
1 Dimension week9

The idea of dimension is central to geometry, but making it rigorous involves serious algebra. It would

be a shame to avoid this notion, which is intuitively so clear. As a middle ground, we will take some

statements from algebra as given. We will learn three equivalent de�nitions of dimension, but we will not

prove the equivalence.

Let x ∈ X be a point. We will de�ne an integer dimxX, the dimension of X near x. At �rst, the

dependence on x seems strange, but it makes sense when you look at some examples. Suppose X ⊂ A3 is

the union of the xy-plane and the z axis (see Figure 1). Then dimpX = 2 if p is in the xy-plane (including
the origin) but 1 if p is on the z-axis minus the origin.

Figure 1: The union of a plane and a line

1.1 Krull dimension

The Krull dimension of X at x is the length n of a longest (strict) chain of irreducible closed subsets of

X, starting with {x}:
{x} ⊂ X1 ⊂ · · · ⊂ Xn ⊂ X.

If X is irreducible, then the longest chain must end with X. (In that case, a non-trivial fact is that all

maximal chains have the same length.)

Let us use the temporary notation krdim to denote Krull dimension.

1.1.1 Proposition Let X be irreducible and Y ⊂ X a proper closed subset. For any y ∈ Y , we have
krdimyY < krdimyX.

1.2 Slicing dimension

The slicing dimension of X at x is the smallest number n such that there exists an open subset U ⊂ X
containing x and regular functions f1, . . . , fn on U such that the common vanishing set of {f1, . . . , fn} on
U is only the point x.

Informally, the slicing dimension is the smallest number of functions we need to slice down the space

to a single point x. Let us use the temporary notation sldim to denote the slicing dimension.
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1.2.1 Proposition (The Principal Ideal Theorem) Let X be any variety, f a regular function on

X, and Y = V (f) the zero locus of f . For any y ∈ Y , we have sldimyY ≥ sldimyX − 1.
Slogan: Slicing by 1 function cuts down the dimension by at most 1.

There are instances where the inequality is strict.

1.3 Transcendental dimension

LetX be irreducible. The transcendental dimension ofX is the transcendence degree of the �eld of rational

functions k(X) over the base-�eld k. Recall that the transcendence degree of a �eld extension L/k is the

largest number n of elements f1, . . . , fn ∈ L which are algebraically independent over k; that is, they do

not satisfy any polynomial equation with coe�cients in k. In Algebra 2, you mostly studied extensions

of transcendence degree 0, also called algebraic extensions, in which every f ∈ L satis�es a polynomial

equation with coe�cients in k. (A non-trivial fact is that all maximal algebraically independent sets have

the same size.)

Let use the temporary notation trdim to denote the transcendental dimension. Note that this de�nition

does not use the point x ∈ X, but it assumes that X is irreducible.

1.3.1 Proposition Let f : X → Y be a dominant map of irreducible varieties. Then trdimY ≤ trdimX.

1.4 All de�nitions are equivalent

All three are reasonable de�nitions of dimension, so the following is a great relief.

1.4.1 Theorem (krdim = sldim = trdim) Let X be an algebraic variety and x ∈ X a point. Then we

have

krdimxX = sldimxX.

Furthermore, if X is irreducible, then both are equal to trdimX.

We denote the dimension by dimxX. The theorem says that if X is irreducible then this number

does not depend on x. If X is reducible, then it is easy to see (using the Krull dimension) that dimxX
is the maximum of the dimensions of the irreducible components of X that contain x. A variety is

equidimensional if dimxX is the same for all x ∈ X. This is the same as saying that all irreducible

components of X have the same dimension.

We will not prove this theorem. Its proper place is a course in commutative algebra. The famous

book �Commutative Algebra� by Atiyah and MacDonald has an excellent exposition (in the last chapter),

where they also give a fourth equivalent de�nition.

1.5 Applications

1.5.1 Theorem (Dimension of product) For irreducible X and Y , we have

dim(X × Y ) = dimX + dimY.

Proof. We �rst use Krull dimension to get an inequality. Let m = dimX and let x ∈ X be arbitrary. We

have a (strict) chain of irreducible closed subsets

{x} ⊂ X1 ⊂ · · · ⊂ Xm = X,

yielding a chain of irreducible closed subsets

{x} × Y ⊂ X1 × Y · · · ⊂ Xm × Y = X × Y.
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Let n = dimY and let y ∈ Y be arbitrary. Then we have a (strict) chain of irreducible closed subsets

{y} ⊂ Y1 ⊂ · · · ⊂ Yn = Y.

If we take the product with {x} and append it to the chain above, we get a (strict) chain

{(x, y)} ⊂ {x} × Y1 · · · ⊂ {x} × Yn ⊂ X1 × Y ⊂ · · · ⊂ Xm × Y.

As a result, we have

krdim(X × Y ) ≥ m+ n.

(We don't get equality because we haven't proved that there cannot be a longer chain).

For the opposite inequality, we use slicing dimension. There existm regular functions in a neighborhood

U of x on X whose zero locus is x. There exist n regular functions in a neighborhood V of y on Y whose

zero locus is y. In U × V , the m+ n functions together have zero locus (x, y). As a result, we have

sldim(X × Y ) ≤ m+ n.

(We don't get equality because we haven't proved that a smaller set of functions does not su�ce.)

But since sldim = krdim, we have proved what we wanted.

1.5.2 Examples The dimension of A1 is 1 (you should be able to check this using any of the de�nitions).

As a result, the dimension of An is n. Consequently, the dimension of Pn is n and the dimension of Gr(m,n)
is m(n−m).

1.5.3 Theorem (Hypersurfaces in a�ne space) Let f ∈ k[x1, . . . , xn] be non-zero. Then V (f) ⊂
An is equidimensional of dimension (n − 1). Conversely, any closed X ⊂ An which is equidimensional of

dimension (n− 1) has the form V (f) for some f ∈ k[x1, . . . , xn].

(1) � Prove this. One direction is easy and applies to any irreducible variety, not just An. The

converse is speci�c to An, and will use that every irreducible element of k[x1, . . . , xn] de�nes a prime

ideal, which in turn is a consequence of the unique factorisation property for the polynomial ring.

1.5.4 Theorem (Hypersurfaces in projective space) Let F ∈ k[X0, X1, . . . , Xn] be homogeneous

and non-zero. Then V (F ) ⊂ Pn is equidimensional of dimension (n − 1). Conversely, any closed

X ⊂ Pn which is equidimensional of dimension (n − 1) has the form V (F ) for some homogeneous

F ∈ k[X0, . . . , Xn].

(2) � Prove this by reducing this to the previous statement using cones.

1.5.5 Theorem (Slicing by hypersurfaces) Let X ⊂ Pn be closed of dimension r ≥ 1 and let

F ∈ k[X0, . . . , Xn] be homogeneous of positive degree. Then X ∩ V (F ) is non-empty and of dimension at

least r − 1.

(3) � Prove this by reducing to the a�ne cone and applying the principal ideal theorem at the origin.

1.5.6 Corollary In Pn, a collection of at most n homogeneous forms (of positive degree) have a non-

empty intersection.

1.5.7 Theorem (No maps from Pn to Pm for n > m) Suppose n > m. Then there are no non-

constant regular maps from Pn to Pm.

The proof relies on the following fact about maps from one projective space to another.
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1.5.8 Proposition Let U ⊂ Pn be an open subset and φ : U → Pm a regular function. Then there exist

homogeneous functions F0, . . . , Fm ∈ k[X0, . . . , Xn] of the same degree such that they have no common

zero on U and for every u ∈ U , we have

φ(u) = [F0(u) : · · · : Fm(u)]

Proof. A conceptual proof of this fact uses the classi�cation of line bundles on Pn. Here is more elementary

(but clumsy) proof.

Pick some u ∈ U . We �rst show that φ has the required form in some open subset containing u.
Without loss of generality, assume that u and φ(u) lie in the charts of the projective spaces here the 0-th

coordinate is non-zero. Then u = [1 : u1 : · · · : un] and φ(u) = [1 : v1 : · · · : vm]. By de�ntion of a regular

map, there exist rational functions gi(x1, . . . , xn) for i = 1, . . . ,m such that

φ([1 : x1 : · · · : xn]) = [1 : g1(x1, . . . , xn) : · · · : gm(x1, . . . , xn)]

for all x = [1 : x1 : · · · : xn] in some open subset of U containing u. Multiply this expression for φ by a

large enough polynomial so that

φ([1 : x1 : · · · : xn]) = [f0(x1, . . . , xn) : · · · : fm(x1, . . . , xn)],

here the fi are polynomials. Choose d ≥ deg fi for all i. Homogenise the fi with respect to x0 to make

them homogeneous of degree d. That is, set Fi(x0, . . . , xn) = xd0f(x1/x0, . . . , xn/x0). Then φ has the form

φ([x0, . . . , xn]) = [F0(x0, . . . , xn) : · · · : Fm(x0, . . . , xn)]

for all x = [x0 : · · · : xn] in some open set containing u. We may assume that the Fi do not share a

common factor (if they do, cancel it out).

We now show that the Fi cannot have a common zero on U , and therefore, the expression φ = [Fi]
holds on all of U . Suppose x ∈ U is such that all Fi vanish at x. We show that then the Fi share a common

factor. By the argument before, there must be an alternate expression φ = [Gi] in a neighborhood of x in

which some Gi(x) is non-zero. Suppose G0(x) 6= 0. Since we have [Fi] = [Gi] on the open set where both

are de�ned, we have FiGj = GiFj . In particular, we have F0Gj = G0Fj . Let P be a prime factor of F0

such that P (x) = 0 (all factors of homogeneous polynomials are homogeneous). Then P divides F0Fj , but

P cannot divide G0, as G0(x) 6= 0. So P divides Fj . Since this is true for all j, we get a common factor

P in all Fi.

1.5.9 Proof of Theorem 1.5.7 Suppose we have a regular map φ : Pn → Pm. By Proposition 1.5.8,

there exist F0, . . . , Fm such that they have no common zero and φ = [F0 : · · · : Fm]. By Corollary 1.5.6

this is impossible if m < n.

1.6 Dimension of �bers and dimension counting

1.6.1 Theorem (Dimensions of �bers) Let f : X → Y be a dominant map between irreducible

varieties. Then for every x ∈ X with y = f(x), we have

dimxf
−1(y) ≥ dimX − dimY.

Furthermore, there exists a non-empty open U ⊂ Y such that for every y ∈ Y , the �ber f−1(y) is

non-empty and equidimensional of dimension dimX − dimY .
That is, for almost all y ∈ Y , the dimension of the �ber is the di�erence in the dimensions, as expected.

But there may be some points in Y whose �ber has a di�erent dimension. But in this case, the dimension

can only be bigger, not smaller.

The proof of the theorem uses transcendental dimension. The proof is straightforward, but a bit

technical, so I am skipping it. See Chapter 1, Section 6.3 of Shafarevich for the proof.

4



1.6.2 Example Let us construct an example where the dimension does actually jump. Consider

f : A2 → A2

de�ned by

f(x, y) = (xy, y).

For all (a, b) such that b 6= 0, the �ber is a single point (dimension 0). But over the point (0, 0), the �ber
is a copy of A1 (dimension 1).

1.6.3 Dimension counting Theorem 1.6.1 is used very often in �nding dimensions. Here is a typical

example.

Let An×n be the a�ne space of n× n matrices, and given r ∈ {0, 1, . . . , n}, let Xr ⊂ An be the set of

matrices of rank at most r. The subset Xr is Zariski closed (it is the vanishing locus of all (r+1)×(r+1))-
minors, and it is not hard to check that it is irreducible. What is its dimension?

Consider P ⊂ An×n × Gr(n − r, n) consisting of (M,V ) (where M is an n × n matrix and V ⊂ kn is

an n− r dimensional subspace) such that Mv = 0 for all v ∈ V . That is, the restriction of the linear map

M : kn → kn to V is zero.

Claim 1: P is a Zariski closed subset.

(4) � Prove this. But this is less fun than the next two claims, so assume this and do those �rst.

Claim 2. The dimension of P is r(2n− r).

(5) � Study the �bers of P → Gr(n− r, n) to prove this.

Claim 3. The dimension of Xr is r(2n− r).

(6) � Study the image and the �bers of P → An×n and prove this.
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