
A S I L ATA B A PAT A N D A N A N D D E O P U R K A R

G A M E S , G R A P H S , A N D
M A C H I N E S

Contents

Some foundations 4

Sets 4

Functions 5

Relations 5

Graphs 6

Properties of relations 7

Equivalence relations 9

Modular arithmetic 10

Partial orders 12

Hasse diagrams 13

Upper and lower bounds 13

Rank functions 14

Graphs 16

Overview 16

Adjacency matrix 17

Matrix products 18

Counting paths using the adjacency matrix 18

Existence of paths using boolean arithmetic 20

Shortest paths using min-plus arithmetic 22

Markov chains 23

Computing large powers 27

games, graphs, and machines 3

Regular expressions and finite automata 30

Regular expressions 30

Deterministic finite automata 32

Nondeterministic finite automata 33

NFA to DFA 34

Regular expressions to finite automata 37

Converting finite automata to regular expressions 39

Non-regular languages 40

Combinatorial games 44

Strategic labelling 44

Nim 45

Game sum 49

Stable equivalence 51

Grundy labelling 51

Some foundations

We begin by briefly introducing some language to talk about the
objects we will encounter in this course. We will revisit this foun-
dational material several times throughout the course in several
contexts.

Sets

Informally, a set is an unordered collection of objects with no repe-
titions. This is the most basic object usually used to discuss almost
every construction in mathematics. If T is a set and x is any object,
we have the following dichotomy1: either x is an element of T, de- 1 A situation in which exactly one of

two possible options is true.noted x ∈ T, or x is not an element of T, denoted x /∈ T. Two sets
are equal if and only if they have the same elements. That is, ev-
ery element of the first set is an element of the second set, and vice
versa.

The Zermelo–Fraenkel axioms can be used to develop this theory
more formally, but we will not go into the details in this course.

We use the following notation for some standard sets of num-
bers:

1. N is the set of natural numbers {1, 2, 3, . . . , }.

2. Z is the set of integers {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.

3. Q is the set of rational numbers.

4. R is the set of real numbers.

5. C is the set of complex numbers.

Sets are often denoted by capital letters such as S, T, and poten-
tial elements as small letters x, y2. If we are listing all the elements 2 This is just a convention. In fact, sets

are often elements of other sets, so
there is no clear distinction between
sets and potential elements.

of a set, we put them in curly braces, for example {1, 2, 3, 4}. We
can also specify a set by taking all elements of another set that sat-
isfy a particular property, for example {x ∈ N | x is even}.

A set S is a subset of a set T, denoted S ⊂ T, if every element of
S is also an element of T. A set U is a superset of a set T, denoted
U ⊃ T, if every element of T is also an element of U. There is a
unique set that contains no elements. It is called the empty set and is
denoted ∅. The empty set is vacuously3 a subset of every set. 3 We say that a statement of type “if . . .

then . . . ”, or equivalently “for every
. . . we have . . . ” is vacuously true if
nothing satisfies the “if” or “for every”
condition.

games, graphs, and machines 5

The size or cardinality of a set is the number of elements in the
set. If the number of elements is infinite, then we say that the set is
infinite, and its cardinality is ∞.

Here are some things we can do with sets.

Example 1.

1. {1, 2} ∪ {2, 3} = {1, 2, 3}.

2. {1, 2} ∩ {2, 3} = {2}.

Unions The union of S and T, denoted S ∪ T, is the set such that
each element of S ∪ T is either an element of S or of T, or both.

Intersections The intersection of S and T, denoted S ∩ T, is the set
such that each element of S ∩ T is both an element of S and an
element of T.

Difference The difference denoted S − T is the set such that an
element of S − T is an element of S but not an element of T.

Cartesian products The Cartesian product of S and T, denoted S × T,
is the set whose elements are ordered pairs (x, y), where x runs
over all the elements of S, and y runs over all the elements of
T. Note that if one of the two sets is empty, then the Cartesian
product is also empty.

Power set The power set of S, denoted P(S), is the set whose ele-
ments are all the subsets of S.

Example 2.

1. P({1, 2}) = {∅, {1}, {2}, {1, 2}}.

2. {1, 2} × {2, 3} =
{(1, 2), (1, 3), (2, 2), (2, 3)}.

3. {1, 2} × ∅ = ∅.

Functions

A function f from a set S to a set T is a rule that takes elements of S
as input and produces elements of T as output. We write f : S → T
to say that f is a function from S to T. Usually, after writing f : S →
T, we specify the rule. For an input element s ∈ S, we denote by
f (s) the output (in T) produced by f for the input s. For f to be a
valid function, the rule that defines it must be unambiguous, that
is, for every input s ∈ S, it must produce a unique output f (s).
Furthermore, the rule cover all possible input values s ∈ S.

Example 3. 1. We have a function
f : N → N defined by f (s) = s2.

2. The rule s 7→ s/2 does not define a
function f : N → N because for inputs
s that are odd numbers, the output s/2
is not an element of N. However, it
does define a function f : N → Q.

If we have a function f : S → T, we say that S is the source or
domain of f and T is the target or co-domain of f .

Relations

Informally, a relation is a specification that links objects of one set
and objects of another set. If x is related to y under a relation R,
we say that the ordered pair (x, y) satisfies R. For example, we
may consider a relation called is-factor-of, on pairs of natural
numbers, which specifies that (x, y) satisfies is-factor-of if and
only if x is a factor of y. In this case, (1, 3), (3, 27), (4, 24) are all
examples of ordered pairs that satisfy the relation is-factor-of4. 4 In English, we might read one of

these as “3 is a factor of 27”.To model this mathematically, we formally define a relation
as a subset R ⊂ S × T, where S and T are two sets. In this case,
the elements of R are precisely the ordered pairs that we think
of as satisfying the relation R. In the previous example, we have
S = T = N. If we want R to model the relation is-factor-of, then

6 asilata bapat and anand deopurkar

we take R to be the subset of N × N consisting of exactly the pairs
(x, y) where x is a factor of y.

As in the previous example, we often want S and T to be the
same set. In this case, we say that a subset R ⊂ S × S is a (binary5) 5 This is a binary relation because we

are looking at a subset of the product
of two copies of S. An n-ary relation
on S would just be a subset of the
product of n copies of S.

relation on S.

A function gives rise to a relation, which we can think
of as the input-output relation of the function. Given a function
f : S → T, the input-output relation of f is the relation R ⊂ S × T
defined by R = {(s, t) ∈ S × T | t = f (s)}. In other words, we think
of s and t as related if t is the output given by f for the input s.

The input-output relation R associated to a function f satisfies
an important property. For every s ∈ S, there is a unique t ∈ T
such that (s, t) ∈ R. This is another way of saying that for every
input, f produces a unique output. If a relation does not satisfy this
property, then it cannot be the input-output relation of a function.

Example 4.

1. The relation {(a, b) ∈ N × N |
a + b is even } is not the input-ouput
relation of a function because, for
example, for the element 2 ∈ N, we
have two elements 0 and 4 of N such
that (2, 0) and (2, 4) are related.

2. The relation {(a, b) ∈ N × N | b =
a2} is the input-output relation of a
function. The function is f : N → N
given by f (a) = a2.

Graphs

Graphs provide an extremely useful way to organise information
about relations. For the moment we use them as powerful visual
aids, but we will see later that graphs also lend themselves well to
computational tools.

A directed graph consists of a vertex set V and an edge set E. We
require that the edge set E is a relation on V, that is, E ⊂ V × V.
We will write this graph as (V, E). Visually, we draw the vertices as
nodes and an edge (v, w) as an arrow from v to w. a

b

c

a

b

c

Figure 1: A directed and an undirected
graph

We think of undirected graph as a directed graph with the extra
property that the edge relation E is symmetric. That is, (v, w) ∈
E if and only if (w, v) ∈ E. In this case, we draw the vertices as
nodes, and we draw a single segment joining v and w for every
corresponding pair of edges (v, w) and (w, v).

Representing a relation on a set as a graph

Note that the definition of a graph is very similar to the definition
of a relation on a single set — in fact, a directed graph is just an-
other way of looking at a relation on a set. More precisely, let R be
a relation on a set S. Then we can construct a directed graph whose
vertex set is S and whose edge set is R. This point of view is useful
in certain situations, as we will see later.

The adjacency matrix of a graph

Recall that a matrix is a rectangular array, usually filled with num-
bers. An m × n matrix M has m rows (numbered 1 through m) and
n columns (numbered 1) through n). The entry in the ith row and
jth column is denoted Mij.

It is extremely useful to encode the data of a graph into a matrix,
called an adjacency matrix.

games, graphs, and machines 7

Definition 5. Suppose G = (V, E) is a graph6. Choose an ordering 6 For simplicity we usually consider
finite sets V when we construct adja-
cency matrices but in general V may
be infinite.

on the elements of V, say the ordered tuple (v1, . . . , vn). The adjacency
matrix of G with respect to the chose ordering is the n × n matrix A,
defined by

Aij =

1, (i, j) ∈ E,

0, (i, j) /∈ E
.

Example 6. Let (V, E) be the directed
graph shown in Figure 1, with the order-
ing on the vertices chosen to be (a, b, c).
Then the adjacency matrix is

A =

0 1 0
0 0 1
1 0 0

 .

Now if we reorder the vertices as (c, b, a),
the adjacency matrix becomes

A′ =

0 0 1
1 0 0
0 1 0

 .

The adjacency matrix is a matrix that only contains the elements
0 and 1. It encodes the entire information contained in the original
graph, in a way that is highly adapted to calculations — we will see
more of this soon.

Note that changing the ordering on the elements of V produces
a different-looking adjacency matrix. It is related to the original
adjacency matrix by a serious of simultaneous swaps of correspond-
ing row and column numbers. For example, the adjacency matrix
given by the ordering (v2, v1, v3, . . . , vn) can be obtained from A by
swapping rows 1 and 2 and also swapping columns 1 and 2.

Properties of relations

Sometimes, relations (on a single set) satisfy further special prop-
erties. Here are some common ones. Remember that a relation R is
simply a subset of S × S for some set S. So the following properties
are about R as a whole, as a subset of S × S.

Example 7.

1. The relation

R = {(a, b) ∈ N × N | a divides b}

is reflexive, anti-symmetric, and
transitive.

2. The relation

R = {(a, b) ∈ N × N | a + b is odd}

is symmetric but not reflexive or
transitive.

Reflexivity A relation R is reflexive if (x, x) ∈ R for each x ∈ S.

Symmetry A relation R is symmetric if whenever we have (x, y) ∈ R,
we also have (y, x) ∈ R.

Anti-symmetry A relation R is anti-symmetric if having both (x, y) ∈
R and (y, x) ∈ R implies that x = y.

Transitivity A relation R is transitive if whenever (x, y) ∈ R and
(y, z) ∈ R, we also have (x, z) ∈ R.

Note that the properties of being symmetric and anti-symmetric
are almost but not quite complementary to each other: if a rela-
tion is both symmetric and anti-symmetric, it means that only
pairs of the form (x, x) can be in the relation7. However, not all 7 Convince yourself of this from the

definitions!pairs of this form have to satisfy the relation (i.e. the relation
need not be reflexive).

The adjacency matrix can be helpful in order to read off prop-
erties about the relation. For example, since a reflexive relation
has all possible pairs (x, x) in it, all diagonal entries Aii of the
adjacency matrix must equal 1, and conversely if Aii = 1 for each
i, then the relation is reflexive.

Similarly, a relation is symmetric if Aij = Aji for each i, j. That is,
if the adjacency matrix is symmetric. A relation is anti-symmetric
if whenever i ̸= j and Aij = 1, we have Aji = 0.

8 asilata bapat and anand deopurkar

What does it mean in terms of the adjacency matrix if a rela-
tion is transitive? The answer to this question is slightly more
complicated, and we will get back to it later.

Closures of relations

If S is any set, then the entire cartesian product S × S is itself a
relation on S. Note that certain properties are true for S × S: for
example, of the four properties discussed in the previous section,
S × S has reflexivity, symmetry, and transitivity.

If R is any relation on S, it makes sense to ask about the reflexive
closure (resp. symmetric or transitive closure) of R. In the following
discussion we’ll talk about the reflexive closure, but you can use the
same definition for symmetric and transitive closures respectively.

Informally, we’d like the reflexive closure of R to be the smallest
relation on S that contains R, and which is reflexive. If R is already
reflexive, then it is its own reflexive closure. Otherwise, the reflex-
ive closure will contain some more elements. But what does smallest
mean in the above context8? To make this precise, we give the fol- 8 If S is a finite set, then we can say

that that smallest means the one with
the least number of elements, but we
give a general definition because we
don’t want to be restricted to this case.

lowing definition.

Definition 8. A reflexive (resp. symmetric, transitive) closure of R is a
set R with the following properties.

1. R ⊂ R ⊂ S × S.

2. R is reflexive (resp. symmetric, transitive).

3. If T is a subset of S × S such that R ⊂ T ⊊ R, then T is not reflexive
(resp. symmetric, transitive).

It can be shown that reflexive (resp. symmetric, transitive) clo-
sures always exist, and that they are unique9. We won’t prove this 9 Think about when it makes sense to

ask for the closure of a relation with
respect to a property, and when you
can expect it to exist uniquely. For
example, it doesn’t really make sense
to ask for the anti-symmetric closure of
a relation. Do you see why?

formally, but instead we will just produce a construction of each.
Let us first tackle the reflexive closure. To make a relation reflex-

ive, we need to add in all pairs of the form {(x, x)}, where x ∈ S.
So you can convince yourself that the reflexive closure is simply the
set R ∪ {(x, x) | x ∈ S}: not only is this new relation reflexive, but
also if you take away any pair that is not already an element of R,
you get something non-reflexive. In terms of adjacency matrices,
the reflexive closure is the relation corresponding to the matrix ob-
tained by changing all diagonal entries of the original adjacency
matrix to 1.

Similarly, the symmetric closure of R is obtained by adding the
flipped pair {(b, a)} for every pair (a, b) ∈ R. This is the same thing
as taking R ∪ {(a, b) | (b, a) ∈ R}. In terms of the adjacency matrix,
we obtain this by symmetrising the adjacency matrix10: whenever 10 This is the same as taking 1

2 (A + At).
Do you see why?Aij = 1, we also set Aji = 1.

Once again, it is not so easy to describe how to construct the
transitive closure of a relation R, but it can be done by developing
some techniques for working with adjacency matrices. We will
revisit this later once we have those techniques.

Equivalence relations

Recall that a relation R on a set S is just a subset of the product
S × S. We take a short tour through the theory of equivalence re-
lations, which are extremely important in constructing all sorts of
mathematical structures.

Definition 9. A equivalence relation is a relation that is reflexive,
symmetric, and transitive.

Example 10. Let R be the relation on Z defined as

R = {(a, b) ∈ Z × Z | a − b is even}.

Usually, if we have an equivalence relation R on a set S, we say
that x ∼R y if (x, y) is in R. If the context is clear, we will sim-
ply say x ∼ y. The most important application is that having an
equivalence relation on a set allows us to treat an object x as “being
equivalent” to an object y if x ∼ y: the equivalence relation gives
us a new way of identifying various objects. We will capture this
identification with the notion of equivalence classes11. 11 The idea is that we can treat all

elements of one equivalence class as
being interchangeable in some sense.Definition 11. Let R be an equivalence relation on a set S. For any

x ∈ S, the equivalence class of x, denoted [x], is the subset of S defined
as follows:

[x] = {y ∈ S | x ∼R y}.
In Example 10, a ∼ b if and only if
they have the same parity, so there
are two equivalence classes of R on Z,
namely [0] and [1]. Note that [0] is the
same as [2] or [−6], and [1] is the same
as [−55] or [7], but it’s traditional to
use the smallest non-negative values,
which are [0] and [1].

The special properties that an equivalence relation satisfies guar-
antees the following proposition.

Proposition 12. Let R be an equivalence relation on a set S.

1. Every element of S belongs to at least one equivalence class (its own!).

2. If x, y ∈ S such that y ∈ [x], then [x] = [y]. In other words, the set of
equivalence classes of an equivalence relation partitions12 the set S into 12 If S = S1 ∪ · · · ∪ Sn, we say that it is

a partition if Si ∩ Sj = ∅ for i ̸= j. In
this case we write S = S1 ⊔ · · · ⊔ Sn, or
more concisely, S =

⊔n
i=1 Si .

disjoint subsets whose union is S.

Proof. Let x be any element of S. First note that x ∈ [x] by reflexiv-
ity, which proves the first statement. To prove the second statement,
suppose that x, y ∈ S such that y ∈ [x]. To show that [x] = [y], we
need to show that for every z ∈ S, we have z ∈ [x] if and only if
z ∈ [y].

Recall that y ∈ [x] means that x ∼R y. If z ∈ [y], then we have
z ∈ [x] by transitivity: x ∼R y and y ∼R z implies x ∼R z. On the

10 asilata bapat and anand deopurkar

other hand, since we know that y ∈ [x], we also have x ∈ [y] by
symmetry, and then by the previous argument we see that if z ∈ [x]
then z ∈ [y] by transitivity. The proof is now complete.

If y ∈ [x], we say that y is a representa-
tive of [x].Often we can uncover new structures by working with the set of

equivalence classes rather than the original set S, and it can even
give rise to new structures. An important example of this technique
is modular arithmetic.

Modular arithmetic

As an important application of equivalence classes, we briefly study
modular arithmetic. First recall the relation from Example 10. We
can observe that in the integers, the sum of two numbers is always
even. The sum of an even with an odd is odd, and the sum of two
odd numbers is always odd. But the set of even numbers has an-
other name: [0], and the set of odd numbers is also called [1] with
respect to this relation.

So we can express the above statements by writing down the
following statements instead.

1. Whenever a ∈ [0] and b ∈ [0], we have a + b ∈ [0].

2. Whenever a ∈ [0] and b ∈ [1], we have a + b ∈ [1].

3. Whenever a ∈ [1] and b ∈ [0], we have a + b ∈ [1].

4. Whenever a ∈ [1] and b ∈ [1], we have a + b ∈ [0].

Let us instead express this by defining a new addition operation on
the set13 {[0], [1]}. We will simply define this addition using the 13 Note that this set is not equal to Z!

It is also not equal to the set {0, 1}.
Instead this is a set with two elements,
which are themselves subsets of Z.

four properties above, which can be written more concisely as

[a] + [b] := [a + b] for each a, b ∈ Z.

Because we know the properties we stated above about even/odd
addition, we have effectively proven that it actually doesn’t mat-
ter whic representative we take for each equivalence class. This is
the idea behind modular arithmetic.

Exercise 13. Check that ∼d is an equiva-
lence relation.

More generally, fix a modulus d ∈ N. We say that x ∼d y if
x − y is divisible by d, which is also written as d | x − y. More
traditionally, we write x ≡ y (mod d). Note that if x ∼d y, then
there is some integer m ∈ Z such that x − y = md.

In this case, we have equivalence classes [0], [1], . . . , [d − 1]. Note
that [d] = [0] again. But if 0 ≤ e, f < d, how do we know for sure
that [e] ̸= [f] when e ̸= f ? We know this by Euclid’s algorithm,
which guarantees that for every integer n and positive integer d,
we can write a unique equation

n = qd + r, 0 ≤ r < d.

In our case, suppose that e ≥ f . Since 0 ≤ e − f < d, the equation
for e − f has to be e − f = 0 · d + (e − f). On the other hand

games, graphs, and machines 11

if [e] = [f] then we also have a valid equation that looks like
e − f = m · d + 0 for some m. Matching up the two, we see that
m = 0 and e = f is the only possibility.

Having established this, we now know that we have exactly
d different equivalence classes, namely [0], [1], . . . , [d − 1]. Of
course these can be represented by different integers. For ex-
ample, [1] = {. . . , 1 − 2d, 1 − d, 1, 1 + d, 1 + 2d, . . . }, so any of
these elements would do as a representative of [1]. We will write
Z/dZ = {[0], . . . , [d − 1]} to be the set of equivalence classes in
this case.

Once again we define a new addition operation, this time on Z/dZ.
The definition is the same: for any [a], [b] ∈ Z/dZ, set

[a] + [b] := [a + b].

We now have to check whether this is well-defined14 Suppose that 14 This means that if [p] = [a] and
[q] = [b], do we have [p + q] = [a + b]?
If not, we don’t have a good definition
because it depends on the specific
representative we had chosen!

[p] = [a] and [q] = [b]. Then p − a = md and q − b = nd for
some integers m, n. Adding these, we see that (p + q)− (a + b) =
(m + n)d, and so [p + q] = [a + b]. Indeed, our operation is
well-defined! This is called modular addition.

Notice that this has properties similar to the addition in the
integers, with some key differences. For example, we have the
following.

similarity [0] + [a] = [a] + [0] = [a]

similarity [a] + [b] = [b] + [a]

difference! [a] + [a] + · · ·+ [a] can equal [0] even if [a] ̸= 0. For
example, [1] + [1] + [1] = [0] when d = 3.

What about multiplication? Can we define a modular multipli-
cation? Let us try. We will attempt to define a multiplication
operation by saying that

[a] · [b] should b [ab].

Again, we must check that this is well-defined. Suppose that

Exercise 14. What are some similarities
and differences between modular multipli-
cation and usual integer multiplication?

[p] = [a] and [q] = [b]. Then p − a = md and q − b = nd for
some integers m, n. Note that pq − aq = mqd and aq − ab = nad.
Adding these, we see that pq − ab = (mq + na)d, so [pq] = [ab],
and this multiplication is well-defined! This is called modular
multiplication.

Partial orders

In this section we study another important kind of relation, called
partial orders. These are entirely different in flavour from equiva-
lence relations, and very common.

Definition 15. A relation R on a set P is a partial ordering or partial
order if it is reflexive, anti-symmetric, and transitive.

Note that a partially ordered set P
need not be a set of numbers, so the
curly inequality sign denoting the
partial order relation is not necessarily
a numerical inequality.

A set equipped with a partial order relation is called a partially
ordered set or a poset. If R is a partial order on P, we usually write
x ⪯ y if (x, y) ∈ R. We also often say that (P,⪯) is a poset, to mean
that ⪯ is a partial order relation on the set P.

Here is an example of a non-numerical partial ordering.

Example 16. Suppose that S is any set, and let P(S) be the power set of
S, so that the elements of P(S) are all the subsets of S. We can define a
partial ordering on P(S) by setting A ⪯ B whenever A ⊆ B. Let us check
the three properties.

1. This relation is reflexive because any set A is a subset of itself.

2. It is anti-symmetric because if A ⊆ B and B ⊆ A both hold, then all
elements of A are elements of B and all elements of B are elements of A,
and so A and B must be equal.

3. It is transitive because whenever A ⊆ B and B ⊆ C, we also have
A ⊆ C.

Suppose that ⪯ is a partial order on some set P. Let ⪯ be a partial order on a set P. We
say that this partial order is total if any
two elements a, b of P are comparable.
That is, we either have a ⪯ b or b ⪯ a.

Exercise 17. Find examples to show
that the partial order of Example 16 is not
usually a total order.

Definition 18. We say that two elements a, b ∈ P are comparable if
they are related in some order, that is, either a ⪯ b or b ⪯ a.

Exercise 19. Check that the examples
given satisfy the properties of being partial
orders, and come up with some more of
your own.

Here are a couple of other important examples of partial order-
ings.

• The usual inequality ordering on N, Z, Q, or R, where a ⪯ b
whenever a ≤ b as numbers. This is a total order because any
two numbers are comparable.

• The division ordering on N, where a ⪯ b whenever a | b, that is,
a is a factor of b. This is not a total order, because (for example)
12 and 15 are incomparable.

games, graphs, and machines 13

Hasse diagrams

A Hasse diagram is a useful way to visualise a partial order. It is
similar to drawing the graph of the partial order, but much less
cluttered. Let us consider the example in Figure 2.

a

b

c d

Figure 2: The graph of a partial order
relation

This is the graph of the relation, which contains all the informa-
tion about the relation. But it is also highly redundant: we already
know that partial order relations are reflexive, so the self-loops are
redundant. Similarly, we alreday know that the relation is tran-
sitive, so any “shortcuts”, such as the one from the node a to the
node d, are redundant.

a

b c

d

Figure 3: The Hasse diagram of the
partial order relation from Figure 2.

So to convert the graph of a partial order relation into a Hasse
diagram, we do the following:

• remove all self-loops,

• remove all edges implied by transitivity, and

• implicitly order all edges from bottom to top to get rid of the
arrowheads.

The result can be seen in Figure 3.
Similarly, to convert from a Hasse diagram to the graph of the

relation, we do the following:

• add arrowheads going from the bottom to the top,

• add all edges in the transitive closure, and

• add self-loops at each vertex.

Let us study more closely which edges survive in the Hasse
diagram. Suppose we have x ⪯ y with x ̸= y. When we draw the
complete digraph of the relation ⪯, we will draw an arrow from x
to y. But if there is a z, different from x and y, such that x ⪯ z and
z ⪯ y, we will delete the arrow from x to y, because it is implied by
the arrows from x to z and z to y. So the only edges that survive in
the Hasse diagram correspond to x ⪯ y for which there is no z with
x ⪯ z ⪯ y with x ̸= z and y ̸= z. In this case, we say that y covers
x or y is an immediate successor of x. Note that x can have multiple
immediate successors.

Upper and lower bounds

Let (P,⪯) be a partially ordered set. Let A ⊆ P be a subset.

Definition 20. We say that u ∈ P is an upper bound for A if for every
a ∈ A, we have a ⪯ u. We say that l ∈ P is a lower bound for A if for
every a ∈ A, we have l ⪯ a.

Note that upper and lower bounds may not be unique, and they
may not even lie in the set A, as can be seen from Example 23.

14 asilata bapat and anand deopurkar

Definition 21. Let (P,⪯) be a poset. We say that u is the least upper
bound or lub for a subset A ⊆ P if it is the smallest among all upper
bounds of A. That is, if u′ is any upper bound for A, then we have u ⪯ u′.
We say that l is the greatest lower bound or glb for a subset A ⊆ P if
it is the greatest among all lower bounds of A. That is, if l′ is any lower
bound for A, then we have l′ ⪯ l.

Note that lubs and glbs need not always exist, again as demon-
strated in Example 23. However, if they exist, they are unique.

Exercise 22. Let A be a subset of a poset (P,⪯) and suppose that A has
a least upper bound u ∈ P. Show that it is the unique least upper bound
for A in P. Similarly, if A has a greatest lower bound l, then show that it
is the unique greatest lower bound for A in P.

a b

c d

Figure 4: The Hasse diagram of the
"bow-tie" poset

Example 23. Let (P,⪯) be the bow-tie
poset shown in Figure 4. We have the
following.

1. The set {a, b} has two upper bounds (c
and d), but no lub.

2. The set {a, b} has no lower bound.

3. The set {a, b, c, d} has no upper or
lower bound.

4. The set {a, b, c} has c as its unique
upper bound (and hence its unique
lub), and no lower bounds.

Definition 24. Let (P,⪯) be a poset. We have the following definitions.

1. An element x ∈ P is called a minimum element of P if x ⪯ y for
every y ∈ P.

2. An element x ∈ P is called a minimal element of P if y ̸⪯ x for every
y ∈ P.

3. An element x ∈ P is called a maximum element of P if y ⪯ x for
every y ∈ P.

4. An element x ∈ P is called a maximal element of P if x ̸⪯ y for every
y ∈ P.

Do you understand the difference
between minimal and minimum (resp.
maximal and maximum) elements of a
poset? Test your understanding in the
bow-tie poset of Figure 4.

These definitions are quite similar in flavour to those of upper
and lower bounds: in particular, an element is maximum (resp.
minimum) if and only if it is an upper (resp. lower) bound for the
entire set P.

Rank functions

Let (P,⪯) be a poset. We can attempt to campture the partial order
by assigning a numerical “rank” to every vertex. Roughly speaking,
the rank of a vertex corresponds to its “level” in the Hasse diagram.
More precisely, a rank function on P is a function r : P → Z≥0 such
that

1. if x ⪯ y, then r(x) ≤ r(y),

2. if y covers x, then r(y) = r(x) + 1.

In other words, the second condition says that if y is an immedi-
ate successor of x (nothing else between x and y), then the rank of y
must be one higher than the rank of x.

There are many examples of posets with a rank function.

Example 25. Let S be a finite set and let P be the power set of S. We have
a partial order on P given by inclusion of sets. Then r(A) = |A| is a rank
function on P.

games, graphs, and machines 15

Example 26. Consider the poset N with the relation given by divisibility.
For n ∈ N, define r(n) as the number of prime factors of n, counted with
multiplicity. Then r(n) is a rank function on N.

For some posets, there is no possible way to define a rank func-
tion! Consider the poset with the following Hasse diagram

a

eb

c

d

Convince yourself that there is no possible way to define a rank
function. (Hint: if the rank of the vertex a is r, then what can be the
rank of the vertex e?)

Graphs

Overview

Let us recall the definitions. A (directed) graph consists of a vertex
set V and an edge set E ⊂ V × V. If (a, b) ∈ E, we also write
a → b as a directed edge. Typically we consider finite vertex sets

Example 27. The drawing of a graph
where the vertex set is V = {a, b, c}
and the edge relation is E =
{(a, a), (a, b), (b, a), (b, c), (c, c), (c, a)}.

a

b

c

when we work with concrete examples. An undirected graph is
one in which the edge relation is symmetric: (a, b) ∈ E if and
only if (b, a) ∈ E. In this case, we often group the two flipped
ordered pairs {(a, b), (b, a)} and think of it as a single undirected
edge a − b. Note that in this case if a = b, then the set {(a, b), (b, a)}
just becomes {(a, a)}, so we don’t get a double loop.

Why graphs?

Graphs are everywhere! They are a versatile tool to model all kinds
of situations. We have already seen how we can use them to model
relations on sets. In practice, they arise most naturally when when
we model networks, for example, the Internet, a series of tubes (i.e.
water pipes) connecting various locations, the train or road network
in a region, the Twitter/X followers network, the Facebook friends
network, the cellphone tower network, the flight network of an
airline, and so on.

Graphs also arise when we model states and transitions, for exam-
ple, the states of a game and the moves between them, the states of
a machine and the transitions between them, flow-charts, and so on.

In many of the applications above, we can enhance the graph by
adding more information to the edges. For example, in the graph
for the road network between cities, we can add to each edge the
length of the road it represents. In a network of tubes, we may
want to label an edge by the capacity of the tube it represents. This
kind of extra information goes by the name edge weights, and the
corresponding graph is called an edge weighted graph, or simply a
weighted graph.

Questions about graphs

There are some very natural questions that one can ask about
graphs: either practical ones that come up in many of the above
contexts, or more theoretical ones.

Here is a sample list, by no means exhaustive.

games, graphs, and machines 17

1. Is there a route from a vertex A to a vertex B?

2. How long is the route, and what is the shortest path?

3. How many routes are there? How long are they?

4. How much water/current/etc can flow through the network
when at full capacity?

5. How connected is the graph? If it is connected, how many ver-
tices/edges do we need to remove to make it disconnected?
Which vertices/edges are the critical ones?

6. Is there a good way to figure out natural “clusters” in the graph?
For example, how does Facebook know whom to suggest to you
as a potential friend?

7. Can you find an unbroken path along the edges of the graph
that goes through each vertex exactly once? (This is the Hamilto-
nian path problem.)

8. Can you find an unbroken path along the edges of the graph
that goes through each edge exactly once? (This is the Eulerian
path problem.)

9. What is the shortest circuit (path that comes back to the starting
point) that visits each vertex exactly once?

10. Is the graph planar? That is, can you draw the graph on a plane
without crossing any of the edges?

11. Can you colour the vertices of the graph so that no two adja-
cent vertices have the same colour? How many such colourings
are there?

We will study a few such questions to get a taste of the math-
ematical methods we can employ to study graphs. But there are
whole books devoted to graph theory. See, for example, (??, ????).

Adjacency matrix

Example 28. Let (V, E) be the directed
graph shown in Figure 1, with the order-
ing on the vertices chosen to be (a, b, c).
Then the adjacency matrix is

A =

0 1 0
0 0 1
1 0 0

 .

Now if we reorder the vertices as (c, b, a),
the adjacency matrix becomes

A′ =

0 0 1
1 0 0
0 1 0

 .

The adjacency matrix gives a convenient numerical way to repre-
sent a graph. By performing algebraic operations on the adjacency
matrix, we can get important information about the graph.

Let us begin by defining the adjacency matrix of a graph. Suppose
we are given a graph G = (V, E). We first order the set of vertices
V, say V = {v1, . . . , vn}. The adjacency matrix of G is the n × n
matrix A such that

Aij =

1 if (i, j) ∈ E

0 otherwise.
.

In words, the entry in row i and column j of the matrix A is 1 if and
only if (i, j) is an edge of A; otherwise, the entry is 0.

18 asilata bapat and anand deopurkar

Matrix products

Example 29. Suppose that

A =

(
1 2
0 −1

)
, B =

(
0 1 −2
2 3 4

)
Then

AB =

(
4 7 6
−2 −3 −4

)
.

First we recall matrix products. If A is an m × n matrix and B is an
n × p matrix, then we can construct a product matrix AB, defined
as follows:

(AB)ij = Ai1B1j + Ai2B2j + · · ·+ AinBnj =
n

∑
k=1

AikBkj.

Counting paths using the adjacency matrix

Let G be a graph. Take two vertices v1 and v2 of the graph. A natu-
ral question to ask is whether there is a path from v1 to v2. That is,
can we go from v1 to v2 by following the (directed) edges in G? We
may want to count the number of paths from v1 to v2. Or we may
want to find the shortest path. All these questions arise in different
applications.

By cleverly using the adjacency matrix of the graph,
we can solve many of these questions. Let us take the question of
finding the number of paths between two vertices. Let A be the
adjacency matrix of G. Recall that

Ai,j =

1 if vi → vj is an edge in G

0 otherwise.

We can restate this by saying that Ai,j is the number of paths of
length 1 from vi to vj. Indeed, if Ai,j = 1, then there is exactly one
such path, namely the edge vi → vj, and if Ai,j = 0 then there is no
such path. Remember that we are only counting paths of length 1

here. Even if Ai,j = 0, there may be other (longer) paths from vi to
vj.

1

2 3 4

5

Figure 5: A directed graph

Now consider A2. Look at the example shown in Figure 5. The
adjacency matrix A and its square are

A =


0 1 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

 , A2 =


0 0 0 0 3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

From the graph and from the matrix, we see that the only nonzero
entry in A2 is the entry at position (1, 5), which equals 3. Also
observe that there are exactly 3 paths of length 2 from 1 to 5. Can
you also see that between any pair of vertices other than 1 and
5, there are no paths of length 2? So the entries of A2 match up
exactly with the number of paths of length 2.

This is a general phenomenon, and we have the following result.

Theorem 30. Let A be the adjacency matrix of a simple directed graph
(V, E). Suppose that the vertices are ordered as (v1, . . . , vn). Then the

games, graphs, and machines 19

entry in the (i, j)th position of the kth power Ak of A counts the number
of paths of length k from the vertex vi to the vertex vj.

The technique of proof of Theo-
rem 30is formally called “the principle
of mathematical induction.” Suppose
we know that a statement is true for
k = 1. Also suppose that using the
statement for k, we can deduce it for
k + 1. Then the statement must be true
for all k = 1, 2, 3, · · ·.

Proof. We already know that the statement is true for the first
power, that is, when k = 1.

Let us justify it for the second power, that is, when k = 1. By the
definition of matrix multiplication, we have

A2
i,j = Ai,1 · A1,j + Ai,2 · A2,j + · · ·+ Ai,n−1 · An−1,j + Ai,n · An,j.

The product Ai,1 · A1,j is 0 if either entry is 0 and 1 if both entries
are 1. If both entries are 1, we have a length 2 path vi → v1 → vj.
Similarly, Ai,2 · A2,j = 1 if and only if we have a length 2 path
vi → v2 → vj. And so on for the third, fourth, . . . , n-th term in the
sum above. Conversely, if vi → vk → vj is a length 2 path, then
it must pass through vk for some k. Then it is accounted for by the
term Ai,k · Ak,j in the expression for A2

i,j. As a result, we see that A2
i,j

exactly counts the length 2 paths from vi to vj. In other words, the
statement is true for k = 2.

Now that we know the statement for k = 2, let us justify it for
k = 3. Again, we have

A3
i,j = A2

i,1 · A1,j + A2
i,2 · A2,j + · · ·+ A2

i,n−1 · An−1,j + A2
i,n · An,j.

Now, A2
i,1 is the number of length 2 paths from vi to v1. If A2

1,j = 1,
then each such path gives a length 3 path from vi to vj by concate-
nating with the edge v1 → vj. On the other hand, if A2

1,j = 0, then
a length 2 path from vi to vj does not lead to a length 2 path from
vi to vj. We repeat the reasoning for all the other terms and see that
every length 3 path from vi to vj is exactly accounted for by the
expression above. Indeed, the length 3 path must split as a length
2 path from vi to some vk and an edge from vk to vj. Then it is ac-
counted for by the term A2

i,k · Ak,j. So we deduce that the statement
is true for k = 3.

Now that we know the statement for k = 3, we use the same
logic as above to justify it for k = 4. And once we know it for k = 4,
the same logic to justify it for k = 5. By continuing in this way, we
see that the statement is true for all k.

1

2 4

3

1

2

3

4

Figure 6: Directed graphs with and
without directed cycles

A directed cycle in a graph is a path that begins and ends at the
same vertex. A loop is the smallest example of a directed cycle. The
first graph in Figure 6 has the directed cycle 1 → 2 → 3 → 1. The
second one does not have a directed cycle.

Suppose G is a graph without directed cycles (so, in particular,
no loops). Let A be the adjacency matrix of G. From Theorem 30,
we can conclude that if k is large enough, then Ak must the zero
matrix (all entries are 0). 15 In fact, let n be the number of vertices 15 We use 0m×n to denote the zero

matrix of size m × n. If m and n are
clear from the context, we simply write
0.

of G. Then for any k > n − 1, we must have Ak = 0. Indeed, since G
has no cycles, it cannot have a path of length greater than n − 1. So,
if k > n − 1, then all entries of Ak (which count the number of paths
of length k) must be zero!

20 asilata bapat and anand deopurkar

Existence of paths using boolean arithmetic

We often want to know whether there exists a path from vi to vj;
we do not care about the number of paths. In that case, we can
simplify the calculation. We simply have to keep track of whether
the entries in our matrix products are zero or positive.

To do it formally, put an equivalence relation on the set Z≥0 =

{0, 1, 2, . . . , } under which 0 is in its own equivalence class and all
positive numbers 1, 2, . . . , are equivalent to each other. That is, we
set

a ∼ b if a = b = 0 or both a, b > 0.

We can use the usual + and × to define + and × on the equiva- People sometimes write 0 and 1
instead of [0] and [1]. But then, to
distinguish boolean arithmetic from
usual arithmetic, it is wise to use
different symbols for the two. It is
common to use ∨ for boolean addition
and ∧ for boolean multiplication. So,
for example, 1 ∨ 0 = 1 and 1 ∧ 0 = 0.

lence classes, just as we did for modular arithmetic:

[a] + [b] = [a + b] and [a]× [b] = [a × b].

Since there are only two equivalence classes [0], namely {0}, and
[1], namely the class of all positive integers, we can explicitly write
out the addition and multiplication table: These rules are simply capturing facts

like zero plus positive is positive;
positive times zero is zero; positive
times positive is positive; and so on.

[0] + [0] = [0],

[0] + [1] = [1] + [0] = [1],

[1] + [1] = [1],

[0]× [0] = [0]× [1] = [1]× [0] = [0],

[1]× [1] = [1].

These rule for addition and multiplication are called boolean rules. Boolean arithmetic has an interpre-
tation in terms of boolean logic. If
we interpret 0 as False, 1 as True,
boolean + as OR, and boolean × as
AND, then the boolean rules for addi-
tion and multiplication translate into
appropriate logical rules.

Let G be a graph and let A be its adjacency matrix. Interpret the
entries of A in terms of boolean arithmetic. The entry 0 represents
the equivalence class [0] and any non-zero entry (like 1), represents
the equivalence class [1]. The following theorem follows from Theo-
rem 30.

Theorem 31. Let A∗k be the k-th boolean power of A. Then

A∗k
i,j =

0 if there is no path of length k from vi to vj,

1 if there is a path of length k from vi to vj
.

Proof. By definition, the entries of A∗k are the equivalence classes
of the entries of Ak. A non-zero entry in Ak represents the class [1]
and a zero entry represents the class [0]. On the other hand, a non-
zero entry means that there exists a path of length k between the
corresponding vertices, and a zero entry means that there does not
exist such a path.

The advantage of Theorem 31 over Theorem 30 is that boolean
arithmetic is much easier. For example, since there are only two
possibilities [0] and [1], the memory use in a computer will be
much smaller in boolean operations (plus, there is no risk of over-
flow). On the other hand, the entries Ak can grow to be quite big.

games, graphs, and machines 21

The disadvantage is that Theorem 31 only tells whether there is a
path or not; it does not give the number of paths.

With boolean operations, finding paths of lengths at most k is
also much easier. First, we have the following observation.

Proposition 32. Let G be a graph that has a loop at every vertex. Then
there is a path of length k from vi to vj if and only if there is a path of
length at most k from vi to vj.

Proof. If there is a path of length ℓ for ℓ ≤ k, simply compose it
with k − ℓ loops at the end to get a path of length k.

By combining Theorem 31 and Proposition 32, we get the follow-
ing.

Proposition 33. Let G be a graph that has a loop at every vertex. Let A
be its adjacency matrix. Then

A∗k
i,j =

0 if there is no path of length at most k from vi to vj,

1 if there is a path of length at most k from vi to vj
.

What if G does not have a loop at every vertex and we want
to find whether there exist paths of length at most k? We simply
consider the graph G′ obtained from G by adding a loop at every
vertex, and then apply Proposition 35!

What if we want to know whether there exists a path (of any
length) from vi to vj? We have the following observation.

Proposition 34. Let G be a graph with n vertices. If there is a path from
vi to vj, then there is a path of length at most n − 1 from vi to vj.

Figure 7: A long path (green followed
by red followed by blue) can be short-
ened by eliminating a cycle (red).

Proof. Take any path from vi to vj. Suppose if it has length n or
more. That is, it traversese n or more edges. Then it visits n + 1
or more vertices. Since our graph only has n vertices, this is only
possible if the path revisits a vertex. Suppose it revisits the vertex
v. So the path is a concatenation of a path from vi to v, a cycle
beginning and ending at v, and a path from v to vj (see Figure 7).
Just eliminate the middle cycle to get a strictly shorter path from
vi to vj. By doing this repeatedly, if required, we arrive at a path of
length at most n − 1 from vi to vj.

By combining Proposition 32 and Proposition 34, we get the
following.

Proposition 35. Let G be a graph with n vertices that has a loop at every
vertex. Let A be its adjacency matrix. Then

A∗(n−1)
i,j =

0 if there is a path from vi to vj,

1 if there is no path from vi to vj
.

Proof. Indeed, by Proposition 34 there is a path from vi to vj if and
only if there is a path of length at most n − 1.

22 asilata bapat and anand deopurkar

Shortest paths using min-plus arithmetic

In addition to finding the number of paths, or determining the ex-
istence of a path, we often want to find the shortest path. The adja-
cency matrix and another clever amendment of our usual arithmetic
also solves the problem of finding shortest paths.

It is useful to formulate the problem for weighted graphs. Let G
be a weighted graph. This means that each edge has an associated
weight, which is a non-negative real number. It is good to interpret
the weight as the length of that edge or the cost of traversing that
edge. Given two vertices vi and vj, we want to find the path of
minimum total weight from vi to vj.

Example 36. Consider the weighted
graph shown below.

1

2

5 3

2

1

4

3

1

0

Its weighted adjacency matrix is

W =


∞ 5 2 ∞
∞ 1 ∞ 3
∞ 1 0 ∞
∞ ∞ ∞ ∞


.

We can encode the edges together with their weights in the
weighted adjacency matrix. It is defined as follows.

Definition 37. Let G be a weighted graph. Label the vertices as v1, . . . , vn.
The weighted adjacency matrix of G is an n × n matrix W, defined as fol-
lows:

Wij =

the weight of the edge vi → vj, if vi → vj is an edge,

∞, otherwise.

The ∞ is justified because we want to think of traversing the
(non-existant) edge from vi to vj as a forbidden operation—it is an
operation with infinite cost!

Consider the set S = R ∪ {∞}. We are going to define (strange
looking) operations of addition and multiplication on S, denoted by
⊕ and ⊙, by declaring

a ⊕ b = min(a, b) and a ⊙ b = a + b.

We call these rules the min-plus arithmetic. If a or b are ∞, we inter- Just as in boolean algebra, it is useful
to think of ⊕ as OR and ⊗ as AND.
Suppose we have an option A that
costs a and an option B that costs b. If
we have the freedom to choose A OR B,
the total (optimal) cost is min(a, b). If
we have to choose both A AND B, then
the total cost is a + b.

pret min and + in the obvious way. For example, min(1, ∞) = 10
and ∞ + 1 = ∞.

We have the following analogue of Theorem 30.

Theorem 38. Let G be a weighted graph and let W be its weighted adja-
cency matrix. Let W⊙k be the k-th power of W calculated using min-plus
arithmetic. Then W⊙k

i,j is the weight of the path from vi to vj that has the
smallest total weight and has length k.

Proof. The proof is similar to the proof of Theorem 30.
By the definition of W, the statement is true for k = 1. Let us

assume that it is true for W⊙k and justify it for W⊙(k+1).
By the definition of matrix multiplication, we have

W⊙(k+1)
i,j =

(
W⊙k

i,1 ⊙ W⊙k
1,j

)
⊕ · · · ⊕

(
W⊙k

i,n ⊙ W⊙k
n,j

)
.

Recalling the min-plus rules, the right hand side is

min(W⊙k
i,1 + W⊙k

1,j , · · · , W⊙k
i,n + W⊙k

n,j).

We can break up a path of length k + 1 from vi to vj as a path of
length k from vi to vℓ followed by the edge vℓ → vj for some ℓ ∈

games, graphs, and machines 23

{1, . . . , n}. The minimum weight of such a path is the minimum
weight of a length k path from vi to vℓ plus the weight of the edge
vℓ → vj. This is the same as W⊙k

i,ℓ + Wℓ,j. If we take the minimum of
all these values as ℓ varies in {1, . . . , n}, we get the weight of a path
of minimum weight and of length k + 1 from vi to vj.

Example 39. For the graph in Exam-
ple 36, the second and third min-plus
powers of the weighted adjacency matrix
are:

W⊙2 =


∞ 3 2 8
∞ 2 ∞ 4
∞ 1 0 4
∞ ∞ ∞ ∞

 ,

and

W⊙3 =


∞ 3 2 6
∞ 3 ∞ 5
∞ 1 0 4
∞ ∞ ∞ ∞

 .

Note that they give the total weights of
paths of length 2 and 3.

Suppose G is a weighted graph. Assume that

1. all weights are non-negative, and

2. every vertex has a loop and the loop has weight zero.

This is a very common situation. Indeed, the costs are usually non-
negative and the cost of going from a place to itself is typically
zero.

Proposition 40. In the setup above, let n be the number of vertices of G,
and let W be the weighted adjacency matrix of G. Then W⊙(n−1)

i,j is the
minimum weight of a path from vi to vj.

Proof. Consider a path of the smallest weight from vi to vj. If it has
length greater than n − 1, then we can eliminate a cycle as in the
proof of Proposition 34 to create a shorter path. The shorter path
has smaller (or the same) weight. So, we do not lose anything by
only considering paths of length at most n − 1.

Now, we can treat a path of length at most n − 1 as a path of
length n − 1 by simply adding loops at the end as in the proof of
Proposition 32. So, the minimum weight of a path from vi to vj is
the same as the minimum weight of a path of length n − 1 from vi

to vj. We conclude using Theorem 38.

Markov chains

We now consider a special kind of weighted graph, called a Markov
chain. A Markov chain is a weighted graph such that

1. all weights are real numbers in the interval [0, 1]

2. for every vertex v, the sum of the weights of all outgoing edges
at v is 1.

Markov chains arise when we model random processes. We
should think of the vertices in G as “states” of a particular system,
which is evolving step by step. Suppose v is a vertex and e : v → w
is an outgoing edge from v with weight p. We interpret it as saying
that when the system is at state v, it will transition to state w with
probability p.

Example 41. I choose to subscribe to exactly one of Netfilx (N) or HBO
(H). Every month, I review my choice, and my choice changes according to
the following graph:

24 asilata bapat and anand deopurkar

N

.7

H
.3

.5

.5

If I am subscribed to Netfilx, then there is a 70% chance that I will con-
tinue to do so next month. But there is 30% chance that I will get bored
and switch to HBO. Likewise for HBO, but the probabilities are 50% and
50%.

We can use Markov chains to describe more than my subscrip-
tion choices. For example, in Chemistry they are used to describe
the kinematics of reactions, in biology, they are used to describe
models of DNA evolution, and so on. See the Wikipedia article on
“Markov chains” for a staggering array of applications.

Here is another example, thanks to Rachel Fewster (https://
www.stat.auckland.ac.nz/~fewster/325/notes/ch8.pdf).

Example 42. In a tennis game of Serena Williams versus Ash Barty, Ser-
ena wins a point with probability p and Ash wins a point with probability
q = 1 − p. The game is at a deuce. The following Markov chain describes
the evolution of the game until the game is resolved. The vertices are D
(deuce), AW (advantage Williams), AB (advantage Barty), GW (game
Williams), and GB (game Barty).

D

AWp

AB

q

q

GWp

p GBq

1

1

We add the loops at GW and GB with weight 1 to indicate that once the
process reaches there, it stays there indefinitely (after the game has been
won, it remains won indefinitely).

In the context of a Markov chain, the weighted adjacency matrix
is called the transition matrix. It is the matrix A defined by

Ai,j =

the weight of i → j if i → j is an edge

0 otherwise.

The 0 indicates that if i → j is not an edge, then there is 0 chance
of the system in the i-th state to transition to the j-th state. In the
transition matrix of a Markov chain, all the entries are between 0
and 1 (inclusive), and the entries in each row sum up to 1.

We have the following analogue of Theorem 30. We have the
following analogue of Theorem 30.

https://www.stat.auckland.ac.nz/~fewster/325/notes/ch8.pdf
https://www.stat.auckland.ac.nz/~fewster/325/notes/ch8.pdf

games, graphs, and machines 25

Theorem 43. Let G be a Markov chain and let A be its transition matrix.
Let Ak be the k-th power of A (with the usual rules of + and ×). Then
Ak

i,j represents the probability of transitioning state vi to state vj after
exactly k iterations of the random process described by G.

In the Serana Williams and Ash Barty
example, suppose p = 0.5. What is
the probability that Williams wins the
game after 5 points? What about 10
points?

To find the answer, we have to take
the 5th (or 10th) power of the weighted
adjacency matrix and look at the entry
corresponding to row D and column
GW.

Proof. The proof is similar to the proof of Theorem 30.
By the definition of A, the statement is true for k = 1. Let us

assume that it is true for Ak and justify it for Ak+1).
By the definition of matrix multiplication, we have

A(k+1)
i,j = Ak

i,1 A1,j + · · ·+ Ak
i,n Ak

n,j.

The entry Ak
i,1 represents the probability of transitioning from vi to

v1 after k steps. The entry A1,j represents the probability of transi-
tioning from v1 to vj in 1 step. So the product Ak

i,1 · A1,j represents
the probability of transitioning from vi to v1 in k steps and then
transitioning from v1 to vj in the next step. Similarly, the product
Ak

i,2 · A2,j represents the probability of transitioning from vi to v2 in
k steps and then transitioning from v2 to vj in the next step, and so
on. Taken together, the sum represents the probability of transition-
ing from vi to vj in (k + 1) steps.

Long term behaviour

Consider a Markov chain with transition matrix A. It is particularly
meaningful to understand Ak for large values of k, because it lets us
analyse the long-term behaviour of the random process represented
by the Markov chain.

Recall the Netflix/HBO example, whose transition matrix is

A =

(
0.7 0.3
0.5 0.5

)
.

N

.7

H
.3

.5

.5

To find Ak, we first diagonalise A (see the next section). We have

A = EDE−1

=

(
1 1
1 −5/3

)(
1 0
0 1/5

)(
5/8 3/8
3/8 −3/8

)
.

Therefore, we get

Ak =

(
1 1
1 −5/3

)(
1 0
0 (1/5)k

)(
5/8 3/8
3/8 −3/8

)
.

As k grows, (1/5)k approaches 0. So the matrix Ak approaches(
1 1
1 −5/3

)(
1 0
0 0

)(
5/8 3/8
3/8 −3/8

)
,

which is

B =

(
5/8 3/8
5/8 3/8

)
.

26 asilata bapat and anand deopurkar

Observe that all rows of B are equal. This is significant! This means
that eventually (after a large number of iterations), the probabil-
ity of being in the N state is 5/8 irrespective of the starting state.
Likewise, eventually the probability of being in the H state is 3/8
irrespective of the starting state.

The limiting matrix also allows us to predict what would happen
in the long term in a large population. Imagine many people with
exactly the same preferences for Netflix/HBO. Then, over a long
time period, we should expect 5/8 of them subscribed to Netflix
and 3/8 of them subscribed to HBO.

In the Serena-Ash example, we see different behaviour. Let us
take the the probability p of Williams winning a point to be p = 0.6
and the probability q of Barty winning a point to be q = 0.4. Then
the transition matrix is

A =


0 0.6 0.4 0 0

0.4 0 0 0.6 0
0.6 0 0 0 0.4
0 0 0 1 0
0 0 0 0 1

 .

Let us compute the powers numerically instead of algebraically. We
observe that for large k, we have

Ak ≈


0 0 0 0.69 0.31
0 0 0 0.88 0.12
0 0 0 0.42 0.58
0 0 0 1 0
0 0 0 0 1

 .

Note that, unlike in the last example, the rows of the limiting ma-
trix are not identical. However, the limiting matrix still gives inter-
esting information. It says that after a long enough play starting
at deuce, Williams has a 69% probability of winning the game
whereas Barty has 31% probability. If we start with Advantage
Williams, her chance goes up to 88%. If we start with Advantage
Barty, her chance goes up to 58%.

Random processes whose eventual behaviour is independent of
the initial state abound. They are sometimes called ergodic or regular
(the terminology in the literature is inconsistent). The following
theorem gives sufficient conditions for this behaviour.

Theorem 44. Let A be the transition matrix of a Markov chain. Suppose
there exists an n such that for every i and j, there is a path of length n
from state i to state j. Then

1. limk→∞ Ak exists.

2. The limiting matrix has identical rows, with non-negative entries
summing to 1.

3. The limiting row vector v is the unique vector whose entries sum to 1
and which satisfies the equation

vA = v.

games, graphs, and machines 27

The theorem is called the Perron-Frobenius theorem.
The proof of the theorem uses serious linear algebra. You can

take this as an invitation to learn some serious linear algebra. But
this course is not the place for it. So we will skip the proof.

The theorem applies to the Netflix/HBO example, but not to the
Williams/Barty example. Let A be the transition matrix of the Net-
flix/HBO example. By the Perron-Frobenius theorem, limk→∞ Ak

exists and has identical rows. The last assertion in the theorem al-
lows us to calculate the row. Suppose the row is (x, y). Then we
have the equations

x + y = 1

and

(x, y)

(
0.7 0.3
0.5 0.5

)
= (x, y),

that is

0.7x + 0.5y = x and 0.3x + 0.5y = y.

The unique solution of this system is

x = 5/8 and y = 3/8.

This is exactly what we had before!

Computing large powers

Given a matrix A, we often need to compute Ak for large values
of k. How do we do it efficiently? Let us discuss two techniques to
address this problem.

Diagonalisation

The easiest case is when A is a diagonal matrix—the only non-
zero entries of A are on the diagonal. That is, Ai,j = 0 if i ̸= j. In
this case, Ak is also diagonal and its diagonal entries are the kth
powers of the corresponding diagonal entries of A. For example, if

A =

(
2 0
0 3

)
, then Ak =

(
2k 0
0 3k

)
.

What if A is not diagonal? In many cases, we can diagonalise it.
That is, we write A = E · D · E−1 for a matrix E and a diagonal
matrix D. (The negative power E−1 denotes the inverse of E. This is
the matrix that multiplies with E on either sied to give the identity
matrix. That is, E−1E = EE−1 = I.)

For example, let us take A =

(
0.9 0.1
0.5 0.5

)
. Then it turns out

that A = EDE−1 where D =

(
1 0
0 2

5

)
and E =

(
1 1
1 −5

)
, and

E−1 =

(
5/6 1/6
1/6 −1/6

)
.

28 asilata bapat and anand deopurkar

Having written A = EDE−1, we have

A2 = (EDE−1)(EDE−1)

= ED(E−1E)DE−1

= EDDE−1

= ED2E−1.

Similarly, we have A3 = ED3E−1, and so on. That is, for all k, we
have Ak = EDkE−1. Remember that Dk is easy to compute. So,
for any k, we can compute Ak essentially by doing only 3 matrix
multiplications.

If we apply this to A =

(
0.9 0.1
0.5 0.5

)
, we get

Ak =

(
1 1
1 −5

)(
1 0

0
(2

5
)k

)(
5/6 1/6
1/6 −1/6

)

=

(
1 (2

5)
k

1 −5 · (2
5)

k

)(
5/6 1/6
1/6 −1/6

)

=

(
5/6 + 1/6 · (2

5)
k 1/6 − 1/5 · (2

5)
k

5/6 − 5/6 · (2
5)

k 1/6 + 5/6 · (2
5)

k

)
.

Now, imagine k to be a large number. Then (2/5)k = (0.4)k is
very close to zero16. So, if we ignore this quantity, we see that 16 Any number of absolute value less

than 1 raised to a large power is close
to zero.

Ak ≈
(

5/6 1/6
5/6 1/6

)
.

The technique of repeated squaring

This section is an aside. We discuss the method of repeated
squaring to quickly find powers of a matrix (or indeed, to quickly
find powers in general). This method works for any associative
product operation, including the standard matrix product, the
Boolean matrix product, and the min-plus matrix product. For
concreteness, we discuss it for the standard matrix product.

Let A be a square matrix. The naive method to compute a power
of A, for example A8, would be to multiply A serially with itself
8 times. This consist of 7 matrix product operations. However,
there is a quicker method: if we first find and save A2, then we
can multiply that with itself to obtain and save A4, and finally
multiply that with itself to get A8. In total, that corresponds to only
3 matrix product operations! This is considerably faster than serial
multiplication.

But what if we don’t have an even number, or a power of two
as the power we need to compute? Suppose we are trying to com-
pute An where n is not necessarily a power of two. In this case, we
simply square the matrix repeatedly, saving the results, until we
reach a power less than or equal to n. Then we write n as a sum

games, graphs, and machines 29

of distinct powers of two17, and then multiply together the corre- 17 Writing a positive integer n as the
sum of distinct powers of two is also
called binary writing. There are several
ways to obtain it. For example, we
can follow the following recursive
algorithm: if n is even, we write it
as 2m, and if n is odd, we write it as
2m + 1. Repeating the process on the
m obtained until we reach 1, we obtain
an expression which expands to a sum
of distinct powers of two. For example,

7 = 2(3) + 1 = 2(2(1) + 1) + 1

= 4 + 2 + 1.

sponding powers of A to get the final result. Here is an example.

Example 45. Suppose that n = 19. In this case, we remember M0 = A,
M1 = A2, M2 = M2

1 = A4, M3 = A8, and M4 = A16. Finally, note that
19 = 16 + 2 + 1 = 24 + 21 + 20, and so

A19 = M4 · M1 · M0.

This process corresponds to a total of 6 matrix product operations (four
squarings and two multiplications), as opposed to the 18 product opera-
tions required for serial multiplication.

Regular expressions and finite automata

In this chapter, we will study regular expressions, regular lan-
guages, and finite automata. The aim of the chapter is to build up
tools for “pattern-matching” strings over a fixed alphabet, and to
isolate subsets of strings that match certain patterns.

Regular expressions

A regular expression is a systematic formula that specifies certain
strings of a given alphabet. We first need to define what we mean
by alphabet and string, and some basic constructions.

Definition 46. An alphabet Σ is a finite set of symbols, called the letters
of Σ. A string or a word is a finite ordered list of elements of Σ, written
without spaces or punctuation. The length of a word is the number of
letters in the word.18 18 The unique empty word is also

allowed, and is denoted ε. For this
reason we usually assume that ε is not
a symbol in Σ.

A commonly used alphabet is Σ = {0, 1}. In that case, examples
of strings or words in this alphabet are 10, 00, 1110, 0, 1, and ε.

If Σ is a fixed alphabet, then we denote by Σ∗ the set of all
strings, including ε.

Exercise 47. Check that if Σ = ∅ then
Σ∗ = {ε}, but otherwise Σ∗ is infinite.

Definition 48. Fix an alphabet Σ. A language L on Σ is any subset of
Σ∗.

Unless otherwise specified, we will use the alphabet Σ = {0, 1}
as our default alphabet.

Basic constructions with strings

Fix an alphabet Σ. We begin by listing some basic constructions on
languages on Σ and strings in Σ.

Concatenation (on strings) Let v = a1 . . . ak and w = b1 . . . bl be
strings, with ai, bj ∈ Σ for every i and j. The concatenation of v
and w is the string

vw = a1 . . . akb1 . . . bl .

Concatenation (on languages) Let L1, L2 ⊆ Σ∗ be languages. The
concatenation of L1 and L2 is a new language on Σ, denoted by
L1 ◦ L2 and defined as follows.

L1 ◦ L2 = {vw | v ∈ L1, w ∈ L2}.

games, graphs, and machines 31

Union (of languages) If L1, L2 ⊆ Σ∗ are languages, then their union
L1 ∪ L2 is just the set union. So

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2}.

Star (of a language) Let L ⊆ Σ∗ be a language. Then the star of L,
denoted L∗, consists of any number of concatenations of words
in L. That is,

L∗ = {w1w2 . . . wk | k ≥ 0 and wi ∈ L for each i}.

Example 49. 1. If L = ∅ then L∗ =
{ϵ}.Lexicographic order (dictionary order)

Suppose that we have ordered the elements of Σ. Then Σ∗ (and any
other language on Σ) inherits a total order, known as the lexico-
graphic order. In this order, we can compare two words v and w
using the following steps.

1. If v and w have unequal lengths, then the shorter word is said to
be less than or equal to the longer word.

2. If v and w have the same length n, then we can write them as

v = a1 · · · an and w = b1 · · · bn,

where ai, bj are letters. Then we compare letter by letter starting
from 1 to n. If v ̸= w then at least one position i must have ai ̸= bi.
Let i be the smallest number for which the letters ai and bi differ. If
ai < bi in the order on Σ, we say v < w. Otherwise if bi < ai, we say
w < v.

Example 50. Assume we use the
order (0, 1) on Σ = {0, 1}.

1. The word ϵ is shorter than every
other word, so appears first in the
lexicographic order on Σ∗.

2. The word 11 appears before 011 (or any
other word of three or more letters).

3. The word 01 appears before 11 but
after 00.

Regular expression syntax and matching

We are now ready to define regular expressions. A regular expres-
sion should be thought of as a particular way to specify a pattern,
that can “match” zero or more strings in a given language. Regular
expressions are built out of three basic patterns and three “opera-
tors” that make bigger patterns using smaller ones.

Definition 51. Fix an alphabet Σ. A word r written using the letters
of Σ, together with the symbols ∗ and |, is a valid regular expression if it
satisfies one of the following.19 19 Additionally, we are also allowed to

parenthesise subexpressions to avoid
ambiguity. We assume that Σ does not
contain any of the symbols “(”, “)”,
“|”, “∗”, or “∅”.

1. r = ∅

2. r = ε

3. r = a for some a ∈ Σ

4. r = r1r2 for two valid regular expressions r1 and r2

5. r = r1|r2 for two valid regular expressions r1 and r2

6. r = s∗ for a valid regular expression s.

32 asilata bapat and anand deopurkar

We now discuss what it means for a string to “match” a regular
expression.

Definition 52. Let Σ be an alphabet and let r be a regular expression on
Σ. Let w ∈ Σ∗ be any word. We say that w matches r if the following
hold.

1. r ̸= ∅, because no word matches the regular expression ∅.

2. If r = ϵ or r = a for some a ∈ Σ, then w = r.

3. If r = r1r2 then there is at least one way to break up w into w = v1v2,
such that v1 matches r1 and v2 matches r2.

4. If r = r1|r2 then either w matches r1 or w matches r2 (or it matches
both).

5. If r = s∗, then w can be broken up as a concatenation of zero or more
subwords, w = v1 . . . vk, such that each vi matches s.

Deterministic finite automata

A finite automaton is an abstract machine that performs calculations
according to certain rules. We will begin by discussing determinis-
tic finite automata, and discuss their relationship to regular expres-
sions.

Definition 53. Fix an alphabet Σ. A deterministic finite automaton for Σ
is described by the following pieces of data.

1. A (usually finite) set of states, usually denoted Q.

2. A start state20, usually denoted q0 ∈ Q. 20 The start state is always unique.

3. A set of accept states A ⊆ Q.21 21 The set of accept states can be any
subset of Q, including the empty set.
Changing the set of accept states while
keeping everything else the same
typically changes the results of the
calculation drastically.

4. A transition function

δ : Q × Σ → Q.

Example 54. Here is an example of a
finite automaton.

q0start

q1

q2

0

1

0,1

1

0

The definition is not very illuminating. It is often much clearer
to draw the state diagram of a finite automaton, as shown in Exam-
ple 54. In this example, we can decode the formal data of the DFA
as follows.

1. The set of states is Q = {q0, q1, q2}.

2. The start state is q0.

3. The set of accept states is A = {q0, q1}.

4. The transition function can be represented as a table as follows.

Input state Letter Output state
q0 0 q1

q0 1 q2

q1 0 q1

q1 1 q1

q2 0 q1

q2 1 q2

games, graphs, and machines 33

Example 55. Consider the string w =
1101, running on the machine M from
the previous example. It goes through the
following steps on M.

1. Start at q0, read 1, move to q2.

2. From q2 read 1, move to q2.

3. From q2 read 0, move to q1.

4. From q1 read 1, move to q1.

At the end of this process, we are at q1,
which is an accepting state. Therefore M
accepts w.

Given a DFA M and a word w ∈ Σ∗, we can run the machine M
on the word w, as follows. Suppose that w = a1a2 . . . ak, where each
ai is a letter of Σ. We then have the following steps.

1. We begin at the start state p0 = q0 and “read” the letter a1.

2. We move to the state p1 = δ(p0, a1). From here, we read the
letter a2.

3. Next, we move to the state p2 = δ(p1, a2). From here, we read
the letetr a3.

4. Continue in this manner, moving to the state pn = δ(pn−1, an) by
reading the letter an.

5. Stop at the state pk, which is reached after reading the last letter
ak.

6. If pk is an accepting state of M, we say that M accepts w. If pk is
not an accepting state of M, we say that M rejects w.

Definition 56. Let M be a DFA. The set of all strings accepted by M is
called the language of M, denoted L(M).

Nondeterministic finite automata

A nondeterministic finite automaton or NFA is a generalisation of
a DFA. It is a machine in which, informally, we may have some
choices when we try to read letters. In an NFA we relax the re-
striction that there is exactly one outgoing arrow from each state
labelled by each letter of Σ. If there are multiple arrows from a state
a labelled by a symbol s, then informally it means that if we are at
the state a and are reading s, then we may go to any of the target
states of these arrows. If there is no arrow from a state a labelled
by a symbol s, then we reject the input. We also give ourselves the

Example 57. Here is an example of a
nondeterministic finite automaton.

q0start

q1

q2

0,1

1

0,1

0, ε

luxury of allowing arrows labelled by the empty string ε. If there
is an arrow labelled ε from a state a to a state b, then informally it
means that we have a choice, when we are at a, to teleport to the
state b without reading any letter.

Let us give a formal definition.

Definition 58. Fix an alphabet Σ. A nondeterministic finite automaton
for Σ is described by the following pieces of data.

1. A finite set of states, usually denoted Q.

2. A start state, usually denoted q0 ∈ Q.

3. A set of accept states, usually denoted A ⊆ Q.

4. A transition function22 22 This transition function also takes in
a pair (q, a) as input, where q ∈ Q and
a is either a letter of Σ or the empty
string ε. The output is a (possibly
empty) set of states of Q. Visually,
we should think of having outgoing
arrows from q to each element of
∆(q, a), each of them labelled by a.

∆ : Q × (Σ ∪ {ε}) → P(Q).

34 asilata bapat and anand deopurkar

Once again, let us describe the parts of the definition for the ex-
ample in Example 57. The set of states, the start state, and the set of
accept states are exactly as in the previous example (Example 54).
The transition function is as follows.

Input state Letter or ε Set of output states
q0 0 {q1}
q0 1 {q1, q2}
q0 ε ∅
q1 0 {q1}
q1 1 {q1}
q1 ε ∅
q2 0 {q1}
q2 1 ∅
q2 ε {q0}

As before, we can run strings on NFAs. However, the process of
calculation may now involve several choices, depending on how
many possible output states there are for each input state and letter
(or empty string). We say that an input string is accepted by the
autamaton, if some choice of arrows while reading the string takes us
from the start state to an accept state. We represent the calculation
as a calculation tree, as shown by the following example.

Example 59. Consider the NFA described by Example 57. We run it
on the input string 110. Encountered with a choice, we make all possible
choices, and record them. We also write states that we encounter after
following all possible ϵ arrows

q0

{q0, q1, q2}

{q0, q1, q2}

{q0, q1}

1, optionally followed by εs

1, optionally followed by εs

0, optionally followed by εs

It is possible to reach an accepting state (q0), so the string 110 is accepted.

NFA to DFA

Although NFAs allow much more flexibility than DFAs, they are
fundamentally no more expressive. That is, any language that can
be described by an NFA can also be described by a DFA. The DFA
is typically bigger and clunkier, and the NFA is sleeker and more
convenient. But in terms of ability, NFAs are no more than DFAs.

The aim of this section is to convert an NFA to an equivalent
DFA. “Equivalent” means that the DFA will accept precisely the
same strings as the NFA does. In other words, the two automata
describe the same language.

games, graphs, and machines 35

First case: no ε arrows.

We first do a simpler case. Let N be an NFA with states Q and
assume that there are no arrows in N labelled by ε. We build the
DFA D as follows:

• its states are P(Q),

• its start state is {q0}, where q0 ∈ Q is the start state of N,

• its accept states consist of all S ⊂ Q such that S contains an
accept state of N.

Finally, we have to describe the transition function. Let S ⊂ Q
denote a state of D and let a ∈ Σ be a letter. Let δ be the transition
function of N. Let T be the union of all δ(s) as s varies in S. In
other words, let T be the set of all states of Q that are reachable
from some state in S by following an arrow labelled a. We put the
arrow S a−→ T in D.

Convince yourself that D and N accept precisely the same
strings.

General case: ε arrows

We need to modify the previous construction a little bit to accom-
modate ε arrows. Let S ⊂ Q. We say that S is ε-closed if any state
in Q that is reachable from a state in S by following a ε arrow is
already in S. That is, for all t ∈ Q and s ∈ S such that s ε−→ t, we
have t ∈ S. The ε-closure of S is the set obtained by adding to S all
possible states that can be reached by starting at a state in S and
following zero or more ε arrows. We denote the ε-closure of S by
S+ϵ. Observe that S+ϵ is ε-closed. In Example 57, what is the ε-closure of

{q2}?We are now ready to do the conversion from any NFA to DFA.
Let N be an NFA with states Q. We build the DFA D as follows:

• its states are {S ∈ P(Q) | S is ε − closed},

• its start state is {q0}+ϵ, where q0 ∈ Q is the start state of N,

• its accept states consist of all S ⊂ Q such that S contains an
accept state of N.

Finally, we have to describe the transition function. Let S ⊂ Q
denote a state of D and let a ∈ Σ be a letter. Let δ be the transition
function of N. Let T be the ε-closure of the union of all δ(s) as s
varies in S. In other words, let T be the set of all states of Q that are
reachable from some state in S by following an arrow labelled a,
optionally followed by a sequence of arrows labelled ε. We put the
arrow S a−→ T in D.

Convince yourself that D and N accept precisely the same
strings.

36 asilata bapat and anand deopurkar

Example

Let us convert the NFA in Example 57 to a DFA. Instead of draw-
ing all possible states, it is more practical to begin with the start
state and only draw the states that we need. (States that are not
reachable from the start state are irrelevant anyway).

Our start state is the ε-closure of {q0}, which is {q0} itself. So far
we have the following partial DFA:

{q0}start
.

We now take a letter 0, apply it to {q0}, and find the target state.
By definition, the target state is the ε-closure of {q1}, which is {q1}
itself. We add it to our DFA:

{q0}start {q0}
0

.

We now have multiple options: we can apply 1 to {q0}or 0 to {q1}
or 1 to {q1}. We have to do all of them eventually, and we can do
them in any order. Applying 1 to {q0} takes us to {q1, q2}; its ε-

closure is {q0, q1, q2}. So we add {q0}
1−→ {q0, q1, q2} to our DFA.

Applying 1 to {q1} takes us to {q1}. Applying 0 to {q1} takes us to
{q1}. Adding these to the DFA, we have:

{q0}start {q0}

{q0, q1, q2}

0

1

0,1

.

Applying 0 to {q0, q1, q2} takes us to {q0, q1}, which is already
ε-closed. Applying 1 to {q0, q1, q2} takes us to {q0, q1, q2}. After
adding these edges, we get

{q0}start {q0}

{q0, q1, q2} {q0, q1}

0

1

0,1

0

1 .

games, graphs, and machines 37

Applying 0 to {q0, q1} takes us to {q1}. Applying 1 to {q0, q1} takes
us to {q1, q2}, whose ε-closure is {q0, q1, q2. After adding these two
edges, our DFA is complete. We let the accepting states be those
that contain an original accepting state.

{q0}start {q1}

{q0, q1, q2} {q0, q1}

0

1

0,1

0

1

0

1

.

Regular expressions to finite automata

The aim of this section is to try and convert any given regex to an
equivalent23 finite automaton (either a DFA or an NFA). We have 23 We say that a regex r is equivalent to

a finite automaton M if L(r) = L(M).already seen that given any NFA, one can construct an equivalent
(probably much larger) DFA. So to make things simpler for us, we
will convert regexes to NFAs.

We do this inductively, constructor-by-constructor.

1. If r = ∅, we simply have to find an NFA that rejects every string.
The easiest option is as follows.

q0start

2. If r = ϵ, we construct an NFA that only accepts the empty string.
A possible option is as follows.

q0start

3. If r = a for some a ∈ Σ, we construct an NFA that only accepts
the string a. A possible option is as follows.

q0start q1
a

4. If r = r1r2 for two regexes r1 and r2, we construct an equivalent
NFA inductively. Assume that M1 and M2 are NFAs equivalent
to r1 and r2 respectively. Assume furthermore for simplicity
that M1 has exactly one accept state t (if not, we can add a new
accepting state, and redirect all previously accepting states to it

38 asilata bapat and anand deopurkar

by ϵ-transition arrows). Let p0 and q0 be the start states of M1

and M2 respectively. We can then construct a new automaton
that connects M1 and M2 by joining t to q0 by an ϵ transition,
whose accepting states are simply the accepting states of M2.
This construction is illustrated below.

p0start · · · t q0 · · ·

M1 M2

ϵ

5. If r = r1 | r2 for two regexes r1 and r2, we construct an equiva-
lent NFA inductively. Assume that M1 and M2 are NFAs equiv-
alent to r1 and r2 respectively. Let p0 and q0 be the start states
of M1 and M2 respectively. We construct a new automaton with
start state s, which connects to both p0 and q0 by ϵ-arrows. The
set of accepting states of the new automaton is a union of the
sets of accepting states of M1 and M2. This construction is illus-
trated below.

sstart

p0 · · ·

q0 · · ·

M1

M2

ϵ

ϵ

6. If r = (r1)
∗ for a regex r1, we construct an equivalent NFA

inductively. Assume that M1 is an NFA equivalent to r1. Assume
again for simplicity that t is the only accepting state of M1, and
that q0 is its start state. To construct our new NFA, we add a
dummy start state s, make it accepting, and connect t to s via
an ϵ arrow. This construction ensures that we accept the empty What would happen if we didn’t add

s, and instead made q0 accepting,
connecting t to q0?

string, as well as any string that successfully passes through M1

several times. The construction is illustrated below.

sstart q0 · · · t

M1

ϵ

ϵ

We see at the end of this process that every regex constructor
can be “converted” to an equivalent NFA. By chaining together

games, graphs, and machines 39

these basic constructions, we can therefore convert every regex to
an equivalent automaton!

Converting finite automata to regular expressions

Recall that we say that two automata M1 and M2 are equivalent if
L(M1) = L(M2). We have already seen that DFAs and NFAs are
equivalent in power. That is, for any DFA M there is an equivalent
NFA N, and for any NFA N there is an equivalent DFA M.

In this section we focus on converting a given DFA or NFA to
an equivalent regular expression r. We will start with an arbitrary
machine M, and perform a series of reductions to delete states,
successively overloading the arrow labels, until we hit a machine
with only two states and a single label, which will be the required
regex.

Consider a machine M. First, we sanitise or quarantine the ma-
chine as follows24. 24 I use this terminology because you

should imagine that you are perform-
ing a surgery on your machine, so you
want to put it inside a nice sanitised
operating box. We then put on our
gloves and perform our surgery inside
the box, not letting anything in the box
interact with anything outside the box,
unless strictly necessary.

1. If q0 was the original start state of M, add a new state s before
q0, connecting it to q0 by an ϵ arrow. The state s is now our new
start state.

2. If a1, . . . , ak were previously the accepting states of M, we add
a new accepting state a after a1, . . . , ak, with an ϵ-arrow ai

ϵ−→ a
for each i ∈ {1, . . . , k}. We then make a1, . . . , ak non-accepting.
Consequently, the new machine has only one accepting state.

Here is a visual representation.

sstart q0 · · · ...

a1

ak

a

The "operating box".

ϵ

ϵ

ϵ

ϵ

Once we have done this procedure, we get to work deleting each
state of the machine inside the “operating box” one by one. We
can’t however simply delete a state! We have to compensate for
deleting a state by adding extra arrows or labels, so that anything
that would have previously gone through that state has an alternate
route. The deletion algorithm goes as follows.

1. Choose a state q inside the operating box to delete. If there are
no more states left, we are done.

2. Let ℓ be the label on any loop from q to itself. If there is no loop,
then we take ℓ to be the empty word ϵ.

40 asilata bapat and anand deopurkar

3. Consider every possible configuration as follows.

x q yℓx

ℓ

ℓy

Here, x and y are states such that x ̸= q and y ̸= q (but x and y
may be equal), and ℓx and ℓy are the labels on the arrows shown
respectively.

4. Each such configuration is a portion that accepts substrings
that match the regex ℓxℓ∗ℓy. In other words, a substring goes
through successfully along the portion x → q → y if and only if
it matches ℓxℓ∗ℓy. By simply removing q, those substrings would
no longer have access to this path. So instead, we add on ℓxℓ∗ℓy

as a direct label from x to y. Formally, consider any existing
arrow x → y with label r. If there is such an arrow, then change
the label on that arrow to r | ℓxℓ∗ℓy. Otherwise, create an arrow
x → y with label ℓxℓ∗ℓy.

5. Once this has been done for every configuration x → q → y for
all possible values of x and y, delete q.

6. Note that a string is accepted by the new machine (noting that
now an arrow with a label e accepts any substring that matches
e) if and only if it is accepted by the old machine.

7. The machine now has one fewer state in the operating box, so go
back to step 1.

It is clear that this algorithm terminates with no states left in-
side the operating box. When there are no more states left, there
will be exactly one arrow from s to a, and it will have a regular ex-
pression as a label on it. By construction, this regex accepts exactly
the strings accepted by the machine we started with, and so it is
equivalent to the original machine!

Non-regular languages

Recall that a regular language is one that is accepted by a determin-
istic or non-deterministic finite automaton, or equivalently, one that
is the language of some regular expression. It turns out that not all
languages are regular.25 25 A detailed proof of this is outside

the scope of these notes, but here is
a proof sketch. If you fix an alphabet
Σ, then the cardinality of the set of
all languages on Σ is the cardinality
of the power set of Σ∗. The set Σ∗

is a countable infinite set, and so its
power set is uncountable. On the other
hand, the set of regular languages is
necessarily countable — it is possible
to lexicographically enumerate all
possible regular expressions, so the set
of languages that is recognised by any
one of them must also be countable!

How do we know whether a given language is regular or not?
If we can find a machine or regex that recognises precisely that
language, then the language is regular. However, if we cannot come
up with a regex or machine that recognises that language, how can
we provably say that the language is not regular? In this section,
we discuss two criteria that allows us to show that a language is
regular.

games, graphs, and machines 41

Pumping lemma

The first criterion is called the pumping lemma.26 26 Be careful — there are non-regular
languages that fool the pumping
lemma. That is, it does not pick up all
non-regular languages.

The idea behind the pumping lemma is relatively simple. Sup-
pose you have a regular language L. This means that there is some
DFA M such that L = L(M). This DFA M has finitely many states,
say n states.

Every word that M accepts must start at the start state, and pass
through (some of) these n states, before ending up at an accepting
state. If the language L is infinite, then it must contain words that
are longer than n letters. Therefore, as these words travel through
M, they must repeat a state. Suppose w is such a word, and note
that we can break up w into three pieces w = xyz, such that the
portion y is non-empty, and starts and ends at the same state. In
this situation, because y ends at the same point that it started, the
word xyyz must also necessarily end on the same accet state that w
ends on! We can say the same thing about the words xz, xyyyz, and
more generally, xyiz for any integer i ≥ 0.

With this background, here is the idea for the pumping lemma.
Suppose that there is a language L such that for arbitrarily long
words w ∈ L, there is no way to split up w into three sections w =

xyz such that xyiz ∈ L for every L. Then L cannot be regular.
We state this theorem formally first, and will then give an exam-

ple to see how it can be used.27 Understanding this theorem is an 27 Typically we use the contrapositive
of this theorem. That is, we find a
language that does not satisfy the
consequence of the theorem, and
thereby conclude that it is not regular.

exercise in getting your order of quantifiers correct!

Theorem 60. Suppose L is a regular language. Then there is some posi-
tive integer n, called a pumping length for L, with the following prop-
erty. For any w ∈ L such that |w| ≥ n, there exists some way to split w as
w = xyz, such that:

1. |y| ≥ 1;

2. |xy| ≤ n;

3. the words xyiz are in L for every integer i ≥ 0.

Proof. The proof goes as explained in the previous discussion.
Suppose L is regular, and suppose that M is some DFA that recog-
nises L. Suppose also that M has n states. Then we claim that n is a
pumping length for L.

Consider any w ∈ L such that |w| ≥ n. Now as w travels through
M from the start state to the accept state, it will encounter a re-
peated state q within the first n of its letters. Take x to be the por-
tion of w up until we reach q for the first time. That is, after reading
the last letter of x, we are at the state q for the first time. Let y be
the portion after x up until we reach q for the second time.

Since we know that q appears at least twice as we travel through
the first n letters, we see immediately that

1. |xy| ≤ n, and

2. |y| ≥ 1.

42 asilata bapat and anand deopurkar

Finally, let z be the remainder of w after xy. Recall that after
reading the last letter of z, we are at an accepting state of M. Now
consider any string of the form xyiz for i a non-negative integer.
As we run xyiz through M, we reach q after we finish travelling
through x. The portion y starts and ends at q, so any power of it
will also start and end at q. Finally, the portion z starts at q and
ends at an accepting state of M. Therefore it is evident that M
accepts xyiz for each integer i ≥ 0, and the proof is complete.

Let us see a simple example of how to use this theorem. Con-
sider the language L = {0k1k | k ≥ 0}. The words in this language
consist of a string of 0s followed by a string of the same number of 1s.
We will show that L is not regular.

Suppose for contradiction that L is regular, and let n be its
pumping length. Then any word in L of size at least n can be split
up as in the pumping lemma. Consider the word w = 0n1n. We
have to be able to split up w as w = xyz such that |xy| ≤ n, |y| ≥ 1,
and xyiz ∈ L for every non-negative integer i.

Note however that the first condition (|xy| ≤ n) guarantees that
both x and y only consist of strings of zeroes. Suppose that x = 0a

and y = 0b for some a, b such that b ≥ 1 and a + b ≤ n. Then z is
necessarily equal to 0n−a−b1n.

Now consider the string xyyz = xy2z. This can be computed
to be 0a0b0b0n−a−b1n = 0n+b1n. Clearly, this string is not in L! We
have thus managed to violate the pumping lemma, from which we
conclude that L could not have been regular in the first place.

The Myhill-Nerode theorem

The Myhill-Nerode theorem gives a necessary and sufficient con-
dition for a language to be regular. It distills the idea that a finite
automaton has “finite amount of memory.”

Let L be a language (regular or not). Let x, y be strings. We say
that L distinguishes x and y if there exists a z such that xz ∈ L and
yz ̸∈ L or vice-versa, that is, xz ̸∈ L and yz ∈ L. For example,
the language L described by 10∗1|01∗0 distingushes 0 and 1 (take
z = 10). But it does not distinguish 010 and 101 (why?)

We say that x ∼L y if L does not distinguish x and y.

Proposition 61. The relation ∼L is an equivalence relation.

Proof. Reflexivity and symmetry are clear. Let us check transitivity.
Suppose x ∼L y and y ∼L w. Then for any z, either both xz and
yz are in L are not in L. Similarly, either both yz and wz are in L or
not in L. We have to show that x ∼L w. That is, for any z, we have
to show that both xz and wz are in L or not in L. Suppose xz ∈ L.
Then yz ∈ L, because x ∼L y and hence wz ∈ L, because y ∼L w.
Similarly, if xz ̸∈ L, then wz ̸∈ L.

To show that x ̸∼L y, we have to exhibit one z. To show that
x ∼L y, we have to check that all possible z. How do we do that? If
we have an automaton, we have a way.

games, graphs, and machines 43

Proposition 62. Suppose M is a DFA whose langauge is L. If x and y
end at the same state of M, then x ∼L y.

Proof. For any z, consider the paths that xz and yz take through the
automaton. After x and y, the two paths are at the same state. So,
after further reading z, they will end at the same state. It is either
an accept state, in which case both xz and yz are in L, or not, in
which case both xz and yz are not in L.

In other words, inequivalent strings must end at differest states
of M. So we get the following.

Proposition 63. The number of equivalence classes of ∼L is at most the
number of states of M. In particular, if ∼L has infinitely many equiva-
lence classes, then L is not regular.

Example 64. Consider L = {0n1n | n ≥
0}. The strings 0, 01, 001, 0001, 00001, · · ·
are pairwise inequivalent (why?). So each
of them represents a distinct equivalence
class of ∼L. As a result, ∼L has infinitely
many equivalence classes, so it is not
regular.

The converse of the proposition above is also true. The proposi-
tion together with the converse is called the Myhill-Nerode theo-
rem.

Theorem 65. A language L is regular if and only if ∼L has finitely many
equivalence classes.

Proof. If ∼L has infinitely many equivalence classes, we saw that
there cannot exist a DFA whose language is L. Conversely, suppose
∼L has finitely many equivalence classes. We build a DFA whose
language is L. The states of the DFA are the equivalence classes
of ∼L. The start state is the equivalence class of ϵ. Observe that if
x ∼L y then xz ∼L yz for any z. Using this, we define the transitions
as follows. Let S be an equivalence class, or equivalently, a state of
our DFA. Let a ∈ Σ be a letter. Take x ∈ S, and draw an arrow
labeled a from S to the equivalence class of xa. Choosing a different
y ∈ S changes xa to ya, but ya is still equivalent to xa. So the arrow
is unambiguously defined. Let the accept states be the equivalence
classes of strings in L. Check that the resulting DFA has language
L.

Combinatorial games

We begin the course with some games. The theory of games is a
rich subject that can be used to model problems in logic, computer
science, economics, and social science, depending on the rules you
impose on your games. We will focus on impartial combinatorial
games.

An impartial combinatorial game is usually played with two
players and satisfies the following conditions.

1. There is a (usually finite) set of possible game states.

2. There are rules that describe the possible moves from a given
game state to other game states.

3. The game is impartial, which means that the rules to go from one
game state to the next do not depend on which player is about to
make the move28. 28 Contrast this to a game such as

chess, in which one player may only
move the white pieces and the other
player may only move the black pieces.

4. The players alternate making moves to move from one game
state to the next.

5. The first player to be unable to make a move loses the game29. 29 This is called normal play. In the
variant called misère play, the first
player unable to make a move wins the
game.

6. There is complete information (the entire game state is known to
both players at all times).

7. There are no chance moves.

Here is a basic example of an impartial combinatorial game,
namely the subtraction game.

Fix a finite set of positive integers, say S = {1, 3, 4}. In the sub-
traction game with respect to S, we start with a non-negative inte-
ger n. A valid move consists of replacing n by n− k where k is some
element of S. In this case, the possible valid moves are n 7→ n − 1,
n 7→ n − 3, and n 7→ n − 4. The output must remain a non-negative Can the first player win if the starting

position is n = 5? How about n = 10?
How can you be sure?

integer, and the person who cannot make a move loses.

Strategic labelling

A basic tool to study an impartial combinatorial game is the game
graph. This is a directed graph whose vertices represent possible
states of the game (usually all states potentially reachable from the
starting state). We draw an edge from state s1 to state s2 if there is a
single move that takes us from s1 to s2.

games, graphs, and machines 45

The finiteness condition on impartial combinatorial games means
that there are only finitely many states reachable from any given
starting state, so the game graph drawn from any fixed starting
position is finite. Moreover, there are no directed cycles in this
graph, because each possible sequence of moves terminates at a
state from which there are no moves possible.

So if we build the full game graph starting at the starting config-
uration, we can then analyse whether there is a winning strategy.
As an easy example, if there are no possible moves from the start-
ing configuration, then the first player will automatically lose.

Since the possible moves from a given state do not depend on
which player is going to play next, we can simply figure out if a
given state is a “winning” or a “losing” position. Let s be a game
state. We say that s is an N state if the next player to play has a
winning strategy for the state s. We say that s is a P state if the next
player has no winning strategy for the state s; equivalently, if the
previous player has a winning strategy for the state s no matter what
move the next player makes. So N states are next-player wins, and
P-states are previous player wins.30 30 Remember that this labelling as-

sumes that everyone plays optimally
and makes no mistakes! It is still pos-
sible for the next player to lose from
an N state if they make the wrong
move, but a state gets the label N if it
is possible for the next player to win
by playing optimally.

We can label states as N and P inductively, building up from
the bottommost positions. First, it is clear that if s has no outgoing
arrows, then it is a P state — the next player to play automatically
loses, and hence the previous player has won. We call such states
terminal states, because the game terminates or ends at these states.
So any terminal state is a P state.

Therefore, anything that has at least one arrow to a terminal state
is an N state: the next player can simply move to the terminal state,
so that the player after the next player (aka the previous player)
has no possible moves left. To generalise this, any state that has at
least one arrow to a P state is an N state: the next player can simply
move to the P state, which is guaranteed to be a losing position for
the player after next (aka the previous player). So when is a state a
P state? Well, a state is a P state if no matter what the next player
does, the previous player has a winning strategy. This means that a
state is a P state if and only if all outgoing arrows point to N states.

Definition 66. The outcome of a game G is defined to be P if the game
state G is a P-state, and N if G is an N-state.

TODO Draw running example

Nim

Let us discuss nim, which is a very important example of an impar-
tial combinatorial game. The game is played as follows. The start
state consists of a finite number of piles of stones, each possibly of
a different size. For instance, we may have the state {2, 3, 5}. We
will represent states as multisets: that is, the order is unimportant,
but entries can repeat. The size of each pile must be a non-negative
integer. If a pile shrinks to size 0, we optionally omit it from the

46 asilata bapat and anand deopurkar

representation, so that {2, 3, 5} is the same as {0, 2, 3, 5}.
A move consists of choosing one of the piles, and removing and

discarding some of the stones in that pile. At least one stone must
be removed, and the player may choose to remove all the stones
from the chosen pile. For instance, from the state {2, 3, 5}, we can
move to the state {2, 2, 5} by removing one stone from the pile that
had 3 stones. Or for instance, we could move to the state {2, 5}, by
removing all the stones from the pile that had 3 stones. The person
who cannot make a move loses; this can only happen if the player is
presented with the empty state {}.

Let us work out some easy examples. First, suppose that the start
state consists of a single pile with 0 stones: {}. This is clearly a P-
state. Next, suppose that the start state consists of a single pile with
n stones for n > 0: {n}. This is an N-state, because the next player
can remove all n stones to reach the terminal state {}.

Next, suppose that the start state is {m, n}, with both m and n
positive. First suppose that m = n. We claim that this state, namely
{n, n}, is a P-position. To see this, proceed by induction: the only
possible sequence of moves from {1, 1} is

{1, 1} → {0, 1} → {0, 0}.

Since {0, 0} is a P state, we see that {0, 1} is an N state, and so
{1, 1} is a P state.

Now let n > 1, and assume the result for all 1 ≤ k < n. The only This is a more general technique,
known as mirroring. In some situations,
it is possible, by symmetry, to mirror
the opponent’s move so that the
opponent is presented with a smaller
version of the same kind of state as
before. In this situation, the opponent
will always be presented with a P
state, by the same sort of inductive
argument. Watch out for states in other
games that can be deduced to be P
states via mirroring!

possible type of move from {n, n} is {n, n} → {m, n}, where m < n.
This state is an N state, because there is a move {m, n} → {m, m},
and we know by induction that {m, m} is a P state. Therefore,
{m, n} is an N-state for all m such that m < n, and so all arrows
out of {n, n} point to N-states. Hence {n, n} is a P state as well.

When there are more than two piles, nim is not as easy to anal-
yse. For example, the state {1, 2, 3} is a P-state, although this is not
completely obvious.31 And therefore, for example, a state of the

31 Try to convince yourself by drawing
the game graph and using existing
knowledge about states with one or
two piles.

form {1, 2, n} for n > 3 is always an N-state.
However, it turns out that any state of nim can be completely

analysed, and there is an easy algorithm to figure out if the state is
an N state or a P state. The answer, which is beautiful and some-
what mysterious, lies in the binary expansions of the pile sizes.

To get to the answer, we first recall some facts. Recall that the
binary expansion of a non-negative integer is obtained by succes-
sively subtracting the largest power of 2 from that integer until we
reach zero, and recording “1” for each power we subtract, and “0”
for each power that we don’t. We will usually use a subscript of 2
to indicate a binary representation; for example, 5 = 1012.

Example 67. Since 15 = 1 · 8 + 1 · 4 +
1 · 2 + 1 · 1, its binary representation is
11112. Since 16 = 1 · 16 + 0 · 8 + 0 · 4 +
0 · 2 + 0 · 1, its binary representation is
100002.

Moreover, we have the following binary32 operation on non-

32 Binary here refers to the number of
inputs to this operation, not the base
for the representation!

negative integers, which we call either the nim-sum or XOR.

Definition 68. The nim-sum of two non-negative integers m and n,
denoted m ⊕ n, is the bitwise XOR of their binary representations.

We explain this definition via an example. Take m = 5 and
n = 15. We have seen that m = 1012, and n = 11112. To compute

games, graphs, and machines 47

m ⊕ n, we line up the binary representations aligned by binary
place (that is, right aligned), and in each column, take the XOR of
the bits, as follows.33 33 Writing bitwise XOR also as ⊕, recall

that 1 ⊕ 1 = 0 ⊕ 0 = 0, and that
1 ⊕ 0 = 0 ⊕ 1 = 1.1 0 1

⊕ 1 1 1 1

1 0 1 0

Since 10102 = 1 · 8 + 1 · 2 = 10, we see that 5 ⊕ 15 = 10.
We note some properties of the nim-sum operation.

1. Nim-sum is commutative: m ⊕ n = n ⊕ m. This is clear, because
(bitwise) XOR is commutative.

2. Nim-sum is associative: (m ⊕ n)⊕ k = m ⊕ (n ⊕ k). This is clear,
because (bitwise) XOR is associative.

3. The number 0 is the identity for nim-sum: 0 ⊕ m = m ⊕ 0 = m
for every m.

4. Every number is its own inverse under nim-sum: m ⊕ m = 0 for
every m. This is because bitwise XOR has the same property. As
a consequence, if we have a ⊕ b = c, then by adding b to both
sides, we see that a = b ⊕ c, and similarly, b = a ⊕ c.

5. Every number has a unique inverse: if m ⊕ n = 0, then m = n.
To see this, add m to both sides of the equation above, to get
m ⊕ m ⊕ n = m, which means that n = m.

It turns out that given a nim state {n1, . . . , nk}, it is useful and
important to keep track of the nim-sum of the elements of the state
(for short, the nim-sum of the state), which is n1 ⊕ · · · ⊕ nk. The
following lemma makes this precise.

Lemma 69. Suppose that {n1, . . . , nk} is a nim state with each ni > 0
and nim-sum 0. Then every possible move from this state will result in a
state with a non-zero nim-sum.

Proof. Suppose that n1 ⊕ · · · ⊕ nk = 0. Consider any move from this
state; without loss of generality, suppose that we change n1 to n′

1
after removing some stones. Let us compute the new nim-sum; it is

n′
1 ⊕ · · · ⊕ nk = (n′

1 ⊕ · · · ⊕ nk)⊕ (n1 ⊕ · · · ⊕ nk),

because we know that 0 = n1 ⊕ · · · ⊕ nk. Now we cancel the pairs
ni ⊕ ni for i ̸= 1, to see that

n′
1 ⊕ · · · ⊕ nk = n′

1 ⊕ n1.

We know that n′
1 < n1, so these are distinct numbers. Their nim-

sum cannot be zero!

It turns out that the converse direction is true as well.

Lemma 70. Suppose that {n1, . . . , nk} is a nim state with each ni > 0,
and nim-sum s > 0. Then there is some move that results in a state with
zero nim-sum.

48 asilata bapat and anand deopurkar

Proof. We give the proof with a simultaneous running example.
Consider the state {3, 6, 7}. The binary representations of these
numbers are 112, 1102, and 1112 respectively. In general, consider
the binary representations of the numbers ni.

The nim-sum in the example is 0102 = 2, which is non-zero.

0 1 1

1 1 0

⊕ 1 1 1

0 1 0

In general, since s > 0, we see that s contains at least one “1”
in its binary representation. In particular, the left-most 1 in s arises
precisely because the column above it has an odd number of “1”s.
In the example, the second column from the right has this feature; it
contains three “1”s, which XOR to produce the “1” we see in s.

Now choose any of the ni that contain a “1” in the column cor-
responding to the leftmost “1” in s. Let us call this column C. For
instance, in the example, we could choose ni to be n2 = 6. Consider
n′

i = ni ⊕ s. In our example, we get 6 ⊕ 2 = 4. Note that n′
i ⊕ s

has a 0 in column C, and all columns to the left of column C are un-
changed in n′

i, because s only has zeroes in any column to the left of
C.

This implies that n′
i must be less than ni. This is because we are

flipping a “1” in its binary representation to zero, without changing
anything to the left of that “1”: regardless of what changes happen
to the right of this “1”, the resulting value must decrease. So n′

i <

ni, and hence it is a valid nim move to change ni to n′
i.

At the same time, let us compute the new nim-sum. Since n′
i =

ni ⊕ s, it is

n1 ⊕ · · · ⊕ n′
i ⊕ · · · ⊕ nk = n1 ⊕ · · · ⊕ (ni ⊕ s)⊕ · · · ⊕ nk.

Moving s out to the left and recalling that n1 ⊕ · · · ⊕ nk = s, we see
that

n1 ⊕ · · · ⊕ n′
i ⊕ · · · ⊕ nk = s ⊕ s = 0.

This completes the proof.

Note by the previous lemmas that in the game graph,

1. every state with zero nim-sum only points to states with positive
nim-sum, and

2. every state with positive nim-sum points to some state with zero
nim-sum.

Furthermore, the empty state, which is the only terminal posi-
tion, clearly has zero nim-sum, and is a P-state. By following the
algorithm of strategic labelling on game graphs, we have proven the
following theorem.34 34 The technical name for such an

argument is structural induction on
the game graph. Because the game
graph is directed acyclic and finite,
and because the N/P labelling is
defined only in terms of states that
come after a given state, we can build
up the labelling from the labellings of
the terminal states. Then at each step,
we compare what we do to give the
N/P label with the outputs of the two
lemmas.

Theorem 71. A nim state is a P-state if and only if it has zero nim-sum,
and an N-state if and only if it has positive nim-sum.

games, graphs, and machines 49

Game sum

In this section we consider the operation of game sum. It is a way to
construct a new game from two given games. The definition is as
follows.

Definition 72. Let G and H be combinatorial games. Then G + H is
defined to be the game whose game state is a disjoint union of the game
states of G and of H. Making a move in the game G + H means that you
either make a single move either in G or in H (but not both).

We will think about the following question: can we deduce the
outcome of G + H if we know the outcomes of G and H?

Let us start with some easy cases. Let ∅ denote the “empty
game”: this is the game which has only one state and there are
no possible moves. It is clear that the outcome of the game ∅ is P.
It is also clear that the outcome of G + ∅ equals the outcome of G.
This is because the game graph of G + ∅ is the same as the game
graph of G, since there are no possible moves in the ∅ game.

What about if we add a game G to itself?

Proposition 73. Let G be any impartial combinatorial game. The outcome
of G + G is always P.

Proof. Informally, this is because one can use a mirroring strategy.
If player 1 makes a move G → H in (say) the first copy of G, player
2 can make the same move G → H in the second copy of G. Con-
tinuing in this manner, player 1 will be the first one to run out of
moves.

More formally, we can use structural induction on the game
graph of G. For the base case, consider any terminal position of G,
which is the same game as ∅. Now we know from the previous
observation that the outcome of ∅ + ∅ is the same as the outcome
of ∅, which is P.

Suppose we know that for any position H reachable from G
such that G ̸= H, the outcome of H + H is P. Starting at G + G,
the possible reachable positions are G + H for any move G → H,
or H + G for any move G → H. Let us show that the outcome
of G + H (and hence H + G) is N for any possible move G → H.
Recall that the outcome of H + H is P, and there is a move from
G + H to H + H, namely, by making the move G → H in the first
coordinate, namely in G. Therefore in the game graph of G + G, the
position G + H (and hence H + G) is labelled N, for every possible
move G → H. But the only arrows from the position G + G are to
positions of the form G + H or H + G as above. Therefore, G + G is
a P position as well.

Now, what happens if we add two possibly different games
together? Let us start with some examples. Consider the nim game
G = {1, 2} and H = {3}. These are both N positions. When we
add two nim games, we simply get another, bigger nim game. So
the game G + H is just the nim game with state {1, 2, 3}. However,

50 asilata bapat and anand deopurkar

we have seen that G + H is a P position because its nim sum is
1 ⊕ 2 ⊕ 3 = 0. So in this example, we added two N games to obtain
a P game.

On the other hand, if we now take G = {1, 2} and H = {4}, then
G + H has nim-sum 1 ⊕ 2 ⊕ 4 = 7 ̸= 0. So in this case, G + H is an
N game!

We observe that if G and H are two N games, then the outcome
of G + H may be either N or P. However, it is a powerful fact that if
we take the sum G + H where H is a P game, then the outcome of
G + H is determined by the outcome of G.

Theorem 74. Let H be a P game and G be any game. Then the outcome
of G + H is the same as the outcome of G.

Proof. We can see this informally as follows. Suppose that G is an
N game. Then player 1 has a winning strategy in G + H, as follows.
Player 1 should start by making an optimal move in G, sending
G → G′ where G′ is a P game. Now if player 2 makes a move in
H as H → H′, we know that H′ is an N position, so player 1 can
counter it with an optimal move in H′. If player 2 makes a move in
G′ as G′ → G′′, we know that G′′ is an N position, so player 1 can
counter it with an optimal move in G′′. After each pair of moves,
player 2 is presented with a game state of the form A + B where
A and B are both P games. No matter which move player 2 makes,
player 1 can counter it to once again give player 2 a state of the
form (P, P). The game eventually terminates with player 2 running
out of moves.

If G is a P game, then G + H is of the form (P, P). By reversing
the previous argument, we see that no matter which move player 1

makes, player 2 can always counter it so that player 1 always has a
game state of type (P, P). Thus player 2 has a winning strategy.

More formally, we can use induction on the game graphs again.
The base case is that one of the games is terminal (or empty), in
which case we know the result. By induction, suppose that for
every possible move from G + H, which goes a state of type either
(x, P) or (P, x), we know that the outcome of the resulting state is x.

First suppose that G is an N position. Then there is a move
G → G′ such that G′ is a P position, so that G′ + H has type (P, P).
Therefore by the inductive hypothesis, G′ + H has outcome P. Due
to the existence of the arrow G + H → G′ + H, the position G + H is
an N position.

Now suppose that G is a P position. Then a move from G + H
either goes to G′ + H, which is of type (N, P), or G + H′, which is
of type (P, N). In either case, the outcome of the resulting state is N
by the inductive hypothesis. We conclude that G + H is a P position
as well.

The upshot of all this is that adding
a P game to any game preserves the
outcome, while adding an N game
may change the outcome. The moral of
the story is that all P games behave the
same, while there are different kinds
of N games. The Grundy labelling is
a way to distinguish between these
different kinds of N games.

games, graphs, and machines 51

Stable equivalence

The sum operation allows us to define an equivalence relation on
games.

Definition 75. We say that two games G and H are stably equivalent,
written G ∼ H, if for any game I, the games G + I and H + I have the
same outcome. That is, both are N or both are P.

Observe that the definition of stable
equivalence on games is quite similar
to the definition of ∼L for a language
L used in the Myhill-Nerode theorem.

Let G be a P game. Then G ∼ ∅. Indeed, for any game I, we
have seen that G + I and I = I +∅ have the same outcome. In other
words, all P games are equivalent to each other.

It turns out that not all N games are equivalent to each other.
For example, the nim game {3} and the nim game {4} are both
N. But {1, 2}+ {3} is P whereas {1, 2}+ {4} is N. That is, adding
I = {1, 2} to {3} and {4} produces two games with a different
outcome. So {3} and {4} are not equivalent.

Grundy labelling

How to we determine if two games are (stably) equivalent? The
process of Grundy labelling allows us to better capture the behaviour
of games under game addition.

First we define an operation called mex.

Definition 76. Let S = {s1, . . . , sk} be a finite set of non-negative
integers. The minimum excluded or mex of S, denoted mex(X), is the
minimum non-negative integer that is not in S.

Example 77. If S = {0, 1, 2} then
mex(S) = 3 If S = {0, 2, 4}, then
mex(S) = 1. If S = {4, 2000, 50}, then
mex(S) = 0.

Definition 78. The Grundy labelling is a labelling of a game graph,
which takes values in positive integers. It is defined inductively as follows.

1. All terminal states are labelled by 0.

2. Consider a state G such that all states G′ that G points to have been
labelled. Let S be the set of labels of all G′ such that there is an arrow
G → G′. Then label G by mex(S).

Proposition 79. The Grundy labelling enhances the N/P labelling. More
precisely, a position is a P position if and only if its Grundy label is zero.
More precisely, a position is an N position if and only if its Grundy label
is positive.

Proof. Once again, we use structural induction on the game graph,
and compare both labelling methods. For terminal positions, the
proposition is clear: they are P positions, and their Grundy label is
always zero. Suppose we know the result for all positions reachable
from a given game state G.

Suppose G is an N state. G will be labelled N if and only if there
is an arrow G → G′ where G′ is labelled P. Since we know that
the Grundy label of G′ is zero, we see that the set S of all labels
following G contains zero, and hence its mex must be positive. So
the Grundy label of G is positive.

52 asilata bapat and anand deopurkar

Suppose G is a P state. For every arrow G → G′, the outcome
of G′ is N, and hence its Grundy label is positive. Since 0 does not
appear among the Grundy labels of the possible G′, we see that the
Grundy label of G must be zero. This completes the proof.

It turns out that Grundy labels are extremely useful in terms
of computing outcomes, because they behave well with respect to
game addition!

Theorem 80. Let G and H be games with Grundy labels g and h respec-
tively. Then the Grundy label of G + H is g ⊕ h.

Proof. Let s = g ⊕ h. Let S be the set of Grundy labels of G′ + H
and G + H′, for arrows G → G′ and H → H′. By the inductive
hypothesis, we know that these labels are precisely g′ ⊕ h and g ⊕
h′, where g′ and h′ are the Grundy labels of G and H respectively.
Moreover, we know that g is the mex of all possible g′, and h is the
mex of all possible h′. Let us show that s = g ⊕ h is the mex of S.

First, let us show that s /∈ S. If s were in S, then we would either
have s = g′ ⊕ h for some g′, or s = g ⊕ h′ for some h′. The two cases
are symmetric, so we only tackle the first one. In that case we have
g ⊕ h = g′ ⊕ h, which means (by adding h to both sides) that g = g′.
This is not possible.

Next, let us show that if s′ < s, then s′ ∈ S. If s = 0, there is
nothing to prove, so suppose that s > 0. Let t = s′ ⊕ s. Then s′ =
s ⊕ t. In the binary representation of t, consider the most significant
(leftmost) digit. At that position, the binary representation of s
must have a 1. (Otherwise, s′ = s ⊕ t would be greater than s.)
Since s = g ⊕ h, either g or h must have a 1. Suppose g does. Then
g′ = g ⊕ t is smaller than g. But this means that there is a move
G → G′ where the Grundy label of G is g′. Then the Grundy label
of (G′, H) is

g′ ⊕ h = g ⊕ t ⊕ h = s ⊕ t = s′.

In other words, s′ ∈ S.
Since s /∈ S and for every s′ < s we have s′ ∈ S, we see that

s = mex(S).

We now show that Grundy labels contain the exact information
to distinguish stable equivalence classes.

Theorem 81. [Sprague-Grundy theorem] Two games are stably equiva-
lent if and only if they have the same Grundy label.

Before we explain why this is true, we need an intermediate
observation.

Lemma 82. If G ∑ H, then G + I ∼ H + I.

Proof. To establish that G + I ∼ H + I, we need to prove that for
any game J, the games G + I + J and H + I + J have the same
outcome. But since we know that G ∼ H, the games G + (I + J) and
H + (I + J) do have the same outcome.

games, graphs, and machines 53

We are now ready to prove the Sprague-Grundy theorem.

Proof. [Proof of Sprague-Grundy theorem]
Suppose G and H have the same Grundy label, say a We need to

prove that G ∼ H. That is, for any game I, both G + I and H + I
have the same outcome. Let the Grundy label of I be b. Then the
Grundy label of G + I is a ⊕ b, which is the same as the Grundy
label of H + I. Recall that a game is N if and only if the Grundy
label is non-zero and P if and only if the Grundy label is zero. Since
G + I and H + I have the same Grundy label, it is either non-zero in
both cases or zero in both cases.

Conversely, suppose G ∼ H. We need to prove that G and H
have the same Grundy label. Suppose G has Grundy label a and H
has Grundy label b. Since G ∼ H, we have G + H ∼ H + H. Since
H + H is a P-game, G + H must be a P-game. The Grundy label of
G + H is a ⊕ b. Since G + H is a P-game, its Grundy label is zero, so
a ⊕ b = 0. But a ⊕ b = 0 holds if and only if a = b.

Theorem 83. A game G with Grundy label n is stably equivalent to the
nim game {n}.

Proof. Both games have the same Grundy label, namely n.

	Some foundations
	Sets
	Functions
	Relations
	Graphs
	Properties of relations

	Equivalence relations
	Modular arithmetic

	Partial orders
	Hasse diagrams
	Upper and lower bounds
	Rank functions

	Graphs
	Overview
	Adjacency matrix
	Matrix products
	Counting paths using the adjacency matrix
	Existence of paths using boolean arithmetic
	Shortest paths using min-plus arithmetic
	Markov chains
	Computing large powers

	Regular expressions and finite automata
	Regular expressions
	Deterministic finite automata
	Nondeterministic finite automata
	NFA to DFA
	Regular expressions to finite automata
	Converting finite automata to regular expressions
	Non-regular languages

	Combinatorial games
	Strategic labelling
	Nim
	Game sum
	Stable equivalence
	Grundy labelling

