
1 Algebraic varieties

1.1 De�nition week4

The varieties we have seen so far have been sub-sets of the a�ne space. Using these as
buildig blocks, we can construct general algebraic varieties. The de�nition is analogous to
the de�nition of a manifold in di�erential geometry, using open subsets of Rn as building
blocks.

Let X be a topological space. A quasi-a�ne chart on X consists of an open subset
U ⊂ X, a quasi-a�ne variety V and a homeomorphism φUV : U → V . Via this isomorphism,
we can �transport� the algebraic structure (for example, the notion of a regular function)
from V to U .

Let φ1 : U1 → V1 and φ2 : U2 → V2 be two quasi-a�ne charts on X (see Figure 1).
Set U12 = U1 ∩ U2. Consider the open subsets V12 = φ1(U12) ⊂ V1 and V21 = φ2(U12) ⊂
V2. Being open subsets of quasi-a�ne varieties, they are themselves quasi-a�ne varieties.
Furthermore, the map

φ2 ◦ φ−1
1 : V12 → V21

is a homeomorphism. We say that the two charts are compatible if this map is a (bi-regular)
isomorphism.

Figure 1: Compatible charts

When we have two charts, one on U1 and another on U2, then the intersection U1 ∩ U2
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gets two di�erent charts. Compatibility ensures that these two charts are related by a
bi-regular isomorphism, so that the algebraic structure coming from one is the same as the
one coming from the other.

A quasi-a�ne atlas on X is a collection of compatible charts φi : Ui → Vi such that the
Ui cover X.

1.1.1 De�nition (Algebraic variety) An algebraic variety is a topological space with
a quasi-a�ne atlas.

1.1.2 Example (Quasi-a�ne varieties) A quasi-a�ne variety X is itself an algebraic
variety. The atlas is the obvious one, consisting of the single chart id : X → X.

1.2 Projective spaces week4

A fundamental example of an algebraic variety is the projective space.

1.2.1 De�nition (Projective space) The projective n-space over a �eld k, denoted by
Pn
k , is the set of one-dimensional subspaces of kn+1.

1.2.2 Intuition Before describing how Pn
k is an algebraic variety, let us build some

intuition about projective space. For easy visualisations, it helps to take k = R or k = C.
A one dimensional subspace of kn+1 is also called a line. Note that, by this de�nition, a
line must contain the origin.

Let us take n = 0. Then there is a unique one-dimenional subspace of kn+1 = k, so P0
k

is just a single point.
Let us take n = 1. Then P1

k is the set of lines (through the origin) in k2. Let us take
k = R. Every line through the origin is uniquely determined by its slope, which can be any
element of R, so it seems like P1

R is just a copy of R. But the vertical line does not have
a (�nite) slope, so P1

R = R ∪ {∞}. In other words, P1 contains the usual real line, plus �a
point at in�nity�.

It can be more instructive to see this in a picture. Fix a horizontal line L at, say,
y = −1. Every line through the origin intersects L at a unique point, except the horizontal
line. So if we discard the one point of P1

k corresponding to the horizontal line, the rest is
just a copy of L. If we had chosen a di�erent reference line L, for example, a vertical one,
then we get a similar description of P1 away from a single point. In fact, we can discard
any one point of P1, and the rest will be a copy of R.

Let us take n = 2. Then P2
k is the set of lines (through the origin) in k3. We can use the

same technique as before: �x a reference plane P at z = −1. Then most lines are uniquely
characterised by their intersection point with P . The only exceptions are the lines parallel
to z = −1, that is, the lines lying in the plane z = 0, which we miss. But these form a
small projective space P1. So we see that P2 = P t P1.
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1.2.3 Topology A one-dimensional subspace of kn+1 is spanned by a non-zero vector
(a0, . . . , an). Two vectors (a0, . . . , an) and (b0, . . . , bn) span the same subspace if and only
if there exists λ ∈ k× such that

(b0, . . . , bn) = (λa0, . . . , λan).

So, we can identify Pn with the equivalence classes of non-zero vectors (a0, . . . , an) where
two non-zero vectors are considered equivalent if one is a scalar multiple of the other. In
other words, we have

Pn
k = (An+1 \ 0)/scaling.

We denote the equivalence class of (a0, . . . , an) by [a0 : · · · : an].
We give Pn

k the quotient topology inherited from An+1 \ 0. That is, a set U ⊂ Pn
k is

open/closed if and only if its pre-image in An+1 \ 0 is open/closed.
For example, consider the subset Un of Pn

k consisting of [a0 : · · · : an] with an 6= 0. Its
preimage in the set of (a0, . . . , an) ∈ An+1 \ 0 with an 6= 0, which is a (Zariski) open set.
Hence Un is open in Pn

k . Likewise, U0, U1, . . . are also open. Note that we have

Pn
k = U0 ∪ · · · ∪ Un;

that is, the sets U0, . . . , Un form an open cover of Pn.
Consider a point [a0 : · · · : an] ∈ U0, so that a0 6= 0. By scaling by λ = a−1

0 , we have a
distinguished representative of this point of the form [1 : b1 : · · · : bn], which we can think
of as a point (b1, . . . , bn) ∈ An. Thus, we have a bijection φ0 : U0 → An, and similarly
φ1Ui → An.

1.2.4 Proposition (Charts of the projective space)

1. The bijections φi : Ui → An de�ned above are homeomorphisms.

2. The charts φi : Ui → An are mutually compatible, and hence give an atlas on Pn.

1. This is not obvious, also not hard, but also not very enlightening. Let us skip
this.

2. Do this! � (1)

1.2.5 Open and closed subvarieties Let X be an algebraic variety, and Y ⊂ X an
open or closed subset. Then Y inherits the structure of an algebraic variety. To get, the
atlas for Y , let φi : Ui → Vi be an atlas for X. For Y , we just take φi : Ui∩Y → φ(Ui∩Y ).
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Explain why this is an atlas for Y � (2)

1.2.6 Proposition (Closed subvarieties of projective space 1) Let F ∈ k[X0, . . . , Xn]
be a homogeneous polynomial. Let V (F ) ⊂ Pn be the set of points {[a0 : · · · : an] |
F (a0, . . . , an) = 0}. Then V (F ) is a closed subset.

Explain why V (F ) is well-de�ned (that is, the condition F (a0, . . . , an) = 0 does not
depend on the chosen representative of the equivalence class). Then explain why V (F )
is closed. � (3)

1.2.7 Proposition (Closed subvarieties of projective space 2) Let I ⊂ k[X0, . . . , Xn]
be a homogeneous ideal.

De�ne V (I) ⊂ Pn and show that it is a closed subset. � (4)

1.2.8 Proposition (Closed subvarieties of projective space 3) Conversely, letX ⊂
Pn be a closed subset. Then there exists a homogeneous ideal I ⊂ k[X0, . . . , Xn] such that
X = V (I).

Proof. Assume that X is non-empty. Let π : An+1 \ 0 → Pn be the quotient map. Let
C ⊂ An be the closure of π−1(X).

Prove that C is conical, that is, if x ∈ C then λx ∈ C for every scalar λ ∈ k. Conclude
using Homework 1 that C = V (I) for a homogeneous ideal I. Prove that X = V (I) in
Pn. � (5)

1.2.9 Example (Linear subspaces) Suppose I ⊂ k[X0, . . . , Xn] is generated by (ho-
mogeneous) linear equations. Then V (I) ⊂ An+1 is a sub-vector space W ⊂ An+1, and
V (I) ⊂ Pn is naturally the projective space ofW . We call such V (I) ⊂ Pn linear subspaces,
or �lines�, �planes�, etc. See that any two distinct lines in P2 intersect at a unique point,
and through any two distinct points in P2 passes a unique line.
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