MATH 8320: ALGEBRAIC CURVES AND RIEMANN SURFACES — HOMEWORK 4

Generic sections and special divisors.

- (1) Let (*V*, *^D*) be a base-point free linear series on a compact Riemann surface *^X*. Show that there exists $\sigma \in V$ such that (σ) is multiplicity free. (This is a special case of something called Bertini's theorem.)
- (2) Let *D* be a divisor and *E* an effective divisor. Show by induction on $\deg E$ that

 $h^0(D - E) \ge \max(0, h^0(D) - \deg E).$

Also show that the inequality is sharp—that is, given a *D*, there exists an *E* of every degree such that equality holds.

(3) Let *D* be a divisor on *X* of degree *d*. Show that we have

$$
h^{0}(D) \begin{cases} = d - g + 1 & \text{if } d > 2g - 2 \\ \geq d - g + 1 & \text{if } 2g - 2 \geq d \geq g \\ \geq 0 & \text{if } g - 1 \geq d \geq 0. \end{cases}
$$

Also show that the inequalities are sharp—that is, there exist *D* of every degree where equalities hold.

Hint: Write $D = H - E$, where *H* and *E* are effective and deg *H* is huge.

Remark: A divisor (class) *D* for which $h^0(D)$ is strictly larger than the bounds above is called *special*. Much of the study of algebraic curves (and their moduli space) involves understanding special divisors on curves.

Quadric surfaces and genus 4 curves.

"Quadric" is a commonly used short-form for "degree 2."

(4) Show that an irreducible quadric hypersurface in \mathbb{P}^3 is isomorphic to either

$$
X^2 + Y^2 + Z^2 + W^2 = 0
$$

or

$$
X^2 + Y^2 + Z^2 = 0.
$$

- (5) Show that a smooth quadric hypersurface in \mathbb{P}^3 is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$.
- (6) Recall that a line through two points *P* and *Q* in \mathbb{P}^n is given parametrically by

$$
L = \{uP + vQ \mid [u:v] \in \mathbb{P}^1\}.
$$

Use this to describe all the lines on the smooth quadric $X^2 + Y^2 + Z^2 + W^2 = 0$ and the singular quadric $X^2 + Y^2 + Z^2 = 0$.

Let *X* be a compact Riemann surface of genus 4. Suppose *X* is not hyperelliptic. Then *X* is embedded in \mathbb{P}^3 by the canonical linear series. In the following problems,

use that $X \subset \mathbb{P}^3$ is the intersection of an (irreducible) quadric hypersurface and a cubic hypersurface.

- (7) Using geometric Riemann–Roch and the geometry of quadric hypersurfaces from the previous problems, show that there exist exactly two g_3^1 $\frac{1}{3}$'s on *X* if *Q* is smooth, and exactly one g_3^1 $\frac{1}{3}$ on *X* if *Q* is singular.
- (8) Suppose *X* is a compact Riemann surface of genus 4 with two g_3^1 $\frac{1}{3}$'s, say D_1 and D_2 . Use Riemann–Roch to show that

$$
D_1+D_2 \sim K_X.
$$

Similarly, if *X* has only one g_3^1 $\frac{1}{3}$, say *D*, then show that

$$
2D \sim K_X.
$$

Branched covers and monodromy.

- (9) Let $C \subset \mathbb{P}^2$ be a smooth plane curve of degree *d*, defined by $F(X, Y, Z) = 0$. Assume that $[0 : 0 : 1]$ does not lie on *X*. Consider the projection $C \to \mathbb{P}^1$ given by $[X : Y : Y]$ that $[0:0:1]$ does not lie on *X*. Consider the projection $C \to \mathbb{P}^1$ given by $[X:Y:$ $Z \rightarrow [X : Y]$. Show that the ramification divisor of *C* is the zero locus of on *C* of the homogeneous polynomial [∂]*^F* ∂*Z* . Using Riemann–Hurwitz, conclude that the genus of *C* is $d(d-1)/2$.
- (10) Let *C* be the Fermat curve

$$
X^d + Y^d + Z^d = 0.
$$

Consider the projection $\phi: C \to \mathbb{P}^1$ that drops the *Z* coordinate (see [\(9\)](#page-1-0)). Find by $\phi \in \mathbb{P}^1$ and determine the monodromy man br $\phi \subset \mathbb{P}^1$ and determine the monodromy map

$$
\pi_1(\mathbb{P}^1 \setminus \text{br }\phi) \to S_d.
$$

(11) Let *X* be a compact Riemann surface of genus *g*. Given a finite subset $B \subset X$ of even cardinality, show that that there are 2^{2g} double covers of *X* with branch divisor *B* (If *B* is empty, then one of them will be disconnected).