5.
$$\mathbf{r}(t) = 3\cos t \,\mathbf{i} + 2\sin t \,\mathbf{j} \quad \Rightarrow$$

At
$$t = \pi/3$$
:

$$\mathbf{v}(t) = -3\sin t \,\mathbf{i} + 2\cos t \,\mathbf{j}$$

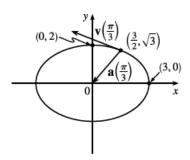
$$\mathbf{v}(\frac{\pi}{3}) = -\frac{3\sqrt{3}}{2}\,\mathbf{i} + \mathbf{j}$$

$$\mathbf{a}(t) = -3\cos t\,\mathbf{i} - 2\sin t\,\mathbf{j}$$

$$\mathbf{a}(\frac{\pi}{3}) = -\frac{3}{2}\,\mathbf{i} - \sqrt{3}\,\mathbf{j}$$

$$|\mathbf{v}(t)| = \sqrt{9\sin^2 t + 4\cos^2 t} = \sqrt{4 + 5\sin^2 t}$$

Notice that $x^2/9 + y^2/4 = \sin^2 t + \cos^2 t = 1$, so the path is an ellipse.



8.
$$\mathbf{r}(t) = t \mathbf{i} + 2 \cos t \mathbf{j} + \sin t \mathbf{k} \implies$$

At
$$t = 0$$
:

$$\mathbf{v}(t) = \mathbf{i} - 2\sin t \, \mathbf{j} + \cos t \, \mathbf{k}$$

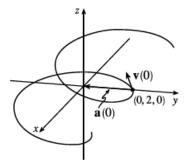
$$\mathbf{v}(0) = \mathbf{i} + \mathbf{k}$$

$$\mathbf{a}(t) = -2\cos t \mathbf{j} - \sin t \mathbf{k}$$

$$a(0) = -2j$$

$$|\mathbf{v}(t)| = \sqrt{1 + 4\sin^2 t + \cos^2 t} = \sqrt{2 + 3\sin^2 t}$$

Since $y^2/4 + z^2 = 1$, x = t, the path of the particle is an elliptical helix about the x-axis.



15. $\mathbf{a}(t) = \mathbf{i} + 2\mathbf{j}$ \Rightarrow $\mathbf{v}(t) = \int \mathbf{a}(t) dt = \int (\mathbf{i} + 2\mathbf{j}) dt = t\mathbf{i} + 2t\mathbf{j} + \mathbf{C}$ and $\mathbf{k} = \mathbf{v}(0) = \mathbf{C}$,

so $\mathbf{C} = \mathbf{k}$ and $\mathbf{v}(t) = t\mathbf{i} + 2t\mathbf{j} + \mathbf{k}$. $\mathbf{r}(t) = \int \mathbf{v}(t) dt = \int (t\mathbf{i} + 2t\mathbf{j} + \mathbf{k}) dt = \frac{1}{2}t^2\mathbf{i} + t^2\mathbf{j} + t\mathbf{k} + \mathbf{D}$.

But
$$\mathbf{i} = \mathbf{r}(0) = \mathbf{D}$$
, so $\mathbf{D} = \mathbf{i}$ and $\mathbf{r}(t) = (\frac{1}{2}t^2 + 1)\mathbf{i} + t^2\mathbf{j} + t\mathbf{k}$.

27. Let α be the angle of elevation. Then $v_0 = 150 \, \mathrm{m/s}$ and from Example 5, the horizontal distance traveled by the projectile is

$$d = \frac{v_0^2 \sin 2\alpha}{q}. \text{ Thus } \frac{150^2 \sin 2\alpha}{q} = 800 \quad \Rightarrow \quad \sin 2\alpha = \frac{800g}{150^2} \approx 0.3484 \quad \Rightarrow \quad 2\alpha \approx 20.4^\circ \text{ or } 180 - 20.4 = 159.6^\circ.$$

Two angles of elevation then are $\alpha \approx 10.2^{\circ}$ and $\alpha \approx 79.8^{\circ}$.

1. True. If we reparametrize the curve by replacing $u = t^3$, we have $\mathbf{r}(u) = u \, \mathbf{i} + 2u \, \mathbf{j} + 3u \, \mathbf{k}$, which is a line through the origin with direction vector $\mathbf{i} + 2 \, \mathbf{j} + 3 \, \mathbf{k}$.

2. True. Parametric equations for the curve are $x=0, y=t^2, z=4t$, and since t=z/4 we have $y=t^2=(z/4)^2$ or $y=\frac{1}{16}z^2, x=0$. This is an equation of a parabola in the yz-plane.

3. False. The vector function represents a line, but the line does not pass through the origin; the x-component is 0 only for t = 0 which corresponds to the point (0, 3, 0) not (0, 0, 0).

4. True. See Theorem 13.2.2.

5. False. By Formula 5 of Theorem 13.2.3, $\frac{d}{dt} \left[\mathbf{u}(t) \times \mathbf{v}(t) \right] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$.

Calculus III: Homework 7

- **6.** False. For example, let $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$. Then $|\mathbf{r}(t)| = \sqrt{\cos^2 t + \sin^2 t} = 1 \implies \frac{d}{dt} |\mathbf{r}(t)| = 0$, but $|\mathbf{r}'(t)| = |\langle -\sin t, \cos t \rangle| = \sqrt{(-\sin t)^2 + \cos^2 t} = 1$.
- 7. False. κ is the magnitude of the rate of change of the unit tangent vector \mathbf{T} with respect to arc length s, not with respect to t.
- **8.** False. The binormal vector, by the definition given in Section 13.3, is $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t) = -[\mathbf{N}(t) \times \mathbf{T}(t)]$.
- 12. Using Exercise 13.3.42, we have $\mathbf{r}'(t) = \langle -3\sin t, 4\cos t \rangle$, $\mathbf{r}''(t) = \langle -3\cos t, -4\sin t \rangle$,

$$\left|\mathbf{r}'(t)\right|^3 = \left(\sqrt{9\sin^2t + 4\cos^2t}\,
ight)^3$$
 and then

$$\kappa(t) = \frac{|(-3\sin t)(-4\sin t) - (4\cos t)(-3\cos t)|}{(9\sin^2 t + 16\cos^2 t)^{3/2}} = \frac{12}{(9\sin^2 t + 16\cos^2 t)^{3/2}}$$

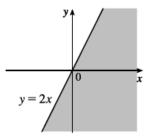
At
$$(3,0)$$
, $t=0$ and $\kappa(0)=12/(16)^{3/2}=\frac{12}{64}=\frac{3}{16}$. At $(0,4)$, $t=\frac{\pi}{2}$ and $\kappa(\frac{\pi}{2})=12/9^{3/2}=\frac{12}{27}=\frac{4}{9}$.

20. $\mathbf{r}'(t) = \mathbf{i} + 2\mathbf{j} + 2t\mathbf{k}$, $\mathbf{r}''(t) = 2\mathbf{k}$, $|\mathbf{r}'(t)| = \sqrt{1 + 4 + 4t^2} = \sqrt{4t^2 + 5}$.

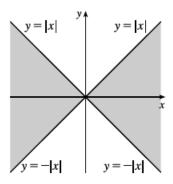
Then
$$a_T = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|} = \frac{4t}{\sqrt{4t^2 + 5}}$$
 and $a_N = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|} = \frac{|4\mathbf{i} - 2\mathbf{j}|}{\sqrt{4t^2 + 5}} = \frac{2\sqrt{5}}{\sqrt{4t^2 + 5}}$.

- 5. (a) $f(160, 70) = 0.1091(160)^{0.425}(70)^{0.725} \approx 20.5$, which means that the surface area of a person 70 inches (5 feet 10 inches) tall who weighs 160 pounds is approximately 20.5 square feet.
 - (b) Answers will vary depending on the height and weight of the reader.
- 13. $\sqrt{2x-y}$ is defined only when $2x-y\geq 0$, or $y\leq 2x$.

So the domain of f is $\{(x,y) \mid y \leq 2x\}$.



16. $\sqrt{x^2-y^2}$ is defined only when $x^2-y^2\geq 0$ \Leftrightarrow $y^2\leq x^2$ \Leftrightarrow $|y|\leq |x|$ \Leftrightarrow $-|x|\leq y\leq |x|$. So the domain of f is $\{(x,y)\mid -|x|\leq y\leq |x|\}$.



32.

All six graphs have different traces in the planes x = 0 and y = 0, so we investigate these for each function.

- (a) f(x,y) = |x| + |y|. The trace in x = 0 is z = |y|, and in y = 0 is z = |x|, so it must be graph VI.
- (b) f(x,y) = |xy|. The trace in x = 0 is z = 0, and in y = 0 is z = 0, so it must be graph V.
- (c) $f(x,y) = \frac{1}{1+x^2+y^2}$. The trace in x=0 is $z=\frac{1}{1+y^2}$, and in y=0 is $z=\frac{1}{1+x^2}$. In addition, we can see that f is close to 0 for large values of x and y, so this is graph I.
- (d) $f(x,y)=(x^2-y^2)^2$. The trace in x=0 is $z=y^4$, and in y=0 is $z=x^4$. Both graph II and graph IV seem plausible; notice the trace in z=0 is $0=(x^2-y^2)^2 \Rightarrow y=\pm x$, so it must be graph IV.
- (e) $f(x,y)=(x-y)^2$. The trace in x=0 is $z=y^2$, and in y=0 is $z=x^2$. Both graph II and graph IV seem plausible; notice the trace in z=0 is $0=(x-y)^2 \Rightarrow y=x$, so it must be graph II.
- (f) $f(x, y) = \sin(|x| + |y|)$. The trace in x = 0 is $z = \sin|y|$, and in y = 0 is $z = \sin|x|$. In addition, notice that the oscillating nature of the graph is characteristic of trigonometric functions. So this is graph III.