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1 Introduction

We all know the famous theorem that for a given n ≥ 3, the equation

xn + yn = zn

has no non-zero integer solutions (x, y, z). What if we change the equation slightly to, say

2xn + 3yn = 5zn,

or even to something like
Axp +Byq = Czr?

The answer remains almost the same. For any of these equations, there aren't many rational solutions.

Theorem 1.1 (Darmon and Granville). Fix positive integers p, q, r and non-zero integers A,B,C. Suppose
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< 1.

Then the equation

Axp +Byq = Czr

has �nitely many integral solutions (x, y, z) with gcd(x, y, z) = 1.

In this talk, I will sketch the proof of this result. But more importantly, I will take this as an opportunity
to explain how geometry controls arithmetic. More precisely, I will explain how the birational type
of a variety (conjecturally) controls the arithmetic of rational points on the variety. These conjectures are
due to Lang, Vojta, and Campana, and an excellent introduction to this topic is [1].

2 Geometry controls arithmetic: curves

Let X be a smooth, projective curve de�ned over Q. What can we say about X(Q), the set of rational
points of X? Fundamentally, there are three cases.

Spherical X has genus 0. For example, when X is the curve in the projective plane P2 de�ned by the
homogeneous equation

X2 + Y 2 = Z2,

or equivalently, the a�ne equation
x2 + y2 = 1.

In this case, we know that there are in�nitely many solutions.
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Figure 1: Rational parametrisation of x2 + y2 = 1

In fact, we can write all of them down using a rational parametrization of the curve by lines through a
�xed point (see Figure 1).

The general story is not too far from this example. Either X has one rational point, in which case it is
isomorphic to P1 over Q, and so it has in�nitely many of them. Or X has no rational points, but then it
is isomorphic to P1 over a degree 2 extension K/Q, and so it has in�nitely many K-points. In either case,
there exists a �nite extension K/Q such that X has in�nitely many K-points. We say that the rational
points of X are potentially in�nite. The word �potentially� in this context will almost always mean �after
a �nite extension of the base-�eld�.

Elliptic X has genus 1.

After a �nite extension, we may assume that X has a point, and hence a group law, and furthermore,
a point of in�nite order. Then it has in�nitely many points.

Thus, in this case also, the rational points of X are potentially in�nite.

Hyperbolic X has genus at least 2.

In this case, we have the famous theorem of Faltings that for any �nite extension K/Q, the set of
K-points of X is �nite. That is, X does not have (even potentially) an in�nite set of rational points.

We summarize the three cases in a table. With an eye towards higher dimensional generalization, we
phrase the trichotomy in terms of the positivity of the canonical bundle. We also note that an in�nite set
of points of a curve is the same as a Zariski dense set of points.

degKX Rational points

Spherical Negative Potentially dense
Elliptic Zero Potentially dense
Hyperbolic Positive Not potentially dense

3 Geometry controls arithmetic: higher dimensions

The conjectures of Bombieri, Lang, Vojta, and Campana extend the table above to varieties of higher
dimension.

Higher dimensional �spherical� varieties are varieties that are rational (birational to projective space),
or in some sense, close to being rational. These include varieties that are unirational (admit a dominant
rational map from projective space), or Fano (have anti-ample canonical bundle), or rationally connected
(a general pair of points can be connected by a rational curve). (The third class includes the �rst two by
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theorems of Campana and Kollàr�Miyaoka�Mori.) It is a conjecture of Campana that rationally connected
varieties have potentially dense rational points.

Higher dimensional �hyperbolic� varieties are called varieties of general type. These are the varieties
whose canonical bundle is positive (more precisely, �big�). It is a conjecture of Bombieri�Lang that varieties
of general type do not have potentially dense rational points.

The intermediate cases are complicated. See the article [1] for more.

4 Back to Fermat-like equations

Let us focus on the speci�c task at hand, namely the rational points of X de�ned by

Axp +Byq = Czr.

Note that X is a surface, and the link between geometry and arithmetic is only proven for curves! But if
we look more closely at X, we can see a way to cut down the dimension by 1.

The surface X has an action of the multiplicative group Gm, given as follows:

t · (x, y, z) = (tqrx, tpry, tpqz),

and we should obviously be looking at rational/integral points up to the equivalence de�ned by this action.
Geometrically, we should be looking not at X itself but the quotient X/Gm. Lets assume for simplicity
that the exponents p, q, r are pairwise co-prime. Then the quotient is P1, with the quotient map given by

X → P1

(x, y, z) 7→ (Axp, Byq, Czr);

the image is the P1 ⊂ P2 cut out by X +Y = Z. But if the quotient is P1, then we should have in�nitely
many rational points, which contradicts Theorem 1.1. What is going on?

The answer is that the quotient P1 is not the right quotient. The Gm action on X is not free. There
are three orbits that have non-trivial stabilisers: the orbit corresponding to x = 0 has stabilizer µp, the
one corresponding to y = 0 has stabilizer µq, and the one corresponding to z = 0 has stabilizer µr. As
a result, a more correct quotient is not P1, but an orbifold P whose coarse scheme is P1 but which has
three points with stabilizer groups µp, µq, and µr. The degree of the canonical bundle of P is

degKP = 1−
(
1

p
+

1

q
+

1

r

)
.

When this degree is positive, P is hyperbolic, and then we should expect that it indeed has �nitely many
rational points.

But this is not a proof, just a heuristic. Darmon and Granville convert it into a proof by reducing it
to Faltings' theorem [3]. Let us sketch the argument.

4.1 Proof of Theorem 1.1

Fix an isomorphism V (X + Y −Z) ∼= P1 given the rational function t = X/Z. Then the points [0 : 1 : 1],
[1 : 0 : 1], and [1 : −1 : 0] are identi�ed with 0, 1, and ∞.

Let Y → P1 be a branched cover of Riemann surfaces unrami�ed away from 0, 1,∞ and whose
monodromy around 0 is a product of p-cycles, around 1 is a product of q-cycles, and around ∞ is a
product of r-cycles (see Figure 2). It is not completely obvious that such a cover exists. One way to
demonstrate that it does is by solving the equation αβ = γ in a symmetric group, where α is a product of
p-cycles, β is a product of q-cycles, and γ a product of r-cycles. Another way is by constructing a suitable
subgroup G of the modular group and taking Y to be the quotient of the upper half plane by this group.
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Figure 2: A cover Y → P1 with peculiar rami�cation

By the Riemann�Hurwitz formula, we see that the genus of Y is at least 2. We should think of Y as a
�schematic approximation� of the orbifold P .

By Belyi's theorem, the cover π : Y → P1 is de�ned over a number �eld K. The following proposition
shows that, modulo a �nite extension, the points on P1 = X/Gm coming from a rational point on X
correspond to rational points of Y .

Proposition 4.1. There is a �nite extension L/K such that the following holds. For every point integer

point (x, y, z) with gcd(x, y, z) = 1 satisfying Axp+Byq = Czr, consider the point t = Axp/Czr ∈ P1(K).
Then the points of π−1(t) ⊂ Y are L-points of Y .

Proof. Let s be a point of π−1(t) ⊂ Y , and let F be its residue �eld. Let us analyze the set of primes of
OK where F/K is rami�ed.

To do so, we �rst spread out YK → P1
K to YOK

→ P1
OK

, where OK ⊂ K is the ring of integers. After

passing to an open subset U ⊂ SpecOK , we may assume that YU → U is smooth and the map YU → P1
U

is �nite and unrami�ed away from the sections 0, 1,∞. By shrinking U further, let us also assume that
the residue characterists of points of U are bigger than the degree of Y → P1. Let us also assume that
that ABC does not vanish at any point of U .

The point t ∈ P1(K) extends to a U -point T of P1
U . Let V = OF ×OK

U . Then the point s ∈ Y (F )
extends to a V -point S of YU , and S lies over T . Since YU → P1

U is �nite and V is normal, we get that V
is the normalisation of a component of the pre-image of T in YU , namely the �bered product

T ×P1
U
YU .

What can we say about the rami�cation of V → U? (See Figure 3 for a picture of the analysis that
follows.) Let u ∈ U be such that T (u) is disjoint from 0, 1,∞. Since YU → P1

U is unrami�ed away from
0, 1,∞, the map V → U is also unrami�ed over u. Let u ∈ U be such that T (u) intersects the 0 section.
Then x vanishes at u (recall: A does not vanish anywhere on U). Then the order of contact of T with
0 is a multiple of p. Since the rami�cation of Y over 0 consists of purely of p-cycles, we can show that
V → U is actually unrami�ed over u. (The analogous statement over the complex numbers is easy to see
using topology; it requires a bit of an argument if we want to do it purely algebraically.) By a similar
analysis when T intersects 1 or ∞, we conclude that the only possible points of rami�cation of V → U
are u at which A or B or C vanishes. Recall that U ⊂ SpecOK is an open subset; call the complement
D. Then the primes of OK over which F/K is rami�ed are contained in the �nite set D. By a classical
theorem of Hermite and Minkowski, there are �nitely many extensions of a number �eld of bounded degree
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Figure 3: The map V → U is unrami�ed at most points of U .

whose rami�cation is contained in a given �nite set. Hence, there are only �nitely many posibilities for
the extension F/K. We take L/K to be the compositum.

We can now �nish the proof of Theorem 1.1. By the theorem of Faltings, the set of L-points of Y is
�nite. We conclude that primitive integral points on X are also �nite, which is the assertion in Theorem
1.1.

Remark 4.2. In the proof above, we made a crude analysis of the rami�cation of the �eld of de�nition of
a Belyi cover Y → P1. A theorem of Sybilla Beckmann gives a much more precise description [2].

5 Uniform boundedness

The conjecture of Bombieri�Lang has strong implications not only for individual varieties, but also their
families. The most spectacular consequence of this is the following theorem.

Theorem 5.1 (Caporaso, Harris, Mazur). Assume the Bombieri�Lang conjecture. Let K be a number

�eld and g ≥ 2 a positive integer. Then there exists a constant N = N(K, g) such that for any smooth

curve X of genus g de�ned over K, the number of K-rational points on X is at most N .

The idea of the proof is a beautiful application of geometry to arithmetic. Let X → B be a family of
smooth projective curves of genus g de�ned over K. For every b ∈ B(K), we know that the �ber Xb has
�nitely many K-points. But how do these points behave as we vary b? Is there any kind of relationship
between the K-rational points of Xb for various b?

Caporaso, Harris, and Mazur prove that the answer is yes (assuming Bombieri�Lang). The prove that
for some n, the n-fold �bered productXn

B dominates a variety of general type. Therefore, if Bombieri�Lang
is true, then all the K-rational points of Xn

B are contained in a Zariski closed subset Z ⊂ Xn
B. That is,

there are algebraic relations between n-tuples of rational points. From this, a clever Noetherian induction
yields a uniform bound on the number of rational points of Xb. To conclude the full theorem, we take
X → B to be a suitable universal family.
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