to be the A-scheme de�ned by (the homogenisation of) y2 = x3 − t.
Now consider the set of C points of SpecA over M , or equivalently, M -homomorphisms A → C. The

�ber of π over every C point is a C-scheme. Consider the point p : A→ C corresponding to the composite
A → L → C. The �ber over this point is, by construction, X/C. For σ ∈ G(X), the �ber over σ(p) is
Xσ/C, which is isomorphic to X/C.

The point p represents a closed point of SpecAC, where AC = A×MC. But since p : A→ C is injective,
this point lies over the generic point of SpecA. Using this, it is not hard to show that the G(X) orbit of
p ∈ SpecAC is Zariski dense in SpecAC.

In our running example, this orbit consists of the points of SpecC[t, t−1] corresponding to any tran-
scendental value of t.

Set
X = X ×M C.

Then X→ SpecAC is a proper smooth morphism whose �bers over a Zariski dense subset are isomorphic
to a single X/C. With a little bit of argument (for example, by invoking the Isom scheme, which is proper;
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see ), this implies that all �bers are isomorphic to X/C. But SpecAC includes closed points that lie over
closed points of SpecA. Let q be one such point. Then the kernel of q : A→ C is a maximal ideal m ⊂ A,
whose residue �eld K = A/m is a �nite extension of M by the Nullstellensatz. Take Y = X ×A K. Then
Y is a K-scheme such that Y ×K C is isomorphic to X.

In our running example, we can take q to be any point of SpecC[t, t−1] corresponding to an algebraic
value of t. �

The only place in the proof where we used that X/C is a smooth projective curve is in the parenthetical
remark invoking Isom. In fact, in any situation where constancy of the isomorphism class over a dense set
implies constancy over the whole base, the argument should hold.

Remark 3.8. It is possible that X cannot be de�ned over the �eld of moduli and a �nite extension is really
required. However, if X has no non-trivial automorphisms, then we can use descent to show that X can
be de�ned over the �eld of moduli. See Shimura [1972, Theorems 2 and 3] for examples where a �nite
extension is required.

Using Proposition 3.7, it is now quite easy to deduce Proposition 3.1. Let X/C be a smooth projective
curve and φ : X → P1

C a �nite map such that Brφ is K-rational. Let σ ∈ Aut(C/K). Then φσ : Xσ → P1
C

is a map of the same degree with the same branch divisor. But there are only �nitely many isomorphism
classes of covers with this branch divisor. Hence, there is a �nite index subgroup H ⊂ Aut(C/K) such
that for every σ ∈ H, the curves X/C and Xσ/C are isomorphic. A bit of Galois theory (handled with
care due to the in�nite nature of extensions) shows that CH/K is a �nite extension. Thus, the �eld of
moduli of X is contained in a �nite extension of K. By Proposition 3.7, we conclude that X can be de�ned
over a �nite extension of K.
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