MATH 8320: ALGEBRAIC CURVES AND RIEMANN SURFACES — HOMEWORK $_4$

Generic sections and special divisors.

- (1) Let (V, D) be a base-point free linear series on a compact Riemann surface X. Show that there exists $\sigma \in V$ such that (σ) is multiplicity free. (This is a special case of something called Bertini's theorem.)
- (2) Let *D* be a divisor and *E* an effective divisor. Show by induction on $\deg E$ that

$$h^0(D-E) \ge \max(0, h^0(D) - \deg E).$$

Also show that the inequality is sharp—that is, given a D, there exists an E of every degree such that equality holds.

(3) Let D be a divisor on X of degree d. Show that we have

$$h^{0}(D) \begin{cases} = d - g + 1 & \text{if } d > 2g - 2 \\ \ge d - g + 1 & \text{if } 2g - 2 \ge d \ge g \\ \ge 0 & \text{if } g - 1 \ge d \ge 0. \end{cases}$$

Also show that the inequalities are sharp—that is, there exist D of every degree where equalities hold.

Hint: Write D = H - E, where *H* and *E* are effective and deg *H* is huge.

Remark: A divisor (class) D for which $h^0(D)$ is strictly larger than the bounds above is called *special*. Much of the study of algebraic curves (and their moduli space) involves understanding special divisors on curves.

Quadric surfaces and genus 4 curves.

"Quadric" is a commonly used short-form for "degree 2."

(4) Show that an irreducible quadric hypersurface in \mathbb{P}^3 is isomorphic to either

$$X^2 + Y^2 + Z^2 + W^2 = 0$$

or

$$X^2 + Y^2 + Z^2 = 0.$$

- (5) Show that a smooth quadric hypersurface in \mathbb{P}^3 is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$.
- (6) Recall that a line through two points P and Q in \mathbb{P}^n is given parametrically by

$$L = \{uP + vQ \mid [u:v] \in \mathbb{P}^1\}.$$

Use this to describe all the lines on the smooth quadric $X^2 + Y^2 + Z^2 + W^2 = 0$ and the singular quadric $X^2 + Y^2 + Z^2 = 0$.

Let X be a compact Riemann surface of genus 4. Suppose X is not hyperelliptic. Then X is embedded in \mathbb{P}^3 by the canonical linear series. In the following problems, use that $X \subset \mathbb{P}^3$ is the intersection of an (irreducible) quadric hypersurface and a cubic hypersurface.

- (7) Using geometric Riemann-Roch and the geometry of quadric hypersurfaces from the previous problems, show that there exist exactly two g_3^1 's on X if Q is smooth, and exactly one g_3^1 on X if Q is singular.
- (8) Suppose X is a compact Riemann surface of genus 4 with two g_3^1 's, say D_1 and D_2 . Use Riemann-Roch to show that

$$D_1 + D_2 \sim K_X$$

Similarly, if X has only one g_3^1 , say D, then show that

$$2D \sim K_X$$
.

Branched covers and monodromy.

- (9) Let C ⊂ P² be a smooth plane curve of degree d, defined by F(X, Y, Z) = 0. Assume that [0 : 0 : 1] does not lie on X. Consider the projection C → P¹ given by [X : Y : Z] ↦ [X : Y]. Show that the ramification divisor of C is the zero locus of on C of the homogeneous polynomial ∂F/∂Z. Using Riemann–Hurwitz, conclude that the genus of C is d(d 1)/2.
- (10) Let C be the Fermat curve

$$X^d + Y^d + Z^d = 0.$$

Consider the projection $\phi: C \to \mathbb{P}^1$ that drops the Z coordinate (see (9)). Find br $\phi \subset \mathbb{P}^1$ and determine the monodromy map

$$\pi_1(\mathbb{P}^1 \setminus \operatorname{br} \phi) \to S_d.$$

(11) Let X be a compact Riemann surface of genus g. Given a finite subset $B \subset X$ of even cardinality, show that there are 2^{2g} double covers of X with branch divisor B (If B is empty, then one of them will be disconnected).