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1 Affine algebraic sets

1.1 Affine space

The objects of study in algebraic geometry are called algebraic varieties. The building blocks for general
algebraic varieties are certain subsets of the affine space. Let us first recall affine space.

Let k be a field and let n be a non-negative integer. The affine n-space over k, denoted by A} is the
set of n-tuples aq,...,a, whose entries a; lie in k. Thus, A} is nothing but the product £". The product
k™ has quite a bit of extra structure—it is a k-vector space, for example—but we wish to forget it. That
is the reason for choosing different notation. In particular, the zero tuple does not play a distinguished
role.

1.2 Affine algebraic set

Let k[z1,...,z,] denote the ring of polynomials in variables z1,...,x, and coefficients in k. An affine
algebraic subset of the affine space A} is the common zero locus of a set of polynomials. More precisely,
aset S C A} is an affine algebraic subset if there exists a set of polysomials A C k[z1,...,2,] such that

S={a€A}| f(a)=0forall fe A}.
1.2.1 Definition (Vanishing locus) Given A C k[x1,...,z,], the vanishing locus of A, denoted by

V(A) is the set
V(A)={a €Ay | f(a) =0forall fe A}.

— Thus the affine algebraic sets are precisely the sets of the form V(A) for some A.

1.2.2 Examples/non-examples The following are affine algebraic sets
1. The empty set
2. Entire affine space
3. Single point
Proof. Done in class. O

The following are not affine algebraic sets
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1. The unit cube in AR

2. Points with rational coordinates in A

Proof. DIY. O

1.3 Ideals WEEKL:

Let R be a ring. Recall that a subset I C R is an ideal if it is closed under addition and multiplication
by elements of R. Given any subset A C R the ideal generated by A, denoted by (A) is the smallest ideal
containing A. This ideal consists of all elements r of R that can be written as a linear combination

r=a171 + - AmTm,

where a; € A and r; € R.

1.3.1 Proposition Let A C k[z1,...,zy,]. Then we have V(A) =V ((A)).

Proof. Done in class. O

1.4 Noetherian rings and the Hilbert basis theorem WEEK1:

In our definition of V(A), the subset A may be infinite. But it turns out that we can replace it by a finite
one without changing V' (A). This is a consequence of the Hilbert basis theorem, which, in turn, has to do
with a fundamental property of rings.

We begin with a simple observation.

1.4.1 Proposition Let R be a ring. The following are equivalent
1. Every ideal of R is finitely generated.

2. Every infinite chain of ideals
IlCIQCIg:,C"'

stabilises.

Proof sketch: To prove that (1) implies (2), consider the ideal I which is the union of all the I,,.
It is finitely generated, and its finitely many generators must lie in I, for some n. Then the chain
stabilises after this n.

To prove that (2) implies (1), prove the contrapositive. Let I be an ideal that is not finitely
generated, and construct a chain.

1.4.2 Definition (Noetherian ring) A ring R satisfying the equivalent conditions of Proposition
is called Noetherian.
1.4.3 Examples/non-examples The following rings are Noetherian
1. R=7Z
2. R a field.
Proof. All ideals here can be generated by 1 element. O

The ring of continuous functions on the interval is not Noetherian. 7/ +begin, oof. Let I, be the set of
functions on [0, 1] that vanish on [0,1/n]. This forms an increasing chain of ideals that does not stabilise.
#+endproof



1.4.4 Proposition (Quotients of Noetherian rings) If R is Noetherian and I C R is any ideal,
then R/I is Noetherian.

Use the correspondence theorem between ideals of R containing I and ideals of R/1.

1.4.5 Theorem If R is Noetherian, then so is R[]

e Proof Assume R is Noetherian, and let I C R[z] be an ideal. We must show that I is finitely
generated. The basic idea is to use the division algorithm, while keeping track of the ideals formed
by the leading coefficients.

For every non-negative integer m, define

Jm = {Leading coeff (f) | f € I, f #0, deg(f) <m}U{0}
We make the following claims.

1. J,, is an ideal of R.
2. I C Jmt1-

DIY.

Since R is Noetherian, the chain J; C Jy C --- stabilises; say Jy, = Jppe1 = -+ Let S; be a finite
set of generators for J;, and for a € S;, let p, € I be a non-zero element of degree at most ¢ whose
leading coefficient is a. We claim that the (finite) set {p, | @ € S U---U S;,} generates I.

Proof. Let G = {py | a € S1U---US,,}. By construction, this is a subset of I, so the ideal it generates
is contained in I. We remains to prove that every f € [ is a linear combination of elements of G. It
will be convenient to set S,, = S,, for all n > m.

We induct on the degree of f (leaving the base case to you). Suppose the degree of f is n and the
statement is true for elements of degree less than n. By construction, the leading coefficient of f is
an R-linear combination of elements of S,,, say

Let n; be the degree of pg,; then by construction n; < n. Consider the linear combination g =
> cips;x™ ™. See that g lies in I, has degree n, the same leading coefficient as f, and is an R[x]-
linear combination of elements of G. So f — g € I has lower degree. By inductive hypothesis, f — g
is an R[z]-linear combination of elements of G, and hence so is f. O

1.4.6 Corollary (Hilbert basis theorem) k[xi,...,z,] is Noetherian.

Proof. Induct on n. O

1.4.7 Corollary Every affine algebraic subset of A} is the vanishing set of a finite set of polynomials.

Proof. Done in class. O



1.5 The Zariski topology WEEK2:

The notion of affine algebraic sets allows us to define a topology on Aj. Recall that we can specify a
topology on a set by specifying what the open subsets are, or equivalently, what the closed subsets are. In
our case, it is more convenient to do the latter. The collection of closed subsets must satisfy the following

properties.
1. The empty set and the entire set are closed.
2. Arbitrary intersections of closed sets are closed.

3. Finite unions of closed sets are closed.

We define the Zariski topology on A} by setting the closed subsets to be the affine algebraic sets,
namely, the sets of the form V(A) for some A C k[x1,...,zy].

1.5.1 Proposition The collection of affine algebraic subsets satisfies the three conditions above.

Proof. The empty set and the entire set are closed.

f={acA}:1=0}
=V({1})

So the empty set is closed.

r={acAl:0=0}
=V({0})

So the entire set is closed.

Arbitrary intersections of closed sets are closed.
Let {V(A4)} be a collection of closed sets.

m V(Ay) = ﬂ{a e Al :p(a)=0forall p e A,}

(07

={a€c A} :p(a) =0 for allpEUAa}

~r{vs)

So arbitrary intersections of closed sets are closed.

Finite unions of closed sets are closed.

Let V(A),V(B) be closed sets. Let a € V(A) UV (B). Then p(a) = 0forallp € A or ¢(a) =
0 for all ¢ € B. Without loss of generality, suppose p(a) = 0 for all p € A. Then for all polynomials
pq with p € A;q € B, pg(a) = 0. Soa € V({pg : p € A,q € B}) and therefore V(A) UV (B) C
V({pg:p € A,q € B}). Now suppose a ¢ V(A) U V(B). Then there exists some p € A, g € B such
that pg(a) #0. Soa ¢ V({pq:p € A, q € B}) and therefore V({pq:p € A,q € B}) CV(A)UV(B).

So V(A)UV(B) =V({pg:p € A,q € B}) and therefore V(A) UV (B) is closed. Following this
process with an inductive argument, finite unions of closed sets are closed. O

1.5.2 Proposition The Zariski topology on A}C is the finite complement topology. The only closed sets
are the finite sets (or the whole space). In other words, the only open sets are the complements of finite



sets (or the empty set).

Proof. We saw that the subsets V(A) C A} are either the whole A} or finite sets. O

1.5.3 Comparison between Zariski and Euclidean topology over C. Every Zariski closed (open)
subset of A is also closed (open) in the usual Euclidean topology. The converse is not true.

Proof. 1t suffices to prove that V(A) is closed in the usual topology. We have V(A) = NreaV(f), so it
suffices to show that V(f) is closed. But V(f) = f~1(0) is closed, because it is the pre-image of a closed
set under a continuous function. ]

1.5.4 Proposition (Polynomials are continuous) Let f be a polynomial function on A}, viewed as
amap f: A} — A}C. Then f is continuous in the Zariski topology.

Proof. We check that pre-images of closed sets are closed. The only closed sets of A}c is the whole space
and finite sets. The pre-image of A}C is A}, which is closed. Since finite unions of closed sets are closed,
it suffices to check that the pre-image of a point a € A}g is closed. But the pre-image of a under f is just
V(f — a), which is closed by definition. O

— The Zariski topology has very few open sets, and as a result has terrible separation properties. It is
not even Hausdorfl (except in very small examples). Nevertheless, we will see that it is extremely useful.
For one, it makes sense over every field!

1.6 The Nullstellensatz

We associated a set V(A) to a subset A of the polynomial ring k[z1,...,x,]. If we think of A as a system
of equations {f = 0| f € A}, then V(A) is the set of solutions. We can also define a reverse operation.
The Nullstellensatz says that if k is algebraically closed, then these two operations are mutually inverse.
That is, the data of a system of equations is equivalent to the data of its set of solutions. This pleasant
fact allows us go back and forth between algebra (equations) and geometry (the solution set).

We start with a straightforward definition.

1.6.1 Definition (Ideal vanishing on a set) Let S C A} be a set. The ideal vanishing on S, denoted
by I(S), is the set
I(S)={f €k[r1,...,z,] | f(a) =0 for all a € S}

— Recall that an ideal I C k[z1,...,xy] is radical if it has the property that whenever f" € I for some
n > 1, then f € 1.

1.6.2 Proposition The set 1(S) is a radical ideal of k[z1,...,z,].

Proof. We leave it to you to check that I(S) is an ideal. To see that it is radical, see that if f™ vanishes
on S, then so does f. O

1.6.3 Proposition (Easy properties of radical ideals)
1. I C R isradical if and only if R/I has no (non-zero) nilpotents.

2. All prime ideals are radical. In particular, all maximal ideals are radical.

Proof. Consider f € R and its image f € R/I. Then f is a nilpotent of R/I if and only if f® € I and

f=01in R/I if and only if f € I. From this, the result follows. If I is prime, then R/I is an integral
domain, so it has no nilpotents (it does not even have zero divisors). O
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1.6.4 Proposition (Radical of an ideal) Let I be an ideal, and set /T = {f | f* € I for some n >
0}. Then /T is a radical ideal.

Proof. (Assume a commutative ring) We will first show that /T C R is an ideal. Let f € I,7 € R,
and by definition of /I, we suppose f" € I for some n > 0

rfy" =1

Since ™ € R, f™ € I, by definition of ideal, we have r" f™ € I. Therefore, (rf)" € I for some n > 0,
and by definition, we have rf € v/I. Therefore, VI is closed under multiplication by elements of R.
Let f,g € VI, with fr eI, g™ el.

(f+g)m+n — COfm+n+lem+n—1gl + ---+cmf"gm+--'+cm+ngm+"
=cf" x P +af"rgx P4+ emftg™
_i_cm_anflgl % gm 4. +Cm+ngn % gm'

(c; are the corresponding binomial coefficients in I). As shown above, (f + ¢g)™"™ can be written
as an R-linear combination of f™ and ¢™. Since f™ € I,¢g™ € I, by definition of ideal, we have
(f + g)™t" € I. Therefore, by definition we have (f + ¢g) € VI and VT is closed under addition.
Therefore, /T is an ideal.

Now we need to show that /T is a radical ideal. Suppose f € R with f* € /I for some n > 0.
Then, by definition of v/T, we have ()™ € I for some m > 0.

(fMy™=f""el,nm>D0.

Therefore, by definition, we have f € v/T. O

1.6.5 Definition (Radical of an ideal) The ideal v/T is called the radical of I.

1.6.6 Proposition (V is unchanged by radicals) We have V(I) = V/(V/1).

Proof. Note that I € /T and hence V (v/I) C V(I). More specifically, for any f € I we have that
f' €Iandso f eI Nowsuppose a € V(v/I). Then f(a) = 0 for all f € v/I. But since I C V1,
this implies the weaker statement that for all f € I, we have f(a) = 0. This is the same as saying
that a € V(I).

Now let a € V(I). Then let f € V1. By definition of /T there exists some n > 0 such that
f™ € I and hence f™(a) =0 by assumption. We want to show that this implies f(a) = 0 which gives
us that a € V(\/T), completing the proof. This is because f is an arbitrary element of v/I. We are
done if n = 1.

Otherwise we use that we are working in a field which has no zero divisors. More specifically,
f*(a) = f(a)f"'(a) = 0 implies that either f(a) = 0 or f"1(a) = 0. If f(a) = 0 we are done.
Otherwise if f*~!(a) = 0, we repeat the previous step for f"~(a) = f(a)f" 2(a) = 0 and so on, until
we get f(a) = 0 or until n = 2 in which case we have f?(a) = f(a)f(a) = 0 which implies f(a) = 0
as well. O

— We now state a string of important theorems, all called the “Nullstellensatz”, starting with the most
comprehensive one.



1.6.7 Theorem Let k be an algebraically closed field. Then we have a bijection
Radical ideals of k[x1,...,zy] <> Zariski closed subsets of A}

where the map from the left to the right is I +— V(I) and the map from the right to the left is S — I(S5).
The correspondence is inclusion reversing.

1.6.8 Theorem Let k be an algebraically closed field and I C k[x1,...,z,] an ideal. If V(I) = (), then
I=(1).

1.6.9 Theorem Let k be an algebraically closed field. Then all the maximal ideals of k[x1,...,z,] are
of the form (x1 — a1,..., 22 — ay) for some (ay,...,a,) € A}.

— Theorem [1.6.§] says that we have a dichotomy: either a system of equations f; = 0 has a solution, or
there exist polynomials g; such that
Z figi = 1.

1.6.10 Theorem Let k be an algebraically closed field and I C k[x1,...,z,] an ideal. If f is identically
zero on V (I), then f™ € I for some n.

1.7 Proof of the Nullstellensatz

The proof of Theorem [I.6.7] actually goes via the proofs of the subsequent theorems. We use the following
result from algebra, whose proof we skip.

1.7.1 Theorem Let K be any field and let L be a finitely generated K-algebra. If L is a field, then it
must be a finite extension of K.

Proof. See https://web.ma.utexas.edu/users/allcock/expos/nullstellensatz3.pdf O

1.7.2 Proof of Theorem Let m C k[zi,...,2,) be a maximal ideal. Taking K = k and
L = k[z1,...,2p]/m in Theorem [1.7.1] and using that k is algebraically closed, we get that the natural
map k — k[x1,...,zp]/m is an isomorphism. Let a; € k be the pre-image of z; under this isomorphism.
Then we have m = (x1 — a1, ..., 2, — ay).

Proof. Since m is a maximal ideal, L := k[x1,...,z,]/m is a field. Let 7 : k[xy,...,2,] — L be the
projection map. Consider the inclusion map i : k& — k[x1,...,x,]. We embed k in L via the map
¢ := moi. We now show that ¢ is an ismomorphism.

Surjectivity of ¢ . The existence of this map tells us that L is a k algebra. Moreover, L is a
finitely generated k algebra, since L is generated by {m(z1), ..., m(z5)}. Now Theorem 1.7.1 applies,
and we deduce that L is a finite extension of k. In particular, L must be an algebraic extension of
k. If L were not an algebraic extension of k, then there would exist an element [ € L transcendental
over k; but then L could not be a finite extension of K, because the set {lj }j=0,1,2,... would be linearly
independent. We conclude that L is an algebraic extension of k.

We know that given any | € L, there is a polynomial p(y) € k[y], where y is any new variable,
such that p(l) = 0. Let p(y) be the monic polynomial of least degree satisfying the above. Then
p(y) is irreducible, since otherwise it would have a factor of smaller degree also satisfying the above,
contradicting the minimality of the degree of p(y). Since k is algebraically closed, the irreducible
monic polynomials are all of the form x — a, for a € k. As such, we have p(y) = y — a for some a € k.

WEEK2:
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It follows that [ € k, since we must have [ = a. To be precise, what we have really shown is that
[ € ¢(k), since k is not itself a subset of L, but can be identified with a subset of L. We conclude
that L = ¢(k). This tells us that ¢ is surjective.

Injectivity of ¢ . Because ¢ is a field homomorphism, ¢ must be injective. Indeed, the kernel of
¢ is an ideal of k. As such, the kernel of ¢ is either the zero ideal or the unit ideal. Since ¢ is not
identically zero, the kernel must be the zero ideal. This completes the proof that ¢ is an isomorphism.

Completion of Proof Because ¢ : k — L is an isomorphism, we can define a; := ¢~ (n(2;)),
for each ¢ = 1,...,n. We claim that with this choice of a1, ..,a, € k, the equation in holds. If
p € (x1 — ay, ...,y — ay), then there exist ¢; € k[z1, ..., x,] such that

p=_ailzi—i(a)) (1)
=l

We could remove the i in (I)); it just serves as a reminder that k[x1, ..., z,] contains a copy of k, not
k itself. From , we obtain

n

m(p) =Y m(q:)(m(x:i) — (ai)) = 0. (2)

=1

The first equality in holds by the fact that 7 is a ring homomorphism, and the second equality
holds because ¢(a;) = 7(x;), for i = 1,...,n. From ({2) we conclude that p € m, since the kernel of 7
is precisely the ideal m. We have shown that

(xl_a17"'7$n_a’l’b) gm (3)

Now suppose that p € m. Then 7(p) = 0. On the other hand, we can write

d
p=2 Y gl el (4)

i=0 j1+...4jn=i

where d is the degree of p and the ¢j, . j, are elements of k. Equation yields

n

d
@)=Y Y. e, j)m(@)t ()

i=0 j14...4jn=i

d
= Z Z ¢(Cj1,.,,7jn)¢(a1)jl.”qb(an)jn &)

=0 j1t. t+gn=i
d

_ . I 7

= ¢< E E , Cjyensin @1 -~-ann>-
i=0 j1+...+jn=0

The second equality in holds by the definition of ai,...,a,, and the third equality holds be-
cause ¢ is a ring homomorphism. From and the fact that m(p) = 0, we have that ¢ maps




Zi:o Zler-qujn:i Cjp,....jin @ ---an" to zero. Since ¢ is an isomorphism, it follows that

d
> Y ¢igaaltal =0, in the field k. (6)
i=0 j1+...+jn=i

From (), we have that the point (a1, ...,an) is a root of the polynomial p. We can write

d
p=Y . > e, h0)(@ —a) (@ — an)n, (7)

i=0 j14...4jn=i

for suitably chosen ej, . ;. € k. For example, we could define
q(z1, ..y xn) = p(x1 + A1, ..., Ty + aq). (8)

We think of the right-hand side of as a polynomial in z1, ..., z,,. “Evaluating” ¢ at (x1 —ay, ..., zp —
an) gives back p, by definition, while the right-hand side of becomes a polynomial in the variables
Z1—ajq, ..., Ty — ap. This is one way to show that p can be written in the form (7). Now, the term with
i =0 in (7)) is the constant term eg __o. Evaluating p at (ai,...,a,) in (7) shows that p(ai,...,a,) =
€o,...0- By @, we have p(ai,...,a,) = 0, so the constant term eg o must also be zero. This means
that every term in belongs to (x1 — ay, ..., Tn — ay). It follows that p € (1 — a1, ...,x, — a,). We
have shown that

m C ($1_a1,---,xn_an)- (9)
From and @, we conclude that holds. This completes the proof. O

1.7.3 Proof of Theorem Suppose I is not the unit ideal. We show that V(1) is non-empty. To
do so, we use that every proper ideal is contained in a maximal ideal.

Suppose [ is not the unit ideal.
We show that V(1) is non-empty.
To do so, we use that every proper ideal is contained in a maximal ideal.
So, as [ is proper, it is contained in some maximal ideal M.
But
IcM = V(M)cCV{).

But by theorem 1.6.9,
M = <1,‘1 —al,...,l‘n—an),

where a; € [ is the preimage of x; under the isomoprhism of the natural map k — k[xy,...,z,]/M,
for each .

So V(M) ={(a1,...,an)}.

Thus, @ # V(M) C V(I), i.e. V(I) is non-empty. The contrapositive completes the proof.

1.7.4 Proof of Theorem We consider the system ¢ = 0 for ¢ € I and f # 0. Notice that
the last one is not an equation, but there is a trick that allows us to convert it into an equation. Let
y be a new variable, and consider the polynomial ring k[z1,...,z,,y|. In the bigger ring, consider the
system of equations g = 0 for g € I and yf — 1 = 0. By our assumption, this system of equations has no
solutions.



Why is this? Solutions to the original and augmented system are in bijection; if (a, ..., a,) satisfies
g = 0 and f # 0, then there exists a unique value of y, f(al,.l..,an)’ such that the second system is
solved. Similarly, a solution to the second system constitutes a solution to the first, by simply ignoring
the value of y, because if yf — 1 = 0 then f must be non-zero. Then, by assumption of Theorem
1.6.10, f is identically zero in V'(I), so the original system has no solutions. Therefore the augmented
system has no solutions, and by Theorem 1.6.8, the ideal generated by g € I and yf — 1 is the unit
ideal in k[z1, ...z, y]. So then we can write

1= Zci(:vl, ey Ty Y)Gi (21, o, y) + (21, T, y) (yf — 1)

We transform this expression in k[z1,...x,,y| to an expression in the fraction field k(z1,...z,) by
setting y = m, and since for this choice of y we have that yf — 1 vanishes, we get

1

1= 7 sy dbny o — V)Y 17-"7 ns 3 ool
Zc (1, .., x f(th’xn))g (x Tn,Y) € k(z1,...20)

Now, since this is a polynomial in e 1

) multiplying through by a sufficiently large power N of
f gives 7

= Zpi(:vl, oy ) Gi(21, o X, y) € K[z, ...h)

So we can conclude that f% is in 1.

1.7.5 Proof of Theorem We show that the maps I — V(I) and S — I(.S) are mutual inverses.
That is, we show that I(V(I)) = I if I is a radical ideal, and V(I(S)) = S if S is a Zariski closed subset
of A7

Ilfet us first show that for any ideal I, we have I(V(I)) = v/I. Suppose f € VI, then f* € I for some
n > 0. But then f™ is identically zero on V(I), and hence so is f; that is, f € I(V(I)). It remains to
show that I(V(I)) C VI. Let f € I(V(I)). Then f is identically zero on V(I). By there is some
n such that f™ € I, and hence f € /1.

Let us now show that V(I(5)) = S. Since S is Zariski closed, we know that S = V(J) for some ideal
J. So I(S) = I(V(J)) = +/J. But we know that V(J) = V(+/J), and hence V(I(S)) = S. The proof of
Theorem is then complete.

1.8 Affine and quasi-affine varieties

An affine variety is a subset of the affine space that is closed in the Zariski topology. A quasi-affine variety
is a subset of the affine space that is locally closed in the Zariski topology. (A locally closed subset of a
topological space is a set that can be expressed as an intersection of an open set and a closed set).

2 Regular functions and maps 1
Throughout this section, k is an algebraically closed field.

2.1 Regular functions

Let S C A™ be a set and let f: S — k be a function. Let a be a point of S.

2.1.1 Definition (Regular function) We say that f is regular (or algebraic) at a if there exists a
Zariski open set U C A" and polynomials p,q € k[z1,...,x,] with g(a) # 0 such that

f=p/qgon SNU.

10
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We say that f is regular if it is regular at all points of S.

In other words, f is regular at a point a if locally around a (in the Zariski topology), f can be expessed
as a ratio of two polynomials. Although the definition of a regular function makes sense for S C A", we
use it only in the context of quasi-affine varieties.

2.1.2 Examples
1. A constant function is regular.

2. Every polynomial function is regular.

3. Sums and products of regular functions are regular. So, the set of regular functions forms a ring.
This ring contains a copy of k, namely the constant functions.

2.1.3 Definition (Ring of regular functions) We denote the ring of regular functions on S by k[S].
This ring is a k-algebra.

2.1.4 Proposition (Local nature of regularity) Let f be a function on S, and let {U;} be an open
cover of S. If the restriction of f to each Uj; is regular, then f is regular.

Proof. Let a € S. Then, since {U;} is an open cover of S, there exists an open set U € {U;} such
that a € U. Since the restriction of f to U is regular, it must in particular be regular at a. Thus,
there exists an open set V' containing the point a such that

f=p/gqon VU

for some polynomials p,q € k[z1,...,x,]. Then, taking V/ = V N U, which is an open set in S, we
have that
f=p/gqonV'nS

Therefore, f is regular at a. Since a was chosen arbitrarily in S, it follows that f is regular. O

2.2 Regular functions on an affine variety

It turns out that regular functions on closed subsets of A™ are just the polynomial functions! So, not only
is there a global algebraic expression, we don’t even need denominators.

2.2.1 Proposition Let X C A™ be a Zariski closed subset. Let f be a regular function on X. Then
there exists a polynomial P € k[z1,...,z,] such that P(z) = f(z) for all z € X.

Proof. By definition, we know that for every x € X, there is a Zariski open set U C X and polynomials
p,q such that f = p/q on U. The set U and the polynomials p, ¢ may depend on z, so let us denote them
by Uy, pz, and g;. We need to combine all of these p’s and ¢’s and construct a single polynomial P that
agrees with f for all .

This is done by a “partition of unity” argument. First, let us do some preparation. We know that
Pz/qz = [ on U, but we know nothing about p, and ¢, on the complement of U,. Our first step is a
small trick that lets us assume that both p, and g, are identically zero on the complement of U,.

Since U, C X is open, its complement is closed. By the definition of the Zariski topology, this means
that

X\U,=XnNnV(A),

for some A C k[z1,...,x,). Since x € U,, at least one of the polynomials in A must be non-zero at x. Let
g be such a polynomial, and set U, = X N{g # 0}. Then U, C U, is a possibly smaller open set containing
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x. Set pl, = py-g and ¢, = ¢, -g. Then we have f = p/. /¢, on U, and we also have p/, = ¢, =0 on X \U..
So, we may assume from the beginning that both p, and g, are identically zero on the complement of U,..

Now comes the crux of the argument. Suppose X = V(I). Consider the set of “denominators”
{¢z | * € X}. Note that the system of equations

g=0forallgel and ¢, =0 forall x € X

has no solution!

Why is this the case? {g, = 0 for all z € X} C X because for any € X, there exists a ¢, such that
¢z(z) # 0, by definition of the ¢,’s. Since {g =0 for all g € I} = V(I) = X, the system of equations
has no solutions.

By the Nullstellensatz, this means that the ideal I 4 (g, | ¢ € X) is the unit ideal. That is, we can write
1 =9+ 714z, + -+ "™mz,,

for some polynomials r1,...,ry,. Take P =ripy, + -+ "mpg,,.- Then f = P on all of X.

Why is this the case? We have that X = U,, U---UU,,, , i.e. X is the union of finitely many Uy,,’s. Let
z € X and assume z is in only some of these Uy,’s. Without loss of generality, assume x € Uy, ..., Uy,
Pay (%) Pa; ()

d UporiyoooyUp, . Th Ug, N NU, h = = ... = . Al
and x & Uy, ;... Us, en on Uy, z;, we have f(z) (@) w5 50,
1 =r1(2)qa, (x) + ... 7j(%)qa; (x) and P(z) = ri(z)pe, (x) + - + 7(%)pe, (2).

But for all ¢ € {1,...,j} and A\; € k[xy,...,z,] with at least one \; # 0
Sl Ai(@)pe, (2) _ (@) _
: = Pel®) ey,
i=1 Ni(@)qe; () G ()
P I ,
More specifically, P(z) = (z) = Z’j:l ri@)pz () = f(x). Therefore, f = P on all of X.
L Yliri(a)g (@)
O

—— Let X C A™ be any subset. We have a ring homomorphism
m: klxy, ..., zn] — K[X],

where a polynomial f is sent to the regular function it defines on X.

2.2.2 Proposition (Ring of regular functions of an affine) Let X C A" be a closed subset. Then
the ring homomorphism 7: k[z1,...,x,] — k[X] induces an isomorphism

k[z1,...,2.)/1(X) = k[X].

Proof. The map 7 is surjective by Proposition and its kernel is I(X) by definition. The result follows
by the isomorphism theorems. O

2.3 Regular maps

Consider X C A" and Y C A™ and a function f: X — Y. Write f in coordinates as
f: (fl7°"afm)'

12
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2.3.1 Definition (Regular map) We say that f is regular at a point a € X if all its coordinate
functions f1,..., fm are regular at a. If f is regular at all points of X, then we say that it is regular.

2.3.2 Example (Maps to A!) A regular map to A! is the same as a regular function.

2.3.3 Example (An isomorphism) Let U = A'\ {0} and V = V(zy — 1) C A2, We have a regular
function ¢: V — U given by ¢(z,y) = . We have a regular function ¢: U — V given by ¢(t) = (¢,1/t).
These functions are mutual inverses, and hence we have a (bi-regular) isomorphism U = V.
2.4 Properties of regular maps WEEK3:
2.4.1 Proposition (Elementary properties of regular maps)
1. The identity map is regular.
2. The composition of two regular maps is regular.

3. Regular maps are continuous (in the Zariski topology).

Proof. The identity map is given by (z1,...,2,) +— (21,...,2,); each coordinate is a polynomial, and
hence regular. The statement for composition is true because the composition of fractions of polynomials
is also a fraction of polynomials. The third statement is left as homework. O

2.4.2 Proposition (Regular maps preserve regular functions) Let ¢: X — Y be a regular map.
If f is a regular function on Y, then f o ¢ is a regular function on X.

Proof. View a regular function as a regular map to A!. Then this becomes a special case of composition
of regular maps. O

— As a result, we get a k-algebra homomorphism k[Y] — k[X], often denoted by ¢*:

" (f) = foo.

We thus get a (contravariant) functor from the category of (quasi-affine) varieties to k-algebras. On
objects, it maps X to k[X]. On morphisms, it maps ¢: X — Y to ¢*: Y — X. It is easy to check
that this recipe respects composition. That is, if we have maps ¢: X — Y and ¢¥: Y — Z, and if we let
Pop: X — Z be the composite, then

(o) =¢"ou™.
2.4.3 Corollary (Isomorphic varieties have isomorphic rings of functions) If ¢: X — Y is an

isomorphism of varieties, then ¢*: k[Y] — k[X] is an isomorphism of k-algebras.

Proof. Let ¢¥: Y — X be the inverse of ¢. Then ¢*: k[X] — k[Y] is the inverse of ¢*. O

2.4.4 Proposition (For affines, map between rings induces map between spaces) Let X C A”
and Y C A™ be Zariski closed, and let f: k[Y] — k[X] be a homomorphism of k-algebras. Then there is
a unique (regular) map ¢: X — Y such that f = ¢*.

Proof. We know that k[X] = k[z1,...,2,]/1(X) and k[Y] = k[y1,...,ym]/I(Y). Let ¢; = f(yi) € k[X].
Consider ¢: X — A™ given by ¢ = (¢1,...,¢m). Then ¢ sends X to Y and is the unique map satisfying
the required properties. O

13



Let us justify the last part of the proof. For each i we have that ¢; = f(y;) is a regular function, so
¢ is a regular map. Let g € I(Y'). Then

god=go(f(yr),--, f(Ym))

= f(g(y1, ce aym))
=0,

since f is a k algebra homomorphism. Thus ¢(X) C Y. For i € {1,...,m} we have
¢"(yi) =yiod=¢i = f(ys),
so that ¢* = f. Finally, let ¥ : X — Y satisfy ¢* = f. Then, for each ¢, we have

v =yioY =¢* () = flyi) = o,

S0 Y = ¢.

2.4.5 Example (Bijection but not an isomorphism) Let X = A} and Y = V(y? — 23) C A7. We
have a regular map f: X — Y given by f(t) = (t2,#3). It is easy to check that f is a bijection, but not
an isomorphism.

Here is the argument.

Isomorphic varieties have isomorphic rings of functions. From 1.4.3 we know that f : X — Y
induces the map f*: k[Y] — k[X].

Claim: f* is not surjective.

k|x
7 (yz[_’i]g) — k[t
T > 12
Y > t3

t is not in the image of f.. Monomials in Im(f.) have degrees that are 2a. + 38 where a and 3 are
non-zero integers. We can only add and subtract monomial terms with equal powers. Thus we only
need to consider whether we can get a monomial in ¢ by multiplying ¢? and ¢3 by other polynomials
in ¢ and 3. We cannot. Thus it is shown that f, is not a surjective map.

This implies f is not an isomorphism, if it were, f would have an inverse, f~!. f~! would then
induce the inverse of f*. Which as we have seen, does not exist.

2.4.6 Example (Distinguished affine opens) Let Uy C A" be the complement of V(f). Then Uy
is isomorphic to an affine variety, namely the variety V(yf — 1) € A"!, where y denotes the (n + 1)-th
coordinate.

Proof. We have that Uy = V(f)¢ = {(x1,...,2n)|f(21,...,2n) # 0}

Also, V(yf — 1) ={(z1,.. -, xn,y)|y - f(x1,...,25) — 1 =0}.
So we can define a map ¢ : V(yf — 1) — Uy, where

¢($1,~--7$n7y) = (x17"-axn)

This is clearly a regular map.

14



We can define another map ¢ : Uy — V(yf — 1), where

1
7,/}(1'1,...,1'71) = ([El,..-,xn7‘fw>

This is well-defined, since f(z1,...,x,) # 0, and this is also a regular map.
Then

@Z)OQb(IL'l,--.,l'n,y) :7/}(x17~--;$n)
1
E= (xl,...,l'n,f(xh”"xn))

But y must satisfy yf(x1,...,2,) — 1,80 y = m, and thus ¢ o ¢ = idy (1)
Also, o

¢O¢($17---7In):¢<1’1a~-7$n7

= (ZL‘l,---,fL’n)

So ¢ ot =idy,, and therefore Uy and V (yf — 1) are isomorphic. O]

2.4.7 Caution (Not all opens are affine) The previous proposition only applies to the complement
of V(f) for a single f! The complement of V(I), in general, is not isomorphic to an affine variety. For
example, the complement of the origin in A? is not isomorphic to an affine variety.

3 Algebraic varieties

3.1 Definition

The varieties we have seen so far have been sub-sets of the affine space. Using these as buildig blocks,
we can construct general algebraic varieties. The definition is analogous to the definition of a manifold in
differential geometry, using open subsets of R™ as building blocks.

Let X be a topological space. A quasi-affine chart on X consists of an open subset U C X, a quasi-
affine variety V and a homeomorphism ¢yy: U — V. Via this isomorphism, we can “transport” the
algebraic structure (for example, the notion of a regular function) from V to U.

Let ¢1: Uy — Vi and ¢o: Us — V4 be two quasi-affine charts on X (see Figure . Set Ujp = U1 NU3.
Consider the open subsets Vi = ¢1(Uy2) C Vi and Va1 = ¢2(Uy2) C V. Being open subsets of quasi-affine
varieties, they are themselves quasi-affine varieties. Furthermore, the map

po oyt Vig — Vo

is a homeomorphism. We say that the two charts are compatible if this map is a (bi-regular) isomorphism.
When we have two charts, one on U; and another on Us, then the intersection Uy NUs gets two different
charts. Compatibility ensures that these two charts are related by a bi-regular isomorphism, so that the
algebraic structure coming from one is the same as the one coming from the other.
A quasi-affine atlas on X is a collection of compatible charts ¢;: U; — V; such that the U; cover X.

3.1.1 Definition (Algebraic variety) An algebraic variety is a topological space with a quasi-affine
atlas.

15
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Figure 1: Compatible charts

3.1.2 Example (Quasi-affine varieties) A quasi-affine variety X is itself an algebraic variety. The
atlas is the obvious one, consisting of the single chart id: X — X.

3.2 Projective spaces

A fundamental example of an algebraic variety is the projective space.

3.2.1 Definition (Projective space) The projective n-space over a field k, denoted by P7, is the set
of one-dimensional subspaces of k"1

3.2.2 Intuition Before describing how P} is an algebraic variety, let us build some intuition about
projective space. For easy visualisations, it helps to take k = R or k = C. A one dimensional subspace of
k"t is also called a line. Note that, by this definition, a line must contain the origin.

Let us take n = 0. Then there is a unique one-dimenional subspace of k"1 =k, so Pg is just a single
point.

Let us take n = 1. Then P} is the set of lines (through the origin) in k?. Let us take k = R. Every
line through the origin is uniquely determined by its slope, which can be any element of R, so it seems
like P} is just a copy of R. But the vertical line does not have a (finite) slope, so P = RU {co}. In other
words, P! contains the usual real line, plus “a point at infinity”.

It can be more instructive to see this in a picture. Fix a horizontal line L at, say, y = —1. Every
line through the origin intersects L at a unique point, except the horizontal line. So if we discard the one
point of P}ﬁ corresponding to the horizontal line, the rest is just a copy of L. If we had chosen a different
reference line L, for example, a vertical one, then we get a similar description of P! away from a single
point. In fact, we can discard any one point of P!, and the rest will be a copy of R.

Let us take n = 2. Then P? is the set of lines (through the origin) in k3. We can use the same
technique as before: fix a reference plane P at z = —1. Then most lines are uniquely characterised by
their intersection point with P. The only exceptions are the lines parallel to z = —1, that is, the lines
lying in the plane z = 0, which we miss. But these form a small projective space P!. So we see that
P2 = PUPL

3.2.3 Topology A one-dimensional subspace of k"1 is spanned by a non-zero vector (ag, ..., a,). Two
vectors (ag,...,a,) and (bp,...,b,) span the same subspace if and only if there exists A € k* such that

(boy .-, bn) = (Nag, ..., Aay).
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So, we can identify P with the equivalence classes of non-zero vectors (ag, ..., a,) where two non-zero
vectors are considered equivalent if one is a scalar multiple of the other. In other words, we have

PP = (A™*1\ 0)/scaling.

We denote the equivalence class of (ag,...,a,) by [ag: -+ : ap].
We give P! the quotient topology inherited from A"\ 0. That is, a set U C P} is open/closed if and
only if its pre-image in A"*1\ 0 is open/closed.

For example, consider the subset U, of P} consisting of [ag : - - - : ay,] with a,, # 0. Its preimage in the
set of (ag,...,a,) € A"\ 0 with a, # 0, which is a (Zariski) open set. Hence U, is open in IP}. Likewise,
Up, U, ... are also open. Note that we have

n = UgU---UUy;

that is, the sets Uy, ..., U, form an open cover of P".
Consider a point [ag : --- : a,] € Up, so that ag # 0. By scaling by A\ = a5, we have a distinguished
representative of this point of the form [1: by : - - : b,], which we can think of as a point (by,...,b,) € A™.

Thus, we have a bijection ¢g: Uy — A", and similarly ¢,U; — A"™.

3.2.4 Proposition (Charts of the projective space)
1. The bijections ¢;: U; — A" defined above are homeomorphisms.

2. The charts ¢;: U; — A™ are mutually compatible, and hence give an atlas on P™.

1. This is not obvious, also not hard, but also not very enlightening. Let us skip this.
2. Proof. For the charts ¢; : U; — A" and ¢; : U; = A", 0 <i < j <n, for ¢; and ¢; we have
[X() 8 000 6 Xi 8 ooo & Xn] — (X()/Xi, 7Xrn/)(l) = ((11, ...,an)

[X() Dt Xj Dt Xn] — (XQ/X]‘, ...,Xn/Xj) = (b1, ...,bn)
In U; N U; we have X;, X; # 0, this corresponds to {a; # 0} C A" and {bj+1 # 0} C A" under

@i and j,
-1
(p.
(@1, eyp) Vo ar s ia; i1 aiqg oot ay)
o
(a1t iai i1t aign et an) ¥ (ar/ag, ..., ai/a;,1/a;, aiv1/aj, ..., an/a;)
wjop;

(a1,...,an) —" (a1/aj,...,ai/aj,1/a;j,ait1/aj, ..., an/a; )
Let ¢j 0 gp;l =( ilj,..., Z}), by considering all cases 0 < i < j<mnand 0 < j<i<nwith a
similar method we find that

(arfa;, (k<i<j)or(i<j<k)
1/aj, (i < j) and (k =i+ 1)
ak,l/aj,i—i—l <k<j

ag/aj1,(k < j<i)or (j<i<k)
l/aj41,j<i=k

aps1/aj+1,J <k <i

f_k. =
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ji’ ceey jl
regular, therefore all ;o ¢, ! are biregular. O

Thus ¢; o %—1 is regular for all 7 and j and since (p; o @;1)_1 = ;o0 gpj_l = ( ) is also

3.2.5 Open and closed subvarieties Let X be an algebraic variety, and Y C X an open or closed
subset. Then Y inherits the structure of an algebraic variety. To get, the atlas for Y, let ¢;: U; — V; be
an atlas for X. For Y, we just take ¢;: U;NY — ¢(U; NY).

Explain why this is an atlas for Y.

Proof. Suppose Y is a closed subset of X. First, we need to show that {U; NY'} is an open covering
of Y: Since YU; = X, J(U; NY) =Y and {U; N Y} covers Y. Also, Y is a subspace of X implies
U;NY is open in Y. [ By the definition of topological subspace| Then we need to prove ¢;(U; NY) is
a quagsi-affine variety: Since U;NY C U; and U; is a subspace of X, U;NY is closed in U;. Given that
¢; is a homeomorphism, ¢;(U; NY) is also closed in V;. Since a closed subset of quasi-affine varieties
is also a quasi-affine variety, ¢;(U; NY)) is a quasi-affine variety. Thus, ¢; : U; NY — ¢;(UiNY) is a
chart for Y. And if we restrict the original transition maps on U;NY’, the new transition maps are still
bi-regular. Hence {¢; : U; NY — ¢;(U; NY)} is a quasi-affine atlas for ¥ and Y is also an algebraic
variety with inherited structure from X. The case when Y is an open subset of X is similar. O

3.2.6 Proposition (Closed subvarieties of projective space 1) Let F' € k[X,...,X,] be a ho-
mogeneous polynomial. Let V(F) C P™ be the set of points {[ag : - : an] | F(ag,...,a,) = 0}. Then
V(F) is a closed subset.

Explain why V(F) is well-defined (that is, the condition F'(ao,...,a,) = 0 does not depend on the
chosen representative of the equivalence class). Then explain why V(F) is closed.

Proof. The fact V(F') is well defined follows from F'(z) = 0 implies F'(Azx) = 0 for all A € k in the
case of F' homogeneous, as all representatives of the equivalence class are related by scaling.

Let E be the set of exponents, such that F(x) = ) cqz® Noting that |a| is the same for all n
aclk
tuples of exponents as F' is homogeneous, denote this degree as m.

F(z) = Z Cqx®

acE
FQa) = caAr)* =l =" A2 = XY " gz = A" f(z) = A" 0=0
acE ack aclk a€E

Thus V (F) is well defined.
V(F) closed in P" if its pre-image in A"*1\0 is closed. Due to our definitions, the pre-image is
given by the Zariski closed set V (F) C A"1\0. O

3.2.7 Proposition (Closed subvarieties of projective space 2) Let I C k[Xy,...,X,] be a ho-
mogeneous ideal.

Define V(I) C P" and show that it is a closed subset.

Proof. Let I C k[Xo,...,Xy].
We have two equivalent definitions of V' (I) C P™:
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1. Take V(I) C A™1/{0}.
2. Set V(I) C P" as the image of V (I) C A™*1/{0}.
V() :={[xo:...:x,)|F(xo,...,2,) = 0V homogeneous F € I}
We have that
V(I) =NV (F),

where the intersection is taken over all homogeneous F' € I. But by Proposition 3.2.6, V(F) is closed,
and thus the arbitrary union of closed sets is closed, i.e. V(1) is closed. O

3.2.8 Proposition (Closed subvarieties of projective space 3) Conversely, let X C P" be a closed
subset. Then there exists a homogeneous ideal I C k[Xy,. .., X,] such that X = V(I).

Proof. Assume that X is non-empty. Let 7: A"\ 0 — P" be the quotient map. Let C' C A™ be the
closure of 771(X).

We prove that C' is conical, that is, if x € C then Ax € C for every scalar A € k. We conclude using
Homework 1 that C = V/(I) for a homogeneous ideal I, and prove that X = V(I) in P". The details are
below. O

Suppose that X is non-empty. Let 7 : A"T1\ {0} — P" be the quotient map. Then 7~1(X) is closed
in A"\ {0}. Let C € A" be the closure of 7=1(X) in A", Let p € k[Xo, ..., X,] with p(y) =0
for all y € 771(X). Let [x] € X for some x € A"\ {0}. Then Ax € 7~ 1(X) for all A € k with
A#0. Let p=pg+ -+ po be the decomposition of p into its homogeneous components. Define
q € k[Y] by q(Y) =Y%y(x) 4+ - 4+ Ypi(x) + po(x). Let A € k with X # 0.

q(A) = X%pa(x) + - - + Ap1(x) + po(x)
= pa(Ax) + -+ + p1(Ax) + po(Ax)
= p(Ax)

—0

So ¢ has infinitely many roots and therefore ¢ is the zero polynomial. This gives that po(x) = 0 and
S0 po is the zero constant.

p(0) = pa(0) + - - - + po(0)
= po(0)
=0

So 0 is a root of p. Therefore 0 is an element of C, so C = 7~ 1(X)U{0}. So for all A € k we have that
Ax € C. Then by Homework 1 we have that C = V(I) where I C k[Xo,...,X,] is a homogeneous
ideal.

(VI \{0}) = n(x~ (X))
=X

Therefore X = V(I) where V() is identified as a subset of P™.
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Now suppose that X is empty. Then X is the image of the empty set under m. The empty set is
the vanishing set of the unit ideal, which is homogeneous.
Therefore there exists a homogeneous ideal I C k[Xo, ..., X,] such that X =V (I).

3.2.9 Example (Linear subspaces) Suppose I C k[Xy,...,X,] is generated by (homogeneous) linear
equations. Then V(1) C A"*! is a sub-vector space W C A"+ and V(I) C P" is naturally the projective

space of W. We call such V(I) C P" linear subspaces, or “lines”, “planes”, etc. See that any two distinct
lines in P? intersect at a unique point, and through any two distinct points in P? passes a unique line.

4 Regular functions and regular maps 2

4.1 Regular functions and maps

4.1.1 Proposition (regularity does not depend on the chart) Let X be an algebraic variety and
f: X — k afunction. Let ¢1: Uy — Vq and ¢o: Uy — V5 be two compatible charts such that x lies in both
Uy and Us. Denote the images of z in the two charts by v; and vo. Consider the functions fo ¢>1_1 Vi =k
and fo gb;l: Vo — k. Then the first is regular at vy if and only if the second is regular at vs.

Prove this.

Proof. Suppose X is an algebraic variety and that f : X — k is a function. Suppose z € X lies in
the domains U; and Uj of two compatible charts ¢1 : Uy — Vi and ¢ : Uy — Va. Let v = ¢1(x) and
vy = ¢o(x). We prove that fog;!: Vi — K is regular at vy if and only if fog, ! : Vo — K is regular
at va.

Suppose that f o ¢1_1 : Vi — K is regular at v;. We write

fodyt=(fodrh)o(prodyh). (10)

Note that the right-hand side of makes sense as a map from ¢5(U; N Usz) not from all of V5
to all of Vi. This is no cause for concern though, since regularity is a local property. Note that
(¢10 ¢2_1)(v2) = v1. By compatibility of the charts, we know that ¢; o ¢2_1 is regular. Using this and
the assumption that f o gbfl is regular at vy, we find that the composition on the right-hand side of
is regular at vo. That is, the restriction of f o ¢2_1 is regular at vo. Since regularity is a local
property, we have that f o ¢, Lis regular at vs.

The proof of the converse implication is exactly the same, with equation replaced by

foor' =(fopy")o(daoerh).

For the converse implication, we again use compatibility of the maps ¢; and ¢3. We establish that
the composition on the right-hand side of 1) is regular at v1. Accordingly, f o (;Sfl is regular at v;.
This completes the proof. O

4.1.2 Definition (regular function on a variety) Let f: X — k be a continuous function. We
say that f is regular at z if for some (equivalently, for every) chart ¢: U — V with 2 € U, the function
fo¢l:V — kis regular at ¢(z). We say that f is regular on X if it is regular at all points z € X.

4.1.3 Definition (regular map between varieties) Let X and Y be algebraic varieties and f: X —
Y a continuous map. We say that f is regular at a point € X if for any (equivalently, for every) chart
¢: U —V withx € U and ¢: U' — V' with f(x) € U’, the composite map

pofod iV -V
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is regular at ¢(x).T The reason for the dashed arrow is that the domain of 1 o f o $~! may not be all of
V, but only an open subset of V. To be precise, the domain is ¢(U N f~1(U’)). But the domain contains

o(x), so it makes sense to talk about the regularity at ¢(z).
See Figure [2[ for a picture (the bottom arrow should be dashed).

* i Y
GepRN e
cbl e LY
e P

Figure 2: A map is regular if it is regular with respect to the charts.

4.2 Examples

For quasi-affine varieties, these definitions do not add anything new.

4.2.1 Example Let X = P! Set f([X : Y]) = X/Y. Then f is defined at all points except the point
[1:0], and is a regular function on P!\ {[1: 0]}. More generally, let X = P" and let F,G € k[Xo, ..., X,]

be homogeneous polynomials of the same degree. The function
[XO D Xn] — F(Xo,...,Xn)/G(Xo,...,Xn)
is regular outside V(G).

Prove this.

Proof. Call the function f.
Note that f is well defined on P™\V(G) since it is a ratio of homogeneous polynomials of the
same degree, so
F(A\z) MF(z)
Az) = = = .
Consider the standard atlas for P, ¢; : U; — A", where U; = {z € P" | x; # 0}.
Let x € P"\V(G); say z is nonzero in its k' coordinate.

Consider the open set Wy of A™ defined as the complement of the zero locus of the polynomial
on A" defined by

G := G(z1,22, oy Th—1, 1, Th1 1, ... Tp)
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Since x € P"\V(G), ¢r(x) € Wy,
Now, we show that f o gb;l is regular on Wy. Suppose a = (a1, ...,a,) € Wi; then
F(ag,...,1,...,an)

fo¢]:1(a) =flag:...:1:...:1a,] = Glao, L man) Ya € Wy,

Which is well defined since Gi(a) # 0 for a € Wy,
So f is regular on P™\V(G). O

4.2.2 Example Let X = P" and let Fy, ..., F,, be homogeneous polynomials of the same degree. Let
Z C P" be V(Fy,...,Fy). Then the formula

[XO Do Xn] — [Fo(Xo,...7Xn) D Fm(X(),,Xn)]
defines a regular map from X \ Z to P™.
Prove this.

Proof. Without loss of generality, we can assume that Xy = 1, because this argument also works for
any X; = 1, which must hold for some ¢, and for any polynomial F;, F; vanishes at X € A™\0 if and
only if it vanishes at the representation of X in P" with one of the coordinates equal to 1.

Let (1,---,ap) be a point in A™ that maps canonically to [Xo : -+ : X,,] = [1 : --- : ap]. Since
[Xo:---: X,] € X\Z, we can assume that F;[Xp : --- : X,,] # 0 because it will hold for some i. By
previous results, it suffices to check if
(]-7 7a7’b) = [XO B Xn] = [Fl(X07"' JXTL)a'” 7Fm(X07"' 7Xn)]
<F1(X07”'7Xn) Fm(XOa"'7Xn)>
Fi(X(]v"'aXn)’ ’Fi(XO,"'aXn)
is regular, because we only need to check on one choice of charts for [Xo:---: X,] and [F1(Xo:---:
Xn), s F(Xo, -+, X5)]. Now, note that because Fi,--- , F,,, are homogeneous, we have
<F1(X0>"'7Xn) Fm(XOa"',Xn)>
Fi(X(]v"'aXn)’ 7Fi(X0)"'7XTL)
:<F1(]-57an) Fm(l)van)>
E(l)"'van)7 ,Fi(]-v'”aan)
on the open set {a; # 0} N{F; # 0}, and every component is a regular function from {a; # 0} N{F; #
0} to k. Open sets of the form {a; # 0} N {F; # 0} cover X\Z, so it follows that [Fp : --- : Fp,] is
regular on all of X\Z. O

4.2.3 Example The natural map A" —0 — P is regular.

4.2.4 Example (Automorphisms of P") Consider the n + 1-dimensional k-vector space V' spanned

by Xo, ..., X,. Pick any basis £y, ..., ¢, of this vector space. Then we have a regular map
L:P*"—P"
[(Xo:- - Xp]= oy

Explicitly, if we write
bi=LijoXo+ -+ LinXn
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and write our homogenous vector as a column vector, then the map is
[X] — [LX].

In other words, it is induced by the invertible linear map L: V' — V. As a result, it has an inverse, induced

by the inverse of the matrix M:
[(X] — [MX].

In this way, we get an action of GL,, (k) on P". But notice that a matrix L and a scalar multiple AL induce
the same map on P”. So the action descends to an action of the group PGL,, (k) = GL,(k)/scalars.

4.2.5 Example (regular functions on P') The previous example gave examples of regular functions
on (strict) open subsets of the projective space. It turns out that there are no regular functions on P"
other than the constant functions!

Proof:
We will first show this forn = 1.

We can split P* = {[x: ¥]} into two components, P! = Uy U Uy, where Uy = {[1:y]} is the
set wherethe x coordinate is non-zero, and U, = {[x:1]} is the set where the y coordinate
Is non-zero.

Consider the map ¢: Uy = {[1: ¥]} = A by ¢([1: ¥]) = ¥ € A. The mapis regularsince it
is a polynomial function on its coordinates. Its inverse ¢~ A2 — Uy by ¢~ (y) = [1:y] is
also regular for the same reason. Therefore, ¢ is an isomorphism, and Up, A' are
isomorphic. Under this isomorphism, we have k[U;] = k[4'] = k[y]. Similarly, k[U,] =
klx]

Functions on Uy U fy is a function on Uy, a function on Uy, and they must agree on Uy N
U,. Consider Uy 1 Uy, this is equivalent to taking away the origin from U, = A, so Uy n
U, = A {origin} = V(x) € A'. By previous example in class, we have Uyn U, =

V()© = V(xy — 1) © A%, and kU, N, | = klx.yJ/(xy _ 1) In this quotient ring, we

send y to x~%, so Hx'yl/(xy_ = klx, x71]

Consider the image of k[Uy] and k[Uy] in klx'yl/(xy -1 by the obvious map (sends x to

x,send y to y =x"1) We have k[U,] = k[x~*] © k[x, x~!], k[U,] = k[x] € k[x,x1].
Consider two regular functions f € k[U,] = k[x™], g € k[U,] = k[x]. f is a polynomial
with wvariable x=!, g is a polynomial with variable x, and they must agree. In an
algebraically closed field (which we assume), this happens only if f,g are the same
constant polynomial, Therefore, f, g € k, hence k[P*] € k

Also, every constant polynomial can be treated as a regular function on P, so k © k[P*].
Therefore, k[F'] = k

Now, consider F", n = 1. To prove that k[P"] = k, we will show that given any f £ k[F"]
and p # g € F", we have f(p) = f(g).

p.q € P"are both non-zero ‘vectors' in k™, and they are not multiples of each other
{which simply holds by definition of the projective space). Therefore, they span a two-
dimensional vector space V € k™, and we get a linear isomorphism between V and k2.
Now, consider all the lines passing through the origin in V. These forms a copy of P4, and
p.q are in this P, By previous part, k[F*] = k. For any regular function on f € k[P"], it
must be regular on this copy of P!, so it must be a constant function on this P!, Therefore,

flp) = flg).
Forevery f € k[F"| and p # g € ", we have f(p) = f(q). Therefore, k[F"] = k

4.3 Elementary properties of regular maps

4.3.1 Proposition The identity map is regular. The composition of two regular maps is regular.
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4.4 The Veronese embedding

Let n > 1, and consider the k-vector space of degree n homogeneous polynomials in X,Y. This vector
space has dimension n 4 1. Choose a basis, for example, let us take X", X"~ 1Y,..., XY™ 1 Y™ Then
we have a regular map

vy P — P°
(X :Y]—[X": - Y]

4.4.1 Proposition (Veronese curves) The image of v, is a closed subset of C of P". If we denote
the homogeneous coordinates on P™ by [Up : - -+ : U], then C is cut out by the equations

(UiU; — UUs | 0 < i j kI <mand i+ j =k + L.

Prove this.

Proof. Let U =[up: ...: uy] € v,(P). Then by definition of v,, we have for all 0 < i < n that
u; = 2" 'y’ for some x,y € k. Then for all 0 < i, 7, k, I < n satisfying i + j = k + [ we have

Ui — upuy = xnflylxnij] . Infkykxnflyl

m2n—(i+j)yz‘+j _ xQn—(k—i—l)yk-i—l

= Yt — g2 (i) it byi+j=k+I

_ J;Qn—(i-l—j)
= 0.
So U € v, (P') satisfies all the given equations and hence U € C.

Given any element of C, we want to find an element of P? which maps to U via v,. I claim
that elements of C' can be categorised into three classes:

1.U=[1:0:...:0]
2U=[0:...:0:1]
3. U=ug:...:u,] with all u; nonzero.

Proof of classification. To see this, we first show that U cannot have both ug and wu,, zero. Suppose
this is the case with ug = u, = 0. Then consider the following procedure which shows that every
other u; must be zero.

e Let S={1,...,n— 1} represent the induces for which u; are nonzero.
e While S is nonempty:

— Choose any i € S.
— Let l,7 € {0,...,n}\S be the largest and smallest elements respectively such that [ <i < r.
— By definition of S, we have u; = u, = 0. So by the condition on C, we have w;u;1,—; =

wu, = 0, so either w; or wjy,—; is zero. Remove from S the corresponding index i or
l+7r—1.

Note that when this procedure terminates, S becomes nonempty and we get that U = [0 : ... : 0]
which is not a valid element of the projective space. It should be clear from construction that the
procedure indeed terminates and is valid as in each step we can always find lower and upper bounds

24

WEEKS



I, not in S for any chosen ¢. Moreover, since no element u; with [ <4 < r has yet to be shown to be
zero, each iteration of the while loop indeed removes an element of S as | <Il+r—i <rforl <i<r.
The following equation illustrates an example of the procedure.

[0:uy:ug:ug: uy: 0

[0:u;:0:us:uy:0] 1=2,1=0,r=05
[0:u;:0:0:uy:0] o — okl — 2 =)
[0:0:0:0:uy:0] i=1,1=0,r=2
0:0:0:0:0:0] i=4,1=3,r=5

A similar argument can be used to classify elements of U as described above. For (1) and (2),
suppose without loss of generality that ug = 1. Then the exact same procedure above still shows that
up = ... =u, = 0 except we note that 0 ¢ S no longer means that up = 0 but is simply used to help
argue that every other element is zero.

For (3), we now suppose ug and u, are nonzero. Now suppose u; = 0 for some 0 < j < n in order
to derive a contradiction. But by the condition on C, we have uou, = uju,—; = 0, implying that
either ug or u, is zero which contradicts our assumption.

Having classified the elements of C'; we now show what elements map to them under v,. In case
(1), we have

vp([1:0])=1[1:0:...:0]
and similarly for case (2), we have
un([0:1]) = [0 0:1]
For case (3), I claim that
vn([uo, u1]) = [uo : ...t up).

We have that vy, ([ug,u1]) = [wo : ... : wy] with w; = uf "u}. To show that [ug : ... : u,] =
[wo : ... : wy], we want to show that these elements viewed as vectors are linearly dependent, or
equivalently

Uy ... Up
wy ... Wp

has rank 1, or equivalently again in linear algebra that all 2 x 2 minors vanish. This is the same as
showing that for all 0 < 4,j < n that u;w; = ujw;. However since each u and hence w component
is nonzero, it suffices to show that w;w;11 = w;w; for all 0 < ¢ < n as multiplying these equations
together gives us

Uiti4] - o - Uj—1Wit] - o Wj—1Wj = WiWi41 -« - Wj—1WUi41 .+ - Uj—1U;5

which when divided by the nonzero element w; 41 ... uj_1wit1 ... wj—1 gives us u;w; = u;jw;.
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But for all 0 <7 < n we have

_ n—i—1, i+1
U;Wi41 = uiuo Uq
= ul "l

= “giziluzl * Uj1UQ by condition from C'
n—i, 1

= U1y U

= Ui 1W;

so indeed we have $vy([ug, ui]|) = [wo:...:wyn| = [uo:. .. up|.$ O

4.4.2 Proposition (Veronese curves continued) The map v,: P! — C is in fact an isomor-
phism.

Define the inverse map.
Proof. The inverse map wy, : C — P! is defined as

wn([Vo, - - ., Un]) =[Us : Uiti]
ifUi#OOI“UZ‘Jrl#OfOI‘iZO,...,n—l

To see that the map is well defined, observe that if [Uy,...,U,] € C, then it must satisfy
UiU; —UpUp=0fori+j=k+1
so in particular we have that for 4,5 =1,...,n — 1,
[Us : Usa] = [Uj 2 U]

since Uin-H - Ui+1Uj =0.
Now, I claim that w,, is the inverse map of v,. To see this, notice that

Wy 0V ([X 1 Y]) = wp([X™: XY 10 YY)
= [X": X" 1y]
=[X:Y]

where the second line follows from the fact that at least one of X or Y is nonzero. Thus, w, o v, is
the identity on P!.
For the other direction, we have

vpown([Ug : ... : Upl) = vn([Us : Uiy1])
=[U:...: U]
Now I claim that in P", [Up : ... : Uy] = [U* : ... : U} ]. To check this, we need to show that all the

cross terms are equal. Let j, k € {0,...,n} and suppose without loss of generality that k—j = m > 0.
Then we have that j* and k" cross terms are equal if and only if
U (U ~*Uf) = UnU] T U2)
k—j k—j
— UjUﬁ_l = UjerUim
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But we know that U;U;11 = U;4+1U;, by the construction of C. Hence, it follows by induction that
U;Ut = Uiy U™, Therefore,

UjUf_kUzkﬂ = UkUZI_jUz'J}l

so the j** and k' cross terms are equal. We can repeat the same argument for k& < j. Thus,
Wo:...:Up)l=[Uj":...:Uj,], so it follows that v, o wy, is the identity on C.
This concludes the proof that w, is the inverse map of v,,. O

The proposition above generalises to all dimensions. Consider the k-vector space of degree n homoge-

neous polynomials in Xy, ..., X,,. It has dimension N = (”jnm). Choosing a basis gives a map P™ — PV,

The image of this map is a closed subvariety Z and the map P™ — Z is an isomorphism. The equations of
Z and the description of the inverse map are analogous to the m = 1 case, but (understandably) somewhat
more cumbersome.

4.5 Example: Conics in P? WEEK5

The 2-nd Veronese embedding maps P! isomorphically onto the zero-locus of a degree 2 equation in P2.
More explicitly, the image of the map

P! — P2
(X :Y]— [X2: XY : V7

is the set V(UW — V?2). Now recall a theorem from linear algebra. You may have proved this only over
C or even over R (in which case, there are some signs you have to reckon with), but the same proof works
for all algebraically closed fields of characteristic # 2.

4.5.1 Theorem (quadratic forms) Let k be an algebraically closed field of characteristic # 2 and let
q be a quadratic form on a k-vector space V. Then there exists a basis X, ..., X, for V such that

o(Xo,..., X)) = X2+ 4+ X7

The form is called non-degenerate if £ = n.

4.5.2 Corollary Let @ be a non-degenate conic in P2. Then @ is isomorphic to P!

Proof. All non-degenerate conics are isomorphic to each other, and we know that at least one of them—the
2nd Veronese image of P'-—is isomorphic to P!. O

4.5.3 Question What do the degenerate conics in P? look like?

5 Products and the Segre embedding WEEKG

5.1 Definition of the product variety WEEK6

If X and Y are algebraic varieties, then their product set X x Y is naturally an algebraic variety. This, in
theory, should be completely straightforward (and it is), but you have to be slightly careful because the
Zariski topology of X x Y is not the product topology.

First, suppose X = A™ and Y = A", then X x Y = A™"" is an algebraic variety. Observe that the
Zariski topology on A™*™ is not the product topology.

Second, if X C A™ and Y C A™ are both closed (or open), then X x Y C A™%" is closed (or open),
so it is naturally an algebraic variety.
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Prove that products of closed (or open) are closed (or open).

If XXY is a subset of A™™ such that X and Y are closed,

then there exists two finite sets of polynomials F and G with
V(F)=Xand V(G)=Y

Thus, we can define XxY in A™™ by the vanishing set of polynomials
FUG.

This implies XxY is closed in A™*™,

For X and Y are open, we can prove XXY is open using closed sets
XCand YC.

Third, by combining the cases of closed/open and taking intersections, we get that if X and Y are
locally closed, then X x Y C A™" is also locally closed, and hence an algebraic variety. So the case of
quasi-affine varieties is done.

In general, suppose X has the quasi-affine atlas {¢;: U; — V;} and Y has the quasi-affine atlas
{¢;: U; — V/}. Then the product X x Y is covered by the sets U; x Uj. We declare the product map
Ui x U; — Vi x V] to be a homeomorphism; that is, we give U; x U] the Zariski topology of V; x V/. Then,
we declare a set Z C X X Y to be closed (or open) if and only if for all i, j, the intersection Z N U; x Uj’-
is closed (or open) in U; x U]’-. It is easy to check that this gives X x Y a topology under which U; x U]’-
is an open cover, and the maps

¢i X ¢ Uy x Up = Vi x VJf

are a family of compatible charts.

5.1.1 Proposition The two projection maps X x Y — X and X x Y — Y are regular. A map
¢: Z — X XY is regular if and ouly if the two component maps ¢1: Z — X and ¢2: Z — Y are regular.

Proof. Skipped (for being easy). O

5.1.2 Remark If you have seen some category theory (in particular, Yoneda’s lemma), you will see
that the above proposition characterises the product “uniquely up to a unique isomorphism.”

5.2 Example

Write down the charts of P' x P!, and the transition function between one pair of charts.
The charts of P! x P! are:
b0 x o ([L:al,[L:2]) = (a,0)
dox 61 : ([1:a), [ 1)) > (2,2/)
¢1 % ¢o < ([z:1],[1:2']) = (,2)
¢1 = ¢1: ([z: 1], 2" : 1]) = (z,2)

One example of a transition map is

(d0 X 61) 0 (do X do) ™ : (") = (&, =).

5.3 Closed subsets of P" x P™

Let F' C k[Xo,...,Xn, Y0,...,Ynm] be a bi-homogeneous polynomial of bi-degree (a,b). This means that
every term in F' has X-degree a and Y-degree b. Or equivalently, for any A, u € k, we have

F(AXo, .., AXn, 1Yo, ..., (1Y) = A 1P F(Xo, ..., X, Yo, ..., Yin).

Then V(F) C P x P™ is well-defined and is a closed subset. Same story for bi-homogeneous ideals.
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5.4 The Segre embedding

The Segre embedding is a closed embedding of P™ x P™ in a bigger projective space. It is a cool example,
but it is also of theoretical importance. The most studied and the most well-behaved varieties are pro-
jective varieties (varieties isomorphic to closed subsets of projective space) or somewhat more generally
quasi-projective varieties (varieties isomorphic to locally closed subsets of projective space). The Segre
embedding shows that this class of varieties is closed under products.

Let N = (m + 1)(n+ 1) — 1. Consider the Segre map P" x P — P defined by

(X0, .-, X, [Yor- -, Yin] = [Xi - Yi).

It is easy to check that this map is regular.

A good way to think about this map is as follows. Think of elements of P™ as row vectors up to
scaling, P as column vectors (up to scaling), and P™ as (n + 1) x (m + 1)-matrices up to scaling. Then
the product XY of X € P" and Y € P™ is an (n+ 1) X (m + 1) matrix, which taken up to scaling, defines
an element of PV. Observe that matrix XY has rank 1, and hence the Segre map lands in the subspace
Z C PN corresponding to matrices of rank 1.

Now, a rank 1 matrix can be written as a product XY, and up to scaling, such an expression is unique.
As a result, the Segre map is a bijection from P* x P™ — Z. But more is true.

5.4.1 Theorem (Segre embedding) The rank 1locus Z C PY is closed, and the Segre map P"* xP™ —
Z is a bi-regular isomorphism.

Proof. Consider an (n+ 1) x (m + 1) matrix M. Then M has rank 1 if and only if all 2 x 2 minors of M
vanish. Hence, Z is the zero-locus of all 2 X 2-minors, which are homogeneous polynomials in the entries
of the matrix.

To prove that the Segre map is an isomorphism onto Z, we must construct a regular inverse Z —
P™ x P™. We do this below. O

Do it!

Proof. We have that Z is the matrices of rank 1 taken up to scaling. Let M € Z, and define a map
¢ Z — P" x P such that ¢(M) = (ColM, RowM), where ColM is any non-zero column in M and
RowM is any non-zero row.

To show that this map is well-defined, suppose there exist two distinct non-zero columns, ColM
and Col’ M in M, and also two distinct rows, RowM and Row’ M, in M. Since M has rank 1, all rows
are linearly dependent, and all columns are independent. So Col’M is a scalar multiple of ColM,
and thus they define the same element of P™. Similarly, Row’M is a scalar multiple of RowM and
so they define the same element of P™. So as elements of P x P™ (Col' M, Row'M) is equal to
(ColM, RowM). So then our map is well-defined.

To check our map is an inverse, we define ¥ to be the Segre map from P™ x P™ to Z.

Then ¢ o (M) = (ColM, RowM) = M, since M has rank 1, so the product ColM - RowM
defines M up to scaling.

Also, p o p(X,Y) = ¢(XY) = (X,Y), since X and Y must be non-zero and the well-defined
property of ¢ tells us we can take X = Col(XY) and Y = Row(XY).

So ¢ ] ¢ = ’id]}»nx]}nm and w o ¢ = ’idz.

To show ¢ is regular, note that the component map Z — P" is regular since under any charts,
¢ defines a polynomial map. Similarly, the component map Z — P™ is a polynomial map in affine
coordinates and thus regular. So then ¢ is regular, and since both the component maps are polynomials
in affine coordinates, ¢ is also a homomorphism.

So ¢ defines a regular inverse for the Segre map, and therefore the Segre map P™* x P — Z is a
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bi-regular isomorphism. O

5.4.2 Definition (Projective and quasi-projective varieties) A projective variely is a variety
isomorphic to a closed subset of projective space. A quasi-projective variety is a variety isomorphic to an
open subset of a projective variety.

5.4.3 Proposition (All quasi-affines are quasi-projective) Every quasi-affine variety is quasi-
projective.

Proof. The affine space A" is (isomorphic to) an open subset of P". So a locally closed subset of A™ is
also a locally closed subset of P". O

5.4.4 Corollary (of the Segre embedding) If X and Y are (quasi)-projective, then so is X x Y.

Proof. Suppose X and Y are projective, say X C P"is closed and Y C P™ is closed. Then X xY C P*xP™
is closed. The Segre embedding shows that P x P™ is isomorphic to a closed subset of PV. Hence X x Y
is isomorphic to a closed subset of P™. In other words, X X Y is projective.

In general, suppose X (resp. Y) is an open subset of a projective variety X (resp. Y). Then X x Y
is an open subset of X x Y, which we proved is projective. So X x Y is quasi-projective. 0

5.4.5 Exercise (Quadric surfaces) The Segre embedding of P! x P! lives in P3.

Describe the equations that cut out the image. Conclude that every non-degenerate quadric in P? is
isomorphic to P! x PL.

Xo Xi
Xo X3
of the Segre embedding is V(Xo X3 — X;X>), that is, where the above matrix has zero determinant.
P! x P! is isomorphic to its image under the Segre embedding.

Proof. Treat elements of P2 as 2 x 2 matrices up to scaling, that is, of the form < > . The image

Now the polynomial Xy X3 — X X5 is homogeneous of degree 2 (a quadratic form). In a field of
characteristic not equal to 2, any quadratic form

1
Z CLinin = Z §CLZ‘]‘X1‘XJ' + Z aquQ
1<y i#] i

This can be written as x7 Ax, where A is a symmetric (n + 1) x (n + 1) matrix. Define a symmetric
inner product (,) by (x,y) = x” Ay. This inner product can be diagonalised by Gram-Schmidt or-
thogonalisation.

In this case, we have

o 0 0 1%
0 0 -4 0
— 2
A 0 -3 0 0
10 0 0

Hence, rar}k(A) = 4, which means that our quadratic form is non-degenerate. It can be written
as X3 + X7 + X2 + X2, where X = (X0 + X3), X1 = (X1 — X2), Xo = —1i(X1 + X»), X3 =
—%i(Xo — X3). The use of i is justified since our field is algebraically closed. Consequently, every
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non-degenerate quadratic (in a field of characteristic not equal to 2) can be written in the form
X0X3 — X1 X5. Therefore, every non-degenerate quadratic in P3 is isomorphic to P! x P! O

5.4.6 Exercise (P! x P! and P?)

Are P! x P! and P? isomorphic? Use whatever tools you have over your favourite field to answer this.

Proof. Suppose the base field is C. Then every variety has a topology coming from the standard
(Euclidean) topology on C. Since polynomial functions are continuous in the Euclidean topology,
regular maps between varieties over C are continuous functions in the Euclidean topology. A regular
isomorphism between P! x P! and P? would give a homeomorphism between the two corresponding
topological spaces CP! x CP!' — CP2. But from topology, we know that these two topological spaces
are not homeomorphic (one reason: they have non-isomorphic homology groups).

Surprisingly, the argument above can be made to work over an arbitrary field. There is a version
of homology groups for varieties that can be defined purely algebraically, and hence over any field.
These are called Chow groups. Once you develop this theory, it is quite easy to compute the Chow
groups of P! x P! and P?, and see that they are non-isomorphic. Unfortunately, we won’t get to the
definition of Chow groups in this class.

A more elementary proof that we will get to is the following. We will prove that there do not
exist any non-constant regular maps from P” to P if n > m. Then it follows that P! x P! and P?
are not isomorphic—the former has a non-constant map to P! but the latter doesn’t. O

5.4.7 The diagonal embedding Consider the diagonal map A: P® — P" x P". The image of A is a
closed subset. If we use homogeneous coordinates [Xg : --- : X,,] and [Yj : --- : Y,] on the two copies of
P, then the image is the vanishing set of the bi-homogeneous polynomials

X,;Y; — X;Y; for 0 <i,j <n.

Algebraic varieties X for which the image of the diagonal map A: X — X x X is closed are called
separated. 'This condition is analogous to the Hausdorff condition in topology. Not all varieties are
separated, but all quasi-projective varieties are.

5.4.8 Proposition All quasi-projective varieties are separated.

Proof. Let X be a quasi-projective variety. We may assume that X C P". Let ¢ : X — X x X and
¥ : P — P™ x P" denote the diagonal maps, noting that ¢(x) = ¢(z) for all z € X.

Suppose y € ¢(X). Then y € X x X and there is x € X such that ¢(x) = y. Hence ¥(z) =y, so
y € ¢(P"). Therefore ¢(X) C (X x X) Ny(P").

Suppose now that y € (X x X) N (P"). Then there is z € P" such that ¢(xz) = y. That
is, y = (z,x), so x € X because y € X x X. Thus y = ¢(x), and hence y € ¢(X). Therefore
(X x X) N p(P") C $(X).

It follows that ¢(X) = (X x X) N ¢(P™), which is closed in X x X because (P") is closed in
P™ x P* by 1.4.7. That is, X is separated. O

6 Grassmannians

Grassmannians are a natural generalisation of the projective space. In terms of ubiquity, they are only
second in line after projective spaces. In other words, they are pretty important. Fix positive integers m
and n with m <n.
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6.0.1 Defintion (Grassmannian) The Grassmannian of m-planes in k", denoted by Gr(m,n) is the
set of m-dimensional subspaces of k™. In particular, Gr(1,n 4 1) is the projective space P".

6.1 Topology

We endow Gr(m,n) with a topology by expressing it as a quotient. An m-plane in k" is spanned by m
linearly independent vectors wvi,...,v,, in k™. Two sets of vectors v1,...,v, and wi,...,w,, span the
same m-plane if and only if there exists an invertible m x m-matrix A such that

(U1, Om)A = (W1, ..., Wy).

Let U C (A™)™ = A™ denote the set of (v1,...,vy) with v; € A™ such that vy,...,v,, are linearly
independent. Then U is a Zariski open subset. We have an action of GL,, (k) on U by right-multiplication,
and Gr(m,n) is the space of orbits. That is, we have

Gr(m,n) = U/GLy, (k).
We give Gr(m,n) the quotient topology.

6.2 Atlas

Let us write vectors in k™ as column vectors. Then we can write an m-tuple (v1,...,v,,) as an n X m
matrix, say V. If vy,..., v, are linearly independent, then V has rank m. That is, V contains an
m X m sub-matrix that is invertible. Let I C {1,...,n} be an m-element subset, and let V7 denote the
m X m submatrix of V' obtained by choosing the I-rows (see Figure). Let Uy C Gr(n,m) be the subset
represented by the V' for which V7 is invertible. Then Uy is an open subset. For every point v in Uy, we
can choose a unique representative matrix V' such that V is the identity matrix. (To do this, first pick
any representative V and then multiply on the right by VI_I.) We get a bijection

or: Ur — Am(n—m)

defined by the following formula

¢I (U) = V}Ca
where V' is the unique matrix whose columns span v and which satiesfies V; = id. The notation Vje means
take the rows of V' corresponding to I°—that is, drop the rows corresponding to I. See [3|for a picture.

\\ }1 X @ x
\IM \ “—> * - ¥
PR B —L‘
A *w‘*k M
#*

® o--c - (n=v
U—S_ ¢Gr (m -“\ A‘m )
Figure 3: A chart of the Grassmannian

6.2.1 Proposition The collection of charts {¢;} gives an atlas on the Grassmannian.

We need to prove that (a) the maps ¢; are homeomorphisms, and (b) the charts are compatible. We
will skip (a).

We will prove (b) in the example of n = 4 and m = 2. Let I and J be 2-element sets of {1, 2, 3,4},
then a global expression for ¢ ;o ¢y exists on ¢;(UrNUy). Suppose (a,b,c,d) € ¢r(UrNUy), then we
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can choose V € Ur N Uy such that ¢;(V) = (a,b,c,d,) and V; = id, then
(a,b,c,d) = V s (VV; 1)) e

such a le exists by our assumption that (a,b,c,d) € ¢;(Ur NUy), and in the example that I =
{3,4},J ={2,3}
i fe dT_1[0 d
J 1 0 dl|l —c

and the same argument shows that for any I, J, the entries of le are regular on ¢;(Ur NUy), so
every entry of (VV; 1)) e is a regular function from ¢;(U; N Uy) to Al.

Now, note that by definition of ¢y, qbl_l(a, b, ¢, d) is the equivalence class of the unique matrix such
that V7 = id, and Ve = (a, b, ¢,d), so for each I, ¢; o (;51_1 = ¢>[_1 o ¢r = idg, ;). It follows that for
each I, J,

progslogyodrt =¢rodr =idy,w,nu,)

as required.

6.3 The Plucker embedding

There is a way to embed Grassmannians as closed subsets of projective spaces. In due course, we'll see
that projective varieties (varieties isomorphic to closed subsets of projective spaces) are the best varieties,
and the Plucker embedding shows that Grassmannians are in the club.
The map is simple. It goes
p: Gr(m,n) — PV,

where N = (:1) — 1. Take an m-dimensional subspace v of k™ represented by an n x m matrix V. Define
p(v) = [detV7],

where I ranges over all m-element subsets of 1,...,n. This is well-defined. First of all, not all determinants
are 0, because V has rank m. Secondly, a different representative of v has the form V A, where A is an
invertible m x m matrix, but then all the determinants are multiplied by the same scalar, namely det A.

To show that the Plucker map is regular, we need to prove that for all points v € Gr(m,n), the
composite map Y opo ¢~ : V ——» V' is regular at ¢(v).

Fix some v € Gr(m,n). We know that there exists some representative matrix V' such that there
exists an m element subset I C {1,...,n} for which V; is the identity matrix. Thus detV; = 1.
Choosing the chart of PV associated with dividing through by det V7, we have that 17 opo ¢[_1 maps
element V;e € A™=™) to (det V) where .J ranges over all m element subsets of {1, ...,n} excluding
J = I. Noting that the determinant is a polynomial, we can conclude v opoqﬁf_1 is a regular map. [

As an illustrative example, let I = {1,3}, and work in Gr(2,4), we have:

b7
[CCL Z] (1,3} £>[b:l:d:a:acl—bc:—c]1/)—[>(b,d,a,ad—bc)

o O
Q.= o O

6.3.1 Proposition The image of the Plucker embedding p is a closed subset of PV and the map p is
an isomorphism onto the image.

Proof. Tt is not so easy to identify the homogeneous polynomials that cut out the image. It is easier to
work on charts.
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Let represent the homogeneous coordinates of PV by [X;], where I ranges over m-element subsets I
of {1,...,n}. Let U; C PN be the standard open set; the one where X # 0.
Let Z be the image of p. To show that Z is closed, it is enough to show that ZNUy is a closed subset of
Ur for each I. Then, to show that p is an isomorphism onto its image, it is enough to construct a regular
map
ZnU; — p YUy)

which is an inverse to p. ]

Do it for one I in the case n =4 and m = 2, and you will understand the general argument. — (3)

7 Irreducibility and rational maps

7.1 Irreducible topological spaces

A topological space X is reducible if it can be written as a union of two proper closed subsets. It is
srreductble if it is not reducible.
We have encourtered this property many times before, even though we have not named it yet.

7.1.1 Example The space X = V(zy) C A? is reducible (in the Zariski topology). We can write X as
the union V(x) UV (y). On the other hand, we will soon see that X = V(xy — 1) is irreducible (the real
picture is misleading!).

— In the usual Euclidean topology, we rarely encounter irreducible spaces. In fact, it is not hard to show
that X C R" is irreducible (in the Euclidean topology) if and only if X is a single point. But irreducibility
turns out to be an important notion in algebraic geometry.

7.1.2 Proposition (Equivalent conditions for irreducibility) The following are equivalent
1. X is irreducible.
2. Every non-empty open subset of X is dense.
3. Any two non-empty open subsets of X have a non-empty intersection.

Proof. Let us prove ] — 2 — 3 = 1.

For 1 = 2, suppose X is irreducible, and U C X is a non-empty open. Let ¥ = X — Z. Then
Y C X is a proper closed subset. Let U be the closure of U. Then X = Y UU. Since X is irreducible and
Y C X is a proper closed subset, we must have U = X.

For 2 = 3, assume that every non-empty open is dense and let U,V C X be non-empty open
subsets. Pick a v € V. Then v lies in the closure of U, so any open subset containing v must intersect U.
In particular, V intersects U.

For 3 = 1, assume that any two non-empty opens have a non-empty intersection. Suppose X =
Y UZ, where Y, Z C X are open and Y # X. We show that Z = X. By taking complements, we have
YN Z¢ = @, and hence either Y¢ or Z¢ is empty. But by assumption Y¢ is non-empty, so Z¢ must be
empty. In other words, we have Z = X. ]
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7.1.3 Proposition (Closure and image of irreducible is irreducible)
1. Suppose U C X is dense. Then U is irreducible if and only if X is irreducible.

2. If f: X = Y is a surjective continuous map and X is irreducible, then Y is irreducible.

Proof of 1:

Let U C X be a dense subset. Suppose U is irreducible. Let V and W be non-empty and open
subsets of X. Then UNV and UNW are open in U. Both UNV and U NW are non-empty as they
are each the intersection of an open set and a dense set. So by proposition 7.1.2, UNV and U "W
have a non-empty intersection. So there exists x € X such that x € (UNV)N(UNW). Then x is
an element of V N W, so we have that V. N W # (). Therefore any two non-empty open subsets of X
have a non-empty intersection, and so by proposition 7.1.2 X is irreducible.

Now suppose that X is irreducible. Let V' and W be non-empty and open subsets of U. Then V
and W are also open in X. So by proposition 7.1.2, VW is non-empty. Therefore any two non-empty
open subsets of U have a non-empty intersection, and so by proposition 7.1.2 U is irreducible.

Proof of 2:

Let f : X — Y by a surjective continuous map, and suppose that X is irreducible. Let V and
W be non-empty and open subsets of Y. Since f is continuous, both f=1(V') and f~*(W) are open.
Let v € V. Then there exists v’ € X such that f(v') = v. So v’ € f~1(V) and therefore f=1(V) is
non-empty. By a similar argument, f~!(W) is non-empty. So by proposition 7.1.2, f~1(V)n f~1(W)
is non-empty. Therefore there exists * € X such that z € f~4(V) N f~Y(W). Then we have that
f(x) € VNW and hence V NW is non-empty. Therefore any two non-empty open subsets of Y have
a non-empty intersection, and so by proposition 7.1.2 Y is irreducible.

For affine varieties, irreducibility is (unsurprisingly) related to a well-known property of the ring of
regular functions.

7.1.4 Proposition (Irreducibility of affines) Let X C A" be a Zariski closed subset. Then the
following are equivalent.

1. X is irreducible.
2. I(X) is a prime ideal.

3. k[X] is an integral domain.
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klxy, o, xn]/I(X) = k[X]. k[x, ..., x,] is a commutative ring, so I (X) is a prime ideal if and

only if k£ [X] is an integral domain. Therefore, 2 & 3

Suppose X is reducible. Then, we can write X =V, UV,, where V;,V, & X are proper
closed sets. Let I; = I(V;),1, = V(I,) be the vanishing ideals. Then, there exists f € I;
such that f(V;) = 0 and f(X) # 0. (if every polynomial f € I(V;) vanishes on X, then we

would have X c V;, which contradicts the previous assumption). Since f(X) # 0, we have
that f & I(X). Similarly, there exists g € I, such that g(V,) = 0 and g & {(X)

(fg)(V1) = 0 since f(V1) =0, (fg)(Vz) =0 since g(V,) =0. X =V, UV,, therefore
(Ffa)(X) =0,(fg) e I(X).f ¢ I(X), g & I(X), therefore [(X) is not a prime ideal.

By contraposition, we have shown that2 = 1

Now suppose {(X) is not a prime ideal. Then, there exists f, g € k[xq, ..., x,] such that
f.g €I1(X),but(fg) € I(X)

Restricting all the vanishing sets to X. f,g € I(X), therefore, their vanishing sets
V(f),V(g) are strictly contained in X. (fg) € I(X), their product vanishes on X, therefore
the union of their vanishing sets must be X.

Therefore, we have V(f),V(g) € X, and V(f) UV(g) = X. Also, V(f),V(g) are closed
subsets of X. Therefore, by definition, X is reducible.

By contraposition, we have shown that 1 = 2

We have shown that 1 & 2 & 3, therefore the three statements are equivalent.

7.1.5 Corollary (Grassmannians are irreducible) The Grassmannians (and in particular, the pro-
jective spaces) are irreducible.

Proof. There is a surjective regular map from an open subset of A" to Gr(m,n). O

7.1.6 Proposition (Products) Let X and Y be irreducible varieties. Then X x Y is irreducible.

Proof. Suppose X XY = Z; U Z;, where Z; C X XY are closed. Let us show that Z;, =X xY fori=1
or 2. For every y € Y, we have

Xxy=Z1N(X xy)UZan (X xy).

Since X = X X y is irreducible, we have Z; N (X x y) = X x y for i = 1 or 2; that is, we have X x y C Z;
for i =1 or 2 (or both). Let W; C Y be the set of y such that X xy C Z;. Then Y = W; U W,. We can
also see that W; C Y is closed: it can be written as the intersection

W= {yeY | (wy) e Z},
zeX

in which each set is closed. Since Y is irreducible and Y = W7 U W, we see that Y = W, for i = 1 or 2.
This means X xY = Z; for i =1 or 2. ]

7.1.7 Proposition (Cones) Let X C P" be an irreducible subset. Then the cone C' C A"t over X
is closed.

Proof. Recall that the cone C is the closure of 7=*(X) where 7: A"*1\ 0 — P" is the projection. It
suffices to show that C* = 771(X) is irreducible. For every z € X, set L, = 7~ '(x); this is a copy of
A\ 0, and hence irreducible. Now, if C* = Z; U Z5, then by the argument as in the proof of we
get that 7~ 'L, C Z; for some i. As before, define W; C X as the set of € X such that TF_l(Lx) C Z;.
Then X = Wy U W,. We claim, as before, that W; C X is closed. Then, using the irreducibility of X, we
are done.
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To see that W; C X is closed, we cannot literally use the same argument as before, because C* is not
a product X x A\ 0. Nevertheless, it is locally a product: there exists an open cover U; of X such that
7 U; 2 U; x (A'\ 0), where 7: C* — X is the obvious projection map. Hence, the argument in
shows that that W; N U; C Uj is closed. And since Uj is a cover of X, we get that W; C X is closed. [

7.2 Irreducible components

If X is reducible, it has a unique decomposition into irreducible components. The idea is simple: we start
by writing X =Y U Z, where Y and Z are proper closed subsets. If either Y or Z or both are reducible,
we further write them as unions of proper closed subsets, and continue. We need something to ensure that
the process stops (it does not stop, for example, in the usual topology).

7.2.1 Definition (Noetherian topological space) A topological space X is Noetherian if every
nested sequence of closed subsets
XO>OXi1D0X9DX3D:---

stabilises.

A consequence of the Hilbert basis theorem is that every affine variety is Noetherian. It is easy to
check that if X has a finite open cover by Noetherian topological spaces, then X is Noetherian. As a
result, every algebraic variety of finite type is Noetherian. (A variety is of finite type if it has an atlas
consisting of finitely many charts.)

7.2.2 Proposition (Irreducible decomposition) Let X be a Noetherian topological space. We can
write
X=X1U---UX,,

where X; C X are irreducible closed subsets with X; ¢ X for 7 # j. Furthermore, this decomposition is
unique (up to permutation of the factors).
The factors X; are called irreducible components of X.

Proof. The idea is to keep decomposing until we reach irreducible pieces. The Noetherian hypothesis
ensures that the process terminates. Uniqueness is also quite straightforward when we observe the following
characterisation of an irreducible component: it is an irreducible closed subset of X which is not contained
in a (strictly) bigger irreducible closed subset. I will skip the details. O

7.2.3 Example (Hypersurfaces) Let X = V(f) C A". Then the unique decomposition of X into
irreducible components corresponds precisely to the unique factorisation of f into prime factors.

7.3 Rational maps and rational functions

Recall our notation f: X --» Y for a map f defined only on an open subset. This notion becomes really
useful when X isirreducible. Let X be irreducible and Y separated. A rational map from X to Y, denoted
by f: X --» Y is a map from an open subset of X to Y. More precisely, it is a pair (U, f) where U C X is
a (non-empty) open and f: U — Y is a regular map. Two pairs (U, f) and (V, g) are considered equivalent
if f and g are equal on U NV.

Show that this is an equivalence relation.

Let ~ denote our relation and note that all sets we consider are nonempty opens so their intersec-
tions are nonempty by X irreducible. Reflexivity and symmetry are almost immediate by definition.
Transitivity uses the homework question.

Reflexivity We have (U, f) ~ (U, f) since f agrees with itself on UNU = U.
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Symmetry If (U, f) ~ (V,g), then we have f and g agreeing on U N'V. But by rewording our
sentence we have g and f agreeing on V N U and hence (V, g) ~ (U, f).

Transitivity Suppose (U, f) ~ (V,g) and (V,g) ~ (W, h). This means that f = g on U NV and
g =h on VN W which in turn implies that f = h on UNV N W. Now recall from homework
that two regular maps f,g : X — Y agree on all of X if they agree on a dense subset U C X
and Y is separable.

We note that U N W is open and hence dense in X by X irreducible. But a dense subset of
an irreducible set is itself irreducible. So U NV N W which is open in U N W is also dense in
UNW. Now we assumed that Y is separable and f and g are regular by definition of a rational

representative so we can apply homework statement to get f = h on all of U N W and hence
U, f) ~ (W, h).

We say that a rational map X --» Y is defined (or regular) at x if there exists a representative (U, f)
such that U contains x. The subset of X where a rational map is defined is an open subset, called the
domain of definition of the rational map.

Suppose we have rational maps f: X --» Y and ¢g: Y --» Z, we have to be a bit careful while
composing them. After all, it could happen that g is not defined at any point in the image of f! But if the
domain of g contains a point in the image of f, then the composition makes sense and defines a rational
map go f: X --+ Z.

Define the composition precisely. Produce an example where the composition is not defined.

Composing Rational Maps

Suppose f: X — — > YV and g : ¥ — — > Z are rational maps. Consider representatives (T, f') of f.
and (V. g') of g. We have that (f/)" (V') is an open subset of U'. Tn particular, (/)1 (V)
subset of X. Suppose this open subset (f7) (V') is non-empty. For each € (f')"(V'), we can apply ¢’
to f'(x), since #/(x) € V', As such, we can define the rational map go f : X — — > V by a representative
(¢" o £ (") (V") Tndeed. ¢ o f' is certainly regular npon (f) ' (V7). since it is the composition of two
regular fanctions f7 and ¢, npon this domain.

S an open

We need to check that this definition is independent of the representatives we chose. Suppose (I7”, f7) and
(V".¢") also represent f and g, vespectively, and that { )" (V") is non-empty. Then (¢” o £, (f)7' (V")
and (' o £, () (V")) are equivalent, ie. they represent the same rational map. To see this, we first note
that (f) (V)0 (f) (V") is a subset of U/ N U, Since (U, f*) and (U, ") both represent. f, we have
that f/ = f* upon the non-empty intersection U7 1 U7, In particular,

/=" upon the non-cmpty intersection (f1)~H(Vyn ()7 (V). (1)

Now, we also have that have that

g'=4¢" upon the non-empty intersection ¥/ 1 V", (2)
since both (V7 g") and (V7. g") are representatives of y. Note that non-emptiness in and (2] is guaranteed
by irreducibility of X. From m and we have that ¢ o 7 = ¢" o f/ upon the non-empty infersection
()= N ()~ (V). We have shown that (¢” o 7 (£)=2(V")) and (¢'o f'. (f)~1(V)) are equivalent.
So the composition go [ is well-defined.

Counterexample

We give an example where the composition of rational maps is not defined. Let X =Y = Z = A'. Cousider
the rational map from X to ¥ with representative the zero function. We name the zero function h. Consider
also the rational map from Y to Z with representative the function f: &' {0} — &' defined by flz) = 1/x,
for - € A"\ {0}, There is no function g : I7 —= A, from an open subset U of &', which agrees with f on U,
vet which satisfies 0 € I7. This follows from the fact that we cannot extend f to a regular function on all
of &', Let F dencte the rational map with representative f and H the rational map with representative b,
For any (U7, f') representing F and any (V' /') representing H, we have (h') (V') is empty. Tndeed. this
follows from the fact that ¥ cannot contain 0. As such, we cannot define /o b/, Since these representatives
were arbitrary, it follows that we cannot define F o H. So the composition of these rational maps is not
defined.

We say that a rational map f: X --» Y is a birational isomorphism (or birational) if there exists
g:Y --» X such that go f and f o g are defined and equivalent to the identity on X and Y respectively.
We say that two varieties are birational if there exists a birational isomorphism between them. Classifying
varieties up to birational isomorphism is a major open problem in algebraic geometry.

7.3.1 Examples (birational isomorphisms) In the following, all varieties are assumed to be irre-
ducible and separated.
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1. Any variety is birational to any of its open subsets.

2. The affine space A", the projective space P, any product P¢ x P® with a + b = n (and any triple
product etc.) are in the same birational isomorphism class.

3. The group of biregular automorphisms of P” turns out to be quite easy to understand—it is just
PGL,+1—but the group of birational automorphisms is huge and very poorly understood (except
when n = 1, where it agrees with the biregular automorphisms group by one of the homework ques-
tions). Here is an example of a birational automorphism of P2, called a 'Cremona transformation’:

o[ X:Y:Z]—[1/X:1/Y :1/Z].

7.3.2 Definition (field of fractions) Let X be an irreducible variety. The set of rational maps
X --» A! = k is naturally a ring. But in fact, it is actually a field, called the fraction field of X, and is
denoted by k(X). < If X is affine, then we really do have

k(X) = frac k[ X].

Proof. We will construct an isomorphism ¢ : frac k[X] — k(X). Let

! € frac k[X]

g
for f,g € k[X] where g #Z 0. Then, let ¢ be the map

#(5)-(=3)
g g
where U = X \ g~1(0). The map ¢ is naturally a ring homomorphism by how the + and - operations
work on k(X). Moreover, since any ring homomorphism from a field is injective, and frac k[X] is
indeed a field, we have that ¢ is injective.

For surjectivity, suppose (U, f) € k(X). Let u € U, so that f is regular at the point w. Then, on
an open neighbourhood W C U containing u, we can write

f==
q

for polynomials p,q € k[A"]. Considering p,q as elements p,q € k[X] under the restriction map

k[A"] — K[X] , we have
6 (2) — (W, f)

and since f is defined on a (possibly) larger open neighbourhood U, we have (W, f) = (U, f), so ¢ is
surjective.

Thus, ¢ is an isomorphism, so
k(X) = frac k[X]

as required. O

It is easy to check that a birational isomorphism f: X --» Y induces an isomorphism of fields over k:
kYY) — E(X).

(and conversely).
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8 Dimension

The idea of dimension is central to geometry, but making it rigorous involves serious algebra. It would
be a shame to avoid this notion, which is intuitively so clear. As a middle ground, we will take some
statements from algebra as given. We will learn three equivalent definitions of dimension, but we will not
prove the equivalence.

Let x € X be a point. We will define an integer dim,X, the dimension of X near z. At first, the
dependence on x seems strange, but it makes sense when you look at some examples. Suppose X C A3 is
the union of the xy-plane and the z axis (see Figure . Then dim, X = 2 if p is in the xy-plane (including
the origin) but 1 if p is on the z-axis minus the origin.

: =\
Ke’\\m

Ol.\m ':(2_-

-
T

Figure 4: The union of a plane and a line

8.1 Krull dimension

The Krull dimension of X at z is the length n of a longest (strict) chain of irreducible closed subsets of
X, starting with {x}:
{z}CcXyC---CX,CX.
If X is irreducible, then the longest chain must end with X. (In that case, a non-trivial fact is that all
maximal chains have the same length.)
Let us use the temporary notation krdim to denote Krull dimension.

8.1.1 Proposition Let X be irreducible and Y C X a proper closed subset. For any y € Y, we have
krdim,Y < krdim,X.

8.2 Slicing dimension

The slicing dimension of X at x is the smallest number n such that there exists an open subset U C X
containing z and regular functions fi,..., f, on U such that the common vanishing set of {fi1,..., fo} on
U is only the point x.

Informally, the slicing dimension is the smallest number of functions we need to slice down the space
to a single point x. Let us use the temporary notation sldim to denote the slicing dimension.
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8.2.1 Proposition (The Principal Ideal Theorem) Let X be any variety, f a regular function on
X, and Y = V(f) the zero locus of f. For any y € Y, we have sldim,}" > sldim, X — 1.

Slogan: Slicing by 1 function cuts down the dimension by at most 1.

There are instances where the inequality is strict.

8.3 Transcendental dimension

Let X beirreducible. The transcendental dimension of X is the transcendence degree of the field of rational
functions k(X) over the base-field k. Recall that the transcendence degree of a field extension L/k is the
largest number n of elements fq,..., f, € L which are algebraically independent over k; that is, they do
not satisfy any polynomial equation with coefficients in k. In Algebra 2, you mostly studied extensions
of transcendence degree 0, also called algebraic extensions, in which every f € L satisfies a polynomial
equation with coefficients in k. (A non-trivial fact is that all maximal algebraically independent sets have
the same size.)

Let use the temporary notation trdim to denote the transcendental dimension. Note that this definition
does not use the point x € X, but it assumes that X is irreducible.

8.3.1 Proposition Let f: X — Y be a dominant map of irreducible varieties. Then trdimY” < trdimX.

8.4 All definitions are equivalent

All three are reasonable definitions of dimension, so the following is a great relief.

8.4.1 Theorem (krdim = sldim = trdim) Let X be an algebraic variety and z € X a point. Then we
have
krdim, X = sldim,X.

Furthermore, if X is irreducible, then both are equal to trdim.X.

We denote the dimension by dim,X. The theorem says that if X is irreducible then this number
does not depend on z. If X is reducible, then it is easy to see (using the Krull dimension) that dim,X
is the maximum of the dimensions of the irreducible components of X that contain x. A variety is
equidimensional if dim,X is the same for all x € X. This is the same as saying that all irreducible
components of X have the same dimension.

We will not prove this theorem. Its proper place is a course in commutative algebra. The famous
book “Commutative Algebra” by Atiyah and MacDonald has an excellent exposition (in the last chapter),
where they also give a fourth equivalent definition.

8.5 Applications

8.5.1 Theorem (Dimension of product) For irreducible X and Y, we have
dim(X xY) = dimX + dimY-

Proof. We first use Krull dimension to get an inequality. Let m = dimX and let € X be arbitrary. We
have a (strict) chain of irreducible closed subsets

{z}CcXjC---CcXp=X,
yielding a chain of irreducible closed subsets

{z} xYCXixY - -CX, xY=XxY.
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Let n = dimY and let y € Y be arbitrary. Then we have a (strict) chain of irreducible closed subsets
{ypcyric---CY,=Y.
If we take the product with {z} and append it to the chain above, we get a (strict) chain
{(x,y)} C{z}xY1---C{z}xY, Cc X xY C--C Xy xY.

As a result, we have
krdim(X x Y) > m + n.

(We don’t get equality because we haven’t proved that there cannot be a longer chain).

For the opposite inequality, we use slicing dimension. There exist m regular functions in a neighborhood
U of x on X whose zero locus is . There exist n regular functions in a neighborhood V of y on Y whose
zero locus is y. In U x V, the m + n functions together have zero locus (z,y). As a result, we have

sldim(X x Y) <m+n.

(We don’t get equality because we haven’t proved that a smaller set of functions does not suffice.)
But since sldim = krdim, we have proved what we wanted. O

8.5.2 Examples The dimension of A!is 1 (you should be able to check this using any of the definitions).
As aresult, the dimension of A" is n. Consequently, the dimension of P" is n and the dimension of Gr(m,n)
is m(n —m).

8.5.3 Theorem (Hypersurfaces in affine space) Let f € k[xy,...,2,] be non-zero. Then V(f) C
A" is equidimensional of dimension (n — 1). Conversely, any closed X C A™ which is equidimensional of

dimension (n — 1) has the form V(f) for some f € k[z1,...,xy)].
(1) — Prove this. One direction is easy and applies to any irreducible variety, not just A”. The
converse is specific to A", and will use that every irreducible element of k[z1,...,x,] defines a prime

ideal, which in turn is a consequence of the unique factorisation property for the polynomial ring.
First, pick x € V(f). Then, since V(f) is a proper closed subset of A™ and A" is irreducible,
Propsition 8.1.1 tells us that dim;(V(f)) < n — 1. Then, since f is regular, the Principal Ideal
Theorem tells us that dim;(V (f)) > dimz X —1 = n—1. So then dim;(V (f)) = n— 1. Furthermore,
since z is an arbitrary point, V(f) must be equidimensional of dimension n — 1.
Now, for the converse, suppose X C A" is closed and equidimensional of dimension n —1. We can
decompose X into a union of closed, irreducible components

X=X1U---UX,.

Then since X is equidimensional, X; must also be equidimensional of dimension n — 1, for every i.

Now consider f € I(X;). f can be expressed as f = fi... fi, where each f; is an irreducible
polynomial. Also, since X is irreducible, I(X;) is a prime ideal. So then at least one f; is in I(X;).
Then, since f; is irreducible and k[z1,...,z,] is a unique factorisation domain, we have that (f;) is
also a prime ideal.

Then (f;) C I(X;)implies that X; C V(f;). The above result tells us that V ( f;) is equidimensional
of dimension n — 1, and f; irreducible implies V'(f;) is also irreducible. So X; and V'(f;) are both
irreducible of dimension n — 1 and X; C V/(f;), which implies X; = V (f;).

Thus X =V (f;,) U---UV(fj.), which gives us X = V(fj, ... fj.). So X is of the form V(f) for
some f € k[xy,...,xp).
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8.5.4 Theorem (Hypersurfaces in projective space) Let F' € k[Xy, X1,...,X,] be homogeneous
and non-zero. Then V(F) C P" is equidimensional of dimension (n — 1). Conversely, any closed
X C P" which is equidimensional of dimension (n — 1) has the form V(F) for some homogeneous
Fe ]{[Xo, .. .,Xn].

(2) — Prove this by reducing this to the previous statement using cones.

Let F € k[Xo,X1,...,X,] be homogeneous and nonzero. Then V(F) is equidimensional of di-
mension 7 in A" by 1.5.3. It follows that V (F) is equidimensional of dimension n— 1 in P", because
the fibres of the quotient map 7 : A"t \ {0} — P" are punctured lines, and hence one-dimensional.

Let X C P™ be closed and equidimensional of dimension n — 1. Let Cx denote the closure of
771(X) in A", The fibres of m are punctured lines in A"*!\ {0}, so are isomorphic to Al \ {0}.
For each z € X, there is an open neighbourhood U of 7(x) such that 7—(U) is isomorphic to
U x (A'\ {0}), that is, is equidimensional of dimension (n — 1) + 1 = n. We conclude that 7=1(X)
is equidimensional of dimension n, so that Cx is also. By 1.5.3, we have that Cx = V(F) for some
F € k[Xo, X1,...,X,], which cannot be zero because this would imply X = P™ and therefore has
dimension n. Since C is closed under scaling, the result from Assignment 1 implies that I(Cx) is a
homogeneous ideal. If F' is not homogeneous, then it has a homogeneous component which is not in
I(Cx), a contradiction. So F' is homogeneous, and X = V(F') when viewed under the projection.

8.5.5 Theorem (Slicing by hypersurfaces) Let X C P" be closed of dimension » > 1 and let
F € k[Xo, ..., X,] be homogeneous of positive degree. Then X NV (F) is non-empty and of dimension at
least r — 1.

(3) — Prove this by reducing to the affine cone and applying the principal ideal theorem at the origin.

Xp=XnV(F)

dim(X )= 1-1 by Principal Ideal Theorem.

Claim Xp=#0ilr > 1.

CXNV(F)c Alr+l)

dil’l’l[](j}i— =r—+1

0 e V(F),so0e CXnN V(.

dimp(CXN V(F)) = dim(CX) -1 =(r+1)-1 =1

r > 1, therefore dimp(C XM V(I7)) > 1.3 p e CX M V(F), and p # 0.

8.5.6 Corollary In P", a collection of at most n homogeneous forms (of positive degree) have a non-
empty intersection.

8.5.7 Theorem (No maps from P" to P™ for n > m) Suppose n > m. Then there are no non-
constant regular maps from P" to P™.
The proof relies on the following fact about maps from one projective space to another.

8.5.8 Proposition Let U C P" be an open subset and ¢: U — P a regular function. Then there exist
homogeneous functions Fy,..., F, € k[Xo,...,X,] of the same degree such that they have no common
zero on U and for every u € U, we have

¢(u) = [Fo(u) : -+ Fin(u)]

Proof. A conceptual proof of this fact uses the classification of line bundles on P™. Here is more elementary
(but clumsy) proof.

Pick some uw € U. We first show that ¢ has the required form in some open subset containing wu.
Without loss of generality, assume that u and ¢(u) lie in the charts of the projective spaces here the 0-th
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coordinate is non-zero. Then u =[1:u; : -+ :uy] and ¢(u) = [1 : vy : -+ : vy]. By defintion of a regular

map, there exist rational functions g;(x1,...,zy,) for i = 1,...,m such that
d(Liay:--rxp]) = :gi(xr, ... xn) it gm(T1, ... 2p)]
forall x =[1: 2y : - : x,] in some open subset of U containing u. Multiply this expression for ¢ by a

large enough polynomial so that

O([L:ay -t ay]) =[folxr,. .o yzn) oot flT1, .oy 20)],

here the f; are polynomials. Choose d > deg f; for all . Homogenise the f; with respect to zg to make

them homogeneous of degree d. That is, set F(xo, ..., zn) = 28 f(21/%0, ..., 2n/T0). Then ¢ has the form
o([zo, ... xn)) = [Fo(zo, ..., xn) t -+ 2 Fp(zo, ..., Tn)]
for all x = [xg : --- : x,] in some open set containing u. We may assume that the F; do not share a

common factor (if they do, cancel it out).

We now show that the F; cannot have a common zero on U, and therefore, the expression ¢ = [F]
holds on all of U. Suppose z € U is such that all F; vanish at x. We show that then the F; share a common
factor. By the argument before, there must be an alternate expression ¢ = [G;] in a neighborhood of x in
which some G;(x) is non-zero. Suppose Go(z) # 0. Since we have [F;] = [G;] on the open set where both
are defined, we have F;G; = G;Fj. In particular, we have FyG; = GoF}j. Let P be a prime factor of Fj
such that P(x) = 0 (all factors of homogeneous polynomials are homogeneous). Then P divides FyF}, but
P cannot divide Go, as Go(z) # 0. So P divides Fj. Since this is true for all j, we get a common factor
P in all F;. ]

8.5.9 Proof of Theorem [8.5.7| Suppose we have a regular map ¢: P — P™. By Proposition
there exist Fy, ..., Fy, such that they have no common zero and ¢ = [Fy : --- : F},;]. By Corollary [8.5.6
this is impossible if m < n.

8.6 Dimension of fibers and dimension counting

8.6.1 Theorem (Dimensions of fibers) Let f: X — Y be a dominant map between irreducible
varieties. Then for every z € X with y = f(z), we have

dim, f1(y) > dimX — dimY.

Furthermore, there exists a non-empty open U C Y such that for every y € U, the fiber f~1(y) is
non-empty and equidimensional of dimension dimX — dimY".

That is, for almost all y € Y, the dimension of the fiber is the difference in the dimensions, as expected.
But there may be some points in Y whose fiber has a different dimension. But in this case, the dimension
can only be bigger, not smaller.

The proof of the theorem uses transcendental dimension. The proof is straightforward, but a bit
technical, so I am skipping it. See Chapter 1, Section 6.3 of Shafarevich for the proof.

8.6.2 Example Let us construct an example where the dimension does actually jump. Consider
f: A% - A?

defined by

f(@,y) = (zy,y).
For all (a,b) such that b # 0, the fiber is a single point (dimension 0). But over the point (0,0), the fiber
is a copy of A! (dimension 1).
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8.6.3 Dimension counting Theorem is used very often in finding dimensions. Here is a typical
example.

Let A™*"™ be the affine space of n x n matrices, and given r € {0,1,...,n}, let X,, C A" be the set of
matrices of rank at most 7. The subset X, is Zariski closed (it is the vanishing locus of all (r41) x (r+1))-
minors, and it is not hard to check that it is irreducible. What is its dimension?

Consider P C A™*"™ x Gr(n — r,n) consisting of (M, V') (where M is an n X n matrix and V' C k" is
an n — 7 dimensional subspace) such that Mv = 0 for all v € V. That is, the restriction of the linear map
M: k™ — k™ to V is zero.

Claim 1: P is a Zariski closed subset.

Since the closedness of P is given by the closedness of P N [A”zx Uy)
for all (n-r)-clements subsets Lin {1, ..., n} where {Ur} is the
standard open covering of Gr(n-r, n).

Henee, let’s show that P N (A”zx Uy) is closed in A" x Us for
I={1, ..., n-r} and the proof for other U] is similar to it.
Given any element V € Uy, V has the nx(n-r) matrix form

1 - 0

] where its (n-r)X(n-r) submatrix is the identity matrix.

Since for (M, V) € P, we have M-v =0 forall v € V.

Hence V € U, satisties M-(column vector of V) = 0 [Since column
vectors of V spans V, hence showing M maps column vectors of V to
0 is enough]

Therefore, by the chart on A x Uz, M+(column vector of V) =0 are
polynomials equations in entries of M and entries of column vectors
of V and this vanishing set of polynomials are closed in AV U, =
An"' (n-rir

Hence P N (A" x Uy) is closed in A x Uj.

Hence P is closed in A x Gr(n-r, n).

We can prove that P is also irreducible, but let us skip this for now.
Claim 2. The dimension of P is r(2n — 7).

(5) — Study the fibers of P — Gr(n — r,n) to prove this.
Consider the projection

7: P CA™" x Gr(n—r,n) = Gr(n —r,n)
(M, V)=V,

where M and V are such that Mv =0 for all v € V.

Let V € Gr(n — r,n) and consider the fiber 7=1(V).

We view M as a linear map; that is, consider M : k"™ — k™, where Mv = 0 for all v € V. From
the universal property of quotients, there exists a unique linear map M : k"/V — k™ such that
M o~ = M, where vy : kK — k™/V is the canonical projection. But k"/V =2 k", since V is an n — r
dimensional subspace. Hence M consists precisely of 7 x n matrices. Thus, dim7~1(V) = rn.

Furthermore, from the theorem on dimension of fibers, there exists an open set U C Gr(n — r,n)
such that for every V € U, we have dim 7! (V) = dim P —dim Gr(n — r,n). Thus, on UNGr(n—7,n)
(=U), we have dim P — dim Gr(n — r,n) = rn. Therefore, dim P =r(n —r) +rn =r(2n —r).

Claim 3. The dimension of X, is r(2n — r).
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(6) — Study the image and the fibers of P — A™*" and prove this.
The image is all of X, so it’s a dominant map to X, and

dim P > dim X,.

If we choose M of rank exactly 7, then we see that 7! (M) contains only one point, and dim 7= (M) =
0, so
0 > dim P — dim X,

and it follows that
dim P — dim X, =r(2n —r)

9 Local rings and tangent spaces

Let X be an algebraic variety and x € X a point. Let us describe a construction that lets us study the
geometry of X near x using algebra. We will construct a ring Ox , called the local ring of X at x. This
will be non-trivial even when X is not affine, and will contain all information about the local geometry of
X near x.

9.1 The ring of germs

A germ of a regular function at x is an equivalence class of (U, f) where U C X is an open set containing
x and f is a regular function on U. Two pairs (U, f) and (V, g) are equivalent if there is an open set W
containing x with W C U and W C V such that flw = g|w.

The idea is that only the behaviour of the function near x matters. The idea is not unique to algebraic
geometry; it is useful in any geometric context.

Let Ox . be the set of germs of regular functions at x. There is an obvious addition and multiplication
of germs, which makes Ox , a ring and there is an obvious copy of k inside this ring, which makes it a
k-algebra. Note that if U C X is an open subset containing x, then Ox , = Oy,. The local ring gives
a convenient language to talk about statements of the form “.... holds in some open set containing x”
without being explicit about the open set. By abuse of notation, when we specify elements of Ox ,, we
only specify the f and drop the U.

The definition of Ox 4 is very similar to the definition of rational functions (if X is irreducible), except
that all the open sets in question are supposed to contain the point x. Here is the precise relationship.

9.1.1 Proposition (Connection with the fraction field) Let X be irreducible. Then we have a
natural inclusion Ox , C k(X) and Ox , is the set of rational functions on X which are defined at .

Proof. Skipped. O

In particular, if X is affine and irreducible, it is easy to calculate the ring of germs.

9.1.2 Proposition (Description for affines 1) Let X be irreducible and affine. Then the ring
Ox » C frac k[X] is given by

Oxe={ 117 e Hixl.g € kXL t0) £0.]
That is, in the denominator, we are only allowed to have functions which are not zero at x.

Proof. Skipped. O

Here is another explicit description of the local ring for an affine.
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9.1.3 Proposition (Description for affines 2) Let X C A" be the closed subset with I(X) =
(fi,-.., fr). Let = (a1,...,a,) € X. Then Ox, is the quotient of Oan, by the ideal generated by

fla s f?”'
(1) — Prove this.

9.1.4 Functoriality The construction of the local ring is functorial. That is, if we have a regular map
f: X — Y such that y = f(x), then pull-back of functions induces a k-algebra homomorphism

f*: Oy7y — OX@.

If f is a local isomorphism—that is, if there exist opens U C X and V C Y containing x and y, respectively,
such that f induces an isomorphism f: U — V—then f* is an isomorphism.
Let m C Ox be the set of germs f such that f(z) = 0. Equivalently, let m be the kernel of the map

OX,I — k
that sends f to f(x). Then m is a maximal ideal. It is not hard to see that this is the only maximal ideal

of OX79[:~

9.1.5 Proposition (Locality) Thering Ox , has a unique maximal ideal m, which consists of functions
that vanish at x.

Proof. 1t is enough to show that every f € Ox , with f € mis a unit in Ox 4. Butif f ¢ m then f(z) # 0,
and hence f is invertible in some neighborhood of z. O

A local ring is a ring with a unique maximal ideal. We just proved that Ox . is a local ring. Local rings
are intensely studied in commutative algebra, mostly because they arise as rings of germs in geometry.
9.2 Tangent space
We will define the tangent space to X at x as the set of tangent vectors to X at z. There are many
equivalent ways to think about tangent vectors.

9.2.1 Infinitesimal curves A tangent vector to X at x is a k-algebra homomorphism
v: Oxp — kle] /e

Let us understand this concretely when X is affine, say X C A" closed. Let I(X) = (f1,..., fr). Then
X is the set of k-valued solutions of the system of equations

filxy,...;zn) =0,..., fr(z1,...,2,) = 0. (11)
9.2.2 Proposition (Infinitesimal curves) Let z = (a1,...,a,) € X. We have a bijection between
k-algebra homomorphisms Ox ., — k[e]/€?/ and k[e]/e*-valued solutions of the system based at
(a1,...,an), that is, solutions of the form (a; + bye, ..., a, + bye).

To go from a homomorphism v: Ox, — k[e]/€? to a solution, look at the images of z;. To check that
the solution is indeed based at (a1, ...,ay,), note that if v(z;) = a + €b;, then v(z; — a}) is nilpotent,
hence not a unit, but if a; # a; then z; — a} is a unit in Ox ,.

To go from a solution to a homomorphism, send «; to a; + €b; and then check that this extends
to a homomorphism on all of Ox ;.. You will have to divide, but division is easy in k[e]/e>—anything
with a non-zero constant term is invertible.

(2) — Complete the sketch above.
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By proposition 9.1.3, we know that Ox , is the quotient of {5 | fyg € k[xy,...,zp],9(x) # 0} by
the ideal generated by fi,..., f. Let A be the set of k algebra homomorphisms Ox , — kle]/€* and
let B be the set of kle]/e? valued solutions of the system (1) based at (ag,...,ay).

Let v : Ox, — k[e]/€® be a k algebra homomorphism. Fix somei € {1,...,n}. Let v(z;) = a,+bse.
Define g; € k[x1,...,2s] by gi(z1,...,7,) = 2; — a;. Then (v(g;))? = b2 = 0. So v(g;) is nilpotent
and hence not a unit. Therefore g; is not a unit in Ox ;. Suppose a; # a;. Then g;(a,...,a,) # 0,

S0 é € Ox, and therefore g; is a unit. This gives a contradiction and therefore a = a;. We can
check that this gives a solution to (1) by evaluating f; at (a1 + b1, . .., an + bye) for each j. Fix some
j€{1,...,r}. Note that f;j(z1,...,2,) = 0in Ox , because f; is in the ideal generated by f1,..., f;.
We can use this for the following calculation.

Therefore (a1 + bie, ..., an + bpe) gives a solution to (1). So we can define ® : A — B by ®(v) =
(v(z1),...,v(xn)).

Now let (a3 + bie, ..., an + bpe) € B be a k[e]/e? valued solution of the system (1). Define a k
algebra homomorphism v : k[z1,...,7,] — k[e]/e® by v(z;) = a; + bie. Let g € k[z1,...,1,] with
g(x) # 0. To show that v extends to a homomorphism on all of Ox ,, we need to show that v(g) is
invertible. There exists some b € k such that the following holds.

v(g(x1,...,xp)) = g(v(z1), ..., v(xy))
= g(a1 + bie, ..., an + bye)
glay,...,an) + be
9(

So we have that v(g) = g(x) + be. Note that ﬁz) is well defined because g(x) # 0. I claim that

ﬁ(g(m) — be) is the inverse of v(g). We can see this by the below calculation.

1 1

g@p ) = e

(g(z) + be) (g(x)? — b%€%)

So v(g) is invertible and therefore v extends to a homomorphism on all of Ox ;. So we can define a
map ¥ : B — A by using this construction. Clearly W is an inverse to ®, so ® is a bijection. Therefore
we have a bijection between k algebra homomorphisms Ox , — k[e]/e? and k[e]/e? valued solutions
of the system (1) based at (ai,...,an).

In the proof of we saw that the “constant term” of v(f) must be f(z), that is v must have the
form

o(f) = f(x) +€-0(f)

where §: Ox , — k is some function. Since v is a ring homomorphism, it satisfies

o(f +g) =v(f) +v(g) and v(fg) = v(f)v(g).
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In terms of §, these become

6(f+9) =06(f) +6(g) and 6(fg) = f(x)d(g) + g(x)o(f). (12)

Furthermore, for a constant function ¢, we have v(c) = ¢, and hence

0(c) =0. (13)

9.2.3 Derivations FEquation should remind you of the sum and product rule for derivatives. Maps
0: Ox, — k satisfying these equation are called derivations. If they also satisfy equation , then they
are called k-derivations or derivations over k. This indicates that the elements of k in Ox, are to be
treated as “constants”. Denote by Dery(Ox ;) the set of k-derivations of Ox ,. Note that derivations can
be added and multiplied by scalars (elements of k), which makes Dery(Ox ;) a k-vector space.

We saw that a k-algebra homomorphism v: Ox , — k gives a k-derivation 0: Ox , — k. Conversely, it
is easy to check that a k-derivation 0: Ox 4, — k gives a k-algebra homomorphism v(f) = f(z) +€- 0(f).
Thus, a tangent vector to X at x is equivalent to a k-derivation of Ox ;.

Geometrically, the correspondance between curves and derivations is as follows. A curve in a space
gives a recipe to differentiate a function; this is the directional derivative of the function in the direction of
the curve. But to define the directional derivative, we don’t need an actual curve, an “infinitesimal curve”
will do. There is no way (that I know of) to make this precise in (differential) geometry, but it can be
made perfectly precise in algebraic geometry using the ring kle] /2.

9.2.4 Zariski tangent space Let m C Ox , be the maximal ideal. A derivation d: Ox , — k restricted
to m gives a k-linear map
o:m —k

that takes m? to 0, and hence gives a map
5:m/m* = k.
Conversely, any k-linear map w: m/m? — k gives a derivation 6: O X, — k defined by

6(f) = w(f — f(x)),

where f(x) denotes the constant function on X with value f(z). Thus, we get an isomorphism of vector
spaces
Dery(Ox ) = Hom(m/m? k).

The space Hom(m/m?, k) is called the Zariski tangent space and m/m? is called the Zariski cotangent
space to X at x.

9.2.5 Computing the Zariski (co)tangent space Let X C A" be affine with I(X) = (f1,..., fr)
and let = (ai,...,ay) be a point of X. We know that Ox , is the quotient of Ogn 5 by (f1,..., fr). Let
us denote the maximal ideal of Opn 5 by m. Then m is generated by (z1 — a1, ..., z, — ay,) and its square
m? is generated by the pairwise products. As a result, m/m? has the k-basis (z1 — ay,..., 2, — a,). To
get m/m?, we need to further quotient by the polynomials fi,..., f-. Let f,..., f, denote the images of
fi,..., fr in m/m2. Then

m/m? = (x1 —ay,...,Tn—an)/(F1,- -, Fr).
But what are these mysterious fy,..., f,. They are not mysterious at all! We have
_ oFf: oFf:
o= o) o =)+ 2 ) )
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(3) — Prove the assertion above.

Proof. f; is the image of f; in m/m?. We can write
fi(x1,...,zn) =cotci(z1—a1) + ...+ cn(zn — an) + gi(z1,. .., Zn)
where g; consists of all quadratic and higher order terms, so that g; € m?. Then,
co = filar,...,an) =0

since f; € I(X). Taking the partial derivative with respect to z; gives

Ofi 09;
83{1(&1,...,@”) =¢ + aiZ(al...,an)
=] Ci
since dg;/dx; will have linear and higher order terms, and so will vanish when evaluated at (a; ..., ay).
Therefore,
— 90 0
Ja= aﬁ(al,...,an) (1 —al)—f—...—l—agl(al,...,an) (z1 —ap)
as required. O

.2.6 Examples (Hypersurfaces)

(4) — Compute the dimension of the tangent space of (a) V(zy — 2%) € A% at (0,0,0), (b) V(XY —
Z2)CcP?at[0:1:0)].

Proof. We compute the Zariski cotangent space, and its dimension, to find the dimension of the

tangent space.

(a) $ V(xy - z%) $ at (0,0,0)
$ V(xy - z%) $ is defined by a single polynomial f = xy — 22.
First, the partial derivatives evaluated at (0,0,0) are

af B _
ax (O’O)O) — y(oaovo) - 0
of B B
@(0,0,0) = 33(0,0,0) =0
af B _
5,(0,0,0) = =22(0,0,0) = 0

So there are nothing non-trivial to quotient by, and so the cotangent space m/m? is the space
m/m?. Since this has k-basis (x,, 2), it has dimension 3.
Then the tangent space Hom(m/m?, k) has dimension 3 also.

b)) V(XY —Z%) at [0:1:0]
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We take the standard affine chart containing the point [0 : 1 : 0], namely the set U C P? defined
by Y # 0. Then U =2 A% and V(XY — Z?)NU = V(x — 22). The point [0 : 1 : 0] corresponds to the
origin (0,0) € A%. By a similar computation as above, we see that the cotangent space is

(z,y)/(x),

which has dimension 1. Hence the tangent space also has dimension 1. O

Let T, X denote the tangent space of X at x.

9.2.7 Proposition (Dimension of the tangent space) We have dim7, X > dim, X.

Proof. (Sketch) I will give a proof using a result in commutative algebra called Nakayama’s lemma and a
fact about local rings. Neither of them are difficult once you develop the theory, but (again) their proper
place is a course in commutative algebra.

Nakayama’s lemma says the following: let R be a Noetherian local ring with maximal ideal m and
let M be a finitely generated R-module. Consider my,...,m, € M and their images my,...,m, in the
R/m-vector space M = M/mM. If my,...,m, span M as a vector space, then myq, ..., m, generate M
as an R-module.

Let us apply it to R = Ox 4; its maximal ideal consists of the germs that vanish at x. It turns out
that R is Noetherian. We take M = m itself. Let n = dim m/m? and let Ty, ..., m, € m be such that
their images in m/m? form a basis. Then, by Nakayama’s lemma, my, ..., m, generate the ideal m.

We now “spread out” our knowledge from the germs Ox , to a Zariski neighborhood of . Let U C X
be a small enough affine neighborhood of x such that my, ..., m, are represented by functions on U. The
maximal ideal of O ; is the set of germs vanishing at x and we know that mq,...,m, generate this ideal.
If U is small enough, we can show that the functions mq,...,m, generate the (maximal) ideal of k[U]
consisting of functions vanishing at . As a result, the zero locus of the n regular functions mq,...,m,
on U is the point z. Using slicing dimension, we conclude that n > dim, X, which is what we set out to
prove. O

9.2.8 Definition (Non-singularity) We say that X is smooth or non-singular at x if
dim, X = dim T, X.

9.2.9 Examples Affine spaces, projective spaces, and Grassmannians are smooth at all points. So are
their open subsets.

9.2.10 Examples (Hypersurfaces) X = V(f) C A" is smooth at z if and only if at least one of the
partial derivatives of f is non-zero at .

(5) — Prove this.

We prove that X = V(f) C A" is smooth at z if and only if at least one of the partial derivatives
of f is non-zero at x.

Suppose all the partial derivatives of f vanish at 2. Then m/m? = (21 — a1, ..., — ay), by
9.2.5. Tt follows that Homy(m/m?, k) has dimension n. Indeed, if e; : m/m? — k denotes the map
sending z; to d;;, i.e. the Kronocker delta symbol, for i,j € {1,...,n}, then {e;} | forms a basis
for Homy,(m/m?, k). On the other hand, X is equidimensional of dimension n — 1, by Theorem
8.5.3. Since n # n — 1, we have shown that dim;X # dim7T,X, so X is not smooth at . By the
contrapositive, we have proven that if X is smooth at x, then at least one of the partial derivatives
of f is non-zero at x.
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Now suppose that at least one of the partial derivatives of f is non-zero at x. Say 887];(1:) # 0,
for some j € {1,...,n}. Then f = >, g—i(x)(:cl — a;) is a non-zero polynomial, because the j th
term in non-zero. Accordingly, in the ring m/m?, in which the ideal of f becomes the zero element,
the polynomial z; — a; is some k linear combination of the other polynomials {x; — al}z{n This
means that it can be removed as a generator of the ring m/m?. This carries over to Hom(m/m?, k);
the basis {e;}"_; of Hom(m/m?, k) from above becomes the basis {ez}z]ln So Hom(m/m?, k) has
dimension n — 1. This agrees with the dimension of X, so X is smooth at . This completes the
proof.

9.2.11 Examples (Hypersurface) The Fermat cubic V(X34 Y34 Z3) C P? is smooth at every point
on it.

(6) — Prove this.

Let p=Ja:b:1 €8 :=V(F),F:= X3+ Y3+ Z3 be arbitrary without loss of generality (the
choice of nonzero coordinate does not matter by symmetry of F'). Recall that dim, S = dim P2-1=1
since S is a hypersurface in projective space. We want to show that dim7,S = dim, S by definition
of smooth.

Method 1 using cotangent spaces. We can calculate dim7,S by looking at the dimension of
Hom(m/m? — k) with m the maximal ideal of Og, = O, and S=V(f)CA% f:=a3+y>+1by
passing through charts. The cotangent space has an explicit formula

m/m® = (z —a,y = b)/{f)

where (x — a,y — b) denotes a k vector space with basis z — a,y — b and with f given by the linear
terms of the Taylor expansion of f as described in 9.2.5. More specifically, we have

= Of of
f=gr@b—a)+ 5 @by

= 3a*(z — a) + 3b*(y — b).

This is just another linear equation in terms of z and y so we can identify  with y in m/m? which
leaves us with a k vector space spanned by only one element. Thus, Hom(m/m? — k) = k and hence
dim7T,S = 1.

Method 2 using infinitesimal curves. As above, we can work in A? by looking at charts. We will
now look at the space of infinitesimal curves or equivalently the space of k[e]/e? valued solutions based
at (z,y) to f as seen in Prop. 9.2.2. We do this by solving for ¢, d in

(a+ce)®+(b+de)>+1=0.
We can expand this equation, quotient by €2 and remember our constraint a4+ b3 +1 = 0 to get
3(a’c + bd)e =0

which gives us the constraint d = —‘;—;c for b # 0. This means our space of k[e]/e? valued solutions is

given by {(c, —‘Z—jc)} parameterised by ¢ € Al so we have again dim 7,5 = 1. In the case b = 0, we
must have a # 0 by a® = 1 and so we get ¢ = 0 and the space of solutions is given by {(0,d)} which
again has only dimension 1.
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10 Completeness of projective varieties

I have repeatedly asserted that projective varieties are the algebro-geometric analogue of compact topo-
logical spaces. In one sense, this is evident: over C, the projective varieties are compact in the Fuclidean
topology. But we can abstract out a nice property of compact topological spaces and show that projective
varieties satisfy this property (over any field).

10.1 Completeness

Recall that a continuous map of topological spaces f: X — Y is closed if it maps closed sets to closed
sets. Not all continuous maps are closed; take for example, the map f: A? — A! defined by f(z,y) = z.
It sends the closed set V(zy — 1) to the non-closed set A!\ {0}.

10.1.1 Definition (Complete variety) We say that a variety X is complete if for any Y, the projec-
tion map
m: X XY =Y

is closed.

10.2 Proposition (Closed image)

Let X be a complete variety, Y be a separated variety, and f: X — Y a regular map. Then the image
f(X) is closed in Y.

Proof. Consider the graph I'y = {(z, f(z)) | * € X} C X x Y. Note that this is the pre-image of the
diagonal A C Y x Y under the map (f,id): X xY — Y x Y. Since Y is separated, I'y is closed. Since
X is complete, the projection of I'y to Y is closed. But this projection is just the image of f. O

10.3 Theorem (Projective varieties are complete)

Let X be a projective variety. Then X is complete. That is, for any Y, the projection map 7: X XY — Y
is closed.

10.3.1 Remark Why is this a big deal? Let us consider an example, one we have seen in the homework.
Let V' be the vector space of homogeneous polynomials of degree d in Xg, X1, Xo and let A C V be the
set of polynomials F' that have a singularity at some point p € P2. (This means that all three partials of
F vanish at p). That is,

oF
0X;

A = {F | 3p such that (p) =0 fori=0,1,2}.

We want to prove that A C V is closed. Let us eliminate the existential quantifier by considering the set

OF
0X;

Z ={(F,p) | (p)=0fori=0,1,2.} CV x P2

It is easy to see that Z is closed: it is defined by polynomial equations in the coefficients of F' and the
coordinates of p. By definition, A is the image of Z under the projection map V x P2 — V. Since P? is
projective, hence complete, the image is closed.

The upshot is that Theorem [10.3] allows us to eliminate ezistential quantifiers as long as they are
quantified over a complete variety. Note that the resulting statements about closedness can be extremely
non-trivial. The fact that A C V is closed means that there is a system of polynomials in the coefficient
of F' that detects whether F' has a singularity. (In the homework, you proved that A has codimension 1,
which shows that the system consists of just one equation.)
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10.3.2 Examples Here are some more examples of sets that we can show are closed by the same
reasoning.

1. The subset of Gr(2,4) x Gr(2,4) consisting of (V, W) such that V' N W is non-zero.

2. Let PV be the projective space of surfaces of degree d in P3. The subset of PV consisting of surfaces
that contain a line.

(1), (2) — Using Theorem [10.3, prove that the two sets mentioned above are closed.

(1) We want to prove that the subset of Gr(2,4) x Gr(2,4) consisting of (V, W) such that VW is
non-zero is closed in Gr(2,4) x Gr(2,4). The condition that V N # 0 is equivalent to the condition
that there exists L € Gr(1,4) such that LC V nW.

Solet Z={(L,V)|L CV} CGr(1,4) x Gr(2,4). Then V is represented by the column span of

v1 w1
Vo W2
v3 w3
Vg Wy

We can choose a 2-dim subset of {1,2,3,4} and change the corresponding sub-matrix to B (1)], S0

the remaining coordinates {v;, v;, w;, w;} represent V on a chart of Gr(2,4).
Similarly, L can be represented by the column span of

b
ly
3
ly
We then make [; = 1 for some ¢ € {1,2,3,4}, so the rest of the coordinates represent L in a chart of
Gr(1,4).
Then, if L C V,
I
2
€ span(v,w),
3
ly

where v, w are the vectors that span V, so we have that

v1 wy £
vy wy fo
vy wsz {3
vy wy {4

has rank 2. So the determinants of all the 3 x 3 minors of this matrix are equal to zero, and since the
determinant of each 3 X 3 minor is a polynomial expression in v, w, ¢, Z is the vanishing set of these
polynomials, so Z is closed.

Then consider the subset {(L,V,W)|L C VNW} of Gr(1,4) x Gr(2,4) x Gr(2,4). This is equal
to the intersection of X = {(L,V,W)|L C V} and Y = {(L,V,W)|L C W}.
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Then X and Y are both mapped to Z under the projection map Gr(1,4) x Gr(2,4) x Gr(2,4) —
Gr(1,4) x Gr(2,4), so since the projection map is continuous and Z is closed, X and Y are both
closed.

So XNY ={(L,V,W)|L C VNW}is also closed.

Finally, since Gr(1,4) is complete, the image of X N'Y under the projection map Gr(1,4) x
Gr(2,4) x Gr(2,4) — Gr(2,4) x Gr(2,4), which is equal to {(V, W|V N W # 0}, is closed.

(2) Let V denote the set of homogeneous polynomials of degree d in the variables X, X1, X, X3.
The set of lines in P? is given by Gr(2,4). Let Z C PV x Gr(2,4) be the set of pairs ([F], L) such
that L C V(F).

For F € V, write

F=> aX',
I

where each X! = X X' X2 X! is of degree d. Identify [F] with the equivalence class [as] of its
coefficients.
A line L can be written in the form

L =P - span{v, w}

for some linearly independent pair v,w € k*.
Now, a line L C V(F) if and only if F(A\v + pw) = 0 for all [\ : u] € P!, that is, if and only if

Z ar(Mw + pw)! =0
I

for all [\ : u] € P!. Expanding gives a polynomial G(\, i), with coefficients which are polynomials in
the a; and the entries of v and w. Then L C V(F) if and only if this is the zero polynomial, that is,
when the coefficients vanish. In particular, Z is the vanishing set of a collection of polynomials, so it
is Zariski closed.

Finally, Gr(2,4) is projective, so it is complete by Theorem 10.3, and hence the projection

PV x Gr(2,4) — PV

is closed. The set of surfaces in PV which contain a line is the image of Z under this projection, so
must therefore be closed.

10.3.3 Remark Intuitively, what does it mean that 7: X x Y — Y is closed? Suppose you have a
family of points (z¢,y;) € X x Y such that lim;_,oy exists in Y. Then limy_,o x; must exist in X. That
is, “points cannot escape to infinity in the X-direction.”

We have the following very useful criterion for irreducibility in the context of closed maps.

10.4 Theorem (Closed maps and irreducibility)

Let m: X — Y be a surjective closed map of varieties such that Y is irreducibile and all fibers of 7 are
irreducible of the same dimension. Then X is irreducible.

Proof. This is pure topology. Let n be the dimension of the fibers of 7. Suppose X = |JX; is the
decomposition of X into irreducible components and let m;: X; — Y be the restriction of 7. By the
theorem on the dimension of fibers, there exists a non-empty open U C Y such that dim 7; !(y) is
constant as y € U (caution: it may be the case that w;l(y) is empty for some 7; let us say that the
empty set has dimension —1.) Let n; = dim Wi_l(y) for y € U. Now, for some y € U, we know that
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71 (y) = U; 7; '(y) has dimension n, so we must have n = n; for some i, say for i = 1. Since 7 is closed
and 7(X1) contains U, we must hae 7(X;) = Y. Thus by the theorem on the dimension of fibers, 7, ()
is itself non-empty of dimension at least n for every y € Y. But we know that 7~ 1(y) = |, w;l(y) is
irreducible of dimension n. Tt follows that 7; '(y) C m; (y) for all i and hence 7~ (y) = 7, '(y). Since
this holds for all ¢, we conclude that X = X;. That is, X is irreducible. O

10.4.1 Example

(3), (4) — Using Theorem [10.4} prove that the two sets in Examples [10.3.2| are irreducible.

(4)
Proof:

Aline in P? can be written as {[aX, + bYy: aX; + bY,:aX, + bY,:aX; + bY3]|[a: b] € P1}.
Xy Yo
1
Y50
X3 Y3
of a dim 4 vector space, and therefore an element of Gr(2,4).

X
This is equivalent to the column span of Xl which can be treated a dim 2 subspace
2

Let PV; denote the space of homogeneous polynomial of degree d in variables
Xo, X1, X5, X3. Consider the space PV X Gr(2,4), and a subsetZ = {([F], L)IL c V(F)} c
PVg X Gr(2,4).

L c V(F) means that the line described by L is contained in the surface V (F).

A homogeneous polynomial of degree d can be written as F = Ygegq a; X!, where X! =

Xé“)(ilXZiZXgig, io + iy + i, + i3 = d, represents all the monomials of degree d.

Consider the projection map m: Z - Gr(2,4). For a line L € Gr(2,4), its fiber is given by
Xo

Xy

n~Y(L) = {([F],L)|F vanishes on L}. Let L be defined by L = [Xo: X;] € P} Then,

0
(L) will consist of F such that F(X,, X;,0,0) = 0.

F(Xy, X1,0,0) = 0 implies that, allits terms must be a multiple of X, or X3, there is no term
of pure Xy, X;. We can make this into a projective space:

7 (L) = {(P(span of all monomials except pure X,, X; monomials), L)}
= P™ for some m

P™ irreducible, therefore 7 ~(L) is irreducible.

m: Z - Gr(2,4) projection map, and PV, is projective, hence complete. Therefore, 7 is a
closed map. Also, the Grassmannian Gr(2,4) is irreducible.

Now we will show that all the fibers of & are irreducible of the same degree.

Yo
7

Consider any line L' € Gr(2,4). We can make the line to be L' = [Yp: V1] € PY

oo

through a change of basis to Yy, Y4, Y5, ¥5. Then, its fiber is given by:
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n~(L") = {(IP{span of all monomials except pure Y,, ¥; monomials), L)}
{(P{span of all monomials except pure Xy, X; monomials}, L)}
(L)

1R

Therefore, all the fibers are isomorphic to each other, therefore they all have the same
dimension (and the map is surjective, since all elements in Gr(2,4) have a non-empty
fiber).

Therefore, by theorem 1.4, Z is irreducible.

Let f: PV, x Gr(2,4) - PV, be the projection map. Suppose f(Z) is reducible, then we
can write it as Z=2Z,UZ, , where Z;,Z, cZ are proper closed sets. Then,
F7Y(Zy), f~1(Z;) would also be proper closed sets,and f~1(Z) U f~1(Z,) = £ (Z), and
Z would be reducible. Since Z is irreducible, we have f(Z) isirreducible by contraposition.

f(Z) € PV, is the subset of homogeneous polynomial of degree d which contains a line.
This set is irreducible.

Done.

10.5 Proof of Theorem

We begin with a series of reductions.

1. f PxY — Y is closed and X C P is a closed subset, then X xY — Y is also closed. Therefore, it
suffices to treat the case of P = P".

2. The map P xY — Y is closed if and only if there is an open cover {U;} of Y such that P x U; — U;
is clossed for all i. Hence, by passing to an affine cover, it suffices to treat the case where Y is affine.

3. fY C Ais closed then the map P xY — Y is closed if and only if P x A — A is closed. Therefore,
it suffices to treat the case where Y is an affine space.

By the three reductions above, we are reduced to proving that the map
P x A™ — A™

is closed. Let w: P" x A™ — A" be the projection onto the second factor and let Z C P™ x A™ be a closed
set. We want to prove that 7(Z) is closed; we prove that its complement is open.

What does Z look like? Choose homogeneous coordinates [Xo : -+ : X,,] on P" and coordinates
t1,...,tm on A™. Then a closed set such as Z is the zero locus of a system of equations

Fi(Xo,..., Xn,t1,...,tm) =0, fori=1,...,r

where each F; is homogeneous in the X-coordinates (but not necessary in the t) coordinates. The set
7w(Z) is the set of (t1,...,t,) for which the system has a non-zero solution and its complement is the
set for which it does not have a non-zero solution. We must prove that if it does not have a non-zero
solution for a particular choice of (t1,...,tn) = (a1,...,an), then there is a Zariski open subset around
(a1,...,am) such that for any (¢1,...,%,) in this open set, the system does not have a non-zero solution.
It follows from the Nullstellensatz that if a system of polynomial equations in X;’s has no non-zero solution
then the radical of the ideal generated by the polynomials must be the ideal (Xy,...,X,). Thus, there
exists a large enough N such that any monomial in X; lies in the ideal of k[X,..., X,] generated by

F;(Xo,...,Xn,a1,...,ay). Let us prove that the same is true if we replace (aq,...,a,) by any point in
an open neighborhood.

Let V; denote the vector space of homogeneous polynomials of degree £ in Xg, ..., X,,. This is a finite
dimensional space. Suppose the X-degree of F; is d;. For any t = (¢1,...,t,) € A™, consider the map

Mt : @ VNfdi — VN
=1
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defined by
(917"'797') '_>Fl(X07~'-7Xn7t1,--~atm)gl+"'+Fr(XO7-~~,Xn,t17---7tm)gr-

The domain and codomain of M, are finite dimensional k-vector spaces and hence, after choosing bases,
we can represent My by a matrix. The entries of this matrix may depend on ¢ but they are polynomial
functions of t.

Let v = dim Vy. We know that for ¢t = (ai,...,ay), the matrix of M; has rank v, because the map
M is surjective. Thus, some v X v minor of M, is non-zero at t = (aq,...,an). Let U C A™ be the open
subset containing (ay,...,a,) where this minor is non-zero. Then for any ¢t € U, the matrix of M; has
rank v, which means that M; is surjective. But this means that the system of equations F; = 0 has no
non-zero solutions in Xy, ..., X, for any ¢ € U. The proof is now complete.

(5) — To understand the proof, consider Z C P! x A? defined by the equations
X2 —sY?=0and sX +tY =0.

Notice that the point (s,t) = (0,1) is not in the image, and go through the proof to produce an open
subset around (0, 1) whose points are not in the image.

We are considering Z C P! x A? defined by the equations:
X?—sY?=0and sX +tY =0

We can see that (s,t) = (0,1) is not in the image, as substituting these values in, we get X2 = 0
and Y = 0, and [0 : 0] is not a valid point in P*.

We want to construct an open subset around (0, 1) whose points are not in the image.

As there are no solutions, by Nullstellensatz, there exists an n such that the n th power of the
irrelevant ideal is in the ideal generated by the equations: (X,Y)" C (X2,Y). We can see n = 2
works, as: (X,Y)2 = (X2, XY,Y?) C (X2,Y).

We now want to prove that the same is true if we replace (0,1) with any point in an open
neighbourhood.

We are considering the map M) : Vo © Vi — V2 given by:

(91,92) = (X? = sY?)g1 + (sX +1Y)gs
Choosing the standard bases, our matrix is given by

1
0

0
S
—S t

O+ »

We know that for (0,1), the map is surjective, so in this case the determinant is non-zero. Let
U C A? be the open subset where the determinant is non-zero. Then for any (s,t) € U, the matrix
M, is surjective, which mean the system of equations has no non-zero solutions in X,Y, concluding
the proof.
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Calculating the determinant for thoroughness’ sake:

Lo b t s 0 s
0t s1=1y ¢ =%|_s ¢
—s 0 ¢t
= t? — 5(s?)
—_2_ 3

Thus in the open containing (0, 1) given by 2 # s3, we have no points in the image.

10.6 Consequences

10.6.1 Theorem (No global functions) Let X be a connected projective variety. Then the only
regular functions on X are the constant functions.

Proof. A regular function is a regular map f: X — Al and hence it gives a regular map f: X — PL
Since X is complete, the image of f is closed. But the only closed subsets of P! are P! and finite sets.
By construction, the image of f misses the point at infinity [1 : 0], so the image must be a finite set. But

X is connected, so the image is also connected, and hence must be a single point. Then f is a constant

function. O
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