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compared with the ordinary metric topology on C™. Of course the polynomial
functions on C™ are continuous in the topology given by the Euclidean met-
ric. It follows that the classical topology on C™ is stronger than the Zariski
topology. In other words, a Zariski open (respectively, closed) subset is also
open (respectively, closed) in the classical topology. The converse is not true;
for instance, in C the algebraic sets are exactly C and its finite subsets. Thus
the Zariski open subsets are ‘very big’; in particular, the Zariski topology is
highly non-Hausdorft.

A further difference with the classical topology is that the Zariski topology
on the product X x Y of two affine varieties is stronger than the product of
the Zariski topologies on X and Y. So, in A2 = A! x Al there are many
infinite algebraic subsets which are not made up of vertical and horizontal
lines (for example, the diagonal).

Although there is quite a distance between the Zariski topology and the
classical one, they are not divided by an impassable chasm. Here is the easiest
footbridge joining them: if an open subset U C X is Zariski dense, it is dense
also in the classical topology. More subtle is the connectedness theorem: a
set that is connected in the Zariski topology is also connected in the classical
one. Results of this kind are explained in more detail in the article on the
cohomology of algebraic varieties. They enable us to apply to complex al-
gebraic varieties the methods of algebraic topology (homotopy, cohomology,
etc.) and analysis (periods of integrals, Hodge theory); these methods are
presented in Griffiths-Harris [1978]. Transcendental methods act as a pow-
erful incentive to search for algebraic analogues and thus contribute to the
subsequent development of abstract algebraic geometry.

2.8. Localization. The Zariski topology makes it possible to define regular
functions in a more local fashion. Let U C X be an open subset of an affine
variety X, and f € K[X] a function that does not vanish at any point of U.
Then the function 1/f is defined at every point of U and can be considered a



II. Algebraic Varieties and Schemes 185

‘regular’ function on U in view of its algebraic origin (cf. Sect. 1.2). We must
then also regard as regular the functions of the form g¢/f, where g € K[X].

More generally, we say that a function h: U — K is reqular at a point
z € U if there exist two functions f, g € K[X] such that f(z) #0and h = g/f
in some neighbourhood of z. More precisely we can say that h coincides with
g/f on the set UND(f), where D(f) =X - V(f) ={z' € X, f(z) # 0}.
The sets of the form D(f) are called the basic open subsets of X. Clearly,
they form a basis for the Zariski topology on X.

The functions on U that are regular at every point of U form a ring, which
is denoted by Ox(U). If U’ C U then the restriction of functions from U to
U’ yields a homomorphism Ox (U) — Ox(U’) of rings (or of K-algebras).
This object Ox — which will play an important role later on — is called the
structure sheaf of rings on X. Clearly, K[X] C Ox(X); as a matter of fact,
equality holds.

Proposition. If X is an affine variety then K[ X]| = Ox(X).

Indeed, suppose the function h: X — K is regular at every point
ze€ X. Then h =g, /f; in D(f;) and f;(z) # 0. By Hilbert’s Nullstellen-
satz, the functions f;, z € X, generate the unit ideal in K[X]. Hence
there exists a decomposition 1 =¥ a,f,;, with a, € K[X]. It follows that
h=h-1=3%a;hf, =Xazg9, € K[X].

This proposition allows us to talk about regular functions with no risk of
ambiguity. The decomposition 1 = ¥ a,f, plays a role similar to that of a
partition of unity in the theory of differentiable manifolds.

2.9. Quasi-affine Varieties. Let again U be an open subset of an affine
variety X. In general the pair (U, Ox(U)) is not an affine variety. First of
all, the K-algebra Ox(U) may not be finitely generated. Secondly, there may
be ‘few’ points in U, that is, the mapping U — Specm Ox (U) (see Sect. 2.2)
may not be surjective.

Example. We want to show that U = A™ — {0} is not affine for n > 2.
To this effect we shall verify that Oxn(U) coincides with K[A"]|. In other
words, every regular function on A™ — {0} extends to a regular function on
A", This property is reminiscent of Hartogs’s theorem in the theory of an-
alytic functions, and departs sharply from the situation that prevails in the
differentiable case.

Indeed, let f be a function regular on U. We cover U by the sets D(T;),
the 7; being coordinates on A™. Then the restriction of f to D(T;) is of the
form g;/T;*, with g; € K[T,...,T,] and 7; > 0; we may further assume that
g; is not divisible by 7;. Since the restrictions coincide on D(T7) N D(13),
we see that 77'gs = T,%g;. Now, from the uniqueness of the decomposition
into prime factors in the polynomial ring K|[T3,...,Ty,], we conclude that
rn=r,=0and gy =gz = f.
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On the other hand, the basic open sets D(f) C X are affine varieties.
Related to this we have the following two facts: The ring O x (D(f)) of regular
functions on D(f) coincides with the ring K[X][f!] of fractions of the form
9/f", with g € K[X] and r > 0. Further, the Zariski topology on D(f) is
induced by the Zariski topology on X.

In any case, the open subsets of affine varieties look locally like affine
varieties. They are called quasi-affine algebraic varieties.

2.10. Affine Algebraic Geometry. Though algebraic geometry deals chiefly
with projective varieties, it is worth mentioning that affine algebraic geometry
also has its own, often unexpectedly hard, problems. Difficulties arise already
for the simplest affine varieties, namely, affine space A™. Serre’s problem on
vector bundles over A™ was solved only comparatively recently (Suslin [1976],
Quillen [1976]). Here is another famous question : suppose the variety X x A™
is isomorphic to A™*™; is it true that X is isomorphic to A™ ? An affirmative
answer (which is obvious for n = 1) was obtained only recently for n =2
(Miyanishi [1981]); for n > 2 the question is open.

Perhaps the reason for the difficulties lies in the fact that the space A™ (at
least for n > 1) is very ‘flexible’. The automorphisms of A' are easily seen
to be of the form 17 = aT + b, with a,b € K and a # 0. That A" (for n > 1)
has quite a few more automorphisms is made clear by the example of the
triangular transformation :

Tl, = Tl -+ an
Ty =Ty + f1(Th),

where f; € K[T,...,T;]. In particular, every finite subset of A™, where n > 1,
can be carried by an automorphism into any other finite subset with the same
cardinality. For n = 2 every automorphism of A™ is generated by triangular
and linear automorphisms. This is not known, and almost certainly false, for
n > 2. These questions are closely related to the problem of linearizing the
action of algebraic groups on A",

Finally, one should mention the so-called Jacobian problem. Consider a
map f: C" — C" defined by polynomials fy, ..., fn, in C[Ty,...,Ty], and
suppose the Jacobian det(0f;/0T;) does not vanish anywhere on C". (We
may assume it is identically equal to 1.) The Jacobian conjecture says that
f must then be an isomorphism. For a discussion of this problem see Bass,
Connell & Wright {1982].



