LECTURE 6

Grassmannians and Related Varieties

Exampie 6.6. Grassmannians

Grassmannians are fundamental objects in algebraic geometry: they are simultane-
ously objects of interest in their own right and basic tools in the construction and
study of other varieties. We will be dealing with Grassmannians constantly in the
course of this book; here we introduce them and mention a few of their basic
properties.

By way of notation, we let G(k, n) denote the set of k-dimensional linear sub-
spaces of the vector space K”; if we want to talk about the set of k-planes in an
abstract vector space V without making a choice of basis for V we also write

Gk, V). Of course, a k-dimensional subspace of a vector space K" is the same thing

as a (k — 1)-plane in the corresponding projective space P"7!, so that we can
think of G(k n) as the set of such (k — 1) planes; when we want to think of the
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In most contexts, Grassmannians are defined initially via coordinate
patches or as a quotient of groups; it is then observed that they may be embedded
in a projective space. Since our main objects of interest here are projective varieties,
we will do it differently, describing the Grassmannian first as a subset of projective
space. This is straightforward: if W < V is the k-dimensional linear subspace
spanned by vectors vy, ..., 1, we can associate to W the multivector

T as A ese A 3 = NEOTAN
A=V 7 N U €E/VY

4 is determined up to scalars by W: if we chose a different basis, the corre-
sponding vector A would simply be multiplied by the determinant of the change of
basis matrix. We thus have a well-defined map of sets
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W Gk, V) > P(AV),

In fact, this is an inclusion: for any [w] = (W) in the image, we can recover
the corresponding subspace W as the space of vectors v e V such that v A @ =
0 € A*"'V. This inclusion is called the Pliicker embedding of G(k, V).

The homogeneous coordinates on P¥ = P(A\*V) are called Pliicker coordinates
on G(k, V). Explicitly, if we choose an identification ¥V =~ K" we can represent the
plane W by the k x n matrix M, whose rows are the vectors v; the matrix My, is
determined up to multiplication on the left by an invertible k£ x k matrix. The
Pliicker coordinates are then just the maximal minors of the matrix M,,.

We have described the Grassmannian G(k, V) as a subset of P(/\*¥V); we should
now check that it is indeed a subvariety. This amounts to characterizing the subset
of totally decomposable vectors w € A\*V, that is, products w = v, A -+ A v, of linear
factors. We begin with a basic observation: given a multivector w € A*V and a
vector v e V, the vector v will divide w—that is, @ will be expressible as v A ¢ for
some ¢ € A*"1V—if and only if the wedge product o A v = 0. Moreover, a multi-
vector o will be totally decomposabie if and only if the space of vectors v dividing
it is k-dimensional. Thus, [«w] will lie in the Grassmannian if and only if the rank
of the map

p(w): V - Nty
V0 AD
is n — k. Since the rank of ¢(w) is never strictly less than n — k, we can say
[&0] € Gk, V)<>rank(p(w)) < n — k.

Now, the map A*V — Hom(V, A**'V) sending w to ¢(w) is linear, that is, the entries
of the matrix ¢(w) € Hom(¥, A\**'V) are homogeneous coordinates on P(A*V); we
can say that G(k, V) = P(A\*V) is the subvariety defined by the vanishing of the
(n—k + 1) x (n— k + 1) minors of this matrix.

This is the simplest way to see that G(k, V) is a subvariety of P(A*V), but the
polynomials we get in this way are far from the simplest possible; in particular, they
do not generate the homogeneous ideal of G(k, V). To find the actual generators of
the ideal, we need to invoke also the natural identification of A*V with the exterior
power A" *FV* of the dual space V* (this is natural only up to scalars, but
that’s okay for our purposes). In particular, an element @ € A*V corresponding to
w* e A""*I'* gives rise in this way to a map

Y(w): V* - An—k+1 %

0F > v A o
by the same argument w will be totally decomposable if and only if the map
(w) has rank at most k. What’s more, in case w is totally decomposable, the

kernel of the map ¢(w)—the subspace W itself—will be exactly the annihila-
tor of the kernel of y(w); equivalently, the images of the transpose maps

‘(w): NIy * - p*
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and
Wiw)y: A"y S v

annihilate each other. In sum, then, we see that [w] € G(k, V) if and only if for every
pair x € A**'V* and B € A" **1V, the contraction

E, p(0) = {fo(@)(@), Y(w)(B)> = 0.

The E, ;4 are thus quadratic polynomials whose common zero locus is the Grass-
mannian G(k, V). They are called the Pliicker relations, and they do in fact generate
the homogeneous ideal of G(k, V), though we will not prove that here.

Exercise 6.2. In the special case k = 2, assuming char(K) # 2 show directly that a
vector w € A%V is decomposable if and only if @ A @ =0 and hence that the

Grassmannian G(2, V) = P(A?V) is a variety cut out by quadrics. (In fact, the

. ny . . . .
equation w A @ = 0 represents ( 4) independent quadratic relations, which are

exactly the span of the Pliicker relations.)

Observe in particular that the first nontrivial Grassmannian—the first one
that is not a projective space—is G(2, 4), and this sits as a quadric hypersurface in
P(A?K*) =~ P>,

We can get another picture of the Grassmannian by looking at certain special
affine open subsets. To describe these first intrinsically, let I' = V be a subspace of
dimension n — k, corresponding to a multivector w € A" *V = A*V'*, We can think
of w as a homogeneous linear form on P(A*V); let U = P(A\*V) be the affine open

subset where @ # 0. Then the intersection of G(k, V) with U is just the set of -

k-dimensional subspaces A — V complementary to I'. Any such subspace can be
viewed as the graph of a map from V/T to I' and vice versa, so that we have an
identification

G(k, V) n U =~ Hom(V/T, T) = K*n=h

To see this in coordinates, identify ¥ with K" and say the subspace I is spanned
by the last n — k basis vectors e, ..., €, € K". Then U n G(k, n) is the subset of
spaces A such that the k x n matrix M, whose first k x k minor is nonzero. It
follows that any A € G(k, V) n U is represented as the row space of a unique matrix
of the form

1 0 0 0 ay; a1, - . . Gy,
01 0 0 ay, ay, . . . 4y,
0 0 . . 01 a, a, . . . Gnux

and vice versa. The entries g, ; of this matrix then give the bijection of U n G(k, V)
with K**~9),
Note that the affine coordinates on the affine open subset of G(k, V) are just
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the k x k minors of this matrix, which is to say the minors of ail sizes of the
(n — k) x kmatrix (a; ;). In particular, expansion of any of these determinants along
any row or column yields a quadratic relation among these minors; thus, for
example,

a a
1,1 1,2
al’l az’z - al’z'aZ,l ==

ay 1 433

is a relation among the affine coordinates on P(A*K™) restricted to G(k, n). In
this way, we can write down all the Pliicker relations explicitly in coordinates.

There is, finally, another way to describe the affine coordinates on the open
subset U n G(k, n) of k-planes A complementary to a given (n — k)-plane I': we take
vectors vy, ..., v, € K" that, together with I', span all of K”, and set

(A =An(T + v).

The vectors v;(A) then give a basis for A, for all A € U; and the k-tuple of vectors
v;(A) — v; € T gives an identification of U n G(k, n) with T'*.

Subvarieties of Grassmannians

To begin with, an inclusion of vector spaces W <» V induces an inclusion of
Grassmannians G(k, W) < G(k, V); likewise, a quotient map ¥V — V/U to the quo-
tient of ¥ by an I-dimensional subspace U induces an inclusion G(k — I, V/U) <
G(k, V). More generally, if U =« W < V, we have an inclusion G(k — I, W/U) <
G(k, V). The images of such maps are called sub-Grassmannians and are sub-
varieties of G(k, V) (in terms of the Pliicker embedding G(k V) < P(A\*V), they are
just the 1ntersecnono\ {K V) with linear supspaces in P(A\*V), as we will see in the
following paragraph) _

If we view the Grassmanman as the set of linear subspaces in a projective
space PV, the sub-Grassmannians are just the subsets of planes contained in
a fixed subspace and/or containing a fixed subspace. We can also consider the
subset Z(A) < G(k, PV) of k-planes that meet a given m-dimensional linear sub-
space A < PV, or more generally the subset Z,(A) of k-planes that meet a given
A in a subspace of dimension of at least |. These are again subvarieties of the
Grassmannian; XZ,(A) may be described as the locus

ZI(A) = {[w]: WAV A AVpy_j41 — 0 VUI, voos Ui+ EA}

from which we see in particular that it, like the sub-Grassmannians, is the intersec-
tion of the Grassmannian with a linear subspace of P(A\*V). These are in turn
special cases of a class of subvarieties of G(k, PV) called Schubert cycles, about
which we will write more later.

There are also analogs for Grassmannians of projection maps on projective
space. Specifically, suppose W < V is a subspace of codimension [ in the
n-dimensional vector space V. For k < I, we have a map n: U — G(k, V/W) defined
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on the open set U < G(k, V) of k-planes meeting W only in (0) simply by taking the
image; for k > | we have a map n: U’ - G(k — I, W) defined on the open subset
U’ < G(k, V) of planes transverse to W by taking the intersection. Note that both
these maps may be realized, via the Pliicker embeddings of both target and domain,
by a linear projection on the ambient projective space P(\*V)—for example, the
map = is the restriction to G(k, ¥) of the linear map P(A*V) - P(A¥(V/W))induced
by the projection V — V/W.

Example 6.3. The Grassmannian G(1, 3)

The next few exercises deal specifically with the geometry of the Grassmannian
G = G(1, 3) parametrizing lines in P?, which as we have seen may be realized (via
the Pliicker embedding) as a quadric hypersurface in P>,

Exercise 6.4. For any point p € °* and plane H < P containing p,let £, ; < G be
the locus of lines in P* passing through p and lying in H. Show that under the
Pliicker embedding G — P3, Z, 4 is carried to a line, and that conversely every line
in P° lying on G is of the form X, ,; for some p and H.

Exercise 6.5. For any point p € P3, let £, = G be the locus of lines in P* passing
through p; for any plane H < P2, let X, = G be the locus of lines in P2 lying in H.
Show that under the Pliicker embedding, both X, and Z are carried into two-
planes in P>, and that conversely any two-plane A =~ P? < G < P? is cither equal
to X, for some p or to Zy for some H.

Exercise 6.6. Let [, [, = P? be skew lines. Show that the set Q — G of lines in
P3 meeting both is the intersection of G with a three-plane P3 = P53, and so
is a quadric surface. Deduce yet again that Q = P! x P'. What happens if [,

and [, meet? /\»

Exercise 6.7. NoWooth quadric surface. Show that the two
families of lines correspond to plane conic curves on G lying in comple-
mentary two-planes A;, A, = P°. Show that, conversely, the lines in P? corre-
sponding to a plane conic curve C < G sweep out a smooth quadric surface if and

only if the plane A spanned by C is not contained in G. What happens to this
correspondence if either the quadric becomes a cone or the plane A lies in G?

The next exercise is a direct generalization of the preceding one; it deals with
Segre varieties other than P! x P!,

Exercise 6.8. Let £, , = P! x P* = P?**! be the Segre variety, and for each p e P?
let A, be the fiber of £, , over p. We have seen that A, is a k-plane in P?**'; show
that the assignment p +— A, defines a regular map of P! to the Grassmannian
G(k, 2k + 1) whose image is a rational normal curve lying in a (k + 1)-plane in
[F"(/\"“KZHZ).



