
1 Irreducibility and rational maps week8

1.1 Irreducible topological spaces

A topological space X is reducible if it can be written as a union of two proper closed subsets. It is

irreducible if it is not reducible.

We have encourtered this property many times before, even though we have not named it yet.

1.1.1 Example The space X = V (xy) ⊂ A2 is reducible (in the Zariski topology). We can write X as

the union V (x) ∪ V (y). On the other hand, we will soon see that X = V (xy − 1) is irreducible (the real
picture is misleading!).

� In the usual Euclidean topology, we rarely encounter irreducible spaces. In fact, it is not hard to show

that X ⊂ Rn is irreducible (in the Euclidean topology) if and only if X is a single point. But irreducibility

turns out to be an important notion in algebraic geometry.

1.1.2 Proposition (Equivalent conditions for irreducibility) The following are equivalent

1. X is irreducible.

2. Every non-empty open subset of X is dense.

3. Any two non-empty open subsets of X have a non-empty intersection.

Proof. Let us prove 1 =⇒ 2 =⇒ 3 =⇒ 1.
For 1 =⇒ 2, suppose X is irreducible, and U ⊂ X is a non-empty open. Let Y = X − Z. Then

Y ⊂ X is a proper closed subset. Let U be the closure of U . Then X = Y ∪U . Since X is irreducible and

Y ⊂ X is a proper closed subset, we must have U = X.

For 2 =⇒ 3, assume that every non-empty open is dense and let U, V ⊂ X be non-empty open

subsets. Pick a v ∈ V . Then v lies in the closure of U , so any open subset containing v must intersect U .
In particular, V intersects U .

For 3 =⇒ 1, assume that any two non-empty opens have a non-empty intersection. Suppose X =
Y ∪ Z, where Y, Z ⊂ X are open and Y 6= X. We show that Z = X. By taking complements, we have

Y c ∩ Zc = ∅, and hence either Y c or Zc is empty. But by assumption Y c is non-empty, so Zc must be

empty. In other words, we have Z = X.

1.1.3 Proposition (Closure and image of irreducible is irreducible)

1. Suppose U ⊂ X is dense. Then U is irreducible if and only if X is irreducible.

2. If f : X → Y is a surjective continuous map and X is irreducible, then Y is irreducible.

Prove this.

For a�ne varieties, irreducibility is (unsurprisingly) related to a well-known property of the ring of

regular functions.
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1.1.4 Proposition (Irreducibility of a�nes) Let X ⊂ An be a Zariski closed subset. Then the

following are equivalent.

1. X is irreducible.

2. I(X) is a prime ideal.

3. k[X] is an integral domain.

Prove this. � (2)

1.1.5 Corollary (Grassmannians are irreducible) The Grassmannians (and in particular, the pro-

jective spaces) are irreducible.

Proof. There is a surjective regular map from an open subset Amn to Gr(m,n).

1.2 Irreducible components

If X is reducible, it has a unique decomposition into irreducible components. The idea is simple: we start

by writing X = Y ∪ Z, where Y and Z are proper closed subsets. If either Y or Z or both are reducible,

we further write them as unions of proper closed subsets, and continue. We need something to ensure that

the process stops (it does not stop, for example, in the usual topology).

1.2.1 De�nition (Noetherian topological space) A topological space X is Noetherian if every

nested sequence of closed subsets

X ⊃ X1 ⊃ X2 ⊃ X3 ⊃ · · ·

stabilises.

A consequence of the Hilbert basis theorem is that every a�ne variety is Noetherian. It is easy to

check that if X has a �nite open cover by Noetherian topological spaces, then X is Noetherian. As a

result, every algebraic variety of �nite type is Noetherian. (A variety is of �nite type if it has an atlas

consisting of �nitely many charts.)

1.2.2 Proposition (Irreducible decomposition) Let X be a Noetherian topological space. We can

write

X = X1 ∪ · · · ∪Xn,

where Xi ⊂ X are irreducible closed subsets with Xi 6⊂ Xj for i 6= j. Furthermore, this decomposition is

unique (up to permutation of the factors).

The factors Xi are called irreducible components of X.

Proof. The idea is to keep decomposing until we reach irreducible pieces. The Noetherian hypothesis

ensures that the process terminates. Uniqueness is also quite straightforward when we observe the following

characterisation of an irreducible component: it is an irreducible closed subset of X which is not contained

in a (strictly) bigger irreducible closed subset. I will skip the details.

1.2.3 Example (Hypersurfaces) Let X = V (f) ⊂ An. Then the unique decomposition of X into

irreducible components corresponds precisely to the unique factorisation of f into prime factors.
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1.3 Rational maps and rational functions

Recall our notation f : X 99K Y for a map f de�ned only on an open subset. This notion becomes really

useful when X is irreducible. Let X be irreducible and Y separated. A rational map from X to Y , denoted
by f : X 99K Y is a map from an open subset of X to Y . More precisely, it is a pair (U, f) where U ⊂ X is

a (non-empty) open and f : U → Y is a regular map. Two pairs (U, f) and (V, g) are considered equivalent
if f and g are equal on U ∩ V .

Show that this is an equivalence relation. � (4)

You will have to use that Y is separated.

We say that a rational map X 99K Y is de�ned (or regular) at x if there exists a representative (U, f)
such that U contains x. The subset of X where a rational map is de�ned is an open subset, called the

domain of de�nition of the rational map.

Suppose we have rational maps f : X 99K Y and g : Y 99K Z, we have to be a bit careful while

composing them. After all, it could happen that g is not de�ned at any point in the image of f ! But if the
domain of g contains a point in the image of f , then the composition makes sense and de�nes a rational

map g ◦ f : X 99K Z.

De�ne the composition precisely. Produce an example where the composition is not de�ned. � (5)

We say that a rational map f : X 99K Y is a birational isomorphism (or birational) if there exists

g : Y 99K X such that g ◦ f and f ◦ g are de�ned and equivalent to the identity on X and Y respectively.

We say that two varieties are birational if there exists a birational isomorphism between them. Classifying

varieties up to birational isomorphism is a major open problem in algebraic geometry.

1.3.1 Examples (birational isomorphisms) In the following, all varieties are assumed to be irre-

ducible and separated.

1. Any variety is birational to any of its open subsets.

2. The a�ne space An, the projective space Pn, any product Pa × Pb with a + b = n (and any triple

product etc.) are in the same birational isomorphism class.

3. The group of biregular automorphisms of Pn turns out to be quite easy to understand�it is just

PGLn�but the group of birational automorphisms is huge and very poorly understood (except when

n = 1, where it agrees with the biregular automorphisms group by one of the homework questions).

Here is an example of a birational automorphism of P2, called a 'Cremona transformation':

φ : [X : Y : Z] 7→ [1/X : 1/Y : 1/Z].

1.3.2 De�nition (�eld of fractions) Let X be an irreducible variety. The set of rational maps

X 99K A1 = k is naturally a ring. But in fact, it is actually a �eld, called the fraction �eld of X, and is

denoted by k(X).
If X is a�ne, then we really do have

k(X) = frac k[X].

Prove this. � (6)

It is easy to check that a birational isomorphism f : X 99K Y induces an isomorphism of �elds over k:

f∗ : k(Y )→ k(X).

(and conversely).
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