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1 Motivating question

Fix �ve general cubics F0, . . . , F4 in C[X,Y, Z,W ]. Consider the family of
cubic surfaces de�ned by

a0F0 + · · ·+ a4F4 = 0

as [a0 : · · · : a4] varies in P4. How many times does a general cubic surface
appear in this family? That is, if we �x a general cubic surface S, how many
[a0 : · · · : a4] ∈ P4 are such that the surface de�ned by the equation above
is isomorphic to S?

The goal of this talk is to explain the mathematics that lets us answer
this question. Before I proceed, if you are dying to know the answer, I'll
write it down: it is 96120.

2 Why is the answer �nite?

Fact: Let X ⊂ P3 and Y ⊂ P3 be two cubic surfaces. Any isomorphism
X ∼= Y is given by a projective linear isomorphism

M : P3 → P3.

As a result, we get

{Cubic surfaces up to isomorphism} = {Cubic forms in X, Y, Z, W}/GL(4).

We do a dimension count and see that this is a moduli space of dimension

20− 16 = 4.

So, in a four dimensional family, we expect a general isomorphism class to
appear �nitely many times.

3 Why cubic surfaces?

Why not cubic curves or quartic surfaces or even more generally hypersur-
faces of any degree in any projective space? This is a good question, and in
fact, the main question can be formulated more generally. Let us do that in
a slightly di�erent language.
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3.1 Orbit closures

Fix positive integers n and d. Let V = Cn. We look at hypersurfaces
of degree d in PV modulo linear changes of coordinates. Fix a generic
F ∈ Symd(V ∗) and consider the orbit

OF = PGL(V ) · F ⊂ P Symd(V ∗)

and its closure
OF ⊂ P Symd(V ∗).

This is a closed subvariety of dimension n2− 1. The main question is equiv-
alent to the following.

3.1.1 Question of the degree of the orbit closure

What is the degree of OF ?
More precisely, the main question is the same as the n = 4 and d = 3

case of the question above.

3.1.2 History of the degree of the orbit closure

1. Enriques and Fano answered the question for n = 2 (points in P1) in
1897. The answer is:

d(d− 1)(d− 2).

2. Alu� and Faber answered the question for n = 3 (curves in P2) in
1992. The answer is:

d8 − 1372d4 + 7992d3 − 15879d2 + 10638d.

So the next non-trivial case is n = 4 and d = 3 (cubic surfaces).

3. Laura Brustenga I Moncusi, Sascha Timme, and Madeleine Weinstein
numerically computed the answer to be 96120 in 2020.

I will describe a new perspective on the problem.
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4 How should we compute the answer?

Let us go back to the main question, which I will restate more generally. Fix
a proper moduli space of cubic surfaces, for example, the GIT quotient

M = Cubic forms/GL.

Let X → B be a family of cubic surfaces parametrized by a proper 4-
dimensional base B. Find the degree of the rational map

µ : B 99KM.

(In the main question, the base is P4 and the family is a linear series.)

4.1 A natural approach using the GIT quotient

If µ were a regular map, we win. The answer is simply the degree of

µ∗[Point],

where [Point] represents the class of a point in the numerical Chow ring of
M.

If µ is not regular, we can try to �nd a resolution

B ← B̃
µ̃−→M.

This will give the right answer, but I do not know how to resolve even the
simplest families. For example, if you know how to resolve the family in the
main question, let me know!

4.2 An even more natural approach without the GIT quo-

tient

The reason the map µ is not regular is because we are taking the GIT quotient
and hence throwing away some cubic surfaces because they are �unstable�.
If we do not throw them away, the map µ is regular

µ : B → [Cubic forms/GL(4)]

but now the target is not a proper moduli space. But that's a minor in-
convenience! In fact, that is not an inconvenience at all, and the approach
works.
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5 The equivariant Chow ring

To make the approach work, we �rst need to make sense of the Chow ring of

M = [X/G].

But Edidin and Diaz have already done this form us: this is theG-equivariant
Chow ring of X:

A∗([X/G]) = A∗
G(X).

Next, we have to make sense of [Point]. We recall that a point in [X/G]
is the same as a G-orbit in X. We also recall that points are not necessarily
closed, so we have to take the closure. Equivalentnly, we have to look at the
closure of G-orbits. Now, every G-invariant closed subvariety of X has an
equivariant fundamental class. This is what replaces the class of a point.

[Point] = [Orbit closure].

We should thus ask and answer the following question.

5.1 Question of the equivariant orbit class

Given F ∈ Symd(V ∗), �nd the equivariant class of OF in A∗
GL(V )(Sym

d(V ∗)).

5.2 What is the equivariant Chow ring?

The equivariant Chow ring is very easy to describe in our case:

A∗
GL(V )(Sym

d(V ∗)) = A∗
GL(V )(·) = Z[c1, . . . , cn],

where ci has degree i and is the i-th Chern class of the standard representa-
tion.

6 The existence of a universal formula

For the case of cubic surfaces, the equivariant orbit class lives in codimension
4, and hence is a Z-linear combination of

c41, c
2
1c2, c1c3, c

2
2, c4.

As a result, we get the following.
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Theorem 1. There exist integers a14 , a12·2, a1·3, a22 , a4 such that for every

(good) family of cubic surfaces

X → B

parametrized by a proper 4-dimensional base B, we have

Degree of B 99KM =
∑

aIcI(V)[B],

where V is the rank 4 bundle of anticanonical sections

V = π∗ω
−1
X/B.

These universal constants are just the coe�cients of the equivariant class
of the generic orbit closure in the standard basis.

7 Finding the universal coe�cients

Once we know that a universal formula exists, we can �nd the coe�cients
by writing down families where we can compute both sides of the formula.
Each such family gives a linear equation satis�ed by the coe�cients. If we
can write down enough families, we get enough linear equations that we
know all the coe�cients!

7.1 Test families

7.1.1 Actual families

1. First family

2. Second family
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3. Third family

4. Fourth family
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7.1.2 Isotrivial families

Let X be a cubic surface with an action of a group G. We can turn this into
a �family�

X = [X/G]→ [./G].

This gives a morphism

µ : [./G]→ [Cubics/GL].

Suppose that X is not in the orbit closure of a generic cubic surface.
Then the pullback under µ of a generic orbit closure is zero. And hence, we
get a relation ∑

aIcI(V ) = 0

in A∗
G(·).
If G is a �nite group, then A∗

G(·) is torsion, so we will only get a congru-
ence relation on the coe�cients. But if G is in�nite, for example, G = Gm,
then we (may) get a non-trivial relation.

There are 4 cubic surfaces with a Gm action that are provably not in the
orbit closure of a generic cubic surface. They give 4 additional relations.

8 The upshot

Any 5 of the 8 families described above are su�cient to determine the uni-
versal coe�cients.

Theorem 2. For every X → B (good) family of cubic surfaces parametrized

by a proper 4-dimensional base B, we have

Degree of B 99KM = 1080(v21v2 − v1v3 + 9v4)[B].

where the vi are the Chern classes of the rank 4 bundle

V = π∗ω
−1
X/B.
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If we apply this to the general 4-dimensional linear series, we get

96120.

If we apply this to the section of a general cubic 4-fold, we get

42120.

9 The future

In closing, I want to re-iterate the main broader question. Let G be an
algebraic group and let W be a G-representation. Pick a point w ∈ W .
What is the equivariant fundamental class of the orbit closure of w?

This is an important question with whose answer has rich geometrical
and enumerative consequences.

1. IfW = Hom(E,F ) and G = GL(E)×GL(F ) and w is a rank r-matrix,
then the answer is the Porteous fomula.

2. If W = Sym2(E) or ∧2(E), and w is of rank r, then the answer is
the Porteous formula due to Harris and Tu. Work of Feher, Nemethi,
Rimanyi, Weber, Varchenko (etc.) generalises this.

3. For hypersurfaces, not much is known.

� Hypersurfaces in P1 (Lee, Patel, Spink, Tseng)

� Quartic plane curves (Lee, Patel, Tseng)

� Cubic surfaces (-, Patel, Tseng)

4. For GL(2) and any representation (-, Patel) in progress.
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