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which is the same as saying that the homogeneous coordinate rings $(X), S(X’) are
isomorphic as graded K-algebras; while we say that they are isomorphic under the
weaker condition that there is a biregular map between them. (We will see an
explicit example where the two notions do not agree in Exercise 2.10.)

Exercise 2.3, Using the result of Exercise 2.2, show that for n > 2 the comple-
ment of the origin in A" is not isomorphic to an affine variety.

Example 24. The Veronese Map

The construction of the rational normal curve can be further generalized: for any
n and d, we define the Veronese map of degree d

v, P* - P¥
by sending
[Xos-.., X, ] [...XT...],
where X' ranges over all monomials of degree d in X, ..., X,. As in the case

of the rational normal curves, we will call the Veronese map any map differing
from this by an automorphism of P", Geometrically, the Veronese map is character-
ized by the property that the hypersurfaces of degree 4 in P" are exactly the
hyperplane sections of the image v,(P") = P¥. It is not hard to see that the image
of the Veronese map is an algebraic variety, often called a Veronese variety.

Exercise 2.5. Show that the number of monomials of degree d in n + 1 variabies is

d
), so that the integer N is (n + d) —1.

d

the binomial coefficient (n + p

For example, in the simplest case other than the case n = 1 of the rational
normal curve, the quadratic Veronese map

v,: P2 - P3

is given by

]

v2: [Xo, X1, Xo] [Xg, X12, X,%, XoX1, XoX,5, X1 X5].

The image of this map, often called simply the Veronese surface, is one variety
we will encounter often in the course of this book.

The Veronese variety v,(P") lies on a number of obvious quadric hypersurfaces:
for every quadruple of multi-indices I, J, K, and L such that the corresponding
monomials X'X7 = K¥X* we have a quadratic relation on the image. In fact, it is
not hard to check that the Veronese variety is exactly the zero locus of these
quadratic polynomials.



Example 2.6. Determinantal Representation of Veronese Varieties

The Veronese surface, that is, the image of the map v?: P? - P5, can also be

described as the locus of points [Z,, ..., Z;] € P? such that the matrix

Zy Zy Z,

ZB Zl ZS

\Z. Zs Z,]
has rank 1. In general, if we let {Z, ;};,.;<;<, be the coordinates on the target
space of the quadratic Veronese map

vy P pO+m+2)2-1

then we can represent the image of v, as the locus of the 2 x 2 minors of the
(n + 1) x (n + 1) symmetric matrix with (i, j)thentry Z;_, ;_, fori < j.

Example 2.7. Subvarieties of Veronese Varieties

The Veronese map may be applied not only to a projective space P", but to any
variety X « P" by restriction. Observe in particular that if we restrict v; to a linear
subspace A = P* = P", we get just the Veronese map of degree 4 on P* For
example, the images under the map v,: P2 — P5 of lines in P? give a family of conic
plane curves on the Veronese surface S, with one such conic passing through any
two points of S.

More generally, we claim that the image of a variety Y < P" under the Veronese
map is a subvariety of P¥. To see this, note first that homogeneous polynomials of
degree k in the homogeneous coordinates Z on PY pull back to give (all) polyno-
mials of degree d- k in the variables X. Next, observe (as in the remark following
Exercise 1.3) that the zero locus of a polynomial F(X) of degree m is also the
common zero locus of the polynomials {X;F(X)} of degree m + 1. Thus a variety
Y = P" expressible as the common zero locus of polynomials of degree m and less
may also be realized as the common zero locus of polynomials of degree exactly
k- d for some k. It follows that its image v,(Y) < P" under the Veronese map is the
intersection of the Veronese variety v,([®")—which we have already seen is a vari-
ety—with the common zero locus of polynomials of degree k.
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For example, if Y = P? is the curve given by the cubic polynomial
X3 + X? 4+ X3, then we can also write Y as the common locus of the quartics

X4+ XoX3 + XoX3, X3X, +X{+X,X3, and X3X, + X{X, + X5.

The image v,(Y) < P is thus the intersection of the Veronese surface with the
three quadric hypersurfaces

ZE+ 2,23+ 2,2, ZyZs+Zi+ 27,75, and Z,Z, + Z, Zs + Z3.

In particular, it is the intersection of nine guadrics.
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Exercise 2.8. Let X = P" be a projective variety and Y = v,(X) = P" its image
under the Veronese map. Show that X and Y are isomorphic, i.e., show that the
inverse map is regular.

Exercise 2.9. Use the preceding analysis and exercise to deduce that any projective
variety is isomorphic to an intersection of a Veronese variety with a linear space
(and hence in particular that any projective variety is isomorphic to an intersection
of quadrics).

Exercise 2.10. Let X — P" be a projective variety and Y = v,(X) = PV its image
under the Veronese map. What is the relation between the homogeneous coordi-
nate rings of X and Y?

In case the field K has characteristic zero, Veronese map has a coordinate-free
description that is worth bearing in mind. Briefly, if we view P” = PV as the space
lines in a vector space V, then the Veronese map may be defined as the map

v;: PV = P(Sym?V)
to the projectivization of the dth symmetric power of ¥V, given by

v [v] — [v?].

Equivalently, if we apply this to V* rather than V, the image of the Veronese
map may be viewed as the (projectivization of the) subset of the space Sym?V*
of all polynomials on V consisting of dth powers of linear forms. Note that this is
false for fields K of arbitrary characteristic: for example, if char(K) = p, the locus
in P(Sym?V) of pth powers of elements of V' is not a rational normal curve, but a
line. What is true in arbitrary characteristic is that the Veronese map v, may be
viewed as the map PV — P(Sym“V) sending a vector v to the linear functional on
Sym?V * given by evaluation of polynomials at p.

Example 2.11. The Segre Maps

Another fundamental family of maps are the Segre maps
g [D" % Pm N P(u+1)(m+1)—1

defined by sending a pair ([X], [Y]) to the point in P®*D™M+1=1 whoge coordinates
are the pairwise products of the coordinates of [X] and [ Y], 1.e.,

o:([Xo.... X, 1, [Yo,.... Y, D= [..., X;Y, ... ],
where the coordinates in the target space range over all pairwise products of

coordinates X; and Y.

It is not hard to see that the image of the Segre map is an algebraic variety,
called a Segre variety, and sometimes denoted X, ,: if we label the coordinates



26 2. Regular Functions and Maps

on the target space as Z; ;, we see that it is the common zero locus of the quadratic
polynomials Z; ;- Z, , — Z, ;" Z, ;. (In particular, the Segre variety is another
example of a determinantal variety; it is the zero locus of the 2 x 2 minors of the
matrix (Z; ;).)

The first example of a Segre variety is the variety X, ; = o(P! x P') < P3,
that is, the image of the map

6:([Xo, X1, [ Yo, iD= [ Xo Yo, Xo Yy, X Yo, X, Y, ).

This 1s the locus of the single quadratic
polynomial Z,Z, — Z,Z,, that is, it is
simply a quadric surface. Note that the
fibers of the two projection maps from
P" x P™to P" and P™ are carried, under
o, into linear subspaces of P®*Dm+1)—1,
in particular, the fibers of P! x P!
are carried into the families of lines
{Z, =12y, 25y = AZ,} and {Z, = AZ,,
Zy = AZ,}. Note also that the description of the polynomial Z,Z; — Z,Z, as the

determinant of the matrix
vo(Z 2
Z, Z,

displays the two families of lines nicely: one family consists of lines where the two
columns satisfy a given linear relation, the other lines where the two rows satisfy a
given linear relation.

Another common example of a Segre variety is the image
2, =0(P?x P')c P>,

called the Segre threefold. We will encounter it again several times (for exampile, it
is an example of a rational normal scroll, and as such is denoted X, ; ). For now,
we mention the following facts.

Exercise 2.12. (i) Let L, M, and N = P3 be any three pairwise skew (i.e., disjoint)
lines. Show that the union of the lines in P?® meeting all three lines is projectively
equivalent to the Segre variety £, ; < P? and that this union is the unique Segre
variety containing L, M, and N. (%)

(i) More generally, suppose that L, M, and N are any three pairwise disjoint
(k — 1)-planes in P?*~1, Show that the union of all lines meeting L, M, and N is
projectively equivalent to the Segre variety £, ; ; = P?*~! and that this union is
the unique Segre variety containing L, M, and N. Is there an analogous description
of Segre varieties X, , with a, b > 2?

Exercise 2.13. Show that the twisted cubic curve C — P* may be realized as the
intersection of the Segre threefold with a three-plane P* c P5.
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Exercise 2.14. Show that any line ! < £, ; < P’ is contained in the image of
a fiber of P2 x P! over P? or P! (). (The same is true for any linear space
contained in any Segre variety o(P" x P™), but we will defer the most general
statement until Theorem 9.22.)

Exercise 2.15. Show that the image of the diagonal A = P" x P" under the Segre
map is the Veronese variety v,("), lying in a subspace of P"**2"; deduce that in
general the diagonal Ay < X x X in the product of any variety with itself is a
subvariety of that product, and likewise for all diagonals in the n fold product X™.

Example 2.16. Subvarieties of Segre Varieties

Having given the product P* x P™ the structure of a projective variety, a natural
question to ask is how we may describe its subvarieties. A naive answer is immedi-
ate. To begin with, we say that a polynomial F(Z,, ..., Z , W,, ..., W, ) in two sets
of variables is bihomogeneous of bidegree (d, e) if it is simultaneously homogeneous
of degree d in the first set of variables and of degree e in the second, that is, of the
form
FZ,W)= 3 a;, Zy...Z)r - Wo.. Win
£ 2
Zjg=e
Now, since polynomials of degree d on the target projective space Pm*r+1)-1

pull back to polynomials F(Z, W) that are bihomogeneous of bidegree (d, d), the
obvious answer is that subvarieties of P* x P™ are simply the common zero loci of
such polynomials (observe that the zero locus of any bihomogeneous polynomial
is a well-defined subset of P" x P™). At the same time, as in the discussion of
subvarieties of the Veronese variety, we can see that the zero locus of a bihomo-
geneous polynomial F(Z, W) of bidegree (d, e) is the common zero locus of the
bihomogeneous polynomials of degree (d’, e’) divisible by it, for any d’ > d and
¢’ > e; so that more generally we can say that the subvarieties of a Segre variety
P" x P™ are the zero loci of bihomogeneous polynomials of any bidegrees.

As an example, consider the twisted cubic C = P* of Example 1.10 given as the
image of the map

t— [t 0]

As we observed before, C lies on the quadric surface ZyZ; — Z,Z, = 0, which
we now recognize as the Segre surface S = a(P! x P') = P?. Now, restrict to
S the other two quadratic polynomials defining the twisted cubic. To begin with,
the polynomial Z,Z, — Z? on P? pulls back to X, X, Y# — X¢ Y, which factors
into a product of X, and F(X, Y) = X, Y7 — X, Y2 The zero locus of this polyno-
mial is thus the union of the twisted cubic with the line on S given by X, = 0 (or
equivalently by Z, = Z, = 0). On the other hand, the polynomial Z, Z, — ZZ pulis
back to X, X, Y7 — X?YZ, which factors as — X, - F; so its zero locus is the union
of the curve C and the line Z, = Z; = 0. In sum, then, the twisted cubic curve 1s the
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zero locus of a single bihomogeneous
polynomial F(X, Y) of bidegree (1, 2) on
the Segre surface S = o(P! x P!); the
quadratic polynomials defining C restrict
to § to give the bihomogeneous
polynomials of bidegree (2, 2) divisible
by F (equivalently, the quadric surfaces
containing C cut on S the unions of C
with the lines of one ruling of S).

Exercise 2.17. Conversely, let C = P! x P! be the zero locus of an irreducible
bihomogeneous polynomial F(X, Y) of bidegree (1, 2). Show that the image of C
under the Segre map

o: P! x P! - p3

is a twisted cubic curve.

Exercise 2.18. Now let C = C, ;, < P? be a rational quartic curve, as introduced in
Example 1.26. Observe that C lies on the Segre surface S given by Z,Z; — Z,Z, =
0, that S 1s the unique quadric surface containing C, and that C is the zero locus of
a bithomogeneous polynomial of bidegree (1, 3) on § = P! x P!. Use this to do
Exercise 1.29.

Exercise 2.19. Use the preceding exercise to show in particular that there is a
continuous family of curves C, ; not projectively equivalent to one another. (%)

Exercise 2.20. a. Let X < P" and Y < P™ be projective varieties. Show that the
image 6(X x Y) < a(P" x P™) < P"™*"*™" of the Segre map restricted to X x Y is
a projective variety. b. Now suppose only that X < P" and Y < P™ are quasi-
projective. Show that (X x Y) is likewise quasi-projective, that is, locally closed
l'n [pnm+n+m.

Example 2.21. Products of Varieties

At the outset of Example 2.11, we referred to the product P" x P™; we can only
mean the product as a set. This space does not a priori have the structure of an
algebraic variety. The Segre embedding, however, gives it one, which we will adopt
as a definition of the product as a variety. In other words, when we talk about “the
variety P" x P™” we mean the image of the Segre map. Similarly, if X < P" and
Y < P™ are locally closed, according to Exercise 2.20, the image of the product
X x Y < P" x P™is a locally closed subset of P"™*"*™ which we will take as the
definition of “the product X x Y” as a variety.

A key point to be made in connection with this definition is that this is actually
a categorical product, i.e., the projectionmaps y: X x Y- Xandn,: X x Y=Y
are regular and the variety X x Y, together with these projection maps, satisfies the
conditions for a product in the category of quasi-projective varieties and regular



