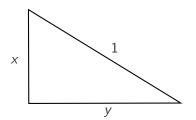
Claire Voisin on the question of rationality

Women of Mathematics, Australian National University February 27, 2019 Can you recognise these numbers? $(\frac{3}{5}, \frac{4}{5}), (\frac{5}{13}, \frac{12}{13}), (\frac{8}{17}, \frac{15}{17}), (\frac{7}{25}, \frac{24}{25}), (\frac{20}{29}, \frac{21}{29}), \dots$

These are solutions (x, y) of

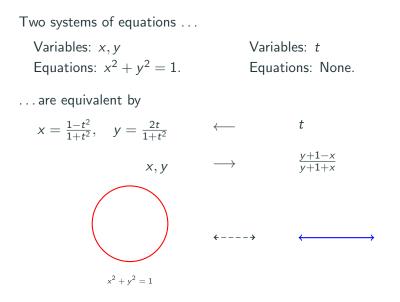
$$x^2 + y^2 = 1.$$



All the solutions:

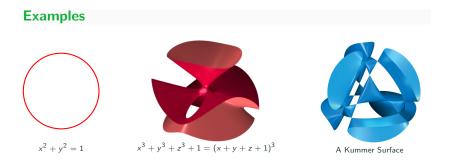
$$x = \frac{1 - t^2}{1 + t^2}$$
 $y = \frac{2t}{1 + t^2}$.

Warm-up



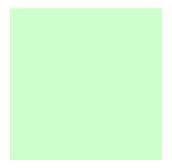
3

An algebraic variety is the set of solutions of a system of polynomial equations.



An algebraic variety is the set of solutions of a system of polynomial equations.

```
Example (The best one)
```



 A^n = The ambient space (no equations)!

A variety X is rational if it is birational to \mathbf{A}^n .

System of equations ← -- Coördinate change -- → No equations!

Which varieties are rational?

- 1. The variety defined by $x^2 + y^2 = 1$ is rational.
- 2. Varieties defined by linear equations are rational.
- Varieties defined by one quadratic equation are rational (over C).
- 4. Varieties defined by one cubic ?
 - 4.1 Cubic curves: not rational (ancient)
 - 4.2 Cubic surfaces: rational (Castelnuovo, Enriques: Early 1900s)
 - 4.3 Cubic threefolds: not rational (Clemens-Griffiths: 1972)
 - 4.4 Cubic fourfolds and higher: ???

Artin–Mumford (1971): If X is a rational smooth projective variety, then $H^3(X, \mathbb{Z})$ is torsion-free.

So we have the Artin-Mumford invariant

 $H^3(X, \mathbf{Z})_{\mathrm{tors}}$

as a candidate to detect non-rationality.

But $H^3(X, \mathbf{Z})_{\text{tors}} = 0$ for all interesting examples.

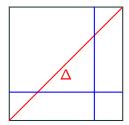
Photo credit: CNRS News Article "Claire Voisin, 2016 CNRS Gold Medal"

Definition (Voisin, 2015)

X admits a decomposition of the diagonal if in $Chow(X \times X)$,

$$[\Delta] \sim \{x\} \times X + \alpha$$

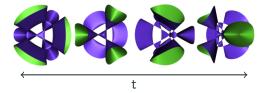
for some α supported on $X \times Z$ for $Z \subsetneq X$.



Theorem (Voisin, 2015)

- 1. X rational \implies X admits a decomp. of the diagonal.
- 2. X admits decomp. of the diagonal $\implies H^3(X, \mathbf{Z})_{tors} = 0$.
- If X_t is a family of varieties such that some X_{t0} does not admit a decomp. of the diagonal, then neither does X_t for almost all t.

For example,
$$X_t = \{x^4 + y^4 + z^4 + w^4 - txyzw = 0\}.$$



New technique for non-rationality theorems:

- 1. Consider a family X_t .
- 2. Find a t_0 such that X_{t_0} does not admit a decomposition of the diagonal (for example, show $H^3(X_{t_0}, \mathbb{Z})_{\text{tors}} \neq 0$).
- 3. Theorem: Almost all X_t are not rational!
 - Very general quartic double solids are not rational (Voisin, 2015).
 - Rationality is not deformation invariant (Hassett-Pirutka-Tschinkel, 2016).
- Very general hypersurfaces in Pⁿ⁺¹ of degree d ≥ log₂ n + 2 are not rational (Schreieder, 2018).

- 1. Kodaira problem,
- 2. Green's conjecture for canonical curves,
- 3. Chow rings of K3 surfaces,
- 4. Many questions related to the Hodge conjecture.

Thank you!