
1 Regular functions and maps 1

Throughout this section, k is an algebraically closed field.

1.1 Regular functions week3

Let S ⊂ An be a set and let f : S → k be a function. Let a be a point of S.

1.1.1 Definition (Regular function) We say that f is regular (or algebraic) at a if
there exists a Zariski open set U ⊂ An and polynomials p, q ∈ k[x1, . . . , xn] with q(a) 6= 0
such that

f ≡ p/q on S ∩ U.

We say that f is regular if it is regular at all points of S.
In other words, f is regular at a point a if locally around a (in the Zariski topology), f

can be expessed as a ratio of two polynomials. Although the definition of a regular function
makes sense for S ⊂ An, we use it only in the context of quasi-affine varieties.

1.1.2 Examples

1. A constant function is regular.

2. Every polynomial function is regular.

3. Sums and products of regular functions are regular. So, the set of regular functions
forms a ring. This ring contains a copy of k, namely the constant functions.

1.1.3 Definition (Ring of regular functions) We denote the ring of regular functions
on S by k[S]. This ring is a k-algebra.

1.1.4 Proposition (Local nature of regularity) Let f be a function on S, and let
{Ui} be an open cover of S. If the restriction of f to each Ui is regular, then f is regular.

Proof. — (1)

1.2 Regular functions on an affine variety week3

It turns out that regular functions on closed subsets of An are just the polynomial functions!
So, not only is there a global algebraic expression, we don’t even need denominators.
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1.2.1 Proposition Let X ⊂ An be a Zariski closed subset. Let f be a regular function
on X. Then there exists a polynomial P ∈ k[x1, . . . , xn] such that P (x) = f(x) for all
x ∈ X.

Proof. By definition, we know that for every x ∈ X, there is a Zariski open set U ⊂ X and
polynomials p, q such that f = p/q on U . The set U and the polynomials p, q may depend
on x, so let us denote them by Ux, px, and qx. We need to combine all of these p’s and q’s
and construct a single polynomial P that agrees with f for all x.

This is done by a “partition of unity” argument. First, let us do some preparation. We
know that px/qx = f on Ux, but we know nothing about px and qx on the complement of
Ux. Our first step is a small trick that lets us assume that both px and qx are identically
zero on the complement of Ux.

Since Ux ⊂ X is open, its complement is closed. By the definition of the Zariski topology,
this means that

X \ Ux = X ∩ V (A),

for some A ⊂ k[x1, . . . , xn]. Since x ∈ Ux, at least one of the polynomials in A must be
non-zero at x. Let g be such a polynomial, and set U ′x = X ∩ {g 6= 0}. Then U ′x ⊂ Ux is
a possibly smaller open set containing x. Set p′x = px · g and q′x = qx · g. Then we have
f = p′x/q

′
x on U ′x, and we also have p′x ≡ q′x ≡ 0 on X \ U ′x. So, we may assume from the

beginning that both px and qx are identically zero on the complement of Ux..
Now comes the crux of the argument. Suppose X = V (I). Consider the set of “denom-

inators” {qx | x ∈ X}. Note that the system of equations

g = 0 for all g ∈ I and qx = 0 for all x ∈ X

has no solution!

Why is this true? — (2)

By the Nullstellensatz, this means that the ideal I + 〈qx | q ∈ X〉 is the unit ideal. That is,
we can write

1 = g + r1qx1 + · · ·+ rmqxm

for some polynomials r1, . . . , rm. Take P = r1px1 + · · · + rmpxm . Then f = P on all of
X.

Check the last equality. — (3)

—- Let X ⊂ An be any subset. We have a ring homomorphism

π : k[x1, . . . , xn]→ k[X],

where a polynomial f is sent to the regular function it defines on X.
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1.2.2 Proposition (Ring of regular functions of an affine) Let X ⊂ An be a closed
subset. Then the ring homomorphism π : k[x1, . . . , xn]→ k[X] induces an isomorphism

k[x1, . . . , xn]/I(X)
∼−→ k[X].

Proof. The map π is surjective by Proposition 1.2.1 and its kernel is I(X) by definition.
The result follows by the isomorphism theorems.

1.3 Regular maps week3

Consider X ⊂ An and Y ⊂ Am and a function f : X → Y . Write f in coordinates as

f = (f1, . . . , fm).

1.3.1 Definition (Regular map) We say that f is regular at a point a ∈ X if all its
coordinate functions f1, . . . , fm are regular at a. If f is regular at all points of X, then we
say that it is regular.

1.3.2 Example (Maps to A1) A regular map to A1 is the same as a regular function.

1.3.3 Example (An isomorphism) Let U = A1 \ {0} and V = V (xy − 1) ⊂ A2.
We have a regular function φ : V → U given by φ(x, y) = x. We have a regular function
ψ : U → V given by ψ(t) = (t, 1/t). These functions are mutual inverses, and hence we
have a (bi-regular) isomorphism U ∼= V .

1.4 Properties of regular maps week3

1.4.1 Proposition (Elementary properties of regular maps)

1. The identity map is regular.

2. The composition of two regular maps is regular.

3. Regular maps are continuous (in the Zariski topology).

Proof. The identity map is given by (x1, . . . , xn) 7→ (x1, . . . , xn); each coordinate is a poly-
nomial, and hence regular. The statement for composition is true because the composition
of fractions of polynomials is also a fraction of polynomials. The third statement is left as
homework.

1.4.2 Proposition (Regular maps preserve regular functions) Let φ : X → Y be
a regular map. If f is a regular function on Y , then f ◦ φ is a regular function on X.

Proof. View a regular function as a regular map to A1. Then this becomes a special case
of composition of regular maps.
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— As a result, we get a k-algebra homomorphism k[Y ]→ k[X], often denoted by φ∗:

φ∗(f) = f ◦ φ.

We thus get a (contravariant) functor from the category of (quasi-affine) varieties to k-
algebras. On objects, it mapsX to k[X]. On morphisms, it maps φ : X → Y to φ∗ : Y → X.
It is easy to check that this recipe respects composition. That is, if we have maps φ : X → Y
and ψ : Y → Z, and if we let ψ ◦ φ : X → Z be the composite, then

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

1.4.3 Corollary (Isomorphic varieties have isomorphic rings of functions) If
φ : X → Y is an isomorphism of varieties, then φ∗ : k[Y ] → k[X] is an isomorphism of
k-algebras.

Proof. Let ψ : Y → X be the inverse of φ. Then ψ∗ : k[X]→ k[Y ] is the inverse of φ∗.

1.4.4 Proposition (For affines, map between rings induces map between spaces)
Let X ⊂ An and Y ⊂ Am be Zariski closed, and let f : k[Y ] → k[X] be a homomorphism
of k-algebras. Then there is a unique (regular) map φ : X → Y such that f = φ∗.

Proof. We know that k[X] = k[x1, . . . , xn]/I(X) and k[Y ] = k[y1, . . . , ym]/I(Y ). Let φi =
f(yi) ∈ k[X]. Consider φ : X → Am given by φ = (φ1, . . . , φm). Then φ sends X to Y and
is the unique map satisfying the required properties.

Prove the last statement. — (4)

1.4.5 Example (Bijection but not an isomorphism) Let X = A1
k and Y = V (y2 −

x3) ⊂ A2
k. We have a regular map f : X → Y given by f(t) = (t2, t3). It is easy to check

that f is a bijection, but not an isomorphism.

Why is this not an isomorphism? — (5)

1.4.6 Example (Distinguished affine opens) Let Uf ⊂ An be the complement of
V (f). Then Uf is isomorphic to an affine variety, namely the variety V (yf − 1) ⊂ An+1,
where y denotes the (n+ 1)-th coordinate.

Prove this. — (6)

1.4.7 Caution (Not all opens are affine) The previous proposition only applies to the
complement of V (f) for a single f ! The complement of V (I), in general, is not isomorphic
to an affine variety. For example, the complement of the origin in A2 is not isomorphic to
an affine variety.
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