
1 Completeness of projective varieties week11

I have repeatedly asserted that projective varieties are the algebro-geometric analogue of compact topo-

logical spaces. In one sense, this is evident: over C, the projective varieties are compact in the Euclidean

topology. But we can abstract out a nice property of compact topological spaces and show that projective

varieties satisfy this property (over any �eld).

1.1 Completeness

Recall that a continuous map of topological spaces f : X → Y is closed if it maps closed sets to closed

sets. Not all continuous maps are closed; take for example, the map f : A2 → A1 de�ned by f(x, y) = x.
It sends the closed set V (xy − 1) to the non-closed set A1 \ {0}.

1.1.1 De�nition (Complete variety) We say that a variety X is complete if for any Y , the projection
map

π : X × Y → Y

is closed.

1.2 Proposition (Closed image)

Let X be a complete variety, Y be a separated variety, and f : X → Y a regular map. Then the image

f(X) is closed in Y .

Proof. Consider the graph Γf = {(x, f(x)) | x ∈ X} ⊂ X × Y . Note that this is the pre-image of the

diagonal ∆ ⊂ Y × Y under the map (f, id) : X × Y → Y × Y . Since Y is separated, Γf is closed. Since

X is complete, the projection of Γf to Y is closed. But this projection is just the image of f .

1.3 Theorem (Projective varieties are complete)

Let X be a projective variety. Then X is complete. That is, for any Y , the projection map π : X×Y → Y
is closed.

1.3.1 Remark Why is this a big deal? Let us consider an example, one we have seen in the homework.

Let V be the vector space of homogeneous polynomials of degree d in X0, X1, X2 and let ∆ ⊂ V be the

set of polynomials F that have a singularity at some point p ∈ P2. (This means that all three partials of

F vanish at p). That is,

∆ = {F | ∃p such that
∂F

∂Xi
(p) = 0 for i = 0, 1, 2}.

We want to prove that ∆ ⊂ V is closed. Let us eliminate the existential quanti�er by considering the set

Z = {(F, p) | ∂F
∂Xi

(p) = 0 for i = 0, 1, 2.} ⊂ V × P2.

It is easy to see that Z is closed: it is de�ned by polynomial equations in the coe�cients of F and the

coordinates of p. By de�nition, ∆ is the image of Z under the projection map V × P2 → V . Since P2 is

projective, hence complete, the image is closed.

The upshot is that Theorem 1.3 allows us to eliminate existential quanti�ers as long as they are

quanti�ed over a complete variety. Note that the resulting statements about closedness can be extremely

non-trivial. The fact that ∆ ⊂ V is closed means that there is a system of polynomials in the coe�cient

of F that detects whether F has a singularity. (In the homework, you proved that ∆ has codimension 1,

which shows that the system consists of just one equation.)

1



1.3.2 Examples Here are some more examples of sets that we can show are closed by the same rea-

soning.

1. The subset of Gr(2, 4)×Gr(2, 4) consisting of (V,W ) such that V ∩W is non-zero.

2. Let PV be the projective space of surfaces of degree d in P3. The subset of PV consisting of surfaces

that contain a line.

(1), (2) � Using Theorem 1.3, prove that the two sets mentioned above are closed.

1.3.3 Remark Intuitively, what does it mean that π : X × Y → Y is closed? Suppose you have a

family of points (xt, yt) ∈ X × Y such that limt→0 yt exists in Y . Then limt→0 xt must exist in X. That

is, �points cannot escape to in�nity in the X-direction.�

We have the following very useful criterion for irreducibility in the context of closed maps.

1.4 Theorem (Closed maps and irreducibility)

Let π : X → Y be a surjective closed map of varieties such that Y is irreducibile and all �bers of π are

irreducible of the same dimension. Then X is irreducible.

Proof. This is pure topology. Let n be the dimension of the �bers of π. Suppose X =
⋃
Xi is the

decomposition of X into irreducible components and let πi : Xi → Y be the restriction of π. By the

theorem on the dimension of �bers, there exists a non-empty open U ⊂ Y such that dim π−1i (y) is

constant as y ∈ U (caution: it may be the case that π−1i (y) is empty for some i; let us say that the

empty set has dimension −1.) Let ni = dim π−1i (y) for y ∈ U . Now, for some y ∈ U , we know that

π−1(y) =
⋃

i π
−1
i (y) has dimension n, so we must have n = ni for some i, say for i = 1. Since π is closed

and π(X1) contains U , we must hae π(X1) = Y . Thus by the theorem on the dimension of �bers, π−11 (y)
is itself non-empty of dimension at least n for every y ∈ Y . But we know that π−1(y) =

⋃
i π
−1
i (y) is

irreducible of dimension n. It follows that π−1i (y) ⊂ π−11 (y) for all i and hence π−1(y) = π−11 (y). Since

this holds for all y, we conclude that X = X1. That is, X is irreducible.

1.4.1 Example

(3), (4) � Using Theorem 1.4, prove that the two sets in Examples 1.3.2 are irreducible.

1.5 Proof of Theorem 1.3

We begin with a series of reductions.

1. If P × Y → Y is closed and X ⊂ P is a closed subset, then X × Y → Y is also closed. Therefore, it

su�ces to treat the case of P = Pn.

2. The map P ×Y → Y is closed if and only if there is an open cover {Ui} of Y such that P ×Ui → Ui

is clossed for all i. Hence, by passing to an a�ne cover, it su�ces to treat the case where Y is a�ne.

3. If Y ⊂ A is closed then the map P ×Y → Y is closed if and only if P ×A→ A is closed. Therefore,

it su�ces to treat the case where Y is an a�ne space.

By the three reductions above, we are reduced to proving that the map

Pn × Am → Am
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is closed. Let π : Pn×Am → Am be the projection onto the second factor and let Z ⊂ Pn×Am be a closed

set. We want to prove that π(Z) is closed; we prove that its complement is open.

What does Z look like? Choose homogeneous coordinates [X0 : · · · : Xn] on Pn and coordinates

t1, . . . , tm on Am. Then a closed set such as Z is the zero locus of a system of equations

Fi(X0, . . . , Xn, t1, . . . , tm) = 0, for i = 1, . . . , r.

where each Fi is homogeneous in the X-coordinates (but not necessary in the t) coordinates. The set

π(Z) is the set of (t1, . . . , tm) for which the system has a non-zero solution and its complement is the

set for which it does not have a non-zero solution. We must prove that if it does not have a non-zero

solution for a particular choice of (t1, . . . , tm) = (a1, . . . , am), then there is a Zariski open subset around

(a1, . . . , am) such that for any (t1, . . . , tm) in this open set, the system does not have a non-zero solution.

It follows from the Nullstellensatz that if a system of polynomial equations in Xi's has no non-zero solution

then the radical of the ideal generated by the polynomials must be the ideal (X0, . . . , Xn). Thus, there

exists a large enough N such that any monomial in Xi lies in the ideal of k[X0, . . . , Xn] generated by

Fi(X0, . . . , Xn, a1, . . . , am). Let us prove that the same is true if we replace (a1, . . . , am) by any point in

an open neighborhood.

Let V` denote the vector space of homogeneous polynomials of degree ` in X0, . . . , Xn. This is a �nite

dimensional space. Suppose the X-degree of Fi is di. For any t = (t1, . . . , tm) ∈ Am, consider the map

Mt :
r⊕

i=1

VN−di → VN

de�ned by

(g1, . . . , gr) 7→ F1(X0, . . . , Xn, t1, . . . , tm)g1 + · · ·+ Fr(X0, . . . , Xn, t1, . . . , tm)gr.

The domain and codomain of Mt are �nite dimensional k-vector spaces and hence, after choosing bases,

we can represent Mt by a matrix. The entries of this matrix may depend on t but they are polynomial

functions of t.
Let ν = dim VN . We know that for t = (a1, . . . , am), the matrix of Mt has rank ν, because the map

Mt is surjective. Thus, some ν × ν minor of Mt is non-zero at t = (a1, . . . , am). Let U ⊂ Am be the open

subset containing (a1, . . . , am) where this minor is non-zero. Then for any t ∈ U , the matrix of Mt has

rank ν, which means that Mt is surjective. But this means that the system of equations Fi = 0 has no

non-zero solutions in X0, . . . , Xn for any t ∈ U . The proof is now complete.

(5) � To understand the proof, consider Z ⊂ P1 × A2 de�ned by the equations

X2 − sY 2 = 0 and sX + tY = 0.

Notice that the point (s, t) = (0, 1) is not in the image, and go through the proof to produce an open

subset around (0, 1) whose points are not in the image.

1.6 Consequences

1.6.1 Theorem (No global functions) Let X be a connected projective variety. Then the only

regular functions on X are the constant functions.

Proof. A regular function is a regular map f : X → A1 and hence it gives a regular map f : X → P1.

Since X is complete, the image of f is closed. But the only closed subsets of P1 are P1 and �nite sets.

By construction, the image of f misses the point at in�nity [1 : 0], so the image must be a �nite set. But

X is connected, so the image is also connected, and hence must be a single point. Then f is a constant

function.

3


	Completeness of projective varieties-week11
	Completeness
	Definition (Complete variety)

	Proposition (Closed image)
	Theorem (Projective varieties are complete)
	Remark
	Examples
	Remark

	Theorem (Closed maps and irreducibility)
	Example

	Proof of Theorem 1.3
	Consequences
	Theorem (No global functions)



