Syzygies of canonical curves and the geometry of \overline{M}_g

Anand Deopurkar

Columbia University

August 6, SIAM AG 2015

The main question

C a smooth projective curve of genus g . Take a (pluri)-canonical embedding $C \subset \mathbf{P}^n$. Consider

{Space of $C \subset \mathbf{P}^n$ } \mathcal{J} SL_{n+1}.

Question

How is this quotient related to \overline{M}_{g} ?

The dream

The Mori chamber decomposition of Pic_Q(\overline{M}_g) by these spaces.

The dream

The Mori chamber decomposition of $\langle \lambda, \delta \rangle \subset \text{Pic}_{\mathbf{Q}}(\overline{M}_{g})$ by these spaces.

$$
[H^0(\mathcal{I}_C(m)) \subset \text{Sym}^m V] \in \mathbf{Gr}(*, \text{Sym}^m V) \mathbin{/\!\!/} \text{SL} V.
$$

Space of $C \subset \mathsf{P}^n = \mathsf{P} V$ using syzygies

$$
\mathcal{O}_{\mathcal{C}} \leftarrow \mathcal{O} \leftarrow \mathcal{O}(-2)^{*} \leftarrow \mathcal{O}(-3)^{*} \leftarrow \ldots
$$

Example (Genus 7):

$$
\mathcal{O}_{\mathcal{C}} \leftarrow \mathcal{O} \leftarrow \mathcal{O}(-2)^{10} \leftarrow \mathcal{O}(-3)^{16} \\
\leftarrow \mathcal{O}(-5)^{16} \leftarrow \mathcal{O}(-6)^{10} \leftarrow \mathcal{O}(-8).
$$

Space of $C \subset \mathsf{P}^n = \mathsf{P} V$ using syzygies

Via the Koszul complex,

$$
K_{p,1}\subset \Gamma_pV,
$$

where $\Gamma_p V = \wedge^p V \otimes V / \wedge^{p+1} V$. Take $[K_{p,1} \subset \Gamma_p V] \in \mathbf{Gr}(*, \Gamma_p V) \text{ // SL } V.$

What is known?

- 1. Pluricanonical Hilbert quotients for $m \gg 0$ are birational models of \overline{M}_{σ} occupying the first two chambers. [Gieseker, Hassett–Hyeon]
- 2. Bi-canonical Hilbert quotients are birational to \overline{M}_{g} . Canonical Hilbert quotients are non-empty. [Alper–Fedorchuk–Smyth]
- 3. For odd g , the first canonical syzygy quotient is non-empty. [D-Fedorchuk-Swinarski]

More in low genera.

[Lee, Jensen, Casalaina-Martin, Laza, Müller,...]

Conjecture

For odd g, the pth syzygy point of the balanced canonical ribbon of genus g is semistable.

Curves of genus 7

 \triangleright General

 \blacktriangleright Tetragonal (Codimension 1)

 \triangleright Unbalanced tetragonal (Codimension 2)

- \blacktriangleright Unbalanced tetragonal (Codimension 2)
	- 1. Has a g_6^2
	- 2. Has the betti table

3. Has unbalanced scrollar invariants.

Tetragonal curves and scrollar invariants

C tetragonal \implies C \subset **PE**, where $\pi\colon E\to\mathsf{P}^1$ is rank 3.

In PE, we have $C = X_1 \cap X_2$ where $X_i \in |{\mathcal{O}}(2) \otimes \pi^* {\mathcal{O}}(-a_i)|$.

In genus 7, $a_1 + a_2 = 10$.

Generically, $(a_1, a_2) = (5, 5)$ (balanced).

In codim 1, $(a_1, a_2) = (4, 6)$ (unbalanced).

Theorem $(-)$

- 1. A general curve of genus 7 has a stable syzygy point.
- 2. A general tetragonal curve has at least a semistable syzygy point.
- 3. A general unbalanced tetragonal curve has a strictly semistable syzygy point. The syzygy points of unbalanced tetragonal curves coincide and are equal to the syzygy point of a del Pezzo surface of degree 6 that contains these curves.

Syzygy model (speculation)

Main idea.

Suppose G acts on C such that $V=H^0(\mathcal{C},\omega_{\mathcal{C}})$ is a *multiplicity* free G-representation.

Then SL V stability reduces to torus stability.

Checking torus stability is a concrete combinatorial / linear algebraic problem that we can (sometimes) solve in general or verify using a computer for particular cases.