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1. MODELS OF Mg FROM GIT: HILBERT POINTS (55)

Consider a smooth curve C embedded in a projective space PV by a complete pluri-
canonical linear system:

C ⊂ PV, V = H0(C, kω).
Since this embedding is canonically associated to the curve, all the extrinsic projective
data of this embedded curve is in fact intrinsic to the curve. We can use this data to
capture the moduli of the curve. This idea gives us recipes to construct several models of
Mg.

For example, we can look at homogeneous polynomials of a given degree contained in
the ideal of C. In other words, we can look at the subspace

H0(IC(m)) ⊂ Symm V.

Fixing an identification V ∼= CN, we can interpret this as a point in the appropriate Grass-
mannian:

[H0(IC(m)) ⊂ Symm CN] ∈ Gr.

Call this point the mth Hilbert point of C, denoted by [C]k,m. Define Hilbk,m ⊂ Gr as the
closure of the mth Hilbert points of k-canonically embedded smooth curves of genus g.
After taking the quotient by SLN to eliminate the choice of the basis, we expect to get a
birational model of Mg:

Hilbk,m// SLN .
What can we say about these spaces? If m is sufficiently large, then we can precisely
identify these spaces:

Hilbk,m// SLN =


Mg k ≥ 5, m� 0,
Mps

g k = 3, 4, m� 0,

Mhs
g k = 2, m� 0.
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Beyond this, we do not know much. In fact, it is not even clear a priori that these spaces
are non-empty. That they are indeed non-empty (and hence birational to Mg) is a recent
result of Alper, Fedorchuk, and Smyth:

Theorem 1.1. If C is a general curve, then [C]k,m is GIT-stable.

Although we are too far from being able to describe these GIT quotients, modulo certain
operative assumptions, we can make some predictions. Assume, then, that possibly out-
side from a locus of codimension at least two, every point of Hilbk,m // SLN represents an
at worst nodal curve. Then, a relatively straightforward Grothendieck–Riemann–Roch
computation shows that the natural line bundle on this quotient, furnished by its GIT
construction, is a multiple of

Lk,m =


(

12− 1
km2 (4km + 4m + 2)

)
λ− δ if k > 1(

8 + 4
g −

2
m + 2

g(m−1)

)
λ− δ if k = 1.

.

Therefore, we can expect that Hilbk,m// SLN is a log-canonical model of Mg.
To get an idea of where we are, let us place these models on the λ-δ plane. Recall that

the canonical divisor of Mg is 13λ− 2δ, which corresponds to the ray with slope 6.5 in this
picture. Also recall that the rays with slope greater than 11 represent ample divisors (and
hence correspond to Mg itself). The models for k > 1 give models with slope ranging
from 12 to a little under 9, followed by the models for k = 1, which give slopes ranging
from 8 + 4/g to 7 + 6/g.

This is great, except that 7+ 6/g is not quite 6.5! If we we wish to continue this program
to get the canonical model, we need to dig deeper.

2. SYZYGY POINTS (45)

The proposed idea for how to go further is originally due to Sean Keel. He suggested
going beyond the generators of the defining ideal to the relations among them, and then
to relations among the relations, and so on, namely to the syzygies. Following his idea, let
us define the Syzygy points analogous to the Hilbert points. This definitions is via Koszul
cohomology. Let us quickly recall its definition.

Let F be sheaf on PV. Consider the complex

· · · → ∧p+1V ⊗ H0(F(q− 1))→ ∧pV ⊗ H0(F(q))→ ∧p−1V ⊗ H0(F(q + 1))→ . . . .

Define Kp,q to be the cohomology of this complex. It is easy to check that

Kp,q = Torp(F)p+q,

namely, it is the degree (p + q) piece of the pth group of syzygies.
What are these groups for a canonically embedded curve, that is, in the case V =

H0(C, ω) and F = OC? We know that the minimal free resolution of OC has the form
O← O(−2)∗ ← O(−3)∗ ← · · · ← O(−c)∗ ←O(−1− c)∗ ← · · · ← O(−g + 1 + c)∗

O(−2− c)← · · · ← O(−g + c)∗ ← O(−g− 1 + c)← · · · ← O(−g + 1)← O(−g− 1)← 0.

We have the following amazing conjecture about this number c:

Conjecture 2.1 (Green–Lazarsfeld). In the above setup, c = Cliff(C).
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For a general curve, this is a theorem:

Theorem 2.2 (Voisin). If C is general, then c = b(g− 1)/2c.

In fact, we know more: thanks to the work of Voisin, Farkas and Aprodu, if C lies on a
K3 surface, then the number c is indeed the Clifford index.

Moreover, the whole resolution is symmetric, so we may restrict to p < (g− 1)/2. Then
all the Kp,q except Kp,1 and Kp,2 vanish, and (conjecturally) for p greater than the Clifford
index, Kp,2 vanishes as well.

Let us focus, then, at the beginning of the Koszul complex (with a slight shift in nota-
tion):

K : ∧p+2H0(ω)→ ∧p+1H0(ω)⊗ H0(ω)→ ∧pH0(ω)⊗ H0(2ω)→ . . . .

Set

V = H0(ω),

Γp(V) = ∧p+1V ⊗V/ ∧p+2 V,

Qp = ker(K2 → K3),

Truncating the Koszul complex, we get the exact sequence

0→ Kp+1,1 → ΓpV → Qp → Kp,2 → 0.

Definition 2.3. Suppose Kp,2 = 0. Then, the pth syzygy point [SyzpC] is the point in
Gr(∗, ΓpV) given by the sequence

0→ Kp+1,1 → Γp → Qp → 0.

3. THE MAIN THEOREM (35)

Let Syzp ⊂ Gr = Gr(rp, ΓpCg) be the closure of the syzygy points. We now have new
candidates for the models of Mg, namely

Syzp// SLg .

Proposition 3.1. Suppose Syzp// SLg is non-empty and away from a locus of codimension at
least two, its points represent at worst nodal curves. Then the GIT-induced ample line bundle on
this quotient is a multiple of

Lp =

(
8 +

4
g
− (g− 2)(g− 1)

g(g− p− 1)

)
λ− δ.

The proof is a standard GRR computation using the Koszul complex, just as in the case
of Hilbert points.

Suppose p = 0. Then L0 = 7 + 6/g. This is expected. After all, in this case

ΓpV = V ⊗V/ ∧2 V = Sym2 V,
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and the subspace Kp−1,1 = H0(I(2)). So this is just the last Hilbert point. However, note
that, for higher p, the slopes of these divisors do cover the range from 7 + 6/g to 6.5, in
fact, asymptotically, they go up to slope 6. Therefore, we are compelled to study these
GIT quotients. Our main result is a modest first step in this direction.

Theorem 3.2 (Main). Let g be odd. Then the GIT quotient of the first syzygies, namely Syz1// SLg
is non-empty. In other words, if C is general, then [Syz1(C)] is GIT-stable.

4. SKETCH OF THE PROOF (23)

4.1. Kempf’s Criterion. The idea of the proof is the same as in Alper, Fedorchuk, and
Smyth’s paper. The details get much more complicated, however, keeping us from ex-
tending the result for the higher syzygies.

It suffices to exhibit a GIT-semistable point in Syz. In particular, it suffices to exhibit a
smoothable, canonically embedded curve C whose syzygy point is semistable.

Which C should we choose? Here the basic idea is due to Swinarski and Morrison,
based on a result of Kempf.

Proposition 4.1. Suppose a reductive group G acts on C such that V = H0(C, ω) is a multipicity
free representation, say

V = V1 ⊕V2 ⊕ · · · ⊕Vr.
Then the Hilbert/Syzygy points of C are (semi)stable if and only if they are (semi)stable with
respect to all one parameter subgroups Gm → SL V that preserve the direct sum decomposition.

The idea is to choose C whose automorphism group is rich enough to restrict the choice
of one-parameter subgroups as much as possible. Of course, if we restrict to smooth
curves C, then G can only be a finite group, but if we allow C to be highly singular, even
non-reduced, then there are many more possibilities. Following, Alper, Fedorchuk, and
Smyth, we work with ribbons.

4.2. Ribbons (18). A ribbon, or more precisely, a rational ribbon is a double structure on
P1, it is a scheme R whose reduction is P1 and which locally looks like A1× Spec C[ε]/ε2.
Let R be a ribbon of arithmetic genus g. We have the sequence

0→ OP1(−g− 1)→ OR → OP1 → 0.

Thus, OR is an extension of OP1 by OP1(−g− 1). These are classified by

Ext1(ΩP1 , OP1(−g− 1)) ∼= H0(OP1(g− 3))∨.

More explicitly, R is obtained by gluing C[x, ε]/ε2 and C[y, η]/η2 by

x−1 = y + p(y)η

ε = y−g−1η,

where p(y) ∈ 〈y−1, . . . , y−(g−2)〉.
Notice that if p(y) is a monomial, then R admits a Gm action. In particular, let g =

2k + 1. Then there is a distinguished choice of a monomial—the most balanced one

p(y) = y−k.
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The Gm action is

t : x 7→ tx, ε 7→ tk+1ε

: y 7→ t−1y, η 7→ t−k−1η.

Ribbons have a canonical line bundle (since they are Gorenstein), a canonical embedding
(if they are not “hyperelliptic”, that is if p(y) 6= 0), and are limits of canonical curves. For
the balanced ribbon R, the sections of the canonical written explicitly are:

H0(ω) ∼= 〈1, x, x2, . . . , xk

xk+1 + ε, xk+2 + xε, . . . , x2k + kxk−1ε〉.
Note that these sections are eigenvectors of the Gm action with distinct weights. That is,
H0(ω) is a direct sum of g distinct characters of Gm.

It is easy to check that the balanced ribbon R satisfies K1,2 = 0 and hence has a well-
defined syzygy point.

Proposition 4.2. [Syz1R] is semi-stable.

The beauty is that we only need to check that [Syz1R] is semi-stable with respect to the
diagonal tori, that is, on Gm’s acting by scaling the canonical sections x0, . . . x2k. This is
ultimately a purely combinatorial question, which is not to say that it is easy. Most of
the work in our paper goes into checking this linear-algebraic/combinatorial condition.
It would be great to have systematic tools to attack these kinds of questions. In his talk,
David Swinarski will explore some systematic approaches.

4.3. Monomial Bases (10). In any case, let me describe what is involved in the remaining
details. Let T ⊂ SL V be the diagonal torus, where V = H0(ω) = 〈x0, . . . , x2k〉. The
(co)syzygy point of R is the point in the grassmannian of r = (g− 1)(3g− 5) dimensional
quotients of Γ1V given by

Γ1V = ∧2V ⊗V/ ∧3 V → Q1 → 0,

where
Q1 = ker(H0(R, ω)⊗ H0(R, 2ω)→ H0(R, 3ω)).

Going to the Plucker coordinates, we get the point in the projective space

ζ ≡ [∧rΓ1V → ∧rQ1 → 0].

Now, note that ∧rΓ1V is a representation of T, say

∧rΓ1V = ⊕Cχ,

where the χ’s are characters of T. This decomposition gives homogeneous coordinates
on P(∧rΓ1V) with a character associated to each coordinate. The point ζ is T-semistable
if and only if for every Gm → T, the weigts of the non-zero coordinates of ζ are not all
positive or negative. This is equivalent to saying that the characters corresponding to
non-zero coordinates of ζ contain the trivial character in their convex hull.

So, for the proof, we must exhibit enough non-zero coordinates of ζ to surround the
origin. Note that if s1, . . . , sr ∈ Γ1V are “monomials” (xa ∧ xb ⊗ xc) that project onto a
basis of Q1, then s1 ∧ · · · ∧ sr is a non-zero coordinate, whose associated character is the
sum of the characters associated to the si’s. What we must do, then, is to find monomial
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bases B1, B2, . . . of Q1 such that their characters χ(B1), χ(B2), . . . contain (0, . . . , 0) in their
convex hull.

Since we know H0(R, iω) very well, we are able to do this explicitly. In fact, we
can write down three such bases, which suffice. There are some heuristics that go into
choosing these bases, thanks to Maksym’s earlier experience. Somewhat surprisingly, the
purely linear algebraic fact that they are indeed bases was quite difficult to pin down.

In any case, that’s done now, so there is now a birational model of slope 7+ 5/g, waiting
to be explored.
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