MATH8705 IN-CLASS WORKSHEET 1

ANAND DEOPURKAR

Exercise 2.3. The following expressions define sets. Turn words into symbols, using standard or Zermelo definitions. (Represent geometrical objects, e.g., planar curves, by their cartesian equations.)

- 1. The set of negative odd integers.
- 2. The set of natural numbers with three decimal digits.
- 3. The set of rational numbers which are the ratio of consecutive integers.
- 4. The set of rational points in the closed unit cube.
- 5. The complement of the open unit disc in the complex plane.
- 6. The set of vectors of unit length in three-dimensional euclidean space.
- 7. The set of circles in the plane, passing through the origin.
- 8. The set of hyperbolae in the plane, whose asymptotes are the coordinate axes.
- 9. The set of lines tangent to the unit circle.

- 1. $\{x \in \mathbb{Q} : 0 < x < 1\}$
- 2. $\{1/(2n+1) : n \in \mathbb{Z}\}$
- 3. $\{m2^{-k}: m \in 1+2\mathbb{Z}, k \in \mathbb{N}\}$
- 4. $\{x \in \mathbb{R} \setminus \mathbb{Z} : x^2 \in \mathbb{Z}\}$
- 5. $\{z \in \mathbb{C} \setminus \mathbb{R} : z^2 \in \mathbb{R}\}$

1. f^{-1}

2. $f^{-1}(x)$

3. $f(x^{-1})$

 $4. \quad f(x)^{-1}$

5. $f(x)^2$

6. $f \circ f$

7. $f(\mathbb{R} \setminus \mathbb{Q})$

8. $f(A) \cap f(B)$

9. $f^{-1}(\{0\})$

10. $f(\mathbb{R}) \cap \mathbb{Q}$.

Date: July 28, 2022.

- 1. Let's practice set-builder notation. Write out in plain English what the following sets are. For example, $\{x \in \mathbb{R} \mid x^2 > 3\}$ is "the set of real numbers whose square is bigger than 3."
 - (a) $\{n \in \mathbb{Z} \mid n^2 > 5\}.$
 - (b) $\{n \in \mathbb{Z} \mid n = 2k + 1 \text{ for some } k \in \mathbb{Z}\}$
 - (c) $\{(x,y) | x,y \in S\}$, where *S* is a set.¹⁰
 - (d) $\{(x,y) \in \mathbb{R}^2 \mid x^2 = y\}.$