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§ 3. Algebraic Varieties

It was already perceived quite a long time ago that, by considering only
affine varieties, one gets an incomplete picture of what goes on, as if one
could see only part of the actual variety. This is connected with the fact that
affine space is non-compact: we do not control the behaviour ‘at infinity’.
For instance, any two lines in the affine plane meet, unless they are parallel.
It is convenient to postulate that even parallel lines meet, albeit in an ‘in-
finitely distant point’. Adjoining these points to affine space A™ makes it into
projective space P™. Another nice feature of the projective viewpoint is that
affinely different curves, such as the ellipse, the parabola, and the hyperbola,
turn out to be simply different affine parts of the projective conic. That is
why algebraic geometry has always been preeminently a projective geometry.
So we have to proceed now from affine varieties to the more general algebraic
varieties.

3.1. Projective Space. The easiest way to define n-dimensional projective
space P is to say it is the set of lines in the vector space K™*1. Every
line, that is, every one-dimensional vector subspace L C K™t!, is given by a
nonzero vector (g, ..., z,) € K" which is determined up to multiplication
by a nonzero constant A € K* = K — {0}. Therefore we may regard P" as the
quotient space K™*! — {0} /K*.

Fig. 5

The coordinate functions T, ... , T, on K™*! are called the homogeneous
coordinates on P™. However, one must be careful that the T3, like any noncon-
stant polynomial in the T}, are not functions on P™. Such expressions as T} /T;
can be viewed as functions, but not on the whole of P™: only on the subset
U; =P — H;, where H; consists of the points (zg,...,z,) with z; =0. In
other words, U; consists of those lines L C K™*! which project isomorphi-
cally onto the i-th coordinate axis. For fixed ¢, the functions §J(-%) = TjTi_l,
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j=0,1,...,n, define a one-to-one correspondence between U; and the affine
subspace T; = 1 in K™*!, Under this correspondence, H; consists of the lines
L lying in the hyperplane T; = 0 and can be identified with P*~!. In this
sense, P™ is obtained from the affine space U; ~ K™ by adjunction of the
hyperplane at infinity H; ~ P"~ 1,

The sets U; form a covering of P, and each of them has a natural structure
of affine variety A™. Moreover, these structures agree on the intersections

U; N U;. Indeed, we can regard U; N U; as being the basic open set ’D(&éi) ) in
U;, and also as the basic open subset D(fi(j ) ) of U;. In the former case, the

, . N1

ring of regular functions is generated by Eél), e ff), fj(-z) ; in the latter,
. . N —1

by féj e, 553 )" Now, these rings coincide. For example,

€7 = T/ Ti = (T/T)(T/T;) " = €0 -9

and .
g = (G/T) " =T/T; = €.

Conversely, the £) can be expressed by means of the £®.

Thus we see that P™ looks locally like an affine variety. We may there-
fore talk about regular functions on P™ (admittedly, they are quite scarce:
constants only), or about the algebraic subvarieties of P® (which are quite
numerous), its Zariski topology, etc. Some comparable ideas can be used not
only for P", but also for any geometric object that looks locally like an affine
variety. The resulting theory of algebraic varieties has much resemblance to
that of differentiable or analytic manifolds.

3.2, Atlases and Varieties. Let X be a topological space. An affine chart
(or coordinate neighbourhood) in X is an open subset U C X equipped with a
structure of affine variety, with the requirement that the induced topology on
U should coincide with the Zariski topology. We say that two charts, U and
U', are compatible if, for every open subset V C UNU’, one has Oy (V) =
Oy-(V).

An atlas on X is a collection A = (U;);cr of mutually compatible affine
charts covering X . Two atlases, A and A’, are equivalent if their union is also
an atlas, that is, if the charts of A are compatible with those of A’.

By a structure of algebraic variety on X we mean an equivalence class of
atlases. In what follows we shall restrict attention to the algebraic varieties
that have a finite atlas. By a chart on X we mean an affine chart that
belongs to some atlas defining the variety structure of X. Every point lies in
an arbitrarily small chart.

Every affine variety is an algebraic variety. Every closed subset Y C X of
an algebraic variety comes equipped with a canonical structure of algebraic
variety; Y is also called a subvariety (or a closed subvariety) of X. An open
subset U C X also has an obvious structure of algebraic variety.
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The covering of projective space P™ by the U; is an atlas and converts P™
into an algebraic variety. More generally, if V' is any finite-dimensional vector
space over K, we denote by P(V') the set of lines of V' through the origin. If
I: V — K is a nonzero linear map, we define H; C P(V) to be the set of lines
L C kerl. Then U, = P(V) — H; consists of those lines L for which I(L) = K
and can be identified with the affine subspace 1=}(1) C V. The structures on

the various U; are compatible and make P(V) into an algebraic variety. Of
course P = P(K™*1).

3.3. Gluing. This operation yields some new varieties out of old ones. Let
(X;) be a finite covering of some set X, where each X; has a structure of
algebraic variety. We make two assumptions:

a) for every pair 1,j the set X; N X; is open in X; and in X;
b) the algebraic variety structures induced on X; N X; from X; and from
X, coincide.

Then there exists on X a unique structure of algebraic variety such that the

X; are open subvarieties. We say that X is obtained by gluing (or pasting
together) the varieties X;.

Fig. 6

One may, for instance, think of projective space P" as the result of gluing
the affine spaces U;, ¢ =0,1,...,n. Here is another example. Suppose X1
and X, are isomorphic to the affine line A!, and let T} and 75 be coordinates
on X, respectively, Xo. Let us identify X; — {0} and X3 — {0} by setting
Ty = T>. What we get is an affine line with the point 0 doubled (see Fig. 6).
Such a variety occurs naturally as the set of orbits for the action A(z,y) =
(Az, A~ 1y) of the group K* on the plane K2.

Example. A good exercise on the theme of gluing is the construction of
torus embeddings. We fix a lattice M, that is, a free abelian group of finite
type (which is therefore isomorphic to Z", but the basis is irrelevant). Let
S C M be a submonoid, that is, S contains 0 and is closed under addition.
Then we can form the semigroup K-algebra K[S]. It is generated additively
by all elements of the form z™, with m € S, multiplication being defined
by the rule z™ -z™ = z™*™' If § is finitely generated as a monoid then
the K-algebra K[S] is of finite type and defines an affine variety, namely,
Specm K [S]. For instance, if S = M we get the n-dimensional torus T =
Specm K[M] = Specm[Ty, ..., T, T7 1, ..., T 1.

sy dp
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We consider now in the dual lattice M* = Hom(M,Z) a subset B which
is contained in a Z-basis of the group M*. We can attach to it the following
monoid in M :

Bt ={meM, bm)>0 Vbe B}.

The corresponding affine variety Specm K[B~] will be denoted by Xg. (This
variety is called a torus embedding because the torus T acts on it in a natural
way.) If B’ C B then Bt - B*, which gives rise to a natural homomorphism
of K-algebras K[B'] — K[B'"] and to the opposite morphism of varieties
Xp — Xp. It is not difficult to check that the latter is an open immersion.

Now, given a collection X' of such subbases B of M*, it is possible to
glue together the varieties Xp and Xp (B,B’ € X) along the open pieces
XBnp, so as to obtain a torus embedding X 5. For instance, P" is obtained
from ¥ = {By,...,Bn}, where By = {e1,...,e,}, and

B;={e1,.--,8,-..,en,—€1 —...—e,} for i=1,...,n.

What makes the interest of torus embeddings, is that various objects on
X (like invertible sheaves and their cohomology, differential forms, etc.) can
be described in combinatorial terms depending on Y. For instance, invertible
sheaves are represented by polyhedra in M ® R, and their sections by the
integer points on these polyhedra. For further details, see Danilov [1978].

3.4. The Grassmann Variety. Let again V be a vector space over K. We de-
note by G(k, V) (or G(k,n) if n = dim V) the set of k-dimensional subspaces
W C V; for k =1 we get P(V). Generalizing the construction of projective
space, we shall give G(k, V') the structure of an algebraic variety, called the
Grassmann variety.

Let V=V '®V" be a direct decomposition, with dimV’ = k. To each
such decomposition we shall attach the set U(V’, V"), consisting of the
subspaces W C V' which project isomorphically onto V’. These subspaces
can be identified with the graphs of linear maps from V'’ to V. Hence
U(V', V") >~ Homy(V',V") ~ V" ® V'* is naturally identified with a vector
space of dimension k(n — k) and is endowed with the structure of an affine va-
riety. It is an immediate verification that all these charts U(V’, V") are com-
patible and give G(k, V') an algebraic variety structure. For further details on
the Grassmannian, see Griffiths-Harris [1978] and Grothendieck-Dieudonné
[1971].

3.5. Projective Varieties. A closed subset of projective space is said to be a
projective variety. We exhibit a general method for producing such varieties.

Let V be a vector space over K. We define a cone in V to be an alge-
braic subvariety C' C V' which is invariant under scalar multiplication, that
is, multiplication by a constant. To every cone C we associate the subset
P(C) C P(V) consisting of the lines L C C. The set P(C) is closed in P(V).
Indeed, provided we identify a chart U; (where I: V — K is a linear map)
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with the affine subspace [ ~!(1) C V, the set P(C) C U; is seen to be identical
with the intersection C N 1~1(1), which is obviously closed in I~'(1).

In the coordinates Ty, ..., T, on V, the cone C is given by homoge-
neous equations f;(Ty,...,Tn) =0, j € J. Then P(C)NU; is given by the
equations f;(To/T;,...,Tn/Ti) = 0. The equations f; = 0 are called the ho-
mogeneous equations of P(C).

Conversely, every projective variety X C P(V) is of the form P(C) for
some cone C C V. Indeed, let (U;) be the standard atlas of P", and suppose

X NU; is given by equations f;i)(TO/T,-, .-y In/T;)y =0, j € J;. Then, for

large m, Tz.mf;i) (To/T5, ..., Tn/T3) = géi) (To, - - -, Ty) is a homogeneous form

in Ty, ..., Ty, and the equations g?) =0, j€J;, i=0,1,...,n, define X
in P".

The simplest projective varieties are the linear ones. If W C V is a vector
subspace, the subvariety P(W) C P(V) is said to be linear. If W is a hyper-
plane in V then P(W) is called a hyperplane in P(V'). We define the linear
hull of a set to be the intersection of all the linear varieties that contain it.
For two distinct points, z and y, it is nothing but the projective line zy, and
so forth. To give a hyperplane W C V is the same as giving a line W+ in the
dual space V*, and conversely. Hence the set of all hyperplanes in P(V) is
also a projective space, namely, P(V*).

Every vector space V can be regarded as an affine part of projective
space P(V @ K), more precisely as the complementary set to the hyperplane
P(V)cP(V@ K). If X CV is an algebraic variety then the closure of X
in P(V @ K) is a projective variety. This is a standard way to proceed from
affine to projective varieties (which, by the way, depends on the embedding
XcV).If&, ..., & are coordinates on V, projectivization looks as fol-
lows. Let f(1,...,&n) be a polynomial of degree d; its homogenization is the
homogeneous, degree d polynomial f(Ty,...,T,) = T¢ f(T1/To, ..., Tn/To)-
Now if X is given by equations f; = 0 then its projectivization X is defined
by the equations f; = 0.

§ 4. Morphisms of Algebraic Varieties

4.1. Definitions. Let X be an algebraic variety described by an atlas (X;),
and Y an affine variety. We say that a map f: X — Y is reguler if the
restriction of f to every chart X; has this property. In particular, we have the
notion of a regular function. For any open set U C X, we denote by Ox(U)
the K-algebra of functions regular on U. If U’ C U, there is a restriction
homomorphism Ox(U) — Ox(U’).

Suppose now Y is an arbitrary algebraic variety. A continuous mapping
f: X =Y is called a morphism (or a regular map) of algebraic varieties
if, for every chart V C Y, the induced mapping f~'(V) — V is regular. In
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other words, for every regular function g on the open subset V C Y, the
function f*(g) = g o f must be regular on f~1(V). This means that f* yields
an algebra homomorphism Oy (V) — Ox(f~1(V)).

The composite of two morphisms is again a morphism, so that algebraic
varieties form a category. The canonical injection of a closed subvariety is
a morphism, and we say that a morphism Y — X is a closed immersion if
it yields an isomorphism of Y onto a closed subvariety of X. If f: X - Y
is a morphism, and Y/ CY a closed subvariety, then f~!(Y’) is a closed
subvariety of X (cf. Sect. 2.4). In particular, for a point y € Y the variety
f~Yy) C X is called the fibre of the morphism f over y.

A variety X provided with a morphism f: X — Y is sometimes called a
variety over Y, or a Y-variety. X is thereby viewed as the family of alge-
braic varieties X, = f~'(y), parametrized by the points y € Y. Given two
Y-varieties, say, f: X - Y and f’': X’ - Y, a morphism from f to f’ is a
morphism ¢: X — X’ such that f = f’ o ¢. Each fibre f~!(y) is mapped into
the corresponding fibre f/~ ! (y), so we get a family of morphisms ¢, : X, — Xy

4.2. Products of Varieties. Let X and Y be two algebraic varieties, with
defining atlases (X;) and (Y;). Then (X; xY;) is an atlas for the product
X xY,s0X xY is also an algebraic variety. An easy verification shows that
X x Y is the direct product of X and Y in the category of varieties.

In particular, for any variety X, the diagonal mapping A: X - X x X
(A(z) = (z,z)} is a morphism, though in general it is not a closed immersion.
In other words, the diagonal in X X X may fail to be closed. An example is
furnished by the ‘affine line with a point doubled’ from Sect. 3.3. If, in spite
of that, the diagonal in X x X is closed then we say that the variety X is
separated. (One should not confuse this notion with the question whether X is
Hausdorff as a topological space!) Any affine variety, for instance, is separated
(cf. Sect. 2.4). The class of separated varieties is closed under taking direct
products or going over to subvarieties. We will check below that projective
space — and hence any projective variety — is separated. In what follows we
shall therefore deal exclusively with separated varieties.

That a variety is non-separated has to do with the fact that, when we
obtain it by gluing some of its affine pieces, these are glued imperfectly. To be
precise, one has the following separatedness criterion : a variety X, described
by an atlas (X;), is separated if and only if the image of X; N X, under the
canonical injection into X; x X; is closed. In fact, the image of X; N X; in
X; x Xj is just the intersection of X; x X; with the diagonal in X x X.

Let us apply this criterion to the standard atlas (U;), i =0,1,...,n, of
projective space P™ (cf. Sect 3.1). It is easy to check that the image of U; N Uj;
in U; x U; is given by the equations

D=0, D =D k=0,...,n,

whence we see that P is separated.



