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1. Ample divisors

Let X be a compact Riemann surface. A divisor A on X is called ample if for every coherent
OX -sheaf F on X, we have

H i(X,F ⊗OX(nA)) = 0
for i > 0 and for su�ciently large n.

Theorem 1.1. There exists an ample divisor on X.

In the complex analytic world, the proof I know of Theorem 1.1 uses harmonic analysis. The
theorem (generalized naturally to all dimensions) is known as the Kodaira vanishing theorem.
In the algebraic world, the proof goes by reducing the statement to a similar statement about
sheaves on projective space. The theorem (generalized) is known as the Serre vanishing
theorem. By GAGA, for projective algebraic varieties the statements in the analytic and the
algebraic category are equivalent.
We will not prove Theorem 1.1. It is very likely that you will prove the Kodaira vanishing

theorem or the Serre vanishing theorem (or both) in your mathematical life, in their natural
settings. In this class, we will just reap the benefits. In the book, Miranda does something
similar—he assumes the existence of enough meromorphic functions, which is a consequence
of vanishing, and works with custom-defined H1 spaces, which turn out to be the same as the
standard H1 spaces as a consequence of vanishing.
Recall that if D is a divisor and E is an e�ective divisor, then we have the exact sequence

0→OX(D)→OX(D +E)→OX(D +E)|E→ 0.

By the long exact sequence on cohomology associated to this sequence, the following are easy
to check.

(1) A is ample if and only if nA is ample for some n > 0.
(2) H i(X,D) = 0 for all D and i ≥ 2.
(3) H i(X,D) are finite dimensional vector spaces (this lets us define the Euler characteris-

tic).
(4) If H1(X,D) = 0 and E is e�ective, then H1(X,D +E) = 0.
(5) If A is ample and E is e�ective, then A+E is ample.
(6) If A is ample, and D is any divisor, then for all su�ciently large n, the function

n 7→ h0(X,D +nA) is a linear function of n. More precisely, we have

h0(X,D +nA) = ndegA+ c

for some constant c and su�ciently large n.
(7) If A is ample, then su�ciently large multiples nA of A separate points and tangent

vectors; that is, they are very ample.
We also get some exciting information about MX , the field of meromorphic functions on X.

Theorem 1.2. MX is a �nitely generated �eld of transcendence degree 1 over C.
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Proof. Let f be a non-constant meromorphic function on X. The function f gives a map
X→ P

1, which in turn gives an inclusion of fields

C(t) =M
P
1 →MX .

By the next theorem, we get that C(t) ⊂MX is a finite extension. �

Theorem 1.3. Let φ : X → Y be a non-constant map of degree d. Then MY ⊂ MX is a �eld
extension of degree d.

Proof. Let y ∈ Y be a point such that φ−1(y) = {x1, . . . ,xd} with xi , xj if i , j. It is easy
to construct meromorphic functions fi on X for i = 1, . . . ,d such that fi are holomorphic
on {x1, . . . ,xd} and their restriction to {x1, . . . ,xd} gives d-linearly independent functions on
{x1, . . . ,xd}. For example, we may take fi to not vanish at xi and vanish at all other xj . It is
clear that f1, . . . , fd are MY -linearly independent. Therefore, we have

deg(MX/MY ) ≥ d.
For the opposite inclusion, let f1, . . . , fd+1 be meromorphic functions on X. Let D be a

divisor on X such that fi ∈ H0(X,D); for example, take D to be the sum of the divisor of
poles of all fi . Let A be an ample divisor on Y . We have a map

C
d+1 ⊗H0(Y ,nA)→H0(X,D +nφ∗A)

given by
ei ⊗ g 7→ fi ·φ∗g.

We know that
dim

(
C
d+1 ⊗H0(Y ,nA)

)
= (d +1) ·n ·degA+O(1),

and
dim

(
H0(X,D +nφ∗A)

)
≤ d ·n ·degA+O(1).

Therefore, the dimension of the source must overtake the dimension of the target for some
n, at which point, we have a non-zero kernel. Suppose

∑
ei ⊗ gi lies in the kernel, where

gi ∈H0(Y ,nA) ⊂MY . Then we get the equation∑
figi = 0,

which shows that f1, . . . , fd+1 are MY -linearly dependent. Therefore, we get

deg(MX/MY ) ≤ d.
�

2. Riemann–Roch

2.1. Riemann–Roch and Serre duality. We will elevate the Riemann–Roch formula to the
following more precise statement.

Theorem 2.1. Let X be a compact Riemann surface of genus g and D a divisor on X.
(1) We have

χ (OX(D))−χ (OX) = degD.
(2) We have a perfect pairing

H0(X,KX −D)⊗H1(X,D)→C

given by the summation of residues.
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(3) We have

χ (OX) = 1− g.

Of the three statements, the duality is the hardest to prove. The third statement is a
numerical consequence of the formula

χ(KX)−χ(OX) = 2g − 2

and the duality for D = 0, which implies

χ(KX) = −χ(OX).

The first statement is an easy consequences of the following lemma and induction.

Lemma 2.2. Let D ′ =D + p. Then χ(O(D ′)) = χ(O(D)) + 1.

Proof. We have the exact sequence of sheaves

0→O(D)→O(D ′)→Cp→ 0.

Apply χ and win. �

2.2. Residues and duality. The duality statement in the Riemann–Roch theorem rests on
the following.

Theorem 2.3 (The residue theorem). Let ω be a meromorphic di�erential form on X. Then∑
p∈X Respω = 0.

Theorem 2.3 allows us to define a pairing

H1(X,D)⊗H0(X,KX −D)→C

To understand the pairing, let us understand the vector spaces H0(X,KX−D) and H1(X,D)
in a concrete way. The first one is easy:

H0(X,KX −D) = {Meromorphic di�erentials ω such that (ω)−D ≥ 0} .

For H1(X,D), consider the exact sequence

0→OX(D)→OX(D +nA)→OX(D +nA)|nA→ 0.

For su�ciently large n, the long exact sequence in cohomology and Serre vanishing yields

H0(X,D +nA)→H0(X,OX(D +nA)|nA)→H1(X,D)→ 0.

We will think of H1(X,D) as the quotient of H0(X,OX(D +nA)|nA) by H0(X,D +nA). Since
the quotient is unchanged even after increasing n, it is sometimes convenient to think of
H1(X,D) as the direct limit of the quotients as n→∞:

H1(X,D) = lim
n→∞

H0(X,OX(D +nA)|nA)
/
lim
n→∞

H0(X,OX(D +nA)).

Let us make the quotient description even more explicit, which will result in an interpretation
of H1(X,D) in terms of “Laurent tails.” Let S = suppA and suppose suppD ⊂ S (we can
always arrange this by enlarging A if necessary). Also, assume (without loss of generality)
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that A =
∑
p∈S p. Given p ∈ S, let us pick a uniformizer tp at p (and feel free to drop the

subscript p if it is clear from context). Suppose D =
∑
p∈S np · p. Then we have

H0(X,OX(D +nA)|nA) =
⊕
p∈S

t−np−nC[t]
/
t−npC[t]

=
⊕
p∈S

C〈t−np−1, . . . , t−np−n〉.

The natural restriction map

H0(X,OX(D +nA))→H0(X,OX(D +nA)|nA)

sends a meromorphic function f on X to its power series modulo t−np at p. The collection
of power series of f at the points p modulo t−np is called the Laurent tail of f bounded by
D. Thus, H1(X,D) is the space of Laurent tails bounded by D, modulo Laurent tails of
meromorphic functions (holomorphic outside S). Explicitly,

H1(X,D) =
⊕
p∈S

C〈t−np−1, t−np−2, . . . ,〉
/
{Laurent tails of f ∈MX holomorphic outside S.}

Miranda takes the above as the definition of H1(X,D). Note that it is not at all obvious from
this description that H1(X,D) is finite dimensional (but it is, thanks to Serre vanishing)!
We are now in a position to define the pairing. Define

H0(X,KX −D)⊗H1(X,D)→C

ω⊗ τ 7→
∑
p∈S

Resp(τω).(1)

By the residue theorem, if τ is the Laurent tail of a meromorphic f (holomorphic outside S),
then ∑

p∈S
Resp(τω) = 0.

Therefore, the pairing is well-defined.
A priori, the pairing depends on A. But it is easy to check that enlarging A does not change

the pairing, and thus, the pairing is independent of A.

2.3. Proof of Serre duality. Let

(2) r : H0(X,KX −D)→H1(X,D)∨

be the map induced by the residue pairing, namely

r(ω) = Res(ω,−)

Our goal is to prove that r is an isomorphism.

Proof of injectivity. Let ω ∈H0(X,KX −D) be non-zero. Suppose ω = f (tp)dtp at p where

f (tp) = t
k
p + higher order terms.

Since (ω)−D ≥ 0, we have k −np ≥ 0.
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Consider τ = t−k−1p ∈ H1(X,D); this is the element in the direct sum decomposition of
H1(X,D) which is t−k−1p at the summand indexed by p and 0 in the other summands. Then
Res(ω,τ) = 1. That is, r(ω) is non-zero. �

To prove surjectivity, we need some preparation. Let f ∈H0(X,A). Then multiplication by
f induces a surjective map

H1(X,D)→H1(X,D +A).

In the Laurent tail description of H1, this is literally the multiplication by the Laurent tails of
f . Hence, multiplication by f induces an injective map

H1(X,D +A)∨→H1(X,D).

We already know that we have a multiplication map

H0(X,KX −D −A)→H0(X,KX −D).

The two multiplication maps are compatible with the residue pairing:

Res(f τ,ω) = Res(τ,f ω).

By taking f = 1, we get particular surjections

H1(X,D)→H1(X,D +A),

and injections

H1(X,D +A)∨ ⊂H1(X,D)∨.

From here on, we will think of H1(X,D +A)∨ as a subspace of H1(X,D)∨ via this injection.
This is analogous to how we think of H0(X,KX −D−A) as a subspace of H0(X,KX −D). More
precisely, we have the following.

Lemma 2.4. Let ω ∈H0(X,KX −D) be such that r(ω) ∈H1(X,D)∨ lies in H1(X,D +A)∨. Then
ω lies in H0(X,KX −D −A).

Lemma 2.5. The function n 7→ h1(X,D−nA) is linear in n for large n, with leading term n ·degA.

Proof of surjectivity. Let λ ∈H1(X,D)∨ and ω ∈H0(X,KX −D). Let λ1 = λ and λ2 = r(ω). We
have a map

H0(X,nA)⊗C〈λ1,λ2〉 →H1(X,D −nA)∨

given by

f ⊗λi 7→ f λi .

By considering the dimensions of the source and the target for large n, we get that the map
must have a kernel. That is, there exists n and f ,g ∈H0(X,O(nA)) such that

f λ1 = gλ2.

Let η = g/f ·ω; this lies inH0(X,KX−D+mA) for su�ciently largem (possibly after enlargingA
to account for newly acquired poles due to the zeros of f ). Then r(η) = λ. Since λ ∈H1(X,D),
we get η ∈H0(X,KX −D). The proof of surjectivity is thus complete. �
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2.4. A concrete interpretation of Serre duality. By Serre duality, the map

H1(X,D)→H0(X,KX −D)∨

is an isomorphism (in particular, an injection). Therefore, we get that a Laurent tail τ
represents 0 in H1(X,D) if and only if its image is 0 in H0(X,KX −D)∨. The image of τ in
H0(X,KX −D)∨ is the functional

H0(X,KX −D)→C

given by

ω 7→
k∑
i=1

Respi (τω).

Therefore, τ arises from a global meromorphic function if and only if for all meromorphic
forms ω in KX −D, the sum of residues of τω is zero. This condition is clearly necessary for
τ to arise from a global meromorphic function by the residue theorem. Serre duality says that
this is su�cient.

Example 2.6. Consider X = P
1 with the standard coordinates x centered at p = [0 : 1] and y

centered at q = [1 : 0]. Let r = [1 : 1] and t = (x − 1) Consider the tail
τ = (2x−1 +3 at p,1+3y at q,−3t−1 at r).

It represents an element of H1(P1,D) where D = −1 ·p−2q+0 · r. But is τ = 0 in H1(P1,D)?
That is, does there exist a rational function on P

1 whose tails at p (up to the power x), q (up
to the power y2), and r (up to the power t0) are as given (and with no poles elsewhere)?
Serre duality lets us find the answer. We have h0(P1,KX −D) = 2, and we can readily write

down a basis of this space:

H0(P1,KX −D) = C

〈
dx,

1
x
dx

〉
=C

〈
−1
y2
dy,
−1
y
dy

〉
=C〈ω1,ω2〉 .

The sum of residues of τω1 is 2 − 3 + 1 = 0. The sum of residues of τω2 is 3 − 3 + 0 = 0.
Therefore, there exists a rational function with the specified tails!

What is the rational function? As the writer of the example, I know the answer (because I
started with the function first and then wrote its tails). The function is

2+ x
x(1− x)

.
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