
TRANSCENDENCE DEGREE

ALEX WRIGHT

1. Introduction

We can describe the size of a field extension E/F using the idea of
dimension from linear algebra.

[E : F ] = dimF (E)

But this doesn’t say enough about the size of really big field extensions.

[F (x1) : F ] = [F (x1, ..., xn) : F ] = ∞
So we will define a new notion of the size of a field extension E/F ,
called transcendence degree. It will have the following two important
properties.

tr.deg(F (x1, ..., xn)/F ) = n

and if E/F is algebraic,

tr.deg(E/F ) = 0

The theory of transcendence degree will closely mirror the theory of
dimension in linear algebra.

2. Review of Field Theory

Definition. α ∈ E is algebraic over F ⊂ E if there is a non zero
polynomial p(x) ∈ F [x] such that p(α) = 0. E/F is said to be algebraic
if all α ∈ E are algebraic over F .

Recall that α ∈ E is algebraic iff there is an intermediate field F ⊂
L ⊂ E such that α ∈ L and [L : F ] < ∞.

Lemma. If α1, ..., αn ∈ E are algebraic over F then

[F (α1, ..., αn) : F ] < ∞
and E/F is an algebraic extension.

It is in fact also true that if αi, i ∈ I are infinitely many elements
contained in some extensions E of F , and each αi is algebraic over F ,
then F (αi : i ∈ I)/F is algebraic. We will use this fact latter on.
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Theorem. If K/L and L/M are algebraic extensions, then K/M is
algebraic too.

Proof. Take α ∈ K. Pick p(x) = a0 + ... + anxn ∈ L[x], p(x) 6= 0 so
that p(α) = 0. Now α is algebraic over M(a0, ..., an) But, by the KLM
Theorem and the previous lemma,

[M(α, a0, ..., an) : M ]

≤ [M(α, a0, ..., an) : M(a0, ..., an)][M(a0, ..., an) : M ]

≤ n[M(a0, ..., an) : M ]

< ∞

so α is contained in a finite degree extension of M . Hence α is algebraic
over M . Since every element of K is algebraic over M , by definition
K/M is algebraic.

3. Algebraic (In)dependence

Let E/F be a field extension, and S ⊂ E.

Definition. S is algebraically independent over F if for all non zero
polynomials p(x1, ..., xn) ∈ F [x1, ..., xn], and s1, ..., sn ∈ S (all distinct),
we have p(s1, ..., sn) 6= 0. S is algebraically dependent over F if it is
not algebraically independent.

Example (1). If E/F is an algebraic extension and α ∈ E then {α}
is algebraically dependent.

Example (2). In F (x1, ..., xn)/F , {x1, ..., xn} is algebraically indepen-
dent.

Lemma. If S ⊂ E is algebraically independent, then S is maximal iff
E is algebraic over F (S).

Proof. If α is algebraic over F (S), then α satisfies some non zero
polynomial equation with coefficients in F (S).

p0(s1, ..., sn)

q0(s1, ..., sn)
+

p1(s1, ..., sn)

q1(s1, ..., sn)
α + ... +

pm(s1, ..., sn)

qm(s1, ..., sn)
αm = 0

Here the pi ∈ F [x1, ..., xn], and s1, ..., sn ∈ S. Clearing denominators
we get that α satisfies

r0(s1, ..., sn) + ... + rm(s1, ..., sn)αm = 0

where r0 = p0q1q2...qm ∈ F [x1, ..., xn] etc. Thus S ∪ {α} is not alge-
braically independent. This proves that if E/F (S) is algebraic, then S
is maximal. (We cannot add any α ∈ E to it.)
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Conversely, suppose S is maximal. Take α ∈ E, α /∈ S. S ∪ {α}
is not algebraically independent, so we can find a non zero polynomial
p ∈ F [x0, x1, ..., xn] and s1, ..., sn ∈ S such that p(α, s1, ..., sn) = 0.
Since S is algebraically independent, α must actually appear in this
expression. Grouping powers of α we get

p(α, s1, ..., sn) = p0(s1, ..., sn) + ... + pm(s1, ..., sn)αm = 0

Thus α is algebraic over F (S). This shows that all α /∈ S are algebraic
over F (S). Of course all α ∈ S are also algebraic over F (S). Thus
E/F (S) is algebraic.

Lemma. Let A be a set. If E/F has an algebraically independent set
of cardinality |A| then F (xα : α ∈ A) can be embedded into E.

Proof. Let S = {sα : α ∈ A} be an algebraically independent subset of
E of cardinality |A|. We can define a map

φ : F [xα : α ∈ A] → E

by saying φ|F is the identity and φ(xα) = sα. Since S is algebraically
independent, the kernel of φ is trivial, and φ is an injection. Thus we
can take

Φ : F (xα : α ∈ A) → E :
p(xα1

, ..., xαn
)

q(xα1
, ..., xαn

)
7→ φ(p)

φ(q)

as the desired injection of F (xα : α ∈ A) into E.

We will end up defining the transcendence degree of E/F as the
size of an algebraically independent subset of E. To prove this is well
defined, we need to prove the following result, which mirrors the proof
that the size of a vector space basis is unique.

Theorem (Exchange Lemma). Let E/F be a field extension. If E is
algebraic over F (a1, ..., an), and {b1, ..., bm} is an algebraically indepen-
dent set, then m ≤ n.

Proof. b1 is algebraic over F (a1, ..., an). So there is a non-zero polyno-
mial p such that p(b1, a1, ..., an) = 0. b1 must appear somewhere in the
polynomial, so must some ai. Without loss of generality, we can assume
a1 appears in p(b1, a1, ..., an). So a1 is algebraic over F (b1, a1, ..., an).
Now F (b1, a1, ..., an) is algebraic over F (b1, a2, ..., an), and E is alge-
braic over F (b1, a1, ..., an), so E must be algebraic over F (b1, a2, ..., an).

Once we have that E is algebraic over F (b1, ..., br, ar+1, ..., an), we
again “exchange” an ai for a bj. br+1 is algebraic over the field
F (b1, ..., br, ar+1, ..., an). So there is a non-zero polynomial p such that
p(b1, ..., br+1, ar+1, ..., an) = 0. Since the bi’s are algebraically indepen-
dent, one of the a′

is must appear in this expression. By re-numbering
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we can get that ar+1 appears in this expression. Hence again we will get
that E is algebraic over F (b1, ..., br+1, ar+2, ..., an). When this process
terminates we see that E is algebraic over F (b1, ..., bn) (or, if m < n,
F (b1, ..., bm, am+1, ..., an)). Hence m ≤ n.

Corollary. If E/F has a maximal, finite, algebraically independent set
{s1, ..., sn} then any other maximal algebraically independent set also
has size n.

Proof. E is algebraic over F (s1, ..., sn). So by applying the lemma, we
see that any other maximal algebraically independent set has at most
n elements. And if {t1, ..., tm} is another maximal algebraically inde-
pendent set, by applying the lemma on F (t1, ..., tm) we get that n ≤ m.
Thus m = n.

In fact it is true that if E/F has two maximal algebraically indepen-
dent sets S and T then |S| = |T |. This is analogous to the fact that the
cardinality of a vector space basis is unique, even when it is infinite.
The proof of this fact is difficult, and we will not need this result. The
interested reader can find a proof in Hungerford’s Algebra, page 315.

Theorem. Every extension E/F has a maximal algebraically indepen-
dent subset.

Proof. This is the same proof that every vector space has a basis.
If E/F is algebraic, ∅ is a maximal algebraically independent subset.
Otherwise, look at S, set of algebraically independent subsets of E. If
C is a chain of increasing sets in S, then ∪C ∈ S. Hence by Zorn’s
Lemma, S has a maximal element S. S is a maximal algebraically
independent set.

This same proof in fact can be adapted to prove the following.

Theorem. Every algebraically independent subset T of E can be ex-
tended to a transcendence base of E/F/

Proof. Set S as the set of algebraically independent subsets of E that
contain T and proceed as above.

This fact should be compared with the fact that in Linear Algebra,
every linearly independent set can be extended to a basis.

Transcendence Degree

Definition. A maximal algebraically independent subset S ⊂ E is
called a transcendence base for E/F .
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So by an earlier lemma, S is a transcendence base for E/F iff S is
algebraically independent and E is algebraic over F (S).

This should be compared to the statement that S is a basis for a
vector space V iff the vectors of S are linearly independent and S
spans V .

Definition. The transcendence degree of E/F is the size of a tran-
scendence base. It is denoted tr.deg(E/F ).

Example. tr.deg(Q(
√

2)/Q) = 0

Example. tr.deg(F (x1, ..., xn)/F ) = n

Definition. An extension E/F is called purely transcendental if it has
a transcendence base S such that E = F (S).

Example. F (x1, ..., xn)/F is purely transcendental but Q(
√

2, x)/Q is
not (why?).

Theorem. Every field extension E/F is a purely transcendental ex-
tension followed by an algebraic extension.

Proof. Take a transcendence base S for E/F . Then F (S)/F is purely
transcendental and E/F (S) is algebraic.

Theorem. Let E/F be a field extension. Suppose S ⊂ E and E is
algebraic over F (S), then there is a transcendence base T for E/F
with T ⊂ S.

Proof. Let T be a maximal algebraically independent subset of S. Ev-
ery element of S is algebraic over F (T ), so F (S) is algebraic over
F (T ). E is algebraic over F (S), so in fact we have that E is algebraic
over F (T ).

This is similar to how we can find a vector space basis in any spanning
set. We now have so many comparisons between transcendence degree
and dimension that we can create the following table.

Dimension Transcendence Degree

S is linearly independent S is algebraically independent
S spans E E is algebraic over F (S)
Every vector space has a basis Every extension has a transc. base

There are many applications of transcendence bases. A classic is the
following.

Theorem. Q[x1, ..., xn] is not isomorphic to Q[x1, ..., xm] if n 6= m.
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Proof. If these two rings were isomorphic, their fraction fields would
also be isomorphic.

Q(x1, ..., xn) ∼= Q(x1, ..., xm)

The field on the left has transcendence degree n, and the one on the
right has transcendence degree m, so these fields can be isomorphic
only if m = n.

Transcendence degree can also be used to show that C has proper
sub-fields which are isomorphic to C. (In contrast, there are no proper
sub-fields of R which are isomorphic to R.) And more surprisingly,
transcendence degree can be used to show that any algebraically closed
field of cardinality |C| is in fact isomorphic to C. The theory of tran-
scendence degree is also used to prove that you can extend certain field
homomorphism to larger fields.
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