Moduli of Curves (Week 2)

Exercise 1. Let *A* be an integral domain. Show that every flat *A* module *M* is torsion free. (That is, show that multiplication by a nonzero $a \in A$ is an injective map on *M*.) Show that the converse holds if *A* is a DVR, but not in general.

Exercise 2. Compute the flat limits $\lim_{t\to 0} X_t$ for the following examples:

1.
$$X_t = V(X^2 + tY^2 + t^{-1}Z^2) \subset \mathbf{P}^2$$
.

2. $X_t = \overline{\{[1:t^a:t^b], [1:t^b:t^d]\}} \subset \mathbf{P}^2.$

Exercise 3. Let $Q \subset \mathbf{P}^3$ be smooth quadric surface. Let $C \subset Q$ be a smooth curve of type (a, b). Find the tangent space to the Hilbert schemes of subschemes of \mathbf{P}^3 at the point corresponding to $[C \subset \mathbf{P}^3]$.

Exercise 4. Show that the Hilbert scheme is smooth at the point corresponding to a rational normal curve of degree *n* in \mathbf{P}_{c}^{n} .

Exercise 5. Let *T* and *P* be the components of the Hilbert scheme of subschemes of P_c^3 of Hilbert polynomial 3m + 1 whose generic points correspond to a smooth twisted cubic and a smooth plane cubic union a point, respectively.

- 1. Compute the dimension of *T* and *P*.
- 2. Show that the Hilbert scheme is smooth at a general point of *T* and *P*.
- 3. Let C_1 be the curve supported on a nodal plane cubic with an embedded point at the node not contained in the plane. What is the dimension of the tangent space to the Hilbert scheme at $[C_1]$?
- 4. Let C_2 be a 'spatial triple line', namely the scheme defined by the cube of the ideal of a line in \mathbf{P}^3 . Show that $[C_2]$ lies in *T*. Moreover, show that $[C_2]$ is a smooth point of *T*. Hence conclude that $[C_2]$ does not lie in *P*.
- 5. Let C_3 be a planar triple line with an embedded point contained in the plane. Show that $[C_3]$ lies in *P*. Does $[C_3]$ lie in *T*?