
1 Local rings and tangent spaces week10

Let X be an algebraic variety and x ∈ X a point. Let us describe a construction that lets us study the

geometry of X near x using algebra. We will construct a ring OX,x called the local ring of X at x. This
will be non-trivial even when X is not a�ne, and will contain all information about the local geometry of

X near x.

1.1 The ring of germs

A germ of a regular function at x is an equivalence class of (U, f) where U ⊂ X is an open set containing

x and f is a regular function on U . Two pairs (U, f) and (V, g) are equivalent if there is an open set W
containing x with W ⊂ U and W ⊂ V such that f |W = g|W .

The idea is that only the behaviour of the function near x matters. The idea is not unique to algebraic

geometry; it is useful in any geometric context.

Let OX,x be the set of germs of regular functions at x. There is an obvious addition and multiplication

of germs, which makes OX,x a ring and there is an obvious copy of k inside this ring, which makes it a

k-algebra. Note that if U ⊂ X is an open subset containing x, then OX,x = OU,x. The local ring gives

a convenient language to talk about statements of the form �. . . . holds in some open set containing x�
without being explicit about the open set. By abuse of notation, when we specify elements of OX,x, we

only specify the f and drop the U .
The de�nition of OX,x is very similar to the de�nition of rational functions (if X is irreducible), except

that all the open sets in question are supposed to contain the point x. Here is the precise relationship.

1.1.1 Proposition (Connection with the fraction �eld) Let X be irreducible. Then we have a

natural inclusion OX,x ⊂ k(X) and OX,x is the set of rational functions on X which are de�ned at x.

Proof. Skipped.

In particular, if X is a�ne and irreducible, it is easy to calculate the ring of germs.

1.1.2 Proposition (Description for a�nes 1) Let X be irreducible and a�ne. Then the ring

OX,x ⊂ frac k[X] is given by

OX,x =

{
f

g
| f ∈ k[X], g ∈ k[X], g(x) 6= 0.

}
That is, in the denominator, we are only allowed to have functions which are not zero at x.

Proof. Skipped.

Here is another explicit description of the local ring for an a�ne.

1.1.3 Proposition (Description for a�nes 2) Let X ⊂ An be the closed subset with I(X) =
〈f1, . . . , fr〉. Let x = (a1, . . . , an) ∈ X. Then OX,x is the quotient of OAn,x by the ideal generated by

f1, . . . , fr.

(1) � Prove this.
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1.1.4 Functoriality The construction of the local ring is functorial. That is, if we have a regular map

f : X → Y such that y = f(x), then pull-back of functions induces a k-algebra homomorphism

f∗ : OY,y → OX,x.

If f is a local isomorphism�that is, if there exist opens U ⊂ X and V ⊂ Y containing x and y, respectively,
such that f induces an isomorphism f : U → V�then f∗ is an isomorphism.

Let m ⊂ OX,x be the set of germs f such that f(x) = 0. Equivalently, let m be the kernel of the map

OX,x → k

that sends f to f(x). Then m is a maximal ideal. It is not hard to see that this is the only maximal ideal

of OX,x.

1.1.5 Proposition (Locality) The ringOX,x has a unique maximal idealm, which consists of functions

that vanish at x.

Proof. It is enough to show that every f ∈ OX,x with f 6∈ m is a unit in OX,x. But if f 6∈ m then f(x) 6= 0,
and hence f is invertible in some neighborhood of x.

A local ring is a ring with a unique maximal ideal. We just proved that OX,x is a local ring. Local rings

are intensely studied in commutative algebra, mostly because they arise as rings of germs in geometry.

1.2 Tangent space

We will de�ne the tangent space to X at x as the set of tangent vectors to X at x. There are many

equivalent ways to think about tangent vectors.

1.2.1 In�nitesimal curves A tangent vector to X at x is a k-algebra homomorphism

v : OX,x → k[ε]/ε2.

Let us understand this concretely when X is a�ne, say X ⊂ An closed. Let I(X) = 〈f1, . . . , fr〉. Then
X is the set of k-valued solutions of the system of equations

f1(x1, . . . , xn) = 0, . . . , fr(x1, . . . , xn) = 0. (1)

1.2.2 Proposition (In�nitesimal curves) Let x = (a1, . . . , an) ∈ X. We have a bijection be-

tween k-algebra homomorphisms OX,x → k[ε]/ε2/ and k[ε]/ε2-valued solutions of the system (1) based at

(a1, . . . , an), that is, solutions of the form (a1 + b1ε, . . . , an + bnε).

To go from a homomorphism v : OX,x → k[ε]/ε2 to a solution, look at the images of xi. To check that

the solution is indeed based at (a1, . . . , an), note that if v(xi) = a′i + εbi, then v(xi − a′i) is nilpotent,
hence not a unit, but if a′i 6= ai then xi − a′i is a unit in OX,x.

To go from a solution to a homomorphism, send xi to ai + εbi and then check that this extends

to a homomorphism on all of OX,x. You will have to divide, but division is easy in k[ε]/ε2�anything

with a non-zero constant term is invertible.

(2) � Complete the sketch above.

In the proof of 1.2.2, we saw that the �constant term� of v(f) must be f(x), that is v must have the

form

v(f) = f(x) + ε · δ(f)

2



where δ : OX,x → k is some function. Since v is a ring homomorphism, it satis�es

v(f + g) = v(f) + v(g) and v(fg) = v(f)v(g).

In terms of δ, these become

δ(f + g) = δ(f) + δ(g) and δ(fg) = f(x)δ(g) + g(x)δ(f). (2)

Furthermore, for a constant function c, we have v(c) = c, and hence

δ(c) = 0. (3)

1.2.3 Derivations Equation (2) should remind you of the sum and product rule for derivatives. Maps

δ : OX,x → k satisfying these equation are called derivations. If they also satisfy equation (3), then they

are called k-derivations or derivations over k. This indicates that the elements of k in OX,x are to be

treated as �constants�. Denote by Derk(OX,x) the set of k-derivations of OX,x. Note that derivations can

be added and multiplied by scalars (elements of k), which makes Derk(OX,x) a k-vector space.
We saw that a k-algebra homomorphism v : OX,x → k gives a k-derivation δ : OX,x → k. Conversely, it

is easy to check that a k-derivation δ : OX,x → k gives a k-algebra homomorphism v(f) = f(x) + ε · δ(f).
Thus, a tangent vector to X at x is equivalent to a k-derivation of OX,x.

Geometrically, the correspondance between curves and derivations is as follows. A curve in a space

gives a recipe to di�erentiate a function; this is the directional derivative of the function in the direction of

the curve. But to de�ne the directional derivative, we don't need an actual curve, an �in�nitesimal curve�

will do. There is no way (that I know of) to make this precise in (di�erential) geometry, but it can be

made perfectly precise in algebraic geometry using the ring k[ε]/ε2.

1.2.4 Zariski tangent space Letm ⊂ OX,x be the maximal ideal. A derivation δ : OX,x → k restricted
to m gives a k-linear map

δ : m→ k

that takes m2 to 0, and hence gives a map

δ : m/m2 → k.

Conversely, any k-linear map w : m/m2 → k gives a derivation δ : OX,x → k de�ned by

δ(f) = w(f − f(x)),

where f(x) denotes the constant function on X with value f(x). Thus, we get an isomorphism of vector

spaces

Derk(OX,x) ∼= Hom(m/m2, k).

The space Hom(m/m2, k) is called the Zariski tangent space and m/m2 is called the Zariski cotangent

space to X at x.

1.2.5 Computing the Zariski (co)tangent space Let X ⊂ An be a�ne with I(X) = 〈f1, . . . , fr〉
and let x = (a1, . . . , an) be a point of X. We know that OX,x is the quotient of OAn,x by 〈f1, . . . , fr〉. Let
us denote the maximal ideal of OAn,x by m. Then m is generated by 〈x1 − a1, . . . , xn − an〉 and its square

m2 is generated by the pairwise products. As a result, m/m2 has the k-basis (x1 − a1, . . . , xn − an). To

get m/m2, we need to further quotient by the polynomials f1, . . . , fr. Let f1, . . . , f r denote the images of

f1, . . . , fr in m/m2. Then

m/m2 = 〈x1 − a1, . . . , xn − an〉/〈f1, . . . , f r〉.
But what are these mysterious f1, . . . , f r. They are not mysterious at all! We have

f i =
∂fi
∂x1

(a1, . . . , an) · (x1 − a1) + · · ·+
∂fi
∂xn

(a1, . . . , an)(xn − an).
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(3) � Prove the assertion above.

1.2.6 Examples (Hypersurfaces)

(4) � Compute the dimension of the tangent space of (a) V (xy − z2) ⊂ A3 at (0, 0, 0), (b) V (XY −
Z2) ⊂ P2 at [0 : 1 : 0].

Let TxX denote the tangent space of X at x.

1.2.7 Proposition (Dimension of the tangent space) We have dimTxX ≥ dimxX.

Proof. (Sketch) I will give a proof using a result in commutative algebra called Nakayama's lemma and a

fact about local rings. Neither of them are di�cult once you develop the theory, but (again) their proper

place is a course in commutative algebra.

Nakayama's lemma says the following: let R be a Noetherian local ring with maximal ideal m and

let M be a �nitely generated R-module. Consider m1, . . . ,mn ∈ M and their images m1, . . . ,mn in the

R/m-vector space M = M/mM . If m1, . . . ,mn span M as a vector space, then m1, . . . ,mn generate M
as an R-module.

Let us apply it to R = OX,x; its maximal ideal consists of the germs that vanish at x. It turns out

that R is Noetherian. We take M = m itself. Let n = dim m/m2 and let m1, . . . ,mn ∈ m be such that

their images in m/m2 form a basis. Then, by Nakayama's lemma, m1, . . . ,mn generate the ideal m.

We now �spread out� our knowledge from the germs OX,x to a Zariski neighborhood of x. Let U ⊂ X
be a small enough a�ne neighborhood of x such that m1, . . . ,mn are represented by functions on U . The
maximal ideal of OX,x is the set of germs vanishing at x and we know that m1, . . . ,mn generate this ideal.

If U is small enough, we can show that the functions m1, . . . ,mn generate the (maximal) ideal of k[U ]
consisting of functions vanishing at x. As a result, the zero locus of the n regular functions m1, . . . ,mn

on U is the point x. Using slicing dimension, we conclude that n ≥ dimxX, which is what we set out to

prove.

1.2.8 De�nition (Non-singularity) We say that X is smooth or non-singular at x if

dimxX = dim TxX.

1.2.9 Examples A�ne spaces, projective spaces, and Grassmannians are smooth at all points. So are

their open subsets.

1.2.10 Examples (Hypersurfaces) X = V (f) ⊂ An is smooth at x if and only if at least one of the

partial derivatives of f is non-zero at x.

(5) � Prove this.

1.2.11 Examples (Hypersurface) The Fermat cubic V (X3+Y 3+Z3) ⊂ P2 is smooth at every point

on it.

(6) � Prove this.
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