
ALGEBRAIC GEOMETRY: WORKSHOP 2

1. How to do the last problem on HW1 for arbitrary k?

For simplicity, let us take n = 2, and recall the proof for k = C. Let D ⊂ A2×2 be the
set of diagonalizable matrices and B ⊂ A2×2 its complement. We show that neither
D nor B are closed. To show that D is not closed, consider the family of matrices

Mt =

(
1 1
0 t

)
.

See that Mt ∈ D for t , 1, but M1 = limt→1 Mt < D, which shows that D is not closed
in the Euclidean topology, and hence also not in the Zariski topology. Similarly, by
considering

Nt =

(
1 t
0 1

)
,

we see that B is not closed.
We mimic the same proof algebraically. Instead of limits, we use more basic topol-

ogy (remember the Zariski topology is not Hausdor�!). The role of the family Mt
parametrised by t ∈ R is played by a similar family Mt parametrised by t ∈ A1.
Consider the map M : A1 → A2×2 given by

M : t 7→
(
1 1
0 t

)
.

Since M is defined by polynomial functions, it is contiuous in the Zariski topology.
Note that M−1(D) = A1 \{1} is not Zariski closed. Therefore, D is not Zariski closed.
Similarly, we show that B is not Zariski closed.

2. More exercises with ideals and their vanishing loci.

(1) Let k be an algebraically closed field of characteristic not equal to 2. For
c ∈ k, let Zc be the algebraic subset of A2

k defined by x2 + y2 = 1 and x = c.
Find I(Zc) for all values of c ∈ k (Caution: Pay close attention to two special
values of c).

(2) Draw a picture of the special and the general situation by taking k = R

(3) What happens if the characteristic of k is 2?
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3. The Zariski topology is not Hausdorff.

Let k be an algebraically closed field. Let us show that the Zariski topology on An
k

is not Hausdor�. In fact, let us show that any two non-empty subset of An
k have a

non-empty intersection.
(1) For n = 1, recall that the Zariski topology is the finite complement topology,

and conclude.

(2) In general, show that every Zariski open U ⊂ An
k contains a basic open, namely

an open set of the form

D( f ) = {x | f (x) , 0}.

(3) Show that D( f ) ∩D(g) = D( f g), and conclude that any two non-empty opens
must intersect.
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