1 Regular functions and regular maps 2

1.1 Regular functions and maps weeks

1.1.1 Proposition (regularity does not depend on the chart) Let X be an algebraic variety and $f: X \to k$ a function. Let $\phi_1: U_1 \to V_1$ and $\phi_2: U_2 \to V_2$ be two compatible charts such that x lies in both U_1 and U_2 . Denote the images of x in the two charts by v_1 and v_2 . Consider the functions $f \circ \phi_1^{-1} : V_1 \to k$ and $f \circ \phi_2^{-1} : V_2 \to k$. Then the first is regular at v_1 if and only if the second is regular at v_2 .

Prove this. $- (1)$

1.1.2 Definition (regular function on a variety) Let $f: X \to k$ be a continuous function. We say that f is regular at x if for some (equivalently, for every) chart $\phi: U \to V$ with $x \in U$, the function $f \circ \phi^{-1} : V \to k$ is regular at $\phi(x)$. We say that f is regular on X if it is regular at all points $x \in X$.

1.1.3 Definition (regular map between varieties) Let X and Y be algebraic varieties and $f: X \to Y$ a continuous map. We say that f is regular at a point $x \in X$ if for any (equivalently, for every) chart $\phi: U \to V$ with $x \in U$ and $\psi: U' \to V'$ with $f(x) \in U'$, the composite map

$$
\psi \circ f \circ \phi^{-1} \colon V \dashrightarrow V'
$$

is regular at $\phi(x)$.T The reason for the dashed arrow is that the domain of $\psi \circ f \circ \phi^{-1}$ may not be all of V, but only an open subset of V. To be precise, the domain is $\phi(U \cap f^{-1}(U'))$. But the domain contains $\phi(x)$, so it makes sense to talk about the regularity at $\phi(x)$.

See Figure [1](#page-1-0) for a picture (the bottom arrow should be dashed).

1.2 Examples week5

For quasi-affine varieties, these definitions do not add anything new.

1.2.1 Example Let $X = \mathbb{P}^1$. Set $f([X : Y]) = X/Y$. Then f is defined at all points except the point $[1:0]$, and is a regular function on $\mathbb{P}^1 \setminus \{[1:0]\}$. More generally, let $X = \mathbb{P}^n$ and let $F, G \in k[X_0, \ldots, X_n]$ be homogeneous polynomials of the same degree. The function

$$
[X_0:\cdots:X_n]\mapsto F(X_0,\ldots,X_n)/G(X_0,\ldots,X_n)
$$

is regular outside $V(G)$.

Prove this. $-$ (2)

Figure 1: A map is regular if it is regular with respect to the charts.

1.2.2 Example Let $X = \mathbb{P}^n$ and let F_0, \ldots, F_m be homogeneous polynomials of the same degree. Let $Z \subset \mathbb{P}^n$ be $V(F_0, \ldots, F_m)$. Then the formula

$$
[X_0:\cdots:X_n]\mapsto [F_0(X_0,\ldots,X_n):\cdots:F_m(X_0,\ldots,X_n)]
$$

defines a regular map from $X \setminus Z$ to \mathbb{P}^m .

Prove this. —- (3)

1.2.3 Example The natural map $\mathbb{A}^{n+1} - 0 \to \mathbb{P}^n$ is regular.

1.2.4 Example (Automorphisms of \mathbb{P}^n) Consider the $n + 1$ -dimensional k-vector space V spanned by X_0, \ldots, X_n . Pick any basis ℓ_0, \ldots, ℓ_n of this vector space. Then we have a regular map

$$
L: \mathbb{P}^n \to \mathbb{P}^n
$$

$$
[X_0 : \cdots : X_n] \mapsto [\ell_0 : \cdots : \ell_n].
$$

Explicitly, if we write

$$
\ell_i = L_{i,0}X_0 + \dots + L_{i,n}X_n
$$

and write our homogenous vector as a column vector, then the map is

$$
[X] \mapsto [LX].
$$

In other words, it is induced by the invertible linear map $L: V \to V$. As a result, it has an inverse, induced by the inverse of the matrix M :

$$
[X] \mapsto [MX].
$$

In this way, we get an action of $GL_n(k)$ on \mathbb{P}^n . But notice that a matrix L and a scalar multiple λL induce the same map on \mathbb{P}^n . So the action descends to an action of the group $PGL_n(k) = GL_n(k)/\text{scalars}.$

1.2.5 Example (regular functions on \mathbb{P}^1) The previous example gave examples of regular functions on (strict) open subsets of the projective space. It turns out that there are no regular functions on \mathbb{P}^n other than the constant functions!

Prove this for $n = 1$. Then deduce it for all n using that through any two distinct points in \mathbb{P}^n passes a projective line. $-$ (4)

1.3 Elementary properties of regular maps Theorem WEEK5

1.3.1 Proposition The identity map is regular. The composition of two regular maps is regular.

1.4 The Veronese embedding weeks weeks

Let $n \geq 1$, and consider the k-vector space of degree n homogeneous polynomials in X, Y. This vector space has dimension $n + 1$. Choose a basis, for example, let us take $X^n, X^{n-1}Y, \ldots, XY^{n-1}, Y^n$. Then we have a regular map

$$
v_n \colon \mathbb{P}^1 \to \mathbb{P}^n
$$

$$
[X : Y] \mapsto [X^n : \cdots : Y^n].
$$

1.4.1 Proposition (Veronese curves) The image of v_n is a closed subset of C of \mathbb{P}^n . If we denote the homogeneous coordinates on \mathbb{P}^n by $[U_0: \cdots: U_n]$, then C is cut out by the equations

$$
\{U_i U_j - U_k U_\ell \mid 0 \le i, j, k, l \le n \text{ and } i + j = k + \ell.
$$

Prove this. $-$ (5)

1.4.2 Proposition (Veronese curves continued) The map $v_n: \mathbb{P}^1 \to C$ is in fact an isomorphism.

Define the inverse map. $- (6)$

The proposition above generalises to all dimensions. Consider the k-vector space of degree *n* homogeneous polynomials in X_0, \ldots, X_m . It has dimension $N = \binom{n+m}{m}$ $\binom{+m}{m}$. Choosing a basis gives a map $\mathbb{P}^m \to \mathbb{P}^N$. The image of this map is a closed subvariety Z and the map $\mathbb{P}^m \to Z$ is an isomorphism. The equations of Z and the description of the inverse map are analogous to the $m = 1$ case, but (understandably) somewhat more cumbersome.

1.5 Example: Conics in \mathbb{P}^2

week₅

The 2-nd Veronese embedding maps \mathbb{P}^1 isomorphically onto the zero-locus of a degree 2 equation in \mathbb{P}^2 . More explicitly, the image of the map

$$
\mathbb{P}^1 \to \mathbb{P}^2
$$

$$
[X:Y] \mapsto [X^2:XY:Y^2]
$$

is the set $V(UW - V^2)$. Now recall a theorem from linear algebra. You may have proved this only over $\mathbb C$ or even over $\mathbb R$ (in which case, there are some signs you have to reckon with), but the same proof works for all algebraically closed fields of characteristic $\neq 2$.

1.5.1 Theorem (quadratic forms) Let k be an algebraically closed field of characteristic $\neq 2$ and let q be a quadratic form on a k-vector space V. Then there exists a basis X_0, \ldots, X_n for V such that

$$
q(X_0,\ldots,X_n)=X_0^2+\cdots+X_\ell^2.
$$

The form is called non-degenerate if $\ell = n$.

1.5.2 Corollary Let Q be a non-degenate conic in \mathbb{P}^2 . Then Q is isomorphic to \mathbb{P}^1 .

Proof. All non-degenerate conics are isomorphic to each other, and we know that at least one of them—the 2nd Veronese image of \mathbb{P}^{1} —is isomorphic to \mathbb{P}^{1} . \Box

1.5.3 Question What do the degenerate conics in \mathbb{P}^2 look like?